ip6_output.c revision 1.64 1 /* $NetBSD: ip6_output.c,v 1.64 2003/08/22 20:29:01 jonathan Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.64 2003/08/22 20:29:01 jonathan Exp $");
66
67 #include "opt_inet.h"
68 #include "opt_ipsec.h"
69 #include "opt_pfil_hooks.h"
70
71 #include <sys/param.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/errno.h>
75 #include <sys/protosw.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80
81 #include <net/if.h>
82 #include <net/route.h>
83 #ifdef PFIL_HOOKS
84 #include <net/pfil.h>
85 #endif
86
87 #include <netinet/in.h>
88 #include <netinet/in_var.h>
89 #include <netinet/ip6.h>
90 #include <netinet/icmp6.h>
91 #include <netinet6/ip6_var.h>
92 #include <netinet6/in6_pcb.h>
93 #include <netinet6/nd6.h>
94
95 #ifdef IPSEC
96 #include <netinet6/ipsec.h>
97 #include <netkey/key.h>
98 #endif /* IPSEC */
99
100 #include "loop.h"
101
102 #include <net/net_osdep.h>
103
104 #ifdef PFIL_HOOKS
105 extern struct pfil_head inet6_pfil_hook; /* XXX */
106 #endif
107
108 struct ip6_exthdrs {
109 struct mbuf *ip6e_ip6;
110 struct mbuf *ip6e_hbh;
111 struct mbuf *ip6e_dest1;
112 struct mbuf *ip6e_rthdr;
113 struct mbuf *ip6e_dest2;
114 };
115
116 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
117 struct socket *));
118 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
119 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
120 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
121 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
122 struct ip6_frag **));
123 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
124 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
125 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
126 struct ifnet *, struct in6_addr *, u_long *));
127
128 extern struct ifnet loif[NLOOP];
129
130 /*
131 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
132 * header (with pri, len, nxt, hlim, src, dst).
133 * This function may modify ver and hlim only.
134 * The mbuf chain containing the packet will be freed.
135 * The mbuf opt, if present, will not be freed.
136 *
137 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
138 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
139 * which is rt_rmx.rmx_mtu.
140 */
141 int
142 ip6_output(m0, opt, ro, flags, im6o, in6pcb, ifpp)
143 struct mbuf *m0;
144 struct ip6_pktopts *opt;
145 struct route_in6 *ro;
146 int flags;
147 struct ip6_moptions *im6o;
148 struct in6pcb *in6pcb;
149 struct ifnet **ifpp; /* XXX: just for statistics */
150 {
151 struct ip6_hdr *ip6, *mhip6;
152 struct ifnet *ifp, *origifp;
153 struct mbuf *m = m0;
154 int hlen, tlen, len, off;
155 struct route_in6 ip6route;
156 struct sockaddr_in6 *dst;
157 int error = 0;
158 struct in6_ifaddr *ia;
159 u_long mtu;
160 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
161 struct ip6_exthdrs exthdrs;
162 struct in6_addr finaldst;
163 struct route_in6 *ro_pmtu = NULL;
164 int hdrsplit = 0;
165 int needipsec = 0;
166 #ifdef IPSEC
167 int needipsectun = 0;
168 struct socket *so;
169 struct secpolicy *sp = NULL;
170
171 /* for AH processing. stupid to have "socket" variable in IP layer... */
172 /* so = ipsec_getsocket(m); */
173 so = (in6pcb == NULL) ? NULL: in6pcb->in6p_socket;
174 (void)ipsec_setsocket(m, NULL);
175 ip6 = mtod(m, struct ip6_hdr *);
176 #endif /* IPSEC */
177
178 #define MAKE_EXTHDR(hp, mp) \
179 do { \
180 if (hp) { \
181 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
182 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
183 ((eh)->ip6e_len + 1) << 3); \
184 if (error) \
185 goto freehdrs; \
186 } \
187 } while (/*CONSTCOND*/ 0)
188
189 bzero(&exthdrs, sizeof(exthdrs));
190 if (opt) {
191 /* Hop-by-Hop options header */
192 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
193 /* Destination options header(1st part) */
194 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
195 /* Routing header */
196 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
197 /* Destination options header(2nd part) */
198 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
199 }
200
201 #ifdef IPSEC
202 /* get a security policy for this packet */
203 if (so == NULL)
204 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
205 else
206 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
207
208 if (sp == NULL) {
209 ipsec6stat.out_inval++;
210 goto freehdrs;
211 }
212
213 error = 0;
214
215 /* check policy */
216 switch (sp->policy) {
217 case IPSEC_POLICY_DISCARD:
218 /*
219 * This packet is just discarded.
