ip6_output.c revision 1.61.2.3 1 /* $NetBSD: ip6_output.c,v 1.61.2.3 2004/09/21 13:37:35 skrll Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.61.2.3 2004/09/21 13:37:35 skrll Exp $");
66
67 #include "opt_inet.h"
68 #include "opt_ipsec.h"
69 #include "opt_pfil_hooks.h"
70
71 #include <sys/param.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/errno.h>
75 #include <sys/protosw.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80
81 #include <net/if.h>
82 #include <net/route.h>
83 #ifdef PFIL_HOOKS
84 #include <net/pfil.h>
85 #endif
86
87 #include <netinet/in.h>
88 #include <netinet/in_var.h>
89 #include <netinet/ip6.h>
90 #include <netinet/icmp6.h>
91 #include <netinet6/ip6_var.h>
92 #include <netinet6/in6_pcb.h>
93 #include <netinet6/nd6.h>
94 #include <netinet6/ip6protosw.h>
95
96 #ifdef IPSEC
97 #include <netinet6/ipsec.h>
98 #include <netkey/key.h>
99 #endif /* IPSEC */
100
101 #include "loop.h"
102
103 #include <net/net_osdep.h>
104
105 #ifdef PFIL_HOOKS
106 extern struct pfil_head inet6_pfil_hook; /* XXX */
107 #endif
108
109 struct ip6_exthdrs {
110 struct mbuf *ip6e_ip6;
111 struct mbuf *ip6e_hbh;
112 struct mbuf *ip6e_dest1;
113 struct mbuf *ip6e_rthdr;
114 struct mbuf *ip6e_dest2;
115 };
116
117 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
118 struct socket *));
119 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
120 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
121 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
122 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
123 struct ip6_frag **));
124 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
125 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
126
127 extern struct ifnet loif[NLOOP];
128
129 /*
130 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
131 * header (with pri, len, nxt, hlim, src, dst).
132 * This function may modify ver and hlim only.
133 * The mbuf chain containing the packet will be freed.
134 * The mbuf opt, if present, will not be freed.
135 *
136 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
137 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
138 * which is rt_rmx.rmx_mtu.
139 */
140 int
141 ip6_output(m0, opt, ro, flags, im6o, so, ifpp)
142 struct mbuf *m0;
143 struct ip6_pktopts *opt;
144 struct route_in6 *ro;
145 int flags;
146 struct ip6_moptions *im6o;
147 struct socket *so;
148 struct ifnet **ifpp; /* XXX: just for statistics */
149 {
150 struct ip6_hdr *ip6, *mhip6;
151 struct ifnet *ifp, *origifp;
152 struct mbuf *m = m0;
153 int hlen, tlen, len, off;
154 struct route_in6 ip6route;
155 struct sockaddr_in6 *dst;
156 int error = 0;
157 u_long mtu;
158 int alwaysfrag, dontfrag;
159 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
160 struct ip6_exthdrs exthdrs;
161 struct in6_addr finaldst;
162 struct route_in6 *ro_pmtu = NULL;
163 int hdrsplit = 0;
164 int needipsec = 0;
165 #ifdef IPSEC
166 int needipsectun = 0;
167 struct secpolicy *sp = NULL;
168
169 ip6 = mtod(m, struct ip6_hdr *);
170 #endif /* IPSEC */
171
172 #define MAKE_EXTHDR(hp, mp) \
173 do { \
174 if (hp) { \
175 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
176 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
177 ((eh)->ip6e_len + 1) << 3); \
178 if (error) \
179 goto freehdrs; \
180 } \
181 } while (/*CONSTCOND*/ 0)
182
183 bzero(&exthdrs, sizeof(exthdrs));
184 if (opt) {
185 /* Hop-by-Hop options header */
186 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
187 /* Destination options header(1st part) */
188 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
189 /* Routing header */
190 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
191 /* Destination options header(2nd part) */
192 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
193 }
194
195 #ifdef IPSEC
196 if ((flags & IPV6_FORWARDING) != 0) {
197 needipsec = 0;
198 goto skippolicycheck;
199 }
200
201 /* get a security policy for this packet */
202 if (so == NULL)
203 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
204 else {
205 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
206 IPSEC_DIR_OUTBOUND)) {
207 needipsec = 0;
208 goto skippolicycheck;
209 }
210 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
211 }
212
213 if (sp == NULL) {
214 ipsec6stat.out_inval++;
215 goto freehdrs;
216 }
217
218 error = 0;
219
220 /* check policy */
221 switch (sp->policy) {
222 case IPSEC_POLICY_DISCARD:
223 /*
224 * This packet is just discarded.
225 */
226 ipsec6stat.out_polvio++;
227 goto freehdrs;
228
229 case IPSEC_POLICY_BYPASS:
230 case IPSEC_POLICY_NONE:
231 /* no need to do IPsec. */
232 needipsec = 0;
233 break;
234
235 case IPSEC_POLICY_IPSEC:
236 if (sp->req == NULL) {
237 /* XXX should be panic ? */
238 printf("ip6_output: No IPsec request specified.\n");
239 error = EINVAL;
240 goto freehdrs;
241 }
242 needipsec = 1;
243 break;
244
245 case IPSEC_POLICY_ENTRUST:
246 default:
247 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
248 }
249
250 skippolicycheck:;
251 #endif /* IPSEC */
252
253 /*
254 * Calculate the total length of the extension header chain.
255 * Keep the length of the unfragmentable part for fragmentation.
256 */
257 optlen = 0;
258 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
259 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
260 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
261 unfragpartlen = optlen + sizeof(struct ip6_hdr);
262 /* NOTE: we don't add AH/ESP length here. do that later. */
263 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
264
265 /*
266 * If we need IPsec, or there is at least one extension header,
267 * separate IP6 header from the payload.
268 */
269 if ((needipsec || optlen) && !hdrsplit) {
270 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
271 m = NULL;
272 goto freehdrs;
273 }
274 m = exthdrs.ip6e_ip6;
275 hdrsplit++;
276 }
277
278 /* adjust pointer */
279 ip6 = mtod(m, struct ip6_hdr *);
280
281 /* adjust mbuf packet header length */
282 m->m_pkthdr.len += optlen;
283 plen = m->m_pkthdr.len - sizeof(*ip6);
284
285 /* If this is a jumbo payload, insert a jumbo payload option. */
286 if (plen > IPV6_MAXPACKET) {
287 if (!hdrsplit) {
288 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
289 m = NULL;
290 goto freehdrs;
291 }
292 m = exthdrs.ip6e_ip6;
293 hdrsplit++;
294 }
295 /* adjust pointer */
296 ip6 = mtod(m, struct ip6_hdr *);
297 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
298 goto freehdrs;
299 ip6->ip6_plen = 0;
300 } else
301 ip6->ip6_plen = htons(plen);
302
303 /*
304 * Concatenate headers and fill in next header fields.
305 * Here we have, on "m"
306 * IPv6 payload
307 * and we insert headers accordingly. Finally, we should be getting:
308 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
309 *
310 * during the header composing process, "m" points to IPv6 header.
311 * "mprev" points to an extension header prior to esp.
312 */
313 {
314 u_char *nexthdrp = &ip6->ip6_nxt;
315 struct mbuf *mprev = m;
316
317 /*
318 * we treat dest2 specially. this makes IPsec processing
319 * much easier. the goal here is to make mprev point the
320 * mbuf prior to dest2.
321 *
322 * result: IPv6 dest2 payload
323 * m and mprev will point to IPv6 header.
324 */
325 if (exthdrs.ip6e_dest2) {
326 if (!hdrsplit)
327 panic("assumption failed: hdr not split");
328 exthdrs.ip6e_dest2->m_next = m->m_next;
329 m->m_next = exthdrs.ip6e_dest2;
330 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
331 ip6->ip6_nxt = IPPROTO_DSTOPTS;
332 }
333
334 #define MAKE_CHAIN(m, mp, p, i)\
335 do {\
336 if (m) {\
337 if (!hdrsplit) \
338 panic("assumption failed: hdr not split"); \
339 *mtod((m), u_char *) = *(p);\
340 *(p) = (i);\
341 p = mtod((m), u_char *);\
342 (m)->m_next = (mp)->m_next;\
343 (mp)->m_next = (m);\
344 (mp) = (m);\
345 }\
346 } while (/*CONSTCOND*/ 0)
347 /*
348 * result: IPv6 hbh dest1 rthdr dest2 payload
349 * m will point to IPv6 header. mprev will point to the
350 * extension header prior to dest2 (rthdr in the above case).
351 */
352 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
353 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
354 IPPROTO_DSTOPTS);
355 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
356 IPPROTO_ROUTING);
357
358 #ifdef IPSEC
359 if (!needipsec)
360 goto skip_ipsec2;
361
362 /*
363 * pointers after IPsec headers are not valid any more.
364 * other pointers need a great care too.
