Home | History | Annotate | Line # | Download | only in netinet6
ip6_output.c revision 1.61.2.6
      1 /*	$NetBSD: ip6_output.c,v 1.61.2.6 2005/03/04 16:53:30 skrll Exp $	*/
      2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.61.2.6 2005/03/04 16:53:30 skrll Exp $");
     66 
     67 #include "opt_inet.h"
     68 #include "opt_ipsec.h"
     69 #include "opt_pfil_hooks.h"
     70 
     71 #include <sys/param.h>
     72 #include <sys/malloc.h>
     73 #include <sys/mbuf.h>
     74 #include <sys/errno.h>
     75 #include <sys/protosw.h>
     76 #include <sys/socket.h>
     77 #include <sys/socketvar.h>
     78 #include <sys/systm.h>
     79 #include <sys/proc.h>
     80 
     81 #include <net/if.h>
     82 #include <net/route.h>
     83 #ifdef PFIL_HOOKS
     84 #include <net/pfil.h>
     85 #endif
     86 
     87 #include <netinet/in.h>
     88 #include <netinet/in_var.h>
     89 #include <netinet/ip6.h>
     90 #include <netinet/icmp6.h>
     91 #include <netinet6/ip6_var.h>
     92 #include <netinet6/in6_pcb.h>
     93 #include <netinet6/nd6.h>
     94 #include <netinet6/ip6protosw.h>
     95 
     96 #ifdef IPSEC
     97 #include <netinet6/ipsec.h>
     98 #include <netkey/key.h>
     99 #endif /* IPSEC */
    100 
    101 #include <net/net_osdep.h>
    102 
    103 #ifdef PFIL_HOOKS
    104 extern struct pfil_head inet6_pfil_hook;	/* XXX */
    105 #endif
    106 
    107 struct ip6_exthdrs {
    108 	struct mbuf *ip6e_ip6;
    109 	struct mbuf *ip6e_hbh;
    110 	struct mbuf *ip6e_dest1;
    111 	struct mbuf *ip6e_rthdr;
    112 	struct mbuf *ip6e_dest2;
    113 };
    114 
    115 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
    116 	struct socket *));
    117 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
    118 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
    119 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
    120 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
    121 	struct ip6_frag **));
    122 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
    123 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
    124 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
    125 	struct ifnet *, struct in6_addr *, u_long *, int *));
    126 
    127 /*
    128  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
    129  * header (with pri, len, nxt, hlim, src, dst).
    130  * This function may modify ver and hlim only.
    131  * The mbuf chain containing the packet will be freed.
    132  * The mbuf opt, if present, will not be freed.
    133  *
    134  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
    135  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
    136  * which is rt_rmx.rmx_mtu.
    137  */
    138 int
    139 ip6_output(m0, opt, ro, flags, im6o, so, ifpp)
    140 	struct mbuf *m0;
    141 	struct ip6_pktopts *opt;
    142 	struct route_in6 *ro;
    143 	int flags;
    144 	struct ip6_moptions *im6o;
    145 	struct socket *so;
    146 	struct ifnet **ifpp;		/* XXX: just for statistics */
    147 {
    148 	struct ip6_hdr *ip6, *mhip6;
    149 	struct ifnet *ifp, *origifp;
    150 	struct mbuf *m = m0;
    151 	int hlen, tlen, len, off;
    152 	struct route_in6 ip6route;
    153 	struct sockaddr_in6 *dst;
    154 	int error = 0;
    155 	u_long mtu;
    156 	int alwaysfrag, dontfrag;
    157 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
    158 	struct ip6_exthdrs exthdrs;
    159 	struct in6_addr finaldst;
    160 	struct route_in6 *ro_pmtu = NULL;
    161 	int hdrsplit = 0;
    162 	int needipsec = 0;
    163 #ifdef IPSEC
    164 	int needipsectun = 0;
    165 	struct secpolicy *sp = NULL;
    166 
    167 	ip6 = mtod(m, struct ip6_hdr *);
    168 #endif /* IPSEC */
    169 
    170 #define MAKE_EXTHDR(hp, mp)						\
    171     do {								\
    172 	if (hp) {							\
    173 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
    174 		error = ip6_copyexthdr((mp), (caddr_t)(hp), 		\
    175 		    ((eh)->ip6e_len + 1) << 3);				\
    176 		if (error)						\
    177 			goto freehdrs;					\
    178 	}								\
    179     } while (/*CONSTCOND*/ 0)
    180 
    181 	bzero(&exthdrs, sizeof(exthdrs));
    182 	if (opt) {
    183 		/* Hop-by-Hop options header */
    184 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
    185 		/* Destination options header(1st part) */
    186 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
    187 		/* Routing header */
    188 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
    189 		/* Destination options header(2nd part) */
    190 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
    191 	}
    192 
    193 #ifdef IPSEC
    194 	if ((flags & IPV6_FORWARDING) != 0) {
    195 		needipsec = 0;
    196 		goto skippolicycheck;
    197 	}
    198 
    199 	/* get a security policy for this packet */
    200 	if (so == NULL)
    201 		sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
    202 	else {
    203 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
    204 					 IPSEC_DIR_OUTBOUND)) {
    205 			needipsec = 0;
    206 			goto skippolicycheck;
    207 		}
    208 		sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
    209 	}
    210 
    211 	if (sp == NULL) {
    212 		ipsec6stat.out_inval++;
    213 		goto freehdrs;
    214 	}
    215 
    216 	error = 0;
    217 
    218 	/* check policy */
    219 	switch (sp->policy) {
    220 	case IPSEC_POLICY_DISCARD:
    221 		/*
    222 		 * This packet is just discarded.
    223 		 */
    224 		ipsec6stat.out_polvio++;
    225 		goto freehdrs;
    226 
    227 	case IPSEC_POLICY_BYPASS:
    228 	case IPSEC_POLICY_NONE:
    229 		/* no need to do IPsec. */
    230 		needipsec = 0;
    231 		break;
    232 
    233 	case IPSEC_POLICY_IPSEC:
    234 		if (sp->req == NULL) {
    235 			/* XXX should be panic ? */
    236 			printf("ip6_output: No IPsec request specified.\n");
    237 			error = EINVAL;
    238 			goto freehdrs;
    239 		}
    240 		needipsec = 1;
    241 		break;
    242 
    243 	case IPSEC_POLICY_ENTRUST:
    244 	default:
    245 		printf("ip6_output: Invalid policy found. %d\n", sp->policy);
    246 	}
    247 
    248   skippolicycheck:;
    249 #endif /* IPSEC */
    250 
    251 	/*
    252 	 * Calculate the total length of the extension header chain.
    253 	 * Keep the length of the unfragmentable part for fragmentation.
    254 	 */
    255 	optlen = 0;
    256 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
    257 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
    258 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
    259 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
    260 	/* NOTE: we don't add AH/ESP length here. do that later. */
    261 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
    262 
    263 	/*
    264 	 * If we need IPsec, or there is at least one extension header,
    265 	 * separate IP6 header from the payload.
    266 	 */
    267 	if ((needipsec || optlen) && !hdrsplit) {
    268 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    269 			m = NULL;
    270 			goto freehdrs;
    271 		}
    272 		m = exthdrs.ip6e_ip6;
    273 		hdrsplit++;
    274 	}
    275 
    276 	/* adjust pointer */
    277 	ip6 = mtod(m, struct ip6_hdr *);
    278 
    279 	/* adjust mbuf packet header length */
    280 	m->m_pkthdr.len += optlen;
    281 	plen = m->m_pkthdr.len - sizeof(*ip6);
    282 
    283 	/* If this is a jumbo payload, insert a jumbo payload option. */
    284 	if (plen > IPV6_MAXPACKET) {
    285 		if (!hdrsplit) {
    286 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    287 				m = NULL;
    288 				goto freehdrs;
    289 			}
    290 			m = exthdrs.ip6e_ip6;
    291 			hdrsplit++;
    292 		}
    293 		/* adjust pointer */
    294 		ip6 = mtod(m, struct ip6_hdr *);
    295 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
    296 			goto freehdrs;
    297 		ip6->ip6_plen = 0;
    298 	} else
    299 		ip6->ip6_plen = htons(plen);
    300 
    301 	/*
    302 	 * Concatenate headers and fill in next header fields.
    303 	 * Here we have, on "m"
    304 	 *	IPv6 payload
    305 	 * and we insert headers accordingly.  Finally, we should be getting:
    306 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
    307 	 *
    308 	 * during the header composing process, "m" points to IPv6 header.
    309 	 * "mprev" points to an extension header prior to esp.
    310 	 */
    311 	{
    312 		u_char *nexthdrp = &ip6->ip6_nxt;
    313 		struct mbuf *mprev = m;
    314 
    315 		/*
    316 		 * we treat dest2 specially.  this makes IPsec processing
    317 		 * much easier.  the goal here is to make mprev point the
    318 		 * mbuf prior to dest2.
    319 		 *
    320 		 * result: IPv6 dest2 payload
    321 		 * m and mprev will point to IPv6 header.
    322 		 */
    323 		if (exthdrs.ip6e_dest2) {
    324 			if (!hdrsplit)
    325 				panic("assumption failed: hdr not split");
    326 			exthdrs.ip6e_dest2->m_next = m->m_next;
    327 			m->m_next = exthdrs.ip6e_dest2;
    328 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
    329 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
    330 		}
    331 
    332 #define MAKE_CHAIN(m, mp, p, i)\
    333     do {\
    334 	if (m) {\
    335 		if (!hdrsplit) \
    336 			panic("assumption failed: hdr not split"); \
    337 		*mtod((m), u_char *) = *(p);\
    338 		*(p) = (i);\
    339 		p = mtod((m), u_char *);\
    340 		(m)->m_next = (mp)->m_next;\
    341 		(mp)->m_next = (m);\
    342 		(mp) = (m);\
    343 	}\
    344     } while (/*CONSTCOND*/ 0)
    345 		/*
    346 		 * result: IPv6 hbh dest1 rthdr dest2 payload
    347 		 * m will point to IPv6 header.  mprev will point to the
    348 		 * extension header prior to dest2 (rthdr in the above case).
    349 		 */
    350 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
    351 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
    352 		    IPPROTO_DSTOPTS);
    353 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
    354 		    IPPROTO_ROUTING);
    355 
    356 #ifdef IPSEC
    357 		if (!needipsec)
    358 			goto skip_ipsec2;
    359 
    360 		/*
    361 		 * pointers after IPsec headers are not valid any more.