220 */
221 ipsec6stat.out_polvio++;
222 goto freehdrs;
223
224 case IPSEC_POLICY_BYPASS:
225 case IPSEC_POLICY_NONE:
226 /* no need to do IPsec. */
227 needipsec = 0;
228 break;
229
230 case IPSEC_POLICY_IPSEC:
231 if (sp->req == NULL) {
232 /* XXX should be panic ? */
233 printf("ip6_output: No IPsec request specified.\n");
234 error = EINVAL;
235 goto freehdrs;
236 }
237 needipsec = 1;
238 break;
239
240 case IPSEC_POLICY_ENTRUST:
241 default:
242 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
243 }
244 #endif /* IPSEC */
245
246 /*
247 * Calculate the total length of the extension header chain.
248 * Keep the length of the unfragmentable part for fragmentation.
249 */
250 optlen = 0;
251 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
252 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
253 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
254 unfragpartlen = optlen + sizeof(struct ip6_hdr);
255 /* NOTE: we don't add AH/ESP length here. do that later. */
256 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
257
258 /*
259 * If we need IPsec, or there is at least one extension header,
260 * separate IP6 header from the payload.
261 */
262 if ((needipsec || optlen) && !hdrsplit) {
263 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
264 m = NULL;
265 goto freehdrs;
266 }
267 m = exthdrs.ip6e_ip6;
268 hdrsplit++;
269 }
270
271 /* adjust pointer */
272 ip6 = mtod(m, struct ip6_hdr *);
273
274 /* adjust mbuf packet header length */
275 m->m_pkthdr.len += optlen;
276 plen = m->m_pkthdr.len - sizeof(*ip6);
277
278 /* If this is a jumbo payload, insert a jumbo payload option. */
279 if (plen > IPV6_MAXPACKET) {
280 if (!hdrsplit) {
281 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
282 m = NULL;
283 goto freehdrs;
284 }
285 m = exthdrs.ip6e_ip6;
286 hdrsplit++;
287 }
288 /* adjust pointer */
289 ip6 = mtod(m, struct ip6_hdr *);
290 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
291 goto freehdrs;
292 ip6->ip6_plen = 0;
293 } else
294 ip6->ip6_plen = htons(plen);
295
296 /*
297 * Concatenate headers and fill in next header fields.
298 * Here we have, on "m"
299 * IPv6 payload
300 * and we insert headers accordingly. Finally, we should be getting:
301 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
302 *
303 * during the header composing process, "m" points to IPv6 header.
304 * "mprev" points to an extension header prior to esp.
305 */
306 {
307 u_char *nexthdrp = &ip6->ip6_nxt;
308 struct mbuf *mprev = m;
309
310 /*
311 * we treat dest2 specially. this makes IPsec processing
312 * much easier.
313 *
314 * result: IPv6 dest2 payload
315 * m and mprev will point to IPv6 header.
316 */
317 if (exthdrs.ip6e_dest2) {
318 if (!hdrsplit)
319 panic("assumption failed: hdr not split");
320 exthdrs.ip6e_dest2->m_next = m->m_next;
321 m->m_next = exthdrs.ip6e_dest2;
322 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
323 ip6->ip6_nxt = IPPROTO_DSTOPTS;
324 }
325
326 #define MAKE_CHAIN(m, mp, p, i)\
327 do {\
328 if (m) {\
329 if (!hdrsplit) \
330 panic("assumption failed: hdr not split"); \
331 *mtod((m), u_char *) = *(p);\
332 *(p) = (i);\
333 p = mtod((m), u_char *);\
334 (m)->m_next = (mp)->m_next;\
335 (mp)->m_next = (m);\
336 (mp) = (m);\
337 }\
338 } while (/*CONSTCOND*/ 0)
339 /*
340 * result: IPv6 hbh dest1 rthdr dest2 payload
341 * m will point to IPv6 header. mprev will point to the
342 * extension header prior to dest2 (rthdr in the above case).