365 * (IPsec routines should not mangle mbufs prior to AH/ESP)
366 */
367 exthdrs.ip6e_dest2 = NULL;
368
369 {
370 struct ip6_rthdr *rh = NULL;
371 int segleft_org = 0;
372 struct ipsec_output_state state;
373
374 if (exthdrs.ip6e_rthdr) {
375 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
376 segleft_org = rh->ip6r_segleft;
377 rh->ip6r_segleft = 0;
378 }
379
380 bzero(&state, sizeof(state));
381 state.m = m;
382 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
383 &needipsectun);
384 m = state.m;
385 if (error) {
386 /* mbuf is already reclaimed in ipsec6_output_trans. */
387 m = NULL;
388 switch (error) {
389 case EHOSTUNREACH:
390 case ENETUNREACH:
391 case EMSGSIZE:
392 case ENOBUFS:
393 case ENOMEM:
394 break;
395 default:
396 printf("ip6_output (ipsec): error code %d\n", error);
397 /* FALLTHROUGH */
398 case ENOENT:
399 /* don't show these error codes to the user */
400 error = 0;
401 break;
402 }
403 goto bad;
404 }
405 if (exthdrs.ip6e_rthdr) {
406 /* ah6_output doesn't modify mbuf chain */
407 rh->ip6r_segleft = segleft_org;
408 }
409 }
410 skip_ipsec2:;
411 #endif
412 }
413
414 /*
415 * If there is a routing header, replace destination address field
416 * with the first hop of the routing header.
417 */
418 if (exthdrs.ip6e_rthdr) {
419 struct ip6_rthdr *rh;
420 struct ip6_rthdr0 *rh0;
421 struct in6_addr *addr;
422
423 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
424 struct ip6_rthdr *));
425 finaldst = ip6->ip6_dst;
426 switch (rh->ip6r_type) {
427 case IPV6_RTHDR_TYPE_0:
428 rh0 = (struct ip6_rthdr0 *)rh;
429 addr = (struct in6_addr *)(rh0 + 1);
430 ip6->ip6_dst = addr[0];
431 bcopy(&addr[1], &addr[0],
432 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1));
433 addr[rh0->ip6r0_segleft - 1] = finaldst;
434 break;
435 default: /* is it possible? */
436 error = EINVAL;
437 goto bad;
438 }
439 }
440
441 /* Source address validation */
442 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
443 (flags & IPV6_UNSPECSRC) == 0) {
444 error = EOPNOTSUPP;
445 ip6stat.ip6s_badscope++;
446 goto bad;
447 }
448 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
449 error = EOPNOTSUPP;
450 ip6stat.ip6s_badscope++;
451 goto bad;
452 }
453
454 ip6stat.ip6s_localout++;
455
456 /*
457 * Route packet.
458 */
459 /* initialize cached route */
460 if (ro == 0) {
461 ro = &ip6route;
462 bzero((caddr_t)ro, sizeof(*ro));
463 }
464 ro_pmtu = ro;
465 if (opt && opt->ip6po_rthdr)
466 ro = &opt->ip6po_route;
467 dst = (struct sockaddr_in6 *)&ro->ro_dst;
468 /*
469 * If there is a cached route,
470 * check that it is to the same destination
471 * and is still up. If not, free it and try again.
472 */
473 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
474 dst->sin6_family != AF_INET6 ||
475 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
476 RTFREE(ro->ro_rt);
477 ro->ro_rt = (struct rtentry *)0;
478 }
479 if (ro->ro_rt == 0) {
480 bzero(dst, sizeof(*dst));
481 dst->sin6_family = AF_INET6;
482 dst->sin6_len = sizeof(struct sockaddr_in6);
483 dst->sin6_addr = ip6->ip6_dst;
484 }
485 #ifdef IPSEC
486 if (needipsec && needipsectun) {
487 struct ipsec_output_state state;
488
489 /*
490 * All the extension headers will become inaccessible
491 * (since they can be encrypted).
492 * Don't panic, we need no more updates to extension headers
493 * on inner IPv6 packet (since they are now encapsulated).
494 *
495 * IPv6 [ESP|AH] IPv6 [extension headers] payload
496 */
497 bzero(&exthdrs, sizeof(exthdrs));
498 exthdrs.ip6e_ip6 = m;
499
500 bzero(&state, sizeof(state));
501 state.m = m;
502 state.ro = (struct route *)ro;
503 state.dst = (struct sockaddr *)dst;
504
505 error = ipsec6_output_tunnel(&state, sp, flags);
506
507 m = state.m;
508 ro_pmtu = ro = (struct route_in6 *)state.ro;
509 dst = (struct sockaddr_in6 *)state.dst;
510 if (error) {
511 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
512 m0 = m = NULL;
513 m = NULL;
514 switch (error) {
515 case EHOSTUNREACH:
516 case ENETUNREACH:
517 case EMSGSIZE:
518 case ENOBUFS:
519 case ENOMEM:
520 break;
521 default:
522 printf("ip6_output (ipsec): error code %d\n", error);
523 /* FALLTHROUGH */
524 case ENOENT:
525 /* don't show these error codes to the user */
526 error = 0;
527 break;
528 }
529 goto bad;
530 }
531
532 exthdrs.ip6e_ip6 = m;
533 }
534 #endif /* IPSEC */
535
536 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
537 /* Unicast */
538
539 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
540 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
541 /* xxx
542 * interface selection comes here
543 * if an interface is specified from an upper layer,
544 * ifp must point it.
545 */
546 if (ro->ro_rt == 0) {
547 /*
548 * non-bsdi always clone routes, if parent is
549 * PRF_CLONING.
550 */
551 rtalloc((struct route *)ro);
552 }
553 if (ro->ro_rt == 0) {
554 ip6stat.ip6s_noroute++;
555 error = EHOSTUNREACH;
556 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
557 goto bad;
558 }
559 ifp = ro->ro_rt->rt_ifp;
560 ro->ro_rt->rt_use++;
561 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
562 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
563 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
564
565 in6_ifstat_inc(ifp, ifs6_out_request);
566
567 /*
568 * Check if the outgoing interface conflicts with
569 * the interface specified by ifi6_ifindex (if specified).
570 * Note that loopback interface is always okay.
571 * (this may happen when we are sending a packet to one of
572 * our own addresses.)
573 */
574 if (opt && opt->ip6po_pktinfo &&
575 opt->ip6po_pktinfo->ipi6_ifindex) {
576 if (!(ifp->if_flags & IFF_LOOPBACK) &&
577 ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
578 ip6stat.ip6s_noroute++;
579 in6_ifstat_inc(ifp, ifs6_out_discard);
580 error = EHOSTUNREACH;
581 goto bad;
582 }
583 }
584
585 if (opt && opt->ip6po_hlim != -1)
586 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
587 } else {
588 /* Multicast */
589 struct in6_multi *in6m;
590
591 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
592
593 /*
594 * See if the caller provided any multicast options
595 */
596 ifp = NULL;
597 if (im6o != NULL) {
598 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
599 if (im6o->im6o_multicast_ifp != NULL)
600 ifp = im6o->im6o_multicast_ifp;
601 } else
602 ip6->ip6_hlim = ip6_defmcasthlim;
603
604 /*
605 * See if the caller provided the outgoing interface
606 * as an ancillary data.
607 * Boundary check for ifindex is assumed to be already done.
608 */
609 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
610 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
611
612 /*
613 * If the destination is a node-local scope multicast,
614 * the packet should be loop-backed only.
615 */
616 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
617 /*
618 * If the outgoing interface is already specified,
619 * it should be a loopback interface.
620 */
621 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
622 ip6stat.ip6s_badscope++;
623 error = ENETUNREACH; /* XXX: better error? */
624 /* XXX correct ifp? */
625 in6_ifstat_inc(ifp, ifs6_out_discard);
626 goto bad;
627 } else {
628 ifp = &loif[0];
629 }
630 }
631
632 if (opt && opt->ip6po_hlim != -1)
633 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
634
635 /*
636 * If caller did not provide an interface lookup a
637 * default in the routing table. This is either a
638 * default for the speicfied group (i.e. a host
639 * route), or a multicast default (a route for the
640 * ``net'' ff00::/8).
641 */
642 if (ifp == NULL) {
643 if (ro->ro_rt == 0) {
644 ro->ro_rt = rtalloc1((struct sockaddr *)
645 &ro->ro_dst, 0);
646 }
647 if (ro->ro_rt == 0) {
648 ip6stat.ip6s_noroute++;
649 error = EHOSTUNREACH;
650 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
651 goto bad;
652 }
653 ifp = ro->ro_rt->rt_ifp;
654 ro->ro_rt->rt_use++;
655 }
656
657 if ((flags & IPV6_FORWARDING) == 0)
658 in6_ifstat_inc(ifp, ifs6_out_request);
659 in6_ifstat_inc(ifp, ifs6_out_mcast);
660
661 /*
662 * Confirm that the outgoing interface supports multicast.