    362 		 * other pointers need a great care too.
    363 		 * (IPsec routines should not mangle mbufs prior to AH/ESP)
    364 		 */
    365 		exthdrs.ip6e_dest2 = NULL;
    366 
    367 	    {
    368 		struct ip6_rthdr *rh = NULL;
    369 		int segleft_org = 0;
    370 		struct ipsec_output_state state;
    371 
    372 		if (exthdrs.ip6e_rthdr) {
    373 			rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
    374 			segleft_org = rh->ip6r_segleft;
    375 			rh->ip6r_segleft = 0;
    376 		}
    377 
    378 		bzero(&state, sizeof(state));
    379 		state.m = m;
    380 		error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
    381 		    &needipsectun);
    382 		m = state.m;
    383 		if (error) {
    384 			/* mbuf is already reclaimed in ipsec6_output_trans. */
    385 			m = NULL;
    386 			switch (error) {
    387 			case EHOSTUNREACH:
    388 			case ENETUNREACH:
    389 			case EMSGSIZE:
    390 			case ENOBUFS:
    391 			case ENOMEM:
    392 				break;
    393 			default:
    394 				printf("ip6_output (ipsec): error code %d\n", error);
    395 				/* FALLTHROUGH */
    396 			case ENOENT:
    397 				/* don't show these error codes to the user */
    398 				error = 0;
    399 				break;
    400 			}
    401 			goto bad;
    402 		}
    403 		if (exthdrs.ip6e_rthdr) {
    404 			/* ah6_output doesn't modify mbuf chain */
    405 			rh->ip6r_segleft = segleft_org;
    406 		}
    407 	    }
    408 skip_ipsec2:;
    409 #endif
    410 	}
    411 
    412 	/*
    413 	 * If there is a routing header, replace destination address field
    414 	 * with the first hop of the routing header.
    415 	 */
    416 	if (exthdrs.ip6e_rthdr) {
    417 		struct ip6_rthdr *rh;
    418 		struct ip6_rthdr0 *rh0;
    419 		struct in6_addr *addr;
    420 
    421 		rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
    422 		    struct ip6_rthdr *));
    423 		finaldst = ip6->ip6_dst;
    424 		switch (rh->ip6r_type) {
    425 		case IPV6_RTHDR_TYPE_0:
    426 			 rh0 = (struct ip6_rthdr0 *)rh;
    427 			 addr = (struct in6_addr *)(rh0 + 1);
    428 			 ip6->ip6_dst = addr[0];
    429 			 bcopy(&addr[1], &addr[0],
    430 			     sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1));
    431 			 addr[rh0->ip6r0_segleft - 1] = finaldst;
    432 			 break;
    433 		default:	/* is it possible? */
    434 			 error = EINVAL;
    435 			 goto bad;
    436 		}
    437 	}
    438 
    439 	/* Source address validation */
    440 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
    441 	    (flags & IPV6_UNSPECSRC) == 0) {
    442 		error = EOPNOTSUPP;
    443 		ip6stat.ip6s_badscope++;
    444 		goto bad;
    445 	}
    446 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
    447 		error = EOPNOTSUPP;
    448 		ip6stat.ip6s_badscope++;
    449 		goto bad;
    450 	}
    451 
    452 	ip6stat.ip6s_localout++;
    453 
    454 	/*
    455 	 * Route packet.
    456 	 */
    457 	/* initialize cached route */
    458 	if (ro == 0) {
    459 		ro = &ip6route;
    460 		bzero((caddr_t)ro, sizeof(*ro));
    461 	}
    462 	ro_pmtu = ro;
    463 	if (opt && opt->ip6po_rthdr)
    464 		ro = &opt->ip6po_route;
    465 	dst = (struct sockaddr_in6 *)&ro->ro_dst;
    466 	/*
    467 	 * If there is a cached route,
    468 	 * check that it is to the same destination
    469 	 * and is still up. If not, free it and try again.
    470 	 */
    471 	if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
    472 	    dst->sin6_family != AF_INET6 ||
    473 	    !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
    474 		RTFREE(ro->ro_rt);
    475 		ro->ro_rt = (struct rtentry *)0;
    476 	}
    477 	if (ro->ro_rt == 0) {
    478 		bzero(dst, sizeof(*dst));
    479 		dst->sin6_family = AF_INET6;
    480 		dst->sin6_len = sizeof(struct sockaddr_in6);
    481 		dst->sin6_addr = ip6->ip6_dst;
    482 	}
    483 #ifdef IPSEC
    484 	if (needipsec && needipsectun) {
    485 		struct ipsec_output_state state;
    486 
    487 		/*
    488 		 * All the extension headers will become inaccessible
    489 		 * (since they can be encrypted).
    490 		 * Don't panic, we need no more updates to extension headers
    491 		 * on inner IPv6 packet (since they are now encapsulated).
    492 		 *
    493 		 * IPv6 [ESP|AH] IPv6 [extension headers] payload
    494 		 */
    495 		bzero(&exthdrs, sizeof(exthdrs));
    496 		exthdrs.ip6e_ip6 = m;
    497 
    498 		bzero(&state, sizeof(state));
    499 		state.m = m;
    500 		state.ro = (struct route *)ro;
    501 		state.dst = (struct sockaddr *)dst;
    502 
    503 		error = ipsec6_output_tunnel(&state, sp, flags);
    504 
    505 		m = state.m;
    506 		ro_pmtu = ro = (struct route_in6 *)state.ro;
    507 		dst = (struct sockaddr_in6 *)state.dst;
    508 		if (error) {
    509 			/* mbuf is already reclaimed in ipsec6_output_tunnel. */
    510 			m0 = m = NULL;
    511 			m = NULL;
    512 			switch (error) {
    513 			case EHOSTUNREACH:
    514 			case ENETUNREACH:
    515 			case EMSGSIZE:
    516 			case ENOBUFS:
    517 			case ENOMEM:
    518 				break;
    519 			default:
    520 				printf("ip6_output (ipsec): error code %d\n", error);
    521 				/* FALLTHROUGH */
    522 			case ENOENT:
    523 				/* don't show these error codes to the user */
    524 				error = 0;
    525 				break;
    526 			}
    527 			goto bad;
    528 		}
    529 
    530 		exthdrs.ip6e_ip6 = m;
    531 	}
    532 #endif /* IPSEC */
    533 
    534 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    535 		/* Unicast */
    536 
    537 #define ifatoia6(ifa)	((struct in6_ifaddr *)(ifa))
    538 #define sin6tosa(sin6)	((struct sockaddr *)(sin6))
    539 		/* xxx
    540 		 * interface selection comes here
    541 		 * if an interface is specified from an upper layer,
    542 		 * ifp must point it.
    543 		 */
    544 		if (ro->ro_rt == 0) {
    545 			/*
    546 			 * non-bsdi always clone routes, if parent is
    547 			 * PRF_CLONING.
    548 			 */
    549 			rtalloc((struct route *)ro);
    550 		}
    551 		if (ro->ro_rt == 0) {
    552 			ip6stat.ip6s_noroute++;
    553 			error = EHOSTUNREACH;
    554 			/* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
    555 			goto bad;
    556 		}
    557 		ifp = ro->ro_rt->rt_ifp;
    558 		ro->ro_rt->rt_use++;
    559 		if (ro->ro_rt->rt_flags & RTF_GATEWAY)
    560 			dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
    561 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
    562 
    563 		in6_ifstat_inc(ifp, ifs6_out_request);
    564 
    565 		/*
    566 		 * Check if the outgoing interface conflicts with
    567 		 * the interface specified by ifi6_ifindex (if specified).
    568 		 * Note that loopback interface is always okay.
    569 		 * (this may happen when we are sending a packet to one of
    570 		 *  our own addresses.)
    571 		 */
    572 		if (opt && opt->ip6po_pktinfo &&
    573 		    opt->ip6po_pktinfo->ipi6_ifindex) {
    574 			if (!(ifp->if_flags & IFF_LOOPBACK) &&
    575 			    ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
    576 				ip6stat.ip6s_noroute++;
    577 				in6_ifstat_inc(ifp, ifs6_out_discard);
    578 				error = EHOSTUNREACH;
    579 				goto bad;
    580 			}
    581 		}
    582 
    583 		if (opt && opt->ip6po_hlim != -1)
    584 			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    585 	} else {
    586 		/* Multicast */
    587 		struct	in6_multi *in6m;
    588 
    589 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
    590 
    591 		/*
    592 		 * See if the caller provided any multicast options
    593 		 */
    594 		ifp = NULL;
    595 		if (im6o != NULL) {
    596 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
    597 			if (im6o->im6o_multicast_ifp != NULL)
    598 				ifp = im6o->im6o_multicast_ifp;
    599 		} else
    600 			ip6->ip6_hlim = ip6_defmcasthlim;
    601 
    602 		/*
    603 		 * See if the caller provided the outgoing interface
    604 		 * as an ancillary data.
    605 		 * Boundary check for ifindex is assumed to be already done.
    606 		 */
    607 		if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
    608 			ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
    609 
    610 		/*
    611 		 * If the destination is a node-local scope multicast,
    612 		 * the packet should be loop-backed only.
    613 		 */
    614 		if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
    615 			/*
    616 			 * If the outgoing interface is already specified,
    617 			 * it should be a loopback interface.
    618 			 */
    619 			if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
    620 				ip6stat.ip6s_badscope++;
    621 				error = ENETUNREACH; /* XXX: better error? */
    622 				/* XXX correct ifp? */
    623 				in6_ifstat_inc(ifp, ifs6_out_discard);
    624 				goto bad;
    625 			} else
    626 				ifp = lo0ifp;
    627 		}
    628 
    629 		if (opt && opt->ip6po_hlim != -1)
    630 			ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    631 
    632 		/*
    633 		 * If caller did not provide an interface lookup a
    634 		 * default in the routing table.  This is either a
    635 		 * default for the speicfied group (i.e. a host
    636 		 * route), or a multicast default (a route for the
    637 		 * ``net'' ff00::/8).
    638 		 */
    639 		if (ifp == NULL) {
    640 			if (ro->ro_rt == 0) {
    641 				ro->ro_rt = rtalloc1((struct sockaddr *)
    642 				    &ro->ro_dst, 0);
    643 			}
    644 			if (ro->ro_rt == 0) {
    645 				ip6stat.ip6s_noroute++;
    646 				error = EHOSTUNREACH;
    647 				/* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
    648 				goto bad;
    649 			}
    650 			ifp = ro->ro_rt->rt_ifp;
    651 			ro->ro_rt->rt_use++;
    652 		}
    653 
    654 		if ((flags & IPV6_FORWARDING) == 0)
    655 			in6_ifstat_inc(ifp, ifs6_out_request);
    656 		in6_ifstat_inc(ifp, ifs6_out_mcast);
    657 
    658 		/*
    659 		 * Confirm that the outgoing interface supports multicast.