343 */
344 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
345 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
346 IPPROTO_DSTOPTS);
347 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
348 IPPROTO_ROUTING);
349
350 #ifdef IPSEC
351 if (!needipsec)
352 goto skip_ipsec2;
353
354 /*
355 * pointers after IPsec headers are not valid any more.
356 * other pointers need a great care too.
357 * (IPsec routines should not mangle mbufs prior to AH/ESP)
358 */
359 exthdrs.ip6e_dest2 = NULL;
360
361 {
362 struct ip6_rthdr *rh = NULL;
363 int segleft_org = 0;
364 struct ipsec_output_state state;
365
366 if (exthdrs.ip6e_rthdr) {
367 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
368 segleft_org = rh->ip6r_segleft;
369 rh->ip6r_segleft = 0;
370 }
371
372 bzero(&state, sizeof(state));
373 state.m = m;
374 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
375 &needipsectun);
376 m = state.m;
377 if (error) {
378 /* mbuf is already reclaimed in ipsec6_output_trans. */
379 m = NULL;
380 switch (error) {
381 case EHOSTUNREACH:
382 case ENETUNREACH:
383 case EMSGSIZE:
384 case ENOBUFS:
385 case ENOMEM:
386 break;
387 default:
388 printf("ip6_output (ipsec): error code %d\n", error);
389 /* FALLTHROUGH */
390 case ENOENT:
391 /* don't show these error codes to the user */
392 error = 0;
393 break;
394 }
395 goto bad;
396 }
397 if (exthdrs.ip6e_rthdr) {
398 /* ah6_output doesn't modify mbuf chain */
399 rh->ip6r_segleft = segleft_org;
400 }
401 }
402 skip_ipsec2:;
403 #endif
404 }
405
406 /*
407 * If there is a routing header, replace destination address field
408 * with the first hop of the routing header.
409 */
410 if (exthdrs.ip6e_rthdr) {
411 struct ip6_rthdr *rh;
412 struct ip6_rthdr0 *rh0;
413 struct in6_addr *addr;
414
415 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
416 struct ip6_rthdr *));
417 finaldst = ip6->ip6_dst;
418 switch (rh->ip6r_type) {
419 case IPV6_RTHDR_TYPE_0:
420 rh0 = (struct ip6_rthdr0 *)rh;
421 addr = (struct in6_addr *)(rh0 + 1);
422 ip6->ip6_dst = addr[0];
423 bcopy(&addr[1], &addr[0],
424 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1));
425 addr[rh0->ip6r0_segleft - 1] = finaldst;
426 break;
427 default: /* is it possible? */
428 error = EINVAL;
429 goto bad;
430 }
431 }
432
433 /* Source address validation */
434 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
435 (flags & IPV6_UNSPECSRC) == 0) {
436 error = EOPNOTSUPP;
437 ip6stat.ip6s_badscope++;
438 goto bad;
439 }
440 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
441 error = EOPNOTSUPP;
442 ip6stat.ip6s_badscope++;
443 goto bad;
444 }
445
446 ip6stat.ip6s_localout++;
447
448 /*
449 * Route packet.
450 */
451 if (ro == 0) {
452 ro = &ip6route;
453 bzero((caddr_t)ro, sizeof(*ro));
454 }
455 ro_pmtu = ro;
456 if (opt && opt->ip6po_rthdr)
457 ro = &opt->ip6po_route;
458 dst = (struct sockaddr_in6 *)&ro->ro_dst;
459 /*
460 * If there is a cached route,
461 * check that it is to the same destination
462 * and is still up. If not, free it and try again.
463 */
464 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
465 dst->sin6_family != AF_INET6 ||
466 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
467 RTFREE(ro->ro_rt);
468 ro->ro_rt = (struct rtentry *)0;
469 }
470 if (ro->ro_rt == 0) {
471 bzero(dst, sizeof(*dst));
472 dst->sin6_family = AF_INET6;
473 dst->sin6_len = sizeof(struct sockaddr_in6);
474 dst->sin6_addr = ip6->ip6_dst;
475 }
476 #ifdef IPSEC
477 if (needipsec && needipsectun) {
478 struct ipsec_output_state state;
479
480 /*
481 * All the extension headers will become inaccessible
482 * (since they can be encrypted).
483 * Don't panic, we need no more updates to extension headers
484 * on inner IPv6 packet (since they are now encapsulated).