663 */
664 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
665 ip6stat.ip6s_noroute++;
666 in6_ifstat_inc(ifp, ifs6_out_discard);
667 error = ENETUNREACH;
668 goto bad;
669 }
670 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
671 if (in6m != NULL &&
672 (im6o == NULL || im6o->im6o_multicast_loop)) {
673 /*
674 * If we belong to the destination multicast group
675 * on the outgoing interface, and the caller did not
676 * forbid loopback, loop back a copy.
677 */
678 ip6_mloopback(ifp, m, dst);
679 } else {
680 /*
681 * If we are acting as a multicast router, perform
682 * multicast forwarding as if the packet had just
683 * arrived on the interface to which we are about
684 * to send. The multicast forwarding function
685 * recursively calls this function, using the
686 * IPV6_FORWARDING flag to prevent infinite recursion.
687 *
688 * Multicasts that are looped back by ip6_mloopback(),
689 * above, will be forwarded by the ip6_input() routine,
690 * if necessary.
691 */
692 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
693 if (ip6_mforward(ip6, ifp, m) != 0) {
694 m_freem(m);
695 goto done;
696 }
697 }
698 }
699 /*
700 * Multicasts with a hoplimit of zero may be looped back,
701 * above, but must not be transmitted on a network.
702 * Also, multicasts addressed to the loopback interface
703 * are not sent -- the above call to ip6_mloopback() will
704 * loop back a copy if this host actually belongs to the
705 * destination group on the loopback interface.
706 */
707 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
708 m_freem(m);
709 goto done;
710 }
711 }
712
713 /*
714 * Fill the outgoing inteface to tell the upper layer
715 * to increment per-interface statistics.
716 */
717 if (ifpp)
718 *ifpp = ifp;
719
720 /* Determine path MTU. */
721 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
722 &alwaysfrag)) != 0)
723 goto bad;
724 #ifdef IPSEC
725 if (needipsectun)
726 mtu = IPV6_MMTU;
727 #endif
728
729 /*
730 * The caller of this function may specify to use the minimum MTU
731 * in some cases.
732 */
733 if (mtu > IPV6_MMTU) {
734 if ((flags & IPV6_MINMTU))
735 mtu = IPV6_MMTU;
736 }
737
738 /* Fake scoped addresses */
739 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
740 /*
741 * If source or destination address is a scoped address, and
742 * the packet is going to be sent to a loopback interface,
743 * we should keep the original interface.
744 */
745
746 /*
747 * XXX: this is a very experimental and temporary solution.
748 * We eventually have sockaddr_in6 and use the sin6_scope_id
749 * field of the structure here.
750 * We rely on the consistency between two scope zone ids
751 * of source add destination, which should already be assured
752 * Larger scopes than link will be supported in the near
753 * future.
754 */
755 origifp = NULL;
756 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
757 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
758 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
759 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
760 /*
761 * XXX: origifp can be NULL even in those two cases above.
762 * For example, if we remove the (only) link-local address
763 * from the loopback interface, and try to send a link-local
764 * address without link-id information. Then the source
765 * address is ::1, and the destination address is the
766 * link-local address with its s6_addr16[1] being zero.
767 * What is worse, if the packet goes to the loopback interface
768 * by a default rejected route, the null pointer would be
769 * passed to looutput, and the kernel would hang.
770 * The following last resort would prevent such disaster.
771 */
772 if (origifp == NULL)
773 origifp = ifp;
774 } else
775 origifp = ifp;
776 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
777 ip6->ip6_src.s6_addr16[1] = 0;
778 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
779 ip6->ip6_dst.s6_addr16[1] = 0;
780
781 /*
782 * If the outgoing packet contains a hop-by-hop options header,
783 * it must be examined and processed even by the source node.
784 * (RFC 2460, section 4.)
785 */
786 if (exthdrs.ip6e_hbh) {
787 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
788 u_int32_t dummy1; /* XXX unused */
789 u_int32_t dummy2; /* XXX unused */
790
791 /*
792 * XXX: if we have to send an ICMPv6 error to the sender,
793 * we need the M_LOOP flag since icmp6_error() expects
794 * the IPv6 and the hop-by-hop options header are
795 * continuous unless the flag is set.
796 */
797 m->m_flags |= M_LOOP;
798 m->m_pkthdr.rcvif = ifp;
799 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
800 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
801 &dummy1, &dummy2) < 0) {
802 /* m was already freed at this point */
803 error = EINVAL;/* better error? */
804 goto done;
805 }
806 m->m_flags &= ~M_LOOP; /* XXX */
807 m->m_pkthdr.rcvif = NULL;
808 }
809
810 #ifdef PFIL_HOOKS
811 /*
812 * Run through list of hooks for output packets.
813 */
814 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
815 goto done;
816 if (m == NULL)
817 goto done;
818 ip6 = mtod(m, struct ip6_hdr *);
819 #endif /* PFIL_HOOKS */
820 /*
821 * Send the packet to the outgoing interface.
822 * If necessary, do IPv6 fragmentation before sending.
823 *
824 * the logic here is rather complex:
825 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
826 * 1-a: send as is if tlen <= path mtu
827 * 1-b: fragment if tlen > path mtu
828 *
829 * 2: if user asks us not to fragment (dontfrag == 1)
830 * 2-a: send as is if tlen <= interface mtu
831 * 2-b: error if tlen > interface mtu
832 *
833 * 3: if we always need to attach fragment header (alwaysfrag == 1)
834 * always fragment
835 *
836 * 4: if dontfrag == 1 && alwaysfrag == 1
837 * error, as we cannot handle this conflicting request
838 */
839 tlen = m->m_pkthdr.len;
840
841 dontfrag = 0;
842 if (dontfrag && alwaysfrag) { /* case 4 */
843 /* conflicting request - can't transmit */
844 error = EMSGSIZE;
845 goto bad;
846 }
847 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */
848 /*
849 * Even if the DONTFRAG option is specified, we cannot send the
850 * packet when the data length is larger than the MTU of the
851 * outgoing interface.
852 * Notify the error by sending IPV6_PATHMTU ancillary data as
853 * well as returning an error code (the latter is not described
854 * in the API spec.)
855 */
856 u_int32_t mtu32;
857 struct ip6ctlparam ip6cp;
858
859 mtu32 = (u_int32_t)mtu;
860 bzero(&ip6cp, sizeof(ip6cp));
861 ip6cp.ip6c_cmdarg = (void *)&mtu32;
862 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
863 (void *)&ip6cp);
864
865 error = EMSGSIZE;
866 goto bad;
867 }
868
869 /*
870 * transmit packet without fragmentation
871 */
872 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */
873 struct in6_ifaddr *ia6;
874
875 ip6 = mtod(m, struct ip6_hdr *);
876 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
877 if (ia6) {
878 /* Record statistics for this interface address. */
879 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
880 }
881 #ifdef IPSEC
882 /* clean ipsec history once it goes out of the node */
883 ipsec_delaux(m);
884 #endif
885 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
886 goto done;
887 }
888
889 /*
890 * try to fragment the packet. case 1-b and 3
891 */
892 if (mtu < IPV6_MMTU) {
893 /* path MTU cannot be less than IPV6_MMTU */
894 error = EMSGSIZE;
895 in6_ifstat_inc(ifp, ifs6_out_fragfail);
896 goto bad;
897 } else if (ip6->ip6_plen == 0) {
898 /* jumbo payload cannot be fragmented */
899 error = EMSGSIZE;
900 in6_ifstat_inc(ifp, ifs6_out_fragfail);
901 goto bad;
902 } else {
903 struct mbuf **mnext, *m_frgpart;
904 struct ip6_frag *ip6f;
905 u_int32_t id = htonl(ip6_randomid());
906 u_char nextproto;
907 struct ip6ctlparam ip6cp;
908 u_int32_t mtu32;
909
910 /*
911 * Too large for the destination or interface;
912 * fragment if possible.
913 * Must be able to put at least 8 bytes per fragment.
914 */
915 hlen = unfragpartlen;
916 if (mtu > IPV6_MAXPACKET)
917 mtu = IPV6_MAXPACKET;
918
919 /* Notify a proper path MTU to applications. */
920 mtu32 = (u_int32_t)mtu;
921 bzero(&ip6cp, sizeof(ip6cp));
922 ip6cp.ip6c_cmdarg = (void *)&mtu32;
923 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
924 (void *)&ip6cp);
925
926 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
927 if (len < 8) {
928 error = EMSGSIZE;
929 in6_ifstat_inc(ifp, ifs6_out_fragfail);
930 goto bad;
931 }
932
933 mnext = &m->m_nextpkt;
934
935 /*
936 * Change the next header field of the last header in the
937 * unfragmentable part.