    660 		 */
    661 		if ((ifp->if_flags & IFF_MULTICAST) == 0) {
    662 			ip6stat.ip6s_noroute++;
    663 			in6_ifstat_inc(ifp, ifs6_out_discard);
    664 			error = ENETUNREACH;
    665 			goto bad;
    666 		}
    667 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
    668 		if (in6m != NULL &&
    669 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
    670 			/*
    671 			 * If we belong to the destination multicast group
    672 			 * on the outgoing interface, and the caller did not
    673 			 * forbid loopback, loop back a copy.
    674 			 */
    675 			ip6_mloopback(ifp, m, dst);
    676 		} else {
    677 			/*
    678 			 * If we are acting as a multicast router, perform
    679 			 * multicast forwarding as if the packet had just
    680 			 * arrived on the interface to which we are about
    681 			 * to send.  The multicast forwarding function
    682 			 * recursively calls this function, using the
    683 			 * IPV6_FORWARDING flag to prevent infinite recursion.
    684 			 *
    685 			 * Multicasts that are looped back by ip6_mloopback(),
    686 			 * above, will be forwarded by the ip6_input() routine,
    687 			 * if necessary.
    688 			 */
    689 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
    690 				if (ip6_mforward(ip6, ifp, m) != 0) {
    691 					m_freem(m);
    692 					goto done;
    693 				}
    694 			}
    695 		}
    696 		/*
    697 		 * Multicasts with a hoplimit of zero may be looped back,
    698 		 * above, but must not be transmitted on a network.
    699 		 * Also, multicasts addressed to the loopback interface
    700 		 * are not sent -- the above call to ip6_mloopback() will
    701 		 * loop back a copy if this host actually belongs to the
    702 		 * destination group on the loopback interface.
    703 		 */
    704 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
    705 			m_freem(m);
    706 			goto done;
    707 		}
    708 	}
    709 
    710 	/*
    711 	 * Fill the outgoing inteface to tell the upper layer
    712 	 * to increment per-interface statistics.
    713 	 */
    714 	if (ifpp)
    715 		*ifpp = ifp;
    716 
    717 	/* Determine path MTU. */
    718 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
    719 	    &alwaysfrag)) != 0)
    720 		goto bad;
    721 #ifdef IPSEC
    722 	if (needipsectun)
    723 		mtu = IPV6_MMTU;
    724 #endif
    725 
    726 	/*
    727 	 * The caller of this function may specify to use the minimum MTU
    728 	 * in some cases.
    729 	 */
    730 	if (mtu > IPV6_MMTU) {
    731 		if ((flags & IPV6_MINMTU))
    732 			mtu = IPV6_MMTU;
    733 	}
    734 
    735 	/* Fake scoped addresses */
    736 	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
    737 		/*
    738 		 * If source or destination address is a scoped address, and
    739 		 * the packet is going to be sent to a loopback interface,
    740 		 * we should keep the original interface.
    741 		 */
    742 
    743 		/*
    744 		 * XXX: this is a very experimental and temporary solution.
    745 		 * We eventually have sockaddr_in6 and use the sin6_scope_id
    746 		 * field of the structure here.
    747 		 * We rely on the consistency between two scope zone ids
    748 		 * of source add destination, which should already be assured
    749 		 * Larger scopes than link will be supported in the near
    750 		 * future.
    751 		 */
    752 		origifp = NULL;
    753 		if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
    754 			origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
    755 		else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
    756 			origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
    757 		/*
    758 		 * XXX: origifp can be NULL even in those two cases above.
    759 		 * For example, if we remove the (only) link-local address
    760 		 * from the loopback interface, and try to send a link-local
    761 		 * address without link-id information.  Then the source
    762 		 * address is ::1, and the destination address is the
    763 		 * link-local address with its s6_addr16[1] being zero.
    764 		 * What is worse, if the packet goes to the loopback interface
    765 		 * by a default rejected route, the null pointer would be
    766 		 * passed to looutput, and the kernel would hang.
    767 		 * The following last resort would prevent such disaster.
    768 		 */
    769 		if (origifp == NULL)
    770 			origifp = ifp;
    771 	} else
    772 		origifp = ifp;
    773 	if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
    774 		ip6->ip6_src.s6_addr16[1] = 0;
    775 	if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
    776 		ip6->ip6_dst.s6_addr16[1] = 0;
    777 
    778 	/*
    779 	 * If the outgoing packet contains a hop-by-hop options header,
    780 	 * it must be examined and processed even by the source node.
    781 	 * (RFC 2460, section 4.)
    782 	 */
    783 	if (exthdrs.ip6e_hbh) {
    784 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
    785 		u_int32_t dummy1; /* XXX unused */
    786 		u_int32_t dummy2; /* XXX unused */
    787 
    788 		/*
    789 		 *  XXX: if we have to send an ICMPv6 error to the sender,
    790 		 *       we need the M_LOOP flag since icmp6_error() expects
    791 		 *       the IPv6 and the hop-by-hop options header are
    792 		 *       continuous unless the flag is set.
    793 		 */
    794 		m->m_flags |= M_LOOP;
    795 		m->m_pkthdr.rcvif = ifp;
    796 		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
    797 		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
    798 		    &dummy1, &dummy2) < 0) {
    799 			/* m was already freed at this point */
    800 			error = EINVAL;/* better error? */
    801 			goto done;
    802 		}
    803 		m->m_flags &= ~M_LOOP; /* XXX */
    804 		m->m_pkthdr.rcvif = NULL;
    805 	}
    806 
    807 #ifdef PFIL_HOOKS
    808 	/*
    809 	 * Run through list of hooks for output packets.
    810 	 */
    811 	if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    812 		goto done;
    813 	if (m == NULL)
    814 		goto done;
    815 	ip6 = mtod(m, struct ip6_hdr *);
    816 #endif /* PFIL_HOOKS */
    817 	/*
    818 	 * Send the packet to the outgoing interface.
    819 	 * If necessary, do IPv6 fragmentation before sending.
    820 	 *
    821 	 * the logic here is rather complex:
    822 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
    823 	 * 1-a:	send as is if tlen <= path mtu
    824 	 * 1-b:	fragment if tlen > path mtu
    825 	 *
    826 	 * 2: if user asks us not to fragment (dontfrag == 1)
    827 	 * 2-a:	send as is if tlen <= interface mtu
    828 	 * 2-b:	error if tlen > interface mtu
    829 	 *
    830 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
    831 	 *	always fragment
    832 	 *
    833 	 * 4: if dontfrag == 1 && alwaysfrag == 1
    834 	 *	error, as we cannot handle this conflicting request
    835 	 */
    836 	tlen = m->m_pkthdr.len;
    837 
    838 	dontfrag = 0;
    839 	if (dontfrag && alwaysfrag) {	/* case 4 */
    840 		/* conflicting request - can't transmit */
    841 		error = EMSGSIZE;
    842 		goto bad;
    843 	}
    844 	if (dontfrag && tlen > IN6_LINKMTU(ifp)) {	/* case 2-b */
    845 		/*
    846 		 * Even if the DONTFRAG option is specified, we cannot send the
    847 		 * packet when the data length is larger than the MTU of the
    848 		 * outgoing interface.
    849 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
    850 		 * well as returning an error code (the latter is not described
    851 		 * in the API spec.)
    852 		 */
    853 		u_int32_t mtu32;
    854 		struct ip6ctlparam ip6cp;
    855 
    856 		mtu32 = (u_int32_t)mtu;
    857 		bzero(&ip6cp, sizeof(ip6cp));
    858 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    859 		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
    860 		    (void *)&ip6cp);
    861 
    862 		error = EMSGSIZE;
    863 		goto bad;
    864 	}
    865 
    866 	/*
    867 	 * transmit packet without fragmentation
    868 	 */
    869 	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
    870 		struct in6_ifaddr *ia6;
    871 
    872 		ip6 = mtod(m, struct ip6_hdr *);
    873 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    874 		if (ia6) {
    875 			/* Record statistics for this interface address. */
    876 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
    877 		}
    878 #ifdef IPSEC
    879 		/* clean ipsec history once it goes out of the node */
    880 		ipsec_delaux(m);
    881 #endif
    882 		error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
    883 		goto done;
    884 	}
    885 
    886 	/*
    887 	 * try to fragment the packet.  case 1-b and 3
    888 	 */
    889 	if (mtu < IPV6_MMTU) {
    890 		/* path MTU cannot be less than IPV6_MMTU */
    891 		error = EMSGSIZE;
    892 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    893 		goto bad;
    894 	} else if (ip6->ip6_plen == 0) {
    895 		/* jumbo payload cannot be fragmented */
    896 		error = EMSGSIZE;
    897 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    898 		goto bad;
    899 	} else {
    900 		struct mbuf **mnext, *m_frgpart;
    901 		struct ip6_frag *ip6f;
    902 		u_int32_t id = htonl(ip6_randomid());
    903 		u_char nextproto;
    904 		struct ip6ctlparam ip6cp;
    905 		u_int32_t mtu32;
    906 
    907 		/*
    908 		 * Too large for the destination or interface;
    909 		 * fragment if possible.
    910 		 * Must be able to put at least 8 bytes per fragment.
    911 		 */
    912 		hlen = unfragpartlen;
    913 		if (mtu > IPV6_MAXPACKET)
    914 			mtu = IPV6_MAXPACKET;
    915 
    916 		/* Notify a proper path MTU to applications. */
    917 		mtu32 = (u_int32_t)mtu;
    918 		bzero(&ip6cp, sizeof(ip6cp));
    919 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    920 		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
    921 		    (void *)&ip6cp);
    922 
    923 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
    924 		if (len < 8) {
    925 			error = EMSGSIZE;
    926 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
    927 			goto bad;
    928 		}
    929 
    930 		mnext = &m->m_nextpkt;
    931 
    932 		/*
    933 		 * Change the next header field of the last header in the
    934 		 * unfragmentable part.