485 *
486 * IPv6 [ESP|AH] IPv6 [extension headers] payload
487 */
488 bzero(&exthdrs, sizeof(exthdrs));
489 exthdrs.ip6e_ip6 = m;
490
491 bzero(&state, sizeof(state));
492 state.m = m;
493 state.ro = (struct route *)ro;
494 state.dst = (struct sockaddr *)dst;
495
496 error = ipsec6_output_tunnel(&state, sp, flags);
497
498 m = state.m;
499 ro = (struct route_in6 *)state.ro;
500 dst = (struct sockaddr_in6 *)state.dst;
501 if (error) {
502 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
503 m0 = m = NULL;
504 m = NULL;
505 switch (error) {
506 case EHOSTUNREACH:
507 case ENETUNREACH:
508 case EMSGSIZE:
509 case ENOBUFS:
510 case ENOMEM:
511 break;
512 default:
513 printf("ip6_output (ipsec): error code %d\n", error);
514 /* FALLTHROUGH */
515 case ENOENT:
516 /* don't show these error codes to the user */
517 error = 0;
518 break;
519 }
520 goto bad;
521 }
522
523 exthdrs.ip6e_ip6 = m;
524 }
525 #endif /* IPSEC */
526
527 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
528 /* Unicast */
529
530 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
531 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
532 /* xxx
533 * interface selection comes here
534 * if an interface is specified from an upper layer,
535 * ifp must point it.
536 */
537 if (ro->ro_rt == 0) {
538 /*
539 * non-bsdi always clone routes, if parent is
540 * PRF_CLONING.
541 */
542 rtalloc((struct route *)ro);
543 }
544 if (ro->ro_rt == 0) {
545 ip6stat.ip6s_noroute++;
546 error = EHOSTUNREACH;
547 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
548 goto bad;
549 }
550 ia = ifatoia6(ro->ro_rt->rt_ifa);
551 ifp = ro->ro_rt->rt_ifp;
552 ro->ro_rt->rt_use++;
553 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
554 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
555 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
556
557 in6_ifstat_inc(ifp, ifs6_out_request);
558
559 /*
560 * Check if the outgoing interface conflicts with
561 * the interface specified by ifi6_ifindex (if specified).
562 * Note that loopback interface is always okay.
563 * (this may happen when we are sending a packet to one of
564 * our own addresses.)
565 */
566 if (opt && opt->ip6po_pktinfo
567 && opt->ip6po_pktinfo->ipi6_ifindex) {
568 if (!(ifp->if_flags & IFF_LOOPBACK)
569 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
570 ip6stat.ip6s_noroute++;
571 in6_ifstat_inc(ifp, ifs6_out_discard);
572 error = EHOSTUNREACH;
573 goto bad;
574 }
575 }
576
577 if (opt && opt->ip6po_hlim != -1)
578 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
579 } else {
580 /* Multicast */
581 struct in6_multi *in6m;
582
583 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
584
585 /*
586 * See if the caller provided any multicast options
587 */
588 ifp = NULL;
589 if (im6o != NULL) {
590 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
591 if (im6o->im6o_multicast_ifp != NULL)
592 ifp = im6o->im6o_multicast_ifp;
593 } else
594 ip6->ip6_hlim = ip6_defmcasthlim;
595
596 /*
597 * See if the caller provided the outgoing interface
598 * as an ancillary data.
599 * Boundary check for ifindex is assumed to be already done.
600 */
601 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
602 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
603
604 /*
605 * If the destination is a node-local scope multicast,
606 * the packet should be loop-backed only.
607 */
608 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
609 /*
610 * If the outgoing interface is already specified,
611 * it should be a loopback interface.
612 */
613 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
614 ip6stat.ip6s_badscope++;
615 error = ENETUNREACH; /* XXX: better error? */
616 /* XXX correct ifp? */
617 in6_ifstat_inc(ifp, ifs6_out_discard);
618 goto bad;
619 } else {
620 ifp = &loif[0];
621 }
622 }
623
624 if (opt && opt->ip6po_hlim != -1)
625 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
626
627 /*
628 * If caller did not provide an interface lookup a
629 * default in the routing table. This is either a
630 * default for the speicfied group (i.e. a host
631 * route), or a multicast default (a route for the
632 * ``net'' ff00::/8).