938 */
939 if (exthdrs.ip6e_rthdr) {
940 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
941 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
942 } else if (exthdrs.ip6e_dest1) {
943 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
944 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
945 } else if (exthdrs.ip6e_hbh) {
946 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
947 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
948 } else {
949 nextproto = ip6->ip6_nxt;
950 ip6->ip6_nxt = IPPROTO_FRAGMENT;
951 }
952
953 /*
954 * Loop through length of segment after first fragment,
955 * make new header and copy data of each part and link onto
956 * chain.
957 */
958 m0 = m;
959 for (off = hlen; off < tlen; off += len) {
960 struct mbuf *mlast;
961
962 MGETHDR(m, M_DONTWAIT, MT_HEADER);
963 if (!m) {
964 error = ENOBUFS;
965 ip6stat.ip6s_odropped++;
966 goto sendorfree;
967 }
968 m->m_pkthdr.rcvif = NULL;
969 m->m_flags = m0->m_flags & M_COPYFLAGS;
970 *mnext = m;
971 mnext = &m->m_nextpkt;
972 m->m_data += max_linkhdr;
973 mhip6 = mtod(m, struct ip6_hdr *);
974 *mhip6 = *ip6;
975 m->m_len = sizeof(*mhip6);
976 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
977 if (error) {
978 ip6stat.ip6s_odropped++;
979 goto sendorfree;
980 }
981 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
982 if (off + len >= tlen)
983 len = tlen - off;
984 else
985 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
986 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
987 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
988 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
989 error = ENOBUFS;
990 ip6stat.ip6s_odropped++;
991 goto sendorfree;
992 }
993 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
994 ;
995 mlast->m_next = m_frgpart;
996 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
997 m->m_pkthdr.rcvif = (struct ifnet *)0;
998 ip6f->ip6f_reserved = 0;
999 ip6f->ip6f_ident = id;
1000 ip6f->ip6f_nxt = nextproto;
1001 ip6stat.ip6s_ofragments++;
1002 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1003 }
1004
1005 in6_ifstat_inc(ifp, ifs6_out_fragok);
1006 }
1007
1008 /*
1009 * Remove leading garbages.
1010 */
1011 sendorfree:
1012 m = m0->m_nextpkt;
1013 m0->m_nextpkt = 0;
1014 m_freem(m0);
1015 for (m0 = m; m; m = m0) {
1016 m0 = m->m_nextpkt;
1017 m->m_nextpkt = 0;
1018 if (error == 0) {
1019 struct in6_ifaddr *ia6;
1020 ip6 = mtod(m, struct ip6_hdr *);
1021 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1022 if (ia6) {
1023 /*
1024 * Record statistics for this interface
1025 * address.
1026 */
1027 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1028 m->m_pkthdr.len;
1029 }
1030 #ifdef IPSEC
1031 /* clean ipsec history once it goes out of the node */
1032 ipsec_delaux(m);
1033 #endif
1034 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1035 } else
1036 m_freem(m);
1037 }
1038
1039 if (error == 0)
1040 ip6stat.ip6s_fragmented++;
1041
1042 done:
1043 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1044 RTFREE(ro->ro_rt);
1045 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1046 RTFREE(ro_pmtu->ro_rt);
1047 }
1048
1049 #ifdef IPSEC
1050 if (sp != NULL)
1051 key_freesp(sp);
1052 #endif /* IPSEC */
1053
1054 return (error);
1055
1056 freehdrs:
1057 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1058 m_freem(exthdrs.ip6e_dest1);
1059 m_freem(exthdrs.ip6e_rthdr);
1060 m_freem(exthdrs.ip6e_dest2);
1061 /* FALLTHROUGH */
1062 bad:
1063 m_freem(m);
1064 goto done;
1065 }
1066
1067 static int
1068 ip6_copyexthdr(mp, hdr, hlen)
1069 struct mbuf **mp;
1070 caddr_t hdr;
1071 int hlen;
1072 {
1073 struct mbuf *m;
1074
1075 if (hlen > MCLBYTES)
1076 return (ENOBUFS); /* XXX */
1077
1078 MGET(m, M_DONTWAIT, MT_DATA);
1079 if (!m)
1080 return (ENOBUFS);
1081
1082 if (hlen > MLEN) {
1083 MCLGET(m, M_DONTWAIT);
1084 if ((m->m_flags & M_EXT) == 0) {
1085 m_free(m);
1086 return (ENOBUFS);
1087 }
1088 }
1089 m->m_len = hlen;
1090 if (hdr)
1091 bcopy(hdr, mtod(m, caddr_t), hlen);
1092
1093 *mp = m;
1094 return (0);
1095 }
1096
1097 /*
1098 * Insert jumbo payload option.
1099 */
1100 static int
1101 ip6_insert_jumboopt(exthdrs, plen)
1102 struct ip6_exthdrs *exthdrs;
1103 u_int32_t plen;
1104 {
1105 struct mbuf *mopt;
1106 u_int8_t *optbuf;
1107 u_int32_t v;
1108
1109 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1110
1111 /*
1112 * If there is no hop-by-hop options header, allocate new one.
1113 * If there is one but it doesn't have enough space to store the
1114 * jumbo payload option, allocate a cluster to store the whole options.
1115 * Otherwise, use it to store the options.
1116 */
1117 if (exthdrs->ip6e_hbh == 0) {
1118 MGET(mopt, M_DONTWAIT, MT_DATA);
1119 if (mopt == 0)
1120 return (ENOBUFS);
1121 mopt->m_len = JUMBOOPTLEN;
1122 optbuf = mtod(mopt, u_int8_t *);
1123 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1124 exthdrs->ip6e_hbh = mopt;
1125 } else {
1126 struct ip6_hbh *hbh;
1127
1128 mopt = exthdrs->ip6e_hbh;
1129 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1130 /*
1131 * XXX assumption:
1132 * - exthdrs->ip6e_hbh is not referenced from places
1133 * other than exthdrs.
1134 * - exthdrs->ip6e_hbh is not an mbuf chain.
1135 */
1136 int oldoptlen = mopt->m_len;
1137 struct mbuf *n;
1138
1139 /*
1140 * XXX: give up if the whole (new) hbh header does
1141 * not fit even in an mbuf cluster.
1142 */
1143 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1144 return (ENOBUFS);
1145
1146 /*
1147 * As a consequence, we must always prepare a cluster
1148 * at this point.
1149 */
1150 MGET(n, M_DONTWAIT, MT_DATA);
1151 if (n) {
1152 MCLGET(n, M_DONTWAIT);
1153 if ((n->m_flags & M_EXT) == 0) {
1154 m_freem(n);
1155 n = NULL;
1156 }
1157 }
1158 if (!n)
1159 return (ENOBUFS);
1160 n->m_len = oldoptlen + JUMBOOPTLEN;
1161 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1162 oldoptlen);
1163 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1164 m_freem(mopt);
1165 mopt = exthdrs->ip6e_hbh = n;
1166 } else {
1167 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1168 mopt->m_len += JUMBOOPTLEN;
1169 }
1170 optbuf[0] = IP6OPT_PADN;
1171 optbuf[1] = 0;
1172
1173 /*
1174 * Adjust the header length according to the pad and
1175 * the jumbo payload option.
1176 */
1177 hbh = mtod(mopt, struct ip6_hbh *);
1178 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1179 }
1180
1181 /* fill in the option. */
1182 optbuf[2] = IP6OPT_JUMBO;
1183 optbuf[3] = 4;
1184 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1185 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1186
1187 /* finally, adjust the packet header length */
1188 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1189
1190 return (0);
1191 #undef JUMBOOPTLEN
1192 }
1193
1194 /*
1195 * Insert fragment header and copy unfragmentable header portions.