    935 		 */
    936 		if (exthdrs.ip6e_rthdr) {
    937 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
    938 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
    939 		} else if (exthdrs.ip6e_dest1) {
    940 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
    941 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
    942 		} else if (exthdrs.ip6e_hbh) {
    943 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
    944 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
    945 		} else {
    946 			nextproto = ip6->ip6_nxt;
    947 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
    948 		}
    949 
    950 		/*
    951 		 * Loop through length of segment after first fragment,
    952 		 * make new header and copy data of each part and link onto
    953 		 * chain.
    954 		 */
    955 		m0 = m;
    956 		for (off = hlen; off < tlen; off += len) {
    957 			struct mbuf *mlast;
    958 
    959 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
    960 			if (!m) {
    961 				error = ENOBUFS;
    962 				ip6stat.ip6s_odropped++;
    963 				goto sendorfree;
    964 			}
    965 			m->m_pkthdr.rcvif = NULL;
    966 			m->m_flags = m0->m_flags & M_COPYFLAGS;
    967 			*mnext = m;
    968 			mnext = &m->m_nextpkt;
    969 			m->m_data += max_linkhdr;
    970 			mhip6 = mtod(m, struct ip6_hdr *);
    971 			*mhip6 = *ip6;
    972 			m->m_len = sizeof(*mhip6);
    973 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
    974 			if (error) {
    975 				ip6stat.ip6s_odropped++;
    976 				goto sendorfree;
    977 			}
    978 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
    979 			if (off + len >= tlen)
    980 				len = tlen - off;
    981 			else
    982 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
    983 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
    984 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
    985 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
    986 				error = ENOBUFS;
    987 				ip6stat.ip6s_odropped++;
    988 				goto sendorfree;
    989 			}
    990 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
    991 				;
    992 			mlast->m_next = m_frgpart;
    993 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
    994 			m->m_pkthdr.rcvif = (struct ifnet *)0;
    995 			ip6f->ip6f_reserved = 0;
    996 			ip6f->ip6f_ident = id;
    997 			ip6f->ip6f_nxt = nextproto;
    998 			ip6stat.ip6s_ofragments++;
    999 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
   1000 		}
   1001 
   1002 		in6_ifstat_inc(ifp, ifs6_out_fragok);
   1003 	}
   1004 
   1005 	/*
   1006 	 * Remove leading garbages.
   1007 	 */
   1008 sendorfree:
   1009 	m = m0->m_nextpkt;
   1010 	m0->m_nextpkt = 0;
   1011 	m_freem(m0);
   1012 	for (m0 = m; m; m = m0) {
   1013 		m0 = m->m_nextpkt;
   1014 		m->m_nextpkt = 0;
   1015 		if (error == 0) {
   1016 			struct in6_ifaddr *ia6;
   1017 			ip6 = mtod(m, struct ip6_hdr *);
   1018 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
   1019 			if (ia6) {
   1020 				/*
   1021 				 * Record statistics for this interface
   1022 				 * address.
   1023 				 */
   1024 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
   1025 				    m->m_pkthdr.len;
   1026 			}
   1027 #ifdef IPSEC
   1028 			/* clean ipsec history once it goes out of the node */
   1029 			ipsec_delaux(m);
   1030 #endif
   1031 			error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
   1032 		} else
   1033 			m_freem(m);
   1034 	}
   1035 
   1036 	if (error == 0)
   1037 		ip6stat.ip6s_fragmented++;
   1038 
   1039 done:
   1040 	if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
   1041 		RTFREE(ro->ro_rt);
   1042 	} else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
   1043 		RTFREE(ro_pmtu->ro_rt);
   1044 	}
   1045 
   1046 #ifdef IPSEC
   1047 	if (sp != NULL)
   1048 		key_freesp(sp);
   1049 #endif /* IPSEC */
   1050 
   1051 	return (error);
   1052 
   1053 freehdrs:
   1054 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
   1055 	m_freem(exthdrs.ip6e_dest1);
   1056 	m_freem(exthdrs.ip6e_rthdr);
   1057 	m_freem(exthdrs.ip6e_dest2);
   1058 	/* FALLTHROUGH */
   1059 bad:
   1060 	m_freem(m);
   1061 	goto done;
   1062 }
   1063 
   1064 static int
   1065 ip6_copyexthdr(mp, hdr, hlen)
   1066 	struct mbuf **mp;
   1067 	caddr_t hdr;
   1068 	int hlen;
   1069 {
   1070 	struct mbuf *m;
   1071 
   1072 	if (hlen > MCLBYTES)
   1073 		return (ENOBUFS); /* XXX */
   1074 
   1075 	MGET(m, M_DONTWAIT, MT_DATA);
   1076 	if (!m)
   1077 		return (ENOBUFS);
   1078 
   1079 	if (hlen > MLEN) {
   1080 		MCLGET(m, M_DONTWAIT);
   1081 		if ((m->m_flags & M_EXT) == 0) {
   1082 			m_free(m);
   1083 			return (ENOBUFS);
   1084 		}
   1085 	}
   1086 	m->m_len = hlen;
   1087 	if (hdr)
   1088 		bcopy(hdr, mtod(m, caddr_t), hlen);
   1089 
   1090 	*mp = m;
   1091 	return (0);
   1092 }
   1093 
   1094 /*
   1095  * Insert jumbo payload option.
   1096  */
   1097 static int
   1098 ip6_insert_jumboopt(exthdrs, plen)
   1099 	struct ip6_exthdrs *exthdrs;
   1100 	u_int32_t plen;
   1101 {
   1102 	struct mbuf *mopt;
   1103 	u_int8_t *optbuf;
   1104 	u_int32_t v;
   1105 
   1106 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
   1107 
   1108 	/*
   1109 	 * If there is no hop-by-hop options header, allocate new one.
   1110 	 * If there is one but it doesn't have enough space to store the
   1111 	 * jumbo payload option, allocate a cluster to store the whole options.
   1112 	 * Otherwise, use it to store the options.
   1113 	 */
   1114 	if (exthdrs->ip6e_hbh == 0) {
   1115 		MGET(mopt, M_DONTWAIT, MT_DATA);
   1116 		if (mopt == 0)
   1117 			return (ENOBUFS);
   1118 		mopt->m_len = JUMBOOPTLEN;
   1119 		optbuf = mtod(mopt, u_int8_t *);
   1120 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
   1121 		exthdrs->ip6e_hbh = mopt;
   1122 	} else {
   1123 		struct ip6_hbh *hbh;
   1124 
   1125 		mopt = exthdrs->ip6e_hbh;
   1126 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
   1127 			/*
   1128 			 * XXX assumption:
   1129 			 * - exthdrs->ip6e_hbh is not referenced from places
   1130 			 *   other than exthdrs.
   1131 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
   1132 			 */
   1133 			int oldoptlen = mopt->m_len;
   1134 			struct mbuf *n;
   1135 
   1136 			/*
   1137 			 * XXX: give up if the whole (new) hbh header does
   1138 			 * not fit even in an mbuf cluster.
   1139 			 */
   1140 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
   1141 				return (ENOBUFS);
   1142 
   1143 			/*
   1144 			 * As a consequence, we must always prepare a cluster
   1145 			 * at this point.
   1146 			 */
   1147 			MGET(n, M_DONTWAIT, MT_DATA);
   1148 			if (n) {
   1149 				MCLGET(n, M_DONTWAIT);
   1150 				if ((n->m_flags & M_EXT) == 0) {
   1151 					m_freem(n);
   1152 					n = NULL;
   1153 				}
   1154 			}
   1155 			if (!n)
   1156 				return (ENOBUFS);
   1157 			n->m_len = oldoptlen + JUMBOOPTLEN;
   1158 			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
   1159 			    oldoptlen);
   1160 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
   1161 			m_freem(mopt);
   1162 			mopt = exthdrs->ip6e_hbh = n;
   1163 		} else {
   1164 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
   1165 			mopt->m_len += JUMBOOPTLEN;
   1166 		}
   1167 		optbuf[0] = IP6OPT_PADN;
   1168 		optbuf[1] = 0;
   1169 
   1170 		/*
   1171 		 * Adjust the header length according to the pad and
   1172 		 * the jumbo payload option.
   1173 		 */
   1174 		hbh = mtod(mopt, struct ip6_hbh *);
   1175 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
   1176 	}
   1177 
   1178 	/* fill in the option. */
   1179 	optbuf[2] = IP6OPT_JUMBO;
   1180 	optbuf[3] = 4;
   1181 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
   1182 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
   1183 
   1184 	/* finally, adjust the packet header length */
   1185 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
   1186 
   1187 	return (0);
   1188 #undef JUMBOOPTLEN
   1189 }
   1190 
   1191 /*
   1192  * Insert fragment header and copy unfragmentable header portions.
   1193  */
   1194 static int
   1195 ip6_insertfraghdr(m0, m, hlen, frghdrp)
   1196 	struct mbuf *m0, *m;
   1197 	int hlen;
   1198 	struct ip6_frag **frghdrp;
   1199 {
   1200 	struct mbuf *n, *mlast;
   1201 
   1202 	if (hlen > sizeof(struct ip6_hdr)) {
   1203 		n = m_copym(m0, sizeof(struct ip6_hdr),
   1204 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
   1205 		if (n == 0)
   1206 			return (ENOBUFS);
   1207 		m->m_next = n;
   1208 	} else
   1209 		n = m;
   1210 
   1211 	/* Search for the last mbuf of unfragmentable part. */
   1212 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
   1213 		;
   1214 
   1215 	if ((mlast->m_flags & M_EXT) == 0 &&
   1216 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
   1217 		/* use the trailing space of the last mbuf for the fragment hdr */
   1218 		*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
   1219 		    mlast->m_len);
   1220 		mlast->m_len += sizeof(struct ip6_frag);
   1221 		m->m_pkthdr.len += sizeof(struct ip6_frag);
   1222 	} else {
   1223 		/* allocate a new mbuf for the fragment header */
   1224 		struct mbuf *mfrg;
   1225 
   1226 		MGET(mfrg, M_DONTWAIT, MT_DATA);
   1227 		if (mfrg == 0)
   1228 			return (ENOBUFS);
   1229 		mfrg->m_len = sizeof(struct ip6_frag);
   1230 		*frghdrp = mtod(mfrg, struct ip6_frag *);
   1231 		mlast->m_next = mfrg;
   1232 	}
   1233 
   1234 	return (0);
   1235 }
   1236 
   1237 static int
   1238 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup, alwaysfragp)
   1239 	struct route_in6 *ro_pmtu, *ro;
   1240 	struct ifnet *ifp;
   1241 	struct in6_addr *dst;
   1242 	u_long *mtup;
   1243 	int *alwaysfragp;
   1244 {
   1245 	u_int32_t mtu = 0;
   1246 	int alwaysfrag = 0;
   1247 	int error = 0;
   1248 
   1249 	if (ro_pmtu != ro) {
   1250 		/* The first hop and the final destination may differ. */
   1251 		struct sockaddr_in6 *sa6_dst =
   1252 		    (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
   1253 		if (ro_pmtu->ro_rt &&
   1254 		    ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
   1255 		      !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
   1256 			RTFREE(ro_pmtu->ro_rt);
   1257 			ro_pmtu->ro_rt = (struct rtentry *)NULL;
   1258 		}
   1259 		if (ro_pmtu->ro_rt == NULL) {
   1260 			bzero(sa6_dst, sizeof(*sa6_dst)); /* for safety */
   1261 			sa6_dst->sin6_family = AF_INET6;
   1262 			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
   1263 			sa6_dst->sin6_addr = *dst;
   1264 
   1265 			rtalloc((struct route *)ro_pmtu);
   1266 		}
   1267 	}
   1268 	if (ro_pmtu->ro_rt) {
   1269 		u_int32_t ifmtu;
   1270 
   1271 		if (ifp == NULL)
   1272 			ifp = ro_pmtu->ro_rt->rt_ifp;
   1273 		ifmtu = IN6_LINKMTU(ifp);
   1274 		mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
   1275 		if (mtu == 0)
   1276 			mtu = ifmtu;
   1277 		else if (mtu < IPV6_MMTU) {
   1278 			/*
   1279 			 * RFC2460 section 5, last paragraph:
   1280 			 * if we record ICMPv6 too big message with
   1281 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
   1282 			 * or smaller, with fragment header attached.