633 */
634 if (ifp == NULL) {
635 if (ro->ro_rt == 0) {
636 ro->ro_rt = rtalloc1((struct sockaddr *)
637 &ro->ro_dst, 0);
638 }
639 if (ro->ro_rt == 0) {
640 ip6stat.ip6s_noroute++;
641 error = EHOSTUNREACH;
642 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
643 goto bad;
644 }
645 ia = ifatoia6(ro->ro_rt->rt_ifa);
646 ifp = ro->ro_rt->rt_ifp;
647 ro->ro_rt->rt_use++;
648 }
649
650 if ((flags & IPV6_FORWARDING) == 0)
651 in6_ifstat_inc(ifp, ifs6_out_request);
652 in6_ifstat_inc(ifp, ifs6_out_mcast);
653
654 /*
655 * Confirm that the outgoing interface supports multicast.
656 */
657 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
658 ip6stat.ip6s_noroute++;
659 in6_ifstat_inc(ifp, ifs6_out_discard);
660 error = ENETUNREACH;
661 goto bad;
662 }
663 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
664 if (in6m != NULL &&
665 (im6o == NULL || im6o->im6o_multicast_loop)) {
666 /*
667 * If we belong to the destination multicast group
668 * on the outgoing interface, and the caller did not
669 * forbid loopback, loop back a copy.
670 */
671 ip6_mloopback(ifp, m, dst);
672 } else {
673 /*
674 * If we are acting as a multicast router, perform
675 * multicast forwarding as if the packet had just
676 * arrived on the interface to which we are about
677 * to send. The multicast forwarding function
678 * recursively calls this function, using the
679 * IPV6_FORWARDING flag to prevent infinite recursion.
680 *
681 * Multicasts that are looped back by ip6_mloopback(),
682 * above, will be forwarded by the ip6_input() routine,
683 * if necessary.
684 */
685 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
686 if (ip6_mforward(ip6, ifp, m) != 0) {
687 m_freem(m);
688 goto done;
689 }
690 }
691 }
692 /*
693 * Multicasts with a hoplimit of zero may be looped back,
694 * above, but must not be transmitted on a network.
695 * Also, multicasts addressed to the loopback interface
696 * are not sent -- the above call to ip6_mloopback() will
697 * loop back a copy if this host actually belongs to the
698 * destination group on the loopback interface.
699 */
700 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
701 m_freem(m);
702 goto done;
703 }
704 }
705
706 /*
707 * Fill the outgoing inteface to tell the upper layer
708 * to increment per-interface statistics.
709 */
710 if (ifpp)
711 *ifpp = ifp;
712
713 /* Determine path MTU. */
714 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu)) != 0)
715 goto bad;
716
717 /*
718 * The caller of this function may specify to use the minimum MTU
719 * in some cases.
720 */
721 if (mtu > IPV6_MMTU) {
722 if ((flags & IPV6_MINMTU))
723 mtu = IPV6_MMTU;
724 }
725
726 /* Fake scoped addresses */
727 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
728 /*
729 * If source or destination address is a scoped address, and
730 * the packet is going to be sent to a loopback interface,
731 * we should keep the original interface.
732 */
733
734 /*
735 * XXX: this is a very experimental and temporary solution.
736 * We eventually have sockaddr_in6 and use the sin6_scope_id
737 * field of the structure here.
738 * We rely on the consistency between two scope zone ids
739 * of source add destination, which should already be assured
740 * Larger scopes than link will be supported in the near
741 * future.
742 */
743 origifp = NULL;
744 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
745 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
746 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
747 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
748 /*
749 * XXX: origifp can be NULL even in those two cases above.
750 * For example, if we remove the (only) link-local address
751 * from the loopback interface, and try to send a link-local
752 * address without link-id information. Then the source
753 * address is ::1, and the destination address is the
754 * link-local address with its s6_addr16[1] being zero.
755 * What is worse, if the packet goes to the loopback interface
756 * by a default rejected route, the null pointer would be
757 * passed to looutput, and the kernel would hang.
758 * The following last resort would prevent such disaster.
759 */
760 if (origifp == NULL)
761 origifp = ifp;
762 } else
763 origifp = ifp;
764 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
765 ip6->ip6_src.s6_addr16[1] = 0;
766 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
767 ip6->ip6_dst.s6_addr16[1] = 0;
768
769 /*
770 * If the outgoing packet contains a hop-by-hop options header,
771 * it must be examined and processed even by the source node.
772 * (RFC 2460, section 4.)