1196 */
1197 static int
1198 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1199 struct mbuf *m0, *m;
1200 int hlen;
1201 struct ip6_frag **frghdrp;
1202 {
1203 struct mbuf *n, *mlast;
1204
1205 if (hlen > sizeof(struct ip6_hdr)) {
1206 n = m_copym(m0, sizeof(struct ip6_hdr),
1207 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1208 if (n == 0)
1209 return (ENOBUFS);
1210 m->m_next = n;
1211 } else
1212 n = m;
1213
1214 /* Search for the last mbuf of unfragmentable part. */
1215 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1216 ;
1217
1218 if ((mlast->m_flags & M_EXT) == 0 &&
1219 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1220 /* use the trailing space of the last mbuf for the fragment hdr */
1221 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1222 mlast->m_len);
1223 mlast->m_len += sizeof(struct ip6_frag);
1224 m->m_pkthdr.len += sizeof(struct ip6_frag);
1225 } else {
1226 /* allocate a new mbuf for the fragment header */
1227 struct mbuf *mfrg;
1228
1229 MGET(mfrg, M_DONTWAIT, MT_DATA);
1230 if (mfrg == 0)
1231 return (ENOBUFS);
1232 mfrg->m_len = sizeof(struct ip6_frag);
1233 *frghdrp = mtod(mfrg, struct ip6_frag *);
1234 mlast->m_next = mfrg;
1235 }
1236
1237 return (0);
1238 }
1239
1240 int
1241 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup, alwaysfragp)
1242 struct route_in6 *ro_pmtu, *ro;
1243 struct ifnet *ifp;
1244 struct in6_addr *dst;
1245 u_long *mtup;
1246 int *alwaysfragp;
1247 {
1248 u_int32_t mtu = 0;
1249 int alwaysfrag = 0;
1250 int error = 0;
1251
1252 if (ro_pmtu != ro) {
1253 /* The first hop and the final destination may differ. */
1254 struct sockaddr_in6 *sa6_dst =
1255 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1256 if (ro_pmtu->ro_rt &&
1257 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1258 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1259 RTFREE(ro_pmtu->ro_rt);
1260 ro_pmtu->ro_rt = (struct rtentry *)NULL;
1261 }
1262 if (ro_pmtu->ro_rt == NULL) {
1263 bzero(sa6_dst, sizeof(*sa6_dst)); /* for safety */
1264 sa6_dst->sin6_family = AF_INET6;
1265 sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1266 sa6_dst->sin6_addr = *dst;
1267
1268 rtalloc((struct route *)ro_pmtu);
1269 }
1270 }
1271 if (ro_pmtu->ro_rt) {
1272 u_int32_t ifmtu;
1273
1274 if (ifp == NULL)
1275 ifp = ro_pmtu->ro_rt->rt_ifp;
1276 ifmtu = IN6_LINKMTU(ifp);
1277 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1278 if (mtu == 0)
1279 mtu = ifmtu;
1280 else if (mtu < IPV6_MMTU) {
1281 /*
1282 * RFC2460 section 5, last paragraph:
1283 * if we record ICMPv6 too big message with
1284 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1285 * or smaller, with fragment header attached.
1286 * (fragment header is needed regardless from the
1287 * packet size, for translators to identify packets)
1288 */
1289 alwaysfrag = 1;
1290 mtu = IPV6_MMTU;
1291 } else if (mtu > ifmtu) {
1292 /*
1293 * The MTU on the route is larger than the MTU on
1294 * the interface! This shouldn't happen, unless the
1295 * MTU of the interface has been changed after the
1296 * interface was brought up. Change the MTU in the
1297 * route to match the interface MTU (as long as the
1298 * field isn't locked).
1299 */
1300 mtu = ifmtu;
1301 if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU))
1302 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1303 }
1304 } else if (ifp) {
1305 mtu = IN6_LINKMTU(ifp);
1306 } else
1307 error = EHOSTUNREACH; /* XXX */
1308
1309 *mtup = mtu;
1310 if (alwaysfragp)
1311 *alwaysfragp = alwaysfrag;
1312 return (error);
1313 }
1314
1315 /*
1316 * IP6 socket option processing.
1317 */
1318 int
1319 ip6_ctloutput(op, so, level, optname, mp)
1320 int op;
1321 struct socket *so;
1322 int level, optname;
1323 struct mbuf **mp;
1324 {
1325 struct in6pcb *in6p = sotoin6pcb(so);
1326 struct mbuf *m = *mp;
1327 int optval = 0;
1328 int error = 0;
1329 struct proc *p = curproc; /* XXX */
1330
1331 if (level == IPPROTO_IPV6) {
1332 switch (op) {
1333 case PRCO_SETOPT:
1334 switch (optname) {
1335 case IPV6_PKTOPTIONS:
1336 /* m is freed in ip6_pcbopts */
1337 return (ip6_pcbopts(&in6p->in6p_outputopts,
1338 m, so));
1339 case IPV6_HOPOPTS:
1340 case IPV6_DSTOPTS:
1341 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1342 error = EPERM;
1343 break;
1344 }
1345 /* FALLTHROUGH */
1346 case IPV6_UNICAST_HOPS:
1347 case IPV6_RECVOPTS:
1348 case IPV6_RECVRETOPTS:
1349 case IPV6_RECVDSTADDR:
1350 case IPV6_PKTINFO:
1351 case IPV6_HOPLIMIT:
1352 case IPV6_RTHDR:
1353 case IPV6_FAITH:
1354 case IPV6_V6ONLY:
1355 case IPV6_USE_MIN_MTU:
1356 if (!m || m->m_len != sizeof(int)) {
1357 error = EINVAL;
1358 break;
1359 }
1360 optval = *mtod(m, int *);
1361 switch (optname) {
1362
1363 case IPV6_UNICAST_HOPS:
1364 if (optval < -1 || optval >= 256)
1365 error = EINVAL;
1366 else {
1367 /* -1 = kernel default */
1368 in6p->in6p_hops = optval;
1369 }
1370 break;
1371 #define OPTSET(bit) \
1372 do { \
1373 if (optval) \
1374 in6p->in6p_flags |= (bit); \
1375 else \
1376 in6p->in6p_flags &= ~(bit); \
1377 } while (/*CONSTCOND*/ 0)
1378
1379 case IPV6_RECVOPTS:
1380 OPTSET(IN6P_RECVOPTS);
1381 break;
1382
1383 case IPV6_RECVRETOPTS:
1384 OPTSET(IN6P_RECVRETOPTS);
1385 break;
1386
1387 case IPV6_RECVDSTADDR:
1388 OPTSET(IN6P_RECVDSTADDR);
1389 break;
1390
1391 case IPV6_PKTINFO:
1392 OPTSET(IN6P_PKTINFO);
1393 break;
1394
1395 case IPV6_HOPLIMIT:
1396 OPTSET(IN6P_HOPLIMIT);
1397 break;
1398
1399 case IPV6_HOPOPTS:
1400 OPTSET(IN6P_HOPOPTS);
1401 break;
1402
1403 case IPV6_DSTOPTS:
1404 OPTSET(IN6P_DSTOPTS);
1405 break;
1406
1407 case IPV6_RTHDR:
1408 OPTSET(IN6P_RTHDR);
1409 break;
1410
1411 case IPV6_FAITH:
1412 OPTSET(IN6P_FAITH);
1413 break;
1414
1415 case IPV6_USE_MIN_MTU:
1416 OPTSET(IN6P_MINMTU);
1417 break;
1418
1419 case IPV6_V6ONLY:
1420 /*
1421 * make setsockopt(IPV6_V6ONLY)
1422 * available only prior to bind(2).
1423 * see ipng mailing list, Jun 22 2001.
1424 */
1425 if (in6p->in6p_lport ||
1426 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1427 error = EINVAL;
1428 break;
1429 }
1430 #ifdef INET6_BINDV6ONLY
1431 if (!optval)
1432 error = EINVAL;
1433 #else
1434 OPTSET(IN6P_IPV6_V6ONLY);
1435 #endif
1436 break;
1437 }
1438 break;
1439 #undef OPTSET
1440
1441 case IPV6_MULTICAST_IF:
1442 case IPV6_MULTICAST_HOPS:
1443 case IPV6_MULTICAST_LOOP:
1444 case IPV6_JOIN_GROUP:
1445 case IPV6_LEAVE_GROUP:
1446 error = ip6_setmoptions(optname,
1447 &in6p->in6p_moptions, m);
1448 break;
1449
1450 case IPV6_PORTRANGE:
1451 optval = *mtod(m, int *);
1452
1453 switch (optval) {
1454 case IPV6_PORTRANGE_DEFAULT:
1455 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1456 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1457 break;
1458
1459 case IPV6_PORTRANGE_HIGH:
1460 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1461 in6p->in6p_flags |= IN6P_HIGHPORT;
1462 break;
1463
1464 case IPV6_PORTRANGE_LOW:
1465 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1466 in6p->in6p_flags |= IN6P_LOWPORT;
1467 break;
1468
1469 default:
1470 error = EINVAL;
1471 break;
1472 }
1473 break;
1474
1475 #ifdef IPSEC
1476 case IPV6_IPSEC_POLICY:
1477 {
1478 caddr_t req = NULL;
1479 size_t len = 0;
1480
1481 int priv = 0;
1482 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1483 priv = 0;
1484 else
1485 priv = 1;
1486 if (m) {
1487 req = mtod(m, caddr_t);