   1283 			 * (fragment header is needed regardless from the
   1284 			 * packet size, for translators to identify packets)
   1285 			 */
   1286 			alwaysfrag = 1;
   1287 			mtu = IPV6_MMTU;
   1288 		} else if (mtu > ifmtu) {
   1289 			/*
   1290 			 * The MTU on the route is larger than the MTU on
   1291 			 * the interface!  This shouldn't happen, unless the
   1292 			 * MTU of the interface has been changed after the
   1293 			 * interface was brought up.  Change the MTU in the
   1294 			 * route to match the interface MTU (as long as the
   1295 			 * field isn't locked).
   1296 			 */
   1297 			mtu = ifmtu;
   1298 			if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU))
   1299 				ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
   1300 		}
   1301 	} else if (ifp) {
   1302 		mtu = IN6_LINKMTU(ifp);
   1303 	} else
   1304 		error = EHOSTUNREACH; /* XXX */
   1305 
   1306 	*mtup = mtu;
   1307 	if (alwaysfragp)
   1308 		*alwaysfragp = alwaysfrag;
   1309 	return (error);
   1310 }
   1311 
   1312 /*
   1313  * IP6 socket option processing.
   1314  */
   1315 int
   1316 ip6_ctloutput(op, so, level, optname, mp)
   1317 	int op;
   1318 	struct socket *so;
   1319 	int level, optname;
   1320 	struct mbuf **mp;
   1321 {
   1322 	struct in6pcb *in6p = sotoin6pcb(so);
   1323 	struct mbuf *m = *mp;
   1324 	int optval = 0;
   1325 	int error = 0;
   1326 	struct proc *p = curproc;	/* XXX */
   1327 
   1328 	if (level == IPPROTO_IPV6) {
   1329 		switch (op) {
   1330 		case PRCO_SETOPT:
   1331 			switch (optname) {
   1332 			case IPV6_PKTOPTIONS:
   1333 				/* m is freed in ip6_pcbopts */
   1334 				return (ip6_pcbopts(&in6p->in6p_outputopts,
   1335 				    m, so));
   1336 			case IPV6_HOPOPTS:
   1337 			case IPV6_DSTOPTS:
   1338 				if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
   1339 					error = EPERM;
   1340 					break;
   1341 				}
   1342 				/* FALLTHROUGH */
   1343 			case IPV6_UNICAST_HOPS:
   1344 			case IPV6_RECVOPTS:
   1345 			case IPV6_RECVRETOPTS:
   1346 			case IPV6_RECVDSTADDR:
   1347 			case IPV6_PKTINFO:
   1348 			case IPV6_HOPLIMIT:
   1349 			case IPV6_RTHDR:
   1350 			case IPV6_FAITH:
   1351 			case IPV6_V6ONLY:
   1352 			case IPV6_USE_MIN_MTU:
   1353 				if (!m || m->m_len != sizeof(int)) {
   1354 					error = EINVAL;
   1355 					break;
   1356 				}
   1357 				optval = *mtod(m, int *);
   1358 				switch (optname) {
   1359 
   1360 				case IPV6_UNICAST_HOPS:
   1361 					if (optval < -1 || optval >= 256)
   1362 						error = EINVAL;
   1363 					else {
   1364 						/* -1 = kernel default */
   1365 						in6p->in6p_hops = optval;
   1366 					}
   1367 					break;
   1368 #define OPTSET(bit) \
   1369 do { \
   1370 	if (optval) \
   1371 		in6p->in6p_flags |= (bit); \
   1372 	else \
   1373 		in6p->in6p_flags &= ~(bit); \
   1374 } while (/*CONSTCOND*/ 0)
   1375 
   1376 				case IPV6_RECVOPTS:
   1377 					OPTSET(IN6P_RECVOPTS);
   1378 					break;
   1379 
   1380 				case IPV6_RECVRETOPTS:
   1381 					OPTSET(IN6P_RECVRETOPTS);
   1382 					break;
   1383 
   1384 				case IPV6_RECVDSTADDR:
   1385 					OPTSET(IN6P_RECVDSTADDR);
   1386 					break;
   1387 
   1388 				case IPV6_PKTINFO:
   1389 					OPTSET(IN6P_PKTINFO);
   1390 					break;
   1391 
   1392 				case IPV6_HOPLIMIT:
   1393 					OPTSET(IN6P_HOPLIMIT);
   1394 					break;
   1395 
   1396 				case IPV6_HOPOPTS:
   1397 					OPTSET(IN6P_HOPOPTS);
   1398 					break;
   1399 
   1400 				case IPV6_DSTOPTS:
   1401 					OPTSET(IN6P_DSTOPTS);
   1402 					break;
   1403 
   1404 				case IPV6_RTHDR:
   1405 					OPTSET(IN6P_RTHDR);
   1406 					break;
   1407 
   1408 				case IPV6_FAITH:
   1409 					OPTSET(IN6P_FAITH);
   1410 					break;
   1411 
   1412 				case IPV6_USE_MIN_MTU:
   1413 					OPTSET(IN6P_MINMTU);
   1414 					break;
   1415 
   1416 				case IPV6_V6ONLY:
   1417 					/*
   1418 					 * make setsockopt(IPV6_V6ONLY)
   1419 					 * available only prior to bind(2).
   1420 					 * see ipng mailing list, Jun 22 2001.
   1421 					 */
   1422 					if (in6p->in6p_lport ||
   1423 					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
   1424 						error = EINVAL;
   1425 						break;
   1426 					}
   1427 #ifdef INET6_BINDV6ONLY
   1428 					if (!optval)
   1429 						error = EINVAL;
   1430 #else
   1431 					OPTSET(IN6P_IPV6_V6ONLY);
   1432 #endif
   1433 					break;
   1434 				}
   1435 				break;
   1436 #undef OPTSET
   1437 
   1438 			case IPV6_MULTICAST_IF:
   1439 			case IPV6_MULTICAST_HOPS:
   1440 			case IPV6_MULTICAST_LOOP:
   1441 			case IPV6_JOIN_GROUP:
   1442 			case IPV6_LEAVE_GROUP:
   1443 				error =	ip6_setmoptions(optname,
   1444 				    &in6p->in6p_moptions, m);
   1445 				break;
   1446 
   1447 			case IPV6_PORTRANGE:
   1448 				optval = *mtod(m, int *);
   1449 
   1450 				switch (optval) {
   1451 				case IPV6_PORTRANGE_DEFAULT:
   1452 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1453 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1454 					break;
   1455 
   1456 				case IPV6_PORTRANGE_HIGH:
   1457 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1458 					in6p->in6p_flags |= IN6P_HIGHPORT;
   1459 					break;
   1460 
   1461 				case IPV6_PORTRANGE_LOW:
   1462 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1463 					in6p->in6p_flags |= IN6P_LOWPORT;
   1464 					break;
   1465 
   1466 				default:
   1467 					error = EINVAL;
   1468 					break;
   1469 				}
   1470 				break;
   1471 
   1472 #ifdef IPSEC
   1473 			case IPV6_IPSEC_POLICY:
   1474 			    {
   1475 				caddr_t req = NULL;
   1476 				size_t len = 0;
   1477 
   1478 				int priv = 0;
   1479 				if (p == 0 || suser(p->p_ucred, &p->p_acflag))
   1480 					priv = 0;
   1481 				else
   1482 					priv = 1;
   1483 				if (m) {
   1484 					req = mtod(m, caddr_t);
   1485 					len = m->m_len;
   1486 				}
   1487 				error = ipsec6_set_policy(in6p,
   1488 				                   optname, req, len, priv);
   1489 			    }
   1490 				break;
   1491 #endif /* IPSEC */
   1492 
   1493 			default:
   1494 				error = ENOPROTOOPT;
   1495 				break;
   1496 			}
   1497 			if (m)
   1498 				(void)m_free(m);
   1499 			break;
   1500 
   1501 		case PRCO_GETOPT:
   1502 			switch (optname) {
   1503 
   1504 			case IPV6_OPTIONS:
   1505 			case IPV6_RETOPTS:
   1506 				error = ENOPROTOOPT;
   1507 				break;
   1508 
   1509 			case IPV6_PKTOPTIONS:
   1510 				if (in6p->in6p_options) {
   1511 					*mp = m_copym(in6p->in6p_options, 0,
   1512 					    M_COPYALL, M_WAIT);
   1513 				} else {
   1514 					*mp = m_get(M_WAIT, MT_SOOPTS);
   1515 					(*mp)->m_len = 0;
   1516 				}
   1517 				break;
   1518 
   1519 			case IPV6_HOPOPTS:
   1520 			case IPV6_DSTOPTS:
   1521 				if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
   1522 					error = EPERM;
   1523 					break;
   1524 				}
   1525 				/* FALLTHROUGH */
   1526 			case IPV6_UNICAST_HOPS:
   1527 			case IPV6_RECVOPTS:
   1528 			case IPV6_RECVRETOPTS:
   1529 			case IPV6_RECVDSTADDR:
   1530 			case IPV6_PORTRANGE:
   1531 			case IPV6_PKTINFO:
   1532 			case IPV6_HOPLIMIT:
   1533 			case IPV6_RTHDR:
   1534 			case IPV6_FAITH:
   1535 			case IPV6_V6ONLY:
   1536 			case IPV6_USE_MIN_MTU:
   1537 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1538 				m->m_len = sizeof(int);
   1539 				switch (optname) {
   1540 
   1541 				case IPV6_UNICAST_HOPS:
   1542 					optval = in6p->in6p_hops;
   1543 					break;
   1544 
   1545 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
   1546 
   1547 				case IPV6_RECVOPTS:
   1548 					optval = OPTBIT(IN6P_RECVOPTS);
   1549 					break;
   1550 
   1551 				case IPV6_RECVRETOPTS:
   1552 					optval = OPTBIT(IN6P_RECVRETOPTS);
   1553 					break;
   1554 
   1555 				case IPV6_RECVDSTADDR:
   1556 					optval = OPTBIT(IN6P_RECVDSTADDR);
   1557 					break;
   1558 
   1559 				case IPV6_PORTRANGE:
   1560 				    {
   1561 					int flags;
   1562 					flags = in6p->in6p_flags;
   1563 					if (flags & IN6P_HIGHPORT)
   1564 						optval = IPV6_PORTRANGE_HIGH;
   1565 					else if (flags & IN6P_LOWPORT)
   1566 						optval = IPV6_PORTRANGE_LOW;
   1567 					else
   1568 						optval = 0;
   1569 					break;
   1570 				    }
   1571 
   1572 				case IPV6_PKTINFO:
   1573 					optval = OPTBIT(IN6P_PKTINFO);
   1574 					break;
   1575 
   1576 				case IPV6_HOPLIMIT:
   1577 					optval = OPTBIT(IN6P_HOPLIMIT);
   1578 					break;
   1579 
   1580 				case IPV6_HOPOPTS:
   1581 					optval = OPTBIT(IN6P_HOPOPTS);
   1582 					break;
   1583 
   1584 				case IPV6_DSTOPTS:
   1585 					optval = OPTBIT(IN6P_DSTOPTS);
   1586 					break;
   1587 
   1588 				case IPV6_RTHDR:
   1589 					optval = OPTBIT(IN6P_RTHDR);
   1590 					break;
   1591 
   1592 				case IPV6_FAITH:
   1593 					optval = OPTBIT(IN6P_FAITH);
   1594 					break;
   1595 
   1596 				case IPV6_V6ONLY:
   1597 					optval = OPTBIT(IN6P_IPV6_V6ONLY);
   1598 					break;
   1599 
   1600 				case IPV6_USE_MIN_MTU:
   1601 					optval = OPTBIT(IN6P_MINMTU);
   1602 					break;
   1603 				}
   1604 				*mtod(m, int *) = optval;
   1605 				break;
   1606 
   1607 			case IPV6_MULTICAST_IF:
   1608 			case IPV6_MULTICAST_HOPS:
   1609 			case IPV6_MULTICAST_LOOP:
   1610 			case IPV6_JOIN_GROUP:
   1611 			case IPV6_LEAVE_GROUP:
   1612 				error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
   1613 				break;
   1614 
   1615 #if 0	/* defined(IPSEC) */
   1616 			/* XXX: code broken */
   1617 			case IPV6_IPSEC_POLICY:
   1618 			{
   1619 				caddr_t req = NULL;
   1620 				size_t len = 0;
   1621 
   1622 				if (m) {
   1623 					req = mtod(m, caddr_t);
   1624 					len = m->m_len;
   1625 				}
   1626 				error = ipsec6_get_policy(in6p, req, len, mp);
   1627 				break;
   1628 			}
   1629 #endif /* IPSEC */
   1630 
   1631 			default:
   1632 				error = ENOPROTOOPT;
   1633 				break;
   1634 			}
   1635 			break;
   1636 		}
   1637 	} else {
   1638 		error = EINVAL;
   1639 		if (op == PRCO_SETOPT && *mp)
   1640 			(void)m_free(*mp);
   1641 	}
   1642 	return (error);
   1643 }
   1644 
   1645 int
   1646 ip6_raw_ctloutput(op, so, level, optname, mp)
   1647 	int op;
   1648 	struct socket *so;
   1649 	int level, optname;
   1650 	struct mbuf **mp;
   1651 {
   1652 	int error = 0, optval, optlen;
   1653 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
   1654 	struct in6pcb *in6p = sotoin6pcb(so);
   1655 	struct mbuf *m = *mp;
   1656 
   1657 	optlen = m ? m->m_len : 0;
   1658 
   1659 	if (level != IPPROTO_IPV6) {
   1660 		if (op == PRCO_SETOPT && *mp)
   1661 			(void)m_free(*mp);
   1662 		return (EINVAL);
   1663 	}
   1664 
   1665 	switch (optname) {
   1666 	case IPV6_CHECKSUM:
   1667 		/*
   1668 		 * For ICMPv6 sockets, no modification allowed for checksum
   1669 		 * offset, permit "no change" values to help existing apps.
   1670 		 *
   1671 		 * XXX 2292bis says: "An attempt to set IPV6_CHECKSUM
   1672 		 * for an ICMPv6 socket will fail."
   1673 		 * The current behavior does not meet 2292bis.
   1674 		 */
   1675 		switch (op) {
   1676 		case PRCO_SETOPT:
   1677 			if (optlen != sizeof(int)) {
   1678 				error = EINVAL;
   1679 				break;
   1680 			}
   1681 			optval = *mtod(m, int *);
   1682 			if ((optval % 2) != 0) {
   1683 				/* the API assumes even offset values */
   1684 				error = EINVAL;
   1685 			} else if (so->so_proto->pr_protocol ==
   1686 			    IPPROTO_ICMPV6) {
   1687 				if (optval != icmp6off)
   1688 					error = EINVAL;
   1689 			} else
   1690 				in6p->in6p_cksum = optval;
   1691 			break;
   1692 
   1693 		case PRCO_GETOPT:
   1694 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
   1695 				optval = icmp6off;
   1696 			else
   1697 				optval = in6p->in6p_cksum;
   1698 
   1699 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1700 			m->m_len = sizeof(int);
   1701 			*mtod(m, int *) = optval;
   1702 			break;
   1703 
   1704 		default:
   1705 			error = EINVAL;
   1706 			break;
   1707 		}
   1708 		break;
   1709 
   1710 	default:
   1711 		error = ENOPROTOOPT;
   1712 		break;
   1713 	}
   1714 
   1715 	if (op == PRCO_SETOPT && m)
   1716 		(void)m_free(m);
   1717 
   1718 	return (error);
   1719 }
   1720 
   1721 /*
   1722  * Set up IP6 options in pcb for insertion in output packets.
   1723  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1724  * with destination address if source routed.
   1725  */
   1726 static int
   1727 ip6_pcbopts(pktopt, m, so)
   1728 	struct ip6_pktopts **pktopt;
   1729 	struct mbuf *m;
   1730 	struct socket *so;
   1731 {
   1732 	struct ip6_pktopts *opt = *pktopt;
   1733 	int error = 0;
   1734 	struct proc *p = curproc;	/* XXX */
   1735 	int priv = 0;
   1736 
   1737 	/* turn off any old options. */
   1738 	if (opt) {
   1739 		if (opt->ip6po_m)
   1740 			(void)m_free(opt->ip6po_m);
   1741 	} else
   1742 		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
   1743 	*pktopt = 0;
   1744 
   1745 	if (!m || m->m_len == 0) {
   1746 		/*
   1747 		 * Only turning off any previous options.
   1748 		 */
   1749 		free(opt, M_IP6OPT);
   1750 		if (m)
   1751 			(void)m_free(m);
   1752 		return (0);
   1753 	}
   1754 
   1755 	/*  set options specified by user. */
   1756 	if (p && !suser(p->p_ucred, &p->p_acflag))
   1757 		priv = 1;
   1758 	if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
   1759 		(void)m_free(m);
   1760 		free(opt, M_IP6OPT);
   1761 		return (error);
   1762 	}
   1763 	*pktopt = opt;
   1764 	return (0);
   1765 }
   1766 
   1767 /*
   1768  * Set the IP6 multicast options in response to user setsockopt().
   1769  */
   1770 static int
   1771 ip6_setmoptions(optname, im6op, m)
   1772 	int optname;
   1773 	struct ip6_moptions **im6op;
   1774 	struct mbuf *m;
   1775 {
   1776 	int error = 0;
   1777 	u_int loop, ifindex;
   1778 	struct ipv6_mreq *mreq;
   1779 	struct ifnet *ifp;
   1780 	struct ip6_moptions *im6o = *im6op;
   1781 	struct route_in6 ro;
   1782 	struct sockaddr_in6 *dst;
   1783 	struct in6_multi_mship *imm;
   1784 	struct proc *p = curproc;	/* XXX */
   1785 
   1786 	if (im6o == NULL) {
   1787 		/*
   1788 		 * No multicast option buffer attached to the pcb;
   1789 		 * allocate one and initialize to default values.
   1790 		 */
   1791 		im6o = (struct ip6_moptions *)
   1792 			malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
   1793 
   1794 		if (im6o == NULL)
   1795 			return (ENOBUFS);
   1796 		*im6op = im6o;
   1797 		im6o->im6o_multicast_ifp = NULL;
   1798 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   1799 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
   1800 		LIST_INIT(&im6o->im6o_memberships);
   1801 	}
   1802 
   1803 	switch (optname) {
   1804 
   1805 	case IPV6_MULTICAST_IF:
   1806 		/*
   1807 		 * Select the interface for outgoing multicast packets.