1488 len = m->m_len;
1489 }
1490 error = ipsec6_set_policy(in6p,
1491 optname, req, len, priv);
1492 }
1493 break;
1494 #endif /* IPSEC */
1495
1496 default:
1497 error = ENOPROTOOPT;
1498 break;
1499 }
1500 if (m)
1501 (void)m_free(m);
1502 break;
1503
1504 case PRCO_GETOPT:
1505 switch (optname) {
1506
1507 case IPV6_OPTIONS:
1508 case IPV6_RETOPTS:
1509 error = ENOPROTOOPT;
1510 break;
1511
1512 case IPV6_PKTOPTIONS:
1513 if (in6p->in6p_options) {
1514 *mp = m_copym(in6p->in6p_options, 0,
1515 M_COPYALL, M_WAIT);
1516 } else {
1517 *mp = m_get(M_WAIT, MT_SOOPTS);
1518 (*mp)->m_len = 0;
1519 }
1520 break;
1521
1522 case IPV6_HOPOPTS:
1523 case IPV6_DSTOPTS:
1524 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1525 error = EPERM;
1526 break;
1527 }
1528 /* FALLTHROUGH */
1529 case IPV6_UNICAST_HOPS:
1530 case IPV6_RECVOPTS:
1531 case IPV6_RECVRETOPTS:
1532 case IPV6_RECVDSTADDR:
1533 case IPV6_PORTRANGE:
1534 case IPV6_PKTINFO:
1535 case IPV6_HOPLIMIT:
1536 case IPV6_RTHDR:
1537 case IPV6_FAITH:
1538 case IPV6_V6ONLY:
1539 case IPV6_USE_MIN_MTU:
1540 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1541 m->m_len = sizeof(int);
1542 switch (optname) {
1543
1544 case IPV6_UNICAST_HOPS:
1545 optval = in6p->in6p_hops;
1546 break;
1547
1548 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1549
1550 case IPV6_RECVOPTS:
1551 optval = OPTBIT(IN6P_RECVOPTS);
1552 break;
1553
1554 case IPV6_RECVRETOPTS:
1555 optval = OPTBIT(IN6P_RECVRETOPTS);
1556 break;
1557
1558 case IPV6_RECVDSTADDR:
1559 optval = OPTBIT(IN6P_RECVDSTADDR);
1560 break;
1561
1562 case IPV6_PORTRANGE:
1563 {
1564 int flags;
1565 flags = in6p->in6p_flags;
1566 if (flags & IN6P_HIGHPORT)
1567 optval = IPV6_PORTRANGE_HIGH;
1568 else if (flags & IN6P_LOWPORT)
1569 optval = IPV6_PORTRANGE_LOW;
1570 else
1571 optval = 0;
1572 break;
1573 }
1574
1575 case IPV6_PKTINFO:
1576 optval = OPTBIT(IN6P_PKTINFO);
1577 break;
1578
1579 case IPV6_HOPLIMIT:
1580 optval = OPTBIT(IN6P_HOPLIMIT);
1581 break;
1582
1583 case IPV6_HOPOPTS:
1584 optval = OPTBIT(IN6P_HOPOPTS);
1585 break;
1586
1587 case IPV6_DSTOPTS:
1588 optval = OPTBIT(IN6P_DSTOPTS);
1589 break;
1590
1591 case IPV6_RTHDR:
1592 optval = OPTBIT(IN6P_RTHDR);
1593 break;
1594
1595 case IPV6_FAITH:
1596 optval = OPTBIT(IN6P_FAITH);
1597 break;
1598
1599 case IPV6_V6ONLY:
1600 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1601 break;
1602
1603 case IPV6_USE_MIN_MTU:
1604 optval = OPTBIT(IN6P_MINMTU);
1605 break;
1606 }
1607 *mtod(m, int *) = optval;
1608 break;
1609
1610 case IPV6_MULTICAST_IF:
1611 case IPV6_MULTICAST_HOPS:
1612 case IPV6_MULTICAST_LOOP:
1613 case IPV6_JOIN_GROUP:
1614 case IPV6_LEAVE_GROUP:
1615 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1616 break;
1617
1618 #if 0 /* defined(IPSEC) */
1619 /* XXX: code broken */
1620 case IPV6_IPSEC_POLICY:
1621 {
1622 caddr_t req = NULL;
1623 size_t len = 0;
1624
1625 if (m) {
1626 req = mtod(m, caddr_t);
1627 len = m->m_len;
1628 }
1629 error = ipsec6_get_policy(in6p, req, len, mp);
1630 break;
1631 }
1632 #endif /* IPSEC */
1633
1634 default:
1635 error = ENOPROTOOPT;
1636 break;
1637 }
1638 break;
1639 }
1640 } else {
1641 error = EINVAL;
1642 if (op == PRCO_SETOPT && *mp)
1643 (void)m_free(*mp);
1644 }
1645 return (error);
1646 }
1647
1648 int
1649 ip6_raw_ctloutput(op, so, level, optname, mp)
1650 int op;
1651 struct socket *so;
1652 int level, optname;
1653 struct mbuf **mp;
1654 {
1655 int error = 0, optval, optlen;
1656 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1657 struct in6pcb *in6p = sotoin6pcb(so);
1658 struct mbuf *m = *mp;
1659
1660 optlen = m ? m->m_len : 0;
1661
1662 if (level != IPPROTO_IPV6) {
1663 if (op == PRCO_SETOPT && *mp)
1664 (void)m_free(*mp);
1665 return (EINVAL);
1666 }
1667
1668 switch (optname) {
1669 case IPV6_CHECKSUM:
1670 /*
1671 * For ICMPv6 sockets, no modification allowed for checksum
1672 * offset, permit "no change" values to help existing apps.
1673 *
1674 * XXX 2292bis says: "An attempt to set IPV6_CHECKSUM
1675 * for an ICMPv6 socket will fail."
1676 * The current behavior does not meet 2292bis.
1677 */
1678 switch (op) {
1679 case PRCO_SETOPT:
1680 if (optlen != sizeof(int)) {
1681 error = EINVAL;
1682 break;
1683 }
1684 optval = *mtod(m, int *);
1685 if ((optval % 2) != 0) {
1686 /* the API assumes even offset values */
1687 error = EINVAL;
1688 } else if (so->so_proto->pr_protocol ==
1689 IPPROTO_ICMPV6) {
1690 if (optval != icmp6off)
1691 error = EINVAL;
1692 } else
1693 in6p->in6p_cksum = optval;
1694 break;
1695
1696 case PRCO_GETOPT:
1697 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
1698 optval = icmp6off;
1699 else
1700 optval = in6p->in6p_cksum;
1701
1702 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1703 m->m_len = sizeof(int);
1704 *mtod(m, int *) = optval;
1705 break;
1706
1707 default:
1708 error = EINVAL;
1709 break;
1710 }
1711 break;
1712
1713 default:
1714 error = ENOPROTOOPT;
1715 break;
1716 }
1717
1718 if (op == PRCO_SETOPT && m)
1719 (void)m_free(m);
1720
1721 return (error);
1722 }
1723
1724 /*
1725 * Set up IP6 options in pcb for insertion in output packets.
1726 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1727 * with destination address if source routed.
1728 */
1729 static int
1730 ip6_pcbopts(pktopt, m, so)
1731 struct ip6_pktopts **pktopt;
1732 struct mbuf *m;
1733 struct socket *so;
1734 {
1735 struct ip6_pktopts *opt = *pktopt;
1736 int error = 0;
1737 struct proc *p = curproc; /* XXX */
1738 int priv = 0;
1739
1740 /* turn off any old options. */
1741 if (opt) {
1742 if (opt->ip6po_m)
1743 (void)m_free(opt->ip6po_m);
1744 } else
1745 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1746 *pktopt = 0;
1747
1748 if (!m || m->m_len == 0) {
1749 /*
1750 * Only turning off any previous options.
1751 */
1752 free(opt, M_IP6OPT);
1753 if (m)
1754 (void)m_free(m);
1755 return (0);
1756 }
1757
1758 /* set options specified by user. */
1759 if (p && !suser(p->p_ucred, &p->p_acflag))
1760 priv = 1;
1761 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1762 (void)m_free(m);
1763 free(opt, M_IP6OPT);
1764 return (error);
1765 }
1766 *pktopt = opt;
1767 return (0);
1768 }
1769
1770 /*
1771 * Set the IP6 multicast options in response to user setsockopt().
1772 */
1773 static int
1774 ip6_setmoptions(optname, im6op, m)
1775 int optname;
1776 struct ip6_moptions **im6op;
1777 struct mbuf *m;
1778 {
1779 int error = 0;
1780 u_int loop, ifindex;
1781 struct ipv6_mreq *mreq;
1782 struct ifnet *ifp;
1783 struct ip6_moptions *im6o = *im6op;
1784 struct route_in6 ro;
1785 struct sockaddr_in6 *dst;
1786 struct in6_multi_mship *imm;
1787 struct proc *p = curproc; /* XXX */
1788
1789 if (im6o == NULL) {
1790 /*
1791 * No multicast option buffer attached to the pcb;
1792 * allocate one and initialize to default values.
1793 */
1794 im6o = (struct ip6_moptions *)
1795 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1796
1797 if (im6o == NULL)
1798 return (ENOBUFS);
1799 *im6op = im6o;
1800 im6o->im6o_multicast_ifp = NULL;
1801 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1802 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1803 LIST_INIT(&im6o->im6o_memberships);
1804 }
1805
1806 switch (optname) {
1807
1808 case IPV6_MULTICAST_IF:
1809 /*
1810 * Select the interface for outgoing multicast packets.