   1808 		 */
   1809 		if (m == NULL || m->m_len != sizeof(u_int)) {
   1810 			error = EINVAL;
   1811 			break;
   1812 		}
   1813 		bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
   1814 		if (ifindex != 0) {
   1815 			if (ifindex < 0 || if_indexlim <= ifindex ||
   1816 			    !ifindex2ifnet[ifindex]) {
   1817 				error = ENXIO;	/* XXX EINVAL? */
   1818 				break;
   1819 			}
   1820 			ifp = ifindex2ifnet[ifindex];
   1821 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
   1822 				error = EADDRNOTAVAIL;
   1823 				break;
   1824 			}
   1825 		} else
   1826 			ifp = NULL;
   1827 		im6o->im6o_multicast_ifp = ifp;
   1828 		break;
   1829 
   1830 	case IPV6_MULTICAST_HOPS:
   1831 	    {
   1832 		/*
   1833 		 * Set the IP6 hoplimit for outgoing multicast packets.
   1834 		 */
   1835 		int optval;
   1836 		if (m == NULL || m->m_len != sizeof(int)) {
   1837 			error = EINVAL;
   1838 			break;
   1839 		}
   1840 		bcopy(mtod(m, u_int *), &optval, sizeof(optval));
   1841 		if (optval < -1 || optval >= 256)
   1842 			error = EINVAL;
   1843 		else if (optval == -1)
   1844 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   1845 		else
   1846 			im6o->im6o_multicast_hlim = optval;
   1847 		break;
   1848 	    }
   1849 
   1850 	case IPV6_MULTICAST_LOOP:
   1851 		/*
   1852 		 * Set the loopback flag for outgoing multicast packets.
   1853 		 * Must be zero or one.
   1854 		 */
   1855 		if (m == NULL || m->m_len != sizeof(u_int)) {
   1856 			error = EINVAL;
   1857 			break;
   1858 		}
   1859 		bcopy(mtod(m, u_int *), &loop, sizeof(loop));
   1860 		if (loop > 1) {
   1861 			error = EINVAL;
   1862 			break;
   1863 		}
   1864 		im6o->im6o_multicast_loop = loop;
   1865 		break;
   1866 
   1867 	case IPV6_JOIN_GROUP:
   1868 		/*
   1869 		 * Add a multicast group membership.
   1870 		 * Group must be a valid IP6 multicast address.
   1871 		 */
   1872 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
   1873 			error = EINVAL;
   1874 			break;
   1875 		}
   1876 		mreq = mtod(m, struct ipv6_mreq *);
   1877 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
   1878 			/*
   1879 			 * We use the unspecified address to specify to accept
   1880 			 * all multicast addresses. Only super user is allowed
   1881 			 * to do this.
   1882 			 */
   1883 			if (suser(p->p_ucred, &p->p_acflag))
   1884 			{
   1885 				error = EACCES;
   1886 				break;
   1887 			}
   1888 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
   1889 			error = EINVAL;
   1890 			break;
   1891 		}
   1892 
   1893 		/*
   1894 		 * If the interface is specified, validate it.
   1895 		 * If no interface was explicitly specified, choose an
   1896 		 * appropriate one according to the given multicast address.
   1897 		 */
   1898 		if (mreq->ipv6mr_interface != 0) {
   1899 			if (mreq->ipv6mr_interface < 0 ||
   1900 			    if_indexlim <= mreq->ipv6mr_interface ||
   1901 			    !ifindex2ifnet[mreq->ipv6mr_interface]) {
   1902 				error = ENXIO;	/* XXX EINVAL? */
   1903 				break;
   1904 			}
   1905 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
   1906 		} else {
   1907 			/*
   1908 			 * If the multicast address is in node-local scope,
   1909 			 * the interface should be a loopback interface.
   1910 			 * Otherwise, look up the routing table for the
   1911 			 * address, and choose the outgoing interface.
   1912 			 *   XXX: is it a good approach?
   1913 			 */
   1914 			if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
   1915 				ifp = lo0ifp;
   1916 			} else {
   1917 				ro.ro_rt = NULL;
   1918 				dst = (struct sockaddr_in6 *)&ro.ro_dst;
   1919 				bzero(dst, sizeof(*dst));
   1920 				dst->sin6_len = sizeof(struct sockaddr_in6);
   1921 				dst->sin6_family = AF_INET6;
   1922 				dst->sin6_addr = mreq->ipv6mr_multiaddr;
   1923 				rtalloc((struct route *)&ro);
   1924 				if (ro.ro_rt == NULL) {
   1925 					error = EADDRNOTAVAIL;
   1926 					break;
   1927 				}
   1928 				ifp = ro.ro_rt->rt_ifp;
   1929 				rtfree(ro.ro_rt);
   1930 			}
   1931 		}
   1932 
   1933 		/*
   1934 		 * See if we found an interface, and confirm that it
   1935 		 * supports multicast
   1936 		 */
   1937 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1938 			error = EADDRNOTAVAIL;
   1939 			break;
   1940 		}
   1941 		/*
   1942 		 * Put interface index into the multicast address,
   1943 		 * if the address has link-local scope.
   1944 		 */
   1945 		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
   1946 			mreq->ipv6mr_multiaddr.s6_addr16[1] =
   1947 			    htons(ifp->if_index);
   1948 		}
   1949 		/*
   1950 		 * See if the membership already exists.
   1951 		 */
   1952 		for (imm = im6o->im6o_memberships.lh_first;
   1953 		     imm != NULL; imm = imm->i6mm_chain.le_next)
   1954 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
   1955 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   1956 			    &mreq->ipv6mr_multiaddr))
   1957 				break;
   1958 		if (imm != NULL) {
   1959 			error = EADDRINUSE;
   1960 			break;
   1961 		}
   1962 		/*
   1963 		 * Everything looks good; add a new record to the multicast
   1964 		 * address list for the given interface.
   1965 		 */
   1966 		imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error);
   1967 		if (!imm)
   1968 			break;
   1969 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
   1970 		break;
   1971 
   1972 	case IPV6_LEAVE_GROUP:
   1973 		/*
   1974 		 * Drop a multicast group membership.
   1975 		 * Group must be a valid IP6 multicast address.
   1976 		 */
   1977 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
   1978 			error = EINVAL;
   1979 			break;
   1980 		}
   1981 		mreq = mtod(m, struct ipv6_mreq *);
   1982 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
   1983 			if (suser(p->p_ucred, &p->p_acflag))
   1984 			{
   1985 				error = EACCES;
   1986 				break;
   1987 			}
   1988 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
   1989 			error = EINVAL;
   1990 			break;
   1991 		}
   1992 		/*
   1993 		 * If an interface address was specified, get a pointer
   1994 		 * to its ifnet structure.
   1995 		 */
   1996 		if (mreq->ipv6mr_interface != 0) {
   1997 			if (mreq->ipv6mr_interface < 0 ||
   1998 			    if_indexlim <= mreq->ipv6mr_interface ||
   1999 			    !ifindex2ifnet[mreq->ipv6mr_interface]) {
   2000 				error = ENXIO;	/* XXX EINVAL? */
   2001 				break;
   2002 			}
   2003 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
   2004 		} else
   2005 			ifp = NULL;
   2006 		/*
   2007 		 * Put interface index into the multicast address,
   2008 		 * if the address has link-local scope.
   2009 		 */
   2010 		if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
   2011 			mreq->ipv6mr_multiaddr.s6_addr16[1] =
   2012 			    htons(mreq->ipv6mr_interface);
   2013 		}
   2014 		/*
   2015 		 * Find the membership in the membership list.
   2016 		 */
   2017 		for (imm = im6o->im6o_memberships.lh_first;
   2018 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
   2019 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
   2020 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2021 			    &mreq->ipv6mr_multiaddr))
   2022 				break;
   2023 		}
   2024 		if (imm == NULL) {
   2025 			/* Unable to resolve interface */
   2026 			error = EADDRNOTAVAIL;
   2027 			break;
   2028 		}
   2029 		/*
   2030 		 * Give up the multicast address record to which the
   2031 		 * membership points.
   2032 		 */
   2033 		LIST_REMOVE(imm, i6mm_chain);
   2034 		in6_leavegroup(imm);
   2035 		break;
   2036 
   2037 	default:
   2038 		error = EOPNOTSUPP;
   2039 		break;
   2040 	}
   2041 
   2042 	/*
   2043 	 * If all options have default values, no need to keep the mbuf.
   2044 	 */
   2045 	if (im6o->im6o_multicast_ifp == NULL &&
   2046 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
   2047 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
   2048 	    im6o->im6o_memberships.lh_first == NULL) {
   2049 		free(*im6op, M_IPMOPTS);
   2050 		*im6op = NULL;
   2051 	}
   2052 
   2053 	return (error);
   2054 }
   2055 
   2056 /*
   2057  * Return the IP6 multicast options in response to user getsockopt().
   2058  */
   2059 static int
   2060 ip6_getmoptions(optname, im6o, mp)
   2061 	int optname;
   2062 	struct ip6_moptions *im6o;
   2063 	struct mbuf **mp;
   2064 {
   2065 	u_int *hlim, *loop, *ifindex;
   2066 
   2067 	*mp = m_get(M_WAIT, MT_SOOPTS);
   2068 
   2069 	switch (optname) {
   2070 
   2071 	case IPV6_MULTICAST_IF:
   2072 		ifindex = mtod(*mp, u_int *);
   2073 		(*mp)->m_len = sizeof(u_int);
   2074 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
   2075 			*ifindex = 0;
   2076 		else
   2077 			*ifindex = im6o->im6o_multicast_ifp->if_index;
   2078 		return (0);
   2079 
   2080 	case IPV6_MULTICAST_HOPS:
   2081 		hlim = mtod(*mp, u_int *);
   2082 		(*mp)->m_len = sizeof(u_int);
   2083 		if (im6o == NULL)
   2084 			*hlim = ip6_defmcasthlim;
   2085 		else
   2086 			*hlim = im6o->im6o_multicast_hlim;
   2087 		return (0);
   2088 
   2089 	case IPV6_MULTICAST_LOOP:
   2090 		loop = mtod(*mp, u_int *);
   2091 		(*mp)->m_len = sizeof(u_int);
   2092 		if (im6o == NULL)
   2093 			*loop = ip6_defmcasthlim;
   2094 		else
   2095 			*loop = im6o->im6o_multicast_loop;
   2096 		return (0);
   2097 
   2098 	default:
   2099 		return (EOPNOTSUPP);
   2100 	}
   2101 }
   2102 
   2103 /*
   2104  * Discard the IP6 multicast options.
   2105  */
   2106 void
   2107 ip6_freemoptions(im6o)
   2108 	struct ip6_moptions *im6o;
   2109 {
   2110 	struct in6_multi_mship *imm;
   2111 
   2112 	if (im6o == NULL)
   2113 		return;
   2114 
   2115 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
   2116 		LIST_REMOVE(imm, i6mm_chain);
   2117 		in6_leavegroup(imm);
   2118 	}
   2119 	free(im6o, M_IPMOPTS);
   2120 }
   2121 
   2122 /*
   2123  * Set IPv6 outgoing packet options based on advanced API.