1811 */
1812 if (m == NULL || m->m_len != sizeof(u_int)) {
1813 error = EINVAL;
1814 break;
1815 }
1816 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1817 if (ifindex < 0 || if_indexlim <= ifindex ||
1818 !ifindex2ifnet[ifindex]) {
1819 error = ENXIO; /* XXX EINVAL? */
1820 break;
1821 }
1822 ifp = ifindex2ifnet[ifindex];
1823 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1824 error = EADDRNOTAVAIL;
1825 break;
1826 }
1827 im6o->im6o_multicast_ifp = ifp;
1828 break;
1829
1830 case IPV6_MULTICAST_HOPS:
1831 {
1832 /*
1833 * Set the IP6 hoplimit for outgoing multicast packets.
1834 */
1835 int optval;
1836 if (m == NULL || m->m_len != sizeof(int)) {
1837 error = EINVAL;
1838 break;
1839 }
1840 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1841 if (optval < -1 || optval >= 256)
1842 error = EINVAL;
1843 else if (optval == -1)
1844 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1845 else
1846 im6o->im6o_multicast_hlim = optval;
1847 break;
1848 }
1849
1850 case IPV6_MULTICAST_LOOP:
1851 /*
1852 * Set the loopback flag for outgoing multicast packets.
1853 * Must be zero or one.
1854 */
1855 if (m == NULL || m->m_len != sizeof(u_int)) {
1856 error = EINVAL;
1857 break;
1858 }
1859 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1860 if (loop > 1) {
1861 error = EINVAL;
1862 break;
1863 }
1864 im6o->im6o_multicast_loop = loop;
1865 break;
1866
1867 case IPV6_JOIN_GROUP:
1868 /*
1869 * Add a multicast group membership.
1870 * Group must be a valid IP6 multicast address.
1871 */
1872 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1873 error = EINVAL;
1874 break;
1875 }
1876 mreq = mtod(m, struct ipv6_mreq *);
1877 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1878 /*
1879 * We use the unspecified address to specify to accept
1880 * all multicast addresses. Only super user is allowed
1881 * to do this.
1882 */
1883 if (suser(p->p_ucred, &p->p_acflag))
1884 {
1885 error = EACCES;
1886 break;
1887 }
1888 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1889 error = EINVAL;
1890 break;
1891 }
1892
1893 /*
1894 * If the interface is specified, validate it.
1895 */
1896 if (mreq->ipv6mr_interface < 0 ||
1897 if_indexlim <= mreq->ipv6mr_interface ||
1898 !ifindex2ifnet[mreq->ipv6mr_interface]) {
1899 error = ENXIO; /* XXX EINVAL? */
1900 break;
1901 }
1902 /*
1903 * If no interface was explicitly specified, choose an
1904 * appropriate one according to the given multicast address.
1905 */
1906 if (mreq->ipv6mr_interface == 0) {
1907 /*
1908 * If the multicast address is in node-local scope,
1909 * the interface should be a loopback interface.
1910 * Otherwise, look up the routing table for the
1911 * address, and choose the outgoing interface.
1912 * XXX: is it a good approach?
1913 */
1914 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1915 ifp = &loif[0];
1916 } else {
1917 ro.ro_rt = NULL;
1918 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1919 bzero(dst, sizeof(*dst));
1920 dst->sin6_len = sizeof(struct sockaddr_in6);
1921 dst->sin6_family = AF_INET6;
1922 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1923 rtalloc((struct route *)&ro);
1924 if (ro.ro_rt == NULL) {
1925 error = EADDRNOTAVAIL;
1926 break;
1927 }
1928 ifp = ro.ro_rt->rt_ifp;
1929 rtfree(ro.ro_rt);
1930 }
1931 } else
1932 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1933
1934 /*
1935 * See if we found an interface, and confirm that it
1936 * supports multicast
1937 */
1938 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1939 error = EADDRNOTAVAIL;
1940 break;
1941 }
1942 /*
1943 * Put interface index into the multicast address,
1944 * if the address has link-local scope.
1945 */
1946 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1947 mreq->ipv6mr_multiaddr.s6_addr16[1] =
1948 htons(ifp->if_index);
1949 }
1950 /*
1951 * See if the membership already exists.
1952 */
1953 for (imm = im6o->im6o_memberships.lh_first;
1954 imm != NULL; imm = imm->i6mm_chain.le_next)
1955 if (imm->i6mm_maddr->in6m_ifp == ifp &&
1956 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1957 &mreq->ipv6mr_multiaddr))
1958 break;
1959 if (imm != NULL) {
1960 error = EADDRINUSE;
1961 break;
1962 }
1963 /*
1964 * Everything looks good; add a new record to the multicast
1965 * address list for the given interface.
1966 */
1967 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error);
1968 if (!imm)
1969 break;
1970 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
1971 break;
1972
1973 case IPV6_LEAVE_GROUP:
1974 /*
1975 * Drop a multicast group membership.
1976 * Group must be a valid IP6 multicast address.
1977 */
1978 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1979 error = EINVAL;
1980 break;
1981 }
1982 mreq = mtod(m, struct ipv6_mreq *);
1983 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1984 if (suser(p->p_ucred, &p->p_acflag))
1985 {
1986 error = EACCES;
1987 break;
1988 }
1989 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1990 error = EINVAL;
1991 break;
1992 }
1993 /*
1994 * If an interface address was specified, get a pointer
1995 * to its ifnet structure.
1996 */
1997 if (mreq->ipv6mr_interface < 0 ||
1998 if_indexlim <= mreq->ipv6mr_interface ||
1999 !ifindex2ifnet[mreq->ipv6mr_interface]) {
2000 error = ENXIO; /* XXX EINVAL? */
2001 break;
2002 }
2003 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2004 /*
2005 * Put interface index into the multicast address,
2006 * if the address has link-local scope.
2007 */
2008 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2009 mreq->ipv6mr_multiaddr.s6_addr16[1] =
2010 htons(mreq->ipv6mr_interface);
2011 }
2012 /*
2013 * Find the membership in the membership list.
2014 */
2015 for (imm = im6o->im6o_memberships.lh_first;
2016 imm != NULL; imm = imm->i6mm_chain.le_next) {
2017 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2018 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2019 &mreq->ipv6mr_multiaddr))
2020 break;
2021 }
2022 if (imm == NULL) {
2023 /* Unable to resolve interface */
2024 error = EADDRNOTAVAIL;
2025 break;
2026 }
2027 /*
2028 * Give up the multicast address record to which the
2029 * membership points.
2030 */
2031 LIST_REMOVE(imm, i6mm_chain);
2032 in6_leavegroup(imm);
2033 break;
2034
2035 default:
2036 error = EOPNOTSUPP;
2037 break;
2038 }
2039
2040 /*
2041 * If all options have default values, no need to keep the mbuf.
2042 */
2043 if (im6o->im6o_multicast_ifp == NULL &&
2044 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2045 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2046 im6o->im6o_memberships.lh_first == NULL) {
2047 free(*im6op, M_IPMOPTS);
2048 *im6op = NULL;
2049 }
2050
2051 return (error);
2052 }
2053
2054 /*
2055 * Return the IP6 multicast options in response to user getsockopt().
2056 */
2057 static int
2058 ip6_getmoptions(optname, im6o, mp)
2059 int optname;
2060 struct ip6_moptions *im6o;
2061 struct mbuf **mp;
2062 {
2063 u_int *hlim, *loop, *ifindex;
2064
2065 *mp = m_get(M_WAIT, MT_SOOPTS);
2066
2067 switch (optname) {
2068
2069 case IPV6_MULTICAST_IF:
2070 ifindex = mtod(*mp, u_int *);
2071 (*mp)->m_len = sizeof(u_int);
2072 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2073 *ifindex = 0;
2074 else
2075 *ifindex = im6o->im6o_multicast_ifp->if_index;
2076 return (0);
2077
2078 case IPV6_MULTICAST_HOPS:
2079 hlim = mtod(*mp, u_int *);
2080 (*mp)->m_len = sizeof(u_int);
2081 if (im6o == NULL)
2082 *hlim = ip6_defmcasthlim;
2083 else
2084 *hlim = im6o->im6o_multicast_hlim;
2085 return (0);
2086
2087 case IPV6_MULTICAST_LOOP:
2088 loop = mtod(*mp, u_int *);
2089 (*mp)->m_len = sizeof(u_int);
2090 if (im6o == NULL)
2091 *loop = ip6_defmcasthlim;
2092 else
2093 *loop = im6o->im6o_multicast_loop;
2094 return (0);
2095
2096 default:
2097 return (EOPNOTSUPP);
2098 }
2099 }
2100
2101 /*
2102 * Discard the IP6 multicast options.
2103 */
2104 void
2105 ip6_freemoptions(im6o)
2106 struct ip6_moptions *im6o;
2107 {
2108 struct in6_multi_mship *imm;
2109
2110 if (im6o == NULL)
2111 return;
2112
2113 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2114 LIST_REMOVE(imm, i6mm_chain);
2115 in6_leavegroup(imm);
2116 }
2117 free(im6o, M_IPMOPTS);
2118 }
2119
2120 /*
2121 * Set IPv6 outgoing packet options based on advanced API.