   2124  */
   2125 int
   2126 ip6_setpktoptions(control, opt, priv)
   2127 	struct mbuf *control;
   2128 	struct ip6_pktopts *opt;
   2129 	int priv;
   2130 {
   2131 	struct cmsghdr *cm = 0;
   2132 
   2133 	if (control == 0 || opt == 0)
   2134 		return (EINVAL);
   2135 
   2136 	bzero(opt, sizeof(*opt));
   2137 	opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
   2138 
   2139 	/*
   2140 	 * XXX: Currently, we assume all the optional information is stored
   2141 	 * in a single mbuf.
   2142 	 */
   2143 	if (control->m_next)
   2144 		return (EINVAL);
   2145 
   2146 	opt->ip6po_m = control;
   2147 
   2148 	for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
   2149 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
   2150 		cm = mtod(control, struct cmsghdr *);
   2151 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
   2152 			return (EINVAL);
   2153 		if (cm->cmsg_level != IPPROTO_IPV6)
   2154 			continue;
   2155 
   2156 		switch (cm->cmsg_type) {
   2157 		case IPV6_PKTINFO:
   2158 			if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
   2159 				return (EINVAL);
   2160 			opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
   2161 			if (opt->ip6po_pktinfo->ipi6_ifindex &&
   2162 			    IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
   2163 				opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
   2164 					htons(opt->ip6po_pktinfo->ipi6_ifindex);
   2165 
   2166 			if (opt->ip6po_pktinfo->ipi6_ifindex >= if_indexlim ||
   2167 			    opt->ip6po_pktinfo->ipi6_ifindex < 0)
   2168 				return (ENXIO);
   2169 			if (opt->ip6po_pktinfo->ipi6_ifindex > 0 &&
   2170 			    !ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex])
   2171 				return (ENXIO);
   2172 
   2173 			/*
   2174 			 * Check if the requested source address is indeed a
   2175 			 * unicast address assigned to the node, and can be
   2176 			 * used as the packet's source address.
   2177 			 */
   2178 			if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
   2179 				struct ifaddr *ia;
   2180 				struct in6_ifaddr *ia6;
   2181 				struct sockaddr_in6 sin6;
   2182 
   2183 				bzero(&sin6, sizeof(sin6));
   2184 				sin6.sin6_len = sizeof(sin6);
   2185 				sin6.sin6_family = AF_INET6;
   2186 				sin6.sin6_addr =
   2187 					opt->ip6po_pktinfo->ipi6_addr;
   2188 				ia = ifa_ifwithaddr(sin6tosa(&sin6));
   2189 				if (ia == NULL ||
   2190 				    (opt->ip6po_pktinfo->ipi6_ifindex &&
   2191 				     (ia->ifa_ifp->if_index !=
   2192 				      opt->ip6po_pktinfo->ipi6_ifindex))) {
   2193 					return (EADDRNOTAVAIL);
   2194 				}
   2195 				ia6 = (struct in6_ifaddr *)ia;
   2196 				if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) {
   2197 					return (EADDRNOTAVAIL);
   2198 				}
   2199 
   2200 				/*
   2201 				 * Check if the requested source address is
   2202 				 * indeed a unicast address assigned to the
   2203 				 * node.
   2204 				 */
   2205 				if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
   2206 					return (EADDRNOTAVAIL);
   2207 			}
   2208 			break;
   2209 
   2210 		case IPV6_HOPLIMIT:
   2211 			if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
   2212 				return (EINVAL);
   2213 			else {
   2214 				int t;
   2215 
   2216 				bcopy(CMSG_DATA(cm), &t, sizeof(t));
   2217 				if (t < -1 || t > 255)
   2218 					return (EINVAL);
   2219 				opt->ip6po_hlim = t;
   2220 			}
   2221 			break;
   2222 
   2223 		case IPV6_NEXTHOP:
   2224 			if (!priv)
   2225 				return (EPERM);
   2226 
   2227 			/* check if cmsg_len is large enough for sa_len */
   2228 			if (cm->cmsg_len < sizeof(u_char) ||
   2229 			    cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
   2230 				return (EINVAL);
   2231 
   2232 			opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
   2233 
   2234 			break;
   2235 
   2236 		case IPV6_HOPOPTS:
   2237 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
   2238 				return (EINVAL);
   2239 			else {
   2240 				struct  ip6_hbh *t;
   2241 
   2242 				t = (struct ip6_hbh *)CMSG_DATA(cm);
   2243 				if (cm->cmsg_len !=
   2244 				    CMSG_LEN((t->ip6h_len + 1) << 3))
   2245 					return (EINVAL);
   2246 				opt->ip6po_hbh = t;
   2247 			}
   2248 			break;
   2249 
   2250 		case IPV6_DSTOPTS:
   2251 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
   2252 				return (EINVAL);
   2253 
   2254 			/*
   2255 			 * If there is no routing header yet, the destination
   2256 			 * options header should be put on the 1st part.
   2257 			 * Otherwise, the header should be on the 2nd part.
   2258 			 * (See RFC 2460, section 4.1)
   2259 			 */
   2260 			if (opt->ip6po_rthdr == NULL) {
   2261 				struct ip6_dest *t;
   2262 
   2263 				t = (struct ip6_dest *)CMSG_DATA(cm);
   2264 				if (cm->cmsg_len !=
   2265 				    CMSG_LEN((t->ip6d_len + 1) << 3));
   2266 					return (EINVAL);
   2267 				opt->ip6po_dest1 = t;
   2268 			}
   2269 			else {
   2270 				struct ip6_dest *t;
   2271 
   2272 				t = (struct ip6_dest *)CMSG_DATA(cm);
   2273 				if (cm->cmsg_len !=
   2274 				    CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) << 3))
   2275 					return (EINVAL);
   2276 				opt->ip6po_dest2 = t;
   2277 			}
   2278 			break;
   2279 
   2280 		case IPV6_RTHDR:
   2281 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
   2282 				return (EINVAL);
   2283 			else {
   2284 				struct ip6_rthdr *t;
   2285 
   2286 				t = (struct ip6_rthdr *)CMSG_DATA(cm);
   2287 				if (cm->cmsg_len !=
   2288 				    CMSG_LEN((t->ip6r_len + 1) << 3))
   2289 					return (EINVAL);
   2290 				switch (t->ip6r_type) {
   2291 				case IPV6_RTHDR_TYPE_0:
   2292 					if (t->ip6r_segleft == 0)
   2293 						return (EINVAL);
   2294 					break;
   2295 				default:
   2296 					return (EINVAL);
   2297 				}
   2298 				opt->ip6po_rthdr = t;
   2299 			}
   2300 			break;
   2301 
   2302 		default:
   2303 			return (ENOPROTOOPT);
   2304 		}
   2305 	}
   2306 
   2307 	return (0);
   2308 }
   2309 
   2310 /*
   2311  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
   2312  * packet to the input queue of a specified interface.  Note that this
   2313  * calls the output routine of the loopback "driver", but with an interface
   2314  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   2315  */
   2316 void
   2317 ip6_mloopback(ifp, m, dst)
   2318 	struct ifnet *ifp;
   2319 	struct mbuf *m;
   2320 	struct sockaddr_in6 *dst;
   2321 {
   2322 	struct mbuf *copym;
   2323 	struct ip6_hdr *ip6;
   2324 
   2325 	copym = m_copy(m, 0, M_COPYALL);
   2326 	if (copym == NULL)
   2327 		return;
   2328 
   2329 	/*
   2330 	 * Make sure to deep-copy IPv6 header portion in case the data
   2331 	 * is in an mbuf cluster, so that we can safely override the IPv6
   2332 	 * header portion later.
   2333 	 */
   2334 	if ((copym->m_flags & M_EXT) != 0 ||
   2335 	    copym->m_len < sizeof(struct ip6_hdr)) {
   2336 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
   2337 		if (copym == NULL)
   2338 			return;
   2339 	}
   2340 
   2341 #ifdef DIAGNOSTIC
   2342 	if (copym->m_len < sizeof(*ip6)) {
   2343 		m_freem(copym);
   2344 		return;
   2345 	}
   2346 #endif
   2347 
   2348 	ip6 = mtod(copym, struct ip6_hdr *);
   2349 	if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
   2350 		ip6->ip6_src.s6_addr16[1] = 0;
   2351 	if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
   2352 		ip6->ip6_dst.s6_addr16[1] = 0;
   2353 
   2354 	(void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
   2355 }
   2356 
   2357 /*
   2358  * Chop IPv6 header off from the payload.
   2359  */
   2360 static int
   2361 ip6_splithdr(m, exthdrs)
   2362 	struct mbuf *m;
   2363 	struct ip6_exthdrs *exthdrs;
   2364 {
   2365 	struct mbuf *mh;
   2366 	struct ip6_hdr *ip6;
   2367 
   2368 	ip6 = mtod(m, struct ip6_hdr *);
   2369 	if (m->m_len > sizeof(*ip6)) {
   2370 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
   2371 		if (mh == 0) {
   2372 			m_freem(m);
   2373 			return ENOBUFS;
   2374 		}
   2375 		M_COPY_PKTHDR(mh, m);
   2376 		MH_ALIGN(mh, sizeof(*ip6));
   2377 		m_tag_delete_chain(m, NULL);
   2378 		m->m_flags &= ~M_PKTHDR;
   2379 		m->m_len -= sizeof(*ip6);
   2380 		m->m_data += sizeof(*ip6);
   2381 		mh->m_next = m;
   2382 		m = mh;
   2383 		m->m_len = sizeof(*ip6);
   2384 		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
   2385 	}
   2386 	exthdrs->ip6e_ip6 = m;
   2387 	return 0;
   2388 }
   2389 
   2390 /*
   2391  * Compute IPv6 extension header length.
   2392  */
   2393 int
   2394 ip6_optlen(in6p)
   2395 	struct in6pcb *in6p;
   2396 {
   2397 	int len;
   2398 
   2399 	if (!in6p->in6p_outputopts)
   2400 		return 0;
   2401 
   2402 	len = 0;
   2403 #define elen(x) \
   2404     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
   2405 
   2406 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
   2407 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
   2408 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
   2409 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
   2410 	return len;
   2411 #undef elen
   2412 }
   2413