2122 */
2123 int
2124 ip6_setpktoptions(control, opt, priv)
2125 struct mbuf *control;
2126 struct ip6_pktopts *opt;
2127 int priv;
2128 {
2129 struct cmsghdr *cm = 0;
2130
2131 if (control == 0 || opt == 0)
2132 return (EINVAL);
2133
2134 bzero(opt, sizeof(*opt));
2135 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
2136
2137 /*
2138 * XXX: Currently, we assume all the optional information is stored
2139 * in a single mbuf.
2140 */
2141 if (control->m_next)
2142 return (EINVAL);
2143
2144 opt->ip6po_m = control;
2145
2146 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2147 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2148 cm = mtod(control, struct cmsghdr *);
2149 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2150 return (EINVAL);
2151 if (cm->cmsg_level != IPPROTO_IPV6)
2152 continue;
2153
2154 switch (cm->cmsg_type) {
2155 case IPV6_PKTINFO:
2156 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
2157 return (EINVAL);
2158 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
2159 if (opt->ip6po_pktinfo->ipi6_ifindex &&
2160 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
2161 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
2162 htons(opt->ip6po_pktinfo->ipi6_ifindex);
2163
2164 if (opt->ip6po_pktinfo->ipi6_ifindex >= if_indexlim ||
2165 opt->ip6po_pktinfo->ipi6_ifindex < 0)
2166 return (ENXIO);
2167 if (opt->ip6po_pktinfo->ipi6_ifindex > 0 &&
2168 !ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex])
2169 return (ENXIO);
2170
2171 /*
2172 * Check if the requested source address is indeed a
2173 * unicast address assigned to the node, and can be
2174 * used as the packet's source address.
2175 */
2176 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2177 struct ifaddr *ia;
2178 struct in6_ifaddr *ia6;
2179 struct sockaddr_in6 sin6;
2180
2181 bzero(&sin6, sizeof(sin6));
2182 sin6.sin6_len = sizeof(sin6);
2183 sin6.sin6_family = AF_INET6;
2184 sin6.sin6_addr =
2185 opt->ip6po_pktinfo->ipi6_addr;
2186 ia = ifa_ifwithaddr(sin6tosa(&sin6));
2187 if (ia == NULL ||
2188 (opt->ip6po_pktinfo->ipi6_ifindex &&
2189 (ia->ifa_ifp->if_index !=
2190 opt->ip6po_pktinfo->ipi6_ifindex))) {
2191 return (EADDRNOTAVAIL);
2192 }
2193 ia6 = (struct in6_ifaddr *)ia;
2194 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) {
2195 return (EADDRNOTAVAIL);
2196 }
2197
2198 /*
2199 * Check if the requested source address is
2200 * indeed a unicast address assigned to the
2201 * node.
2202 */
2203 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
2204 return (EADDRNOTAVAIL);
2205 }
2206 break;
2207
2208 case IPV6_HOPLIMIT:
2209 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2210 return (EINVAL);
2211 else {
2212 int t;
2213
2214 bcopy(CMSG_DATA(cm), &t, sizeof(t));
2215 if (t < -1 || t > 255)
2216 return (EINVAL);
2217 opt->ip6po_hlim = t;
2218 }
2219 break;
2220
2221 case IPV6_NEXTHOP:
2222 if (!priv)
2223 return (EPERM);
2224
2225 /* check if cmsg_len is large enough for sa_len */
2226 if (cm->cmsg_len < sizeof(u_char) ||
2227 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2228 return (EINVAL);
2229
2230 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2231
2232 break;
2233
2234 case IPV6_HOPOPTS:
2235 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2236 return (EINVAL);
2237 else {
2238 struct ip6_hbh *t;
2239
2240 t = (struct ip6_hbh *)CMSG_DATA(cm);
2241 if (cm->cmsg_len !=
2242 CMSG_LEN((t->ip6h_len + 1) << 3))
2243 return (EINVAL);
2244 opt->ip6po_hbh = t;
2245 }
2246 break;
2247
2248 case IPV6_DSTOPTS:
2249 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2250 return (EINVAL);
2251
2252 /*
2253 * If there is no routing header yet, the destination
2254 * options header should be put on the 1st part.
2255 * Otherwise, the header should be on the 2nd part.
2256 * (See RFC 2460, section 4.1)
2257 */
2258 if (opt->ip6po_rthdr == NULL) {
2259 struct ip6_dest *t;
2260
2261 t = (struct ip6_dest *)CMSG_DATA(cm);
2262 if (cm->cmsg_len !=
2263 CMSG_LEN((t->ip6d_len + 1) << 3));
2264 return (EINVAL);
2265 opt->ip6po_dest1 = t;
2266 }
2267 else {
2268 struct ip6_dest *t;
2269
2270 t = (struct ip6_dest *)CMSG_DATA(cm);
2271 if (cm->cmsg_len !=
2272 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) << 3))
2273 return (EINVAL);
2274 opt->ip6po_dest2 = t;
2275 }
2276 break;
2277
2278 case IPV6_RTHDR:
2279 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2280 return (EINVAL);
2281 else {
2282 struct ip6_rthdr *t;
2283
2284 t = (struct ip6_rthdr *)CMSG_DATA(cm);
2285 if (cm->cmsg_len !=
2286 CMSG_LEN((t->ip6r_len + 1) << 3))
2287 return (EINVAL);
2288 switch (t->ip6r_type) {
2289 case IPV6_RTHDR_TYPE_0:
2290 if (t->ip6r_segleft == 0)
2291 return (EINVAL);
2292 break;
2293 default:
2294 return (EINVAL);
2295 }
2296 opt->ip6po_rthdr = t;
2297 }
2298 break;
2299
2300 default:
2301 return (ENOPROTOOPT);
2302 }
2303 }
2304
2305 return (0);
2306 }
2307
2308 /*
2309 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2310 * packet to the input queue of a specified interface. Note that this
2311 * calls the output routine of the loopback "driver", but with an interface
2312 * pointer that might NOT be &loif -- easier than replicating that code here.
2313 */
2314 void
2315 ip6_mloopback(ifp, m, dst)
2316 struct ifnet *ifp;
2317 struct mbuf *m;
2318 struct sockaddr_in6 *dst;
2319 {
2320 struct mbuf *copym;
2321 struct ip6_hdr *ip6;
2322
2323 copym = m_copy(m, 0, M_COPYALL);
2324 if (copym == NULL)
2325 return;
2326
2327 /*
2328 * Make sure to deep-copy IPv6 header portion in case the data
2329 * is in an mbuf cluster, so that we can safely override the IPv6
2330 * header portion later.
2331 */
2332 if ((copym->m_flags & M_EXT) != 0 ||
2333 copym->m_len < sizeof(struct ip6_hdr)) {
2334 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2335 if (copym == NULL)
2336 return;
2337 }
2338
2339 #ifdef DIAGNOSTIC
2340 if (copym->m_len < sizeof(*ip6)) {
2341 m_freem(copym);
2342 return;
2343 }
2344 #endif
2345
2346 ip6 = mtod(copym, struct ip6_hdr *);
2347 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
2348 ip6->ip6_src.s6_addr16[1] = 0;
2349 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
2350 ip6->ip6_dst.s6_addr16[1] = 0;
2351
2352 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2353 }
2354
2355 /*
2356 * Chop IPv6 header off from the payload.
2357 */
2358 static int
2359 ip6_splithdr(m, exthdrs)
2360 struct mbuf *m;
2361 struct ip6_exthdrs *exthdrs;
2362 {
2363 struct mbuf *mh;
2364 struct ip6_hdr *ip6;
2365
2366 ip6 = mtod(m, struct ip6_hdr *);
2367 if (m->m_len > sizeof(*ip6)) {
2368 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2369 if (mh == 0) {
2370 m_freem(m);
2371 return ENOBUFS;
2372 }
2373 M_COPY_PKTHDR(mh, m);
2374 MH_ALIGN(mh, sizeof(*ip6));
2375 m_tag_delete_chain(m, NULL);
2376 m->m_flags &= ~M_PKTHDR;
2377 m->m_len -= sizeof(*ip6);
2378 m->m_data += sizeof(*ip6);
2379 mh->m_next = m;
2380 m = mh;
2381 m->m_len = sizeof(*ip6);
2382 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2383 }
2384 exthdrs->ip6e_ip6 = m;
2385 return 0;
2386 }
2387
2388 /*
2389 * Compute IPv6 extension header length.
2390 */
2391 int
2392 ip6_optlen(in6p)
2393 struct in6pcb *in6p;
2394 {
2395 int len;
2396
2397 if (!in6p->in6p_outputopts)
2398 return 0;
2399
2400 len = 0;
2401 #define elen(x) \
2402 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2403
2404 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2405 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2406 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2407 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2408 return len;
2409 #undef elen
2410 }
2411