773 */
774 if (exthdrs.ip6e_hbh) {
775 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
776 u_int32_t dummy1; /* XXX unused */
777 u_int32_t dummy2; /* XXX unused */
778
779 /*
780 * XXX: if we have to send an ICMPv6 error to the sender,
781 * we need the M_LOOP flag since icmp6_error() expects
782 * the IPv6 and the hop-by-hop options header are
783 * continuous unless the flag is set.
784 */
785 m->m_flags |= M_LOOP;
786 m->m_pkthdr.rcvif = ifp;
787 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
788 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
789 &dummy1, &dummy2) < 0) {
790 /* m was already freed at this point */
791 error = EINVAL;/* better error? */
792 goto done;
793 }
794 m->m_flags &= ~M_LOOP; /* XXX */
795 m->m_pkthdr.rcvif = NULL;
796 }
797
798 #ifdef PFIL_HOOKS
799 /*
800 * Run through list of hooks for output packets.
801 */
802 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
803 goto done;
804 if (m == NULL)
805 goto done;
806 ip6 = mtod(m, struct ip6_hdr *);
807 #endif /* PFIL_HOOKS */
808 /*
809 * Send the packet to the outgoing interface.
810 * If necessary, do IPv6 fragmentation before sending.
811 */
812 tlen = m->m_pkthdr.len;
813 if (tlen <= mtu) {
814 #ifdef IFA_STATS
815 struct in6_ifaddr *ia6;
816 ip6 = mtod(m, struct ip6_hdr *);
817 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
818 if (ia6) {
819 /* Record statistics for this interface address. */
820 ia6->ia_ifa.ifa_data.ifad_outbytes +=
821 m->m_pkthdr.len;
822 }
823 #endif
824 #ifdef IPSEC
825 /* clean ipsec history once it goes out of the node */
826 ipsec_delaux(m);
827 #endif
828 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
829 goto done;
830 } else if (mtu < IPV6_MMTU) {
831 /*
832 * note that path MTU is never less than IPV6_MMTU
833 * (see icmp6_input).
834 */
835 error = EMSGSIZE;
836 in6_ifstat_inc(ifp, ifs6_out_fragfail);
837 goto bad;
838 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
839 error = EMSGSIZE;
840 in6_ifstat_inc(ifp, ifs6_out_fragfail);
841 goto bad;
842 } else {
843 struct mbuf **mnext, *m_frgpart;
844 struct ip6_frag *ip6f;
845 u_int32_t id = htonl(ip6_id++);
846 u_char nextproto;
847
848 /*
849 * Too large for the destination or interface;
850 * fragment if possible.
851 * Must be able to put at least 8 bytes per fragment.
852 */
853 hlen = unfragpartlen;
854 if (mtu > IPV6_MAXPACKET)
855 mtu = IPV6_MAXPACKET;
856 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
857 if (len < 8) {
858 error = EMSGSIZE;
859 in6_ifstat_inc(ifp, ifs6_out_fragfail);
860 goto bad;
861 }
862
863 mnext = &m->m_nextpkt;
864
865 /*
866 * Change the next header field of the last header in the
867 * unfragmentable part.
868 */
869 if (exthdrs.ip6e_rthdr) {
870 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
871 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
872 } else if (exthdrs.ip6e_dest1) {
873 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
874 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
875 } else if (exthdrs.ip6e_hbh) {
876 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
877 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
878 } else {
879 nextproto = ip6->ip6_nxt;
880 ip6->ip6_nxt = IPPROTO_FRAGMENT;
881 }
882
883 /*
884 * Loop through length of segment after first fragment,
885 * make new header and copy data of each part and link onto
886 * chain.
887 */
888 m0 = m;
889 for (off = hlen; off < tlen; off += len) {
890 MGETHDR(m, M_DONTWAIT, MT_HEADER);
891 if (!m) {
892 error = ENOBUFS;
893 ip6stat.ip6s_odropped++;
894 goto sendorfree;
895 }
896 m->m_flags = m0->m_flags & M_COPYFLAGS;
897 *mnext = m;
898 mnext = &m->m_nextpkt;
899 m->m_data += max_linkhdr;
900 mhip6 = mtod(m, struct ip6_hdr *);
901 *mhip6 = *ip6;
902 m->m_len = sizeof(*mhip6);
903 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
904 if (error) {
905 ip6stat.ip6s_odropped++;
906 goto sendorfree;
907 }
908 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
909 if (off + len >= tlen)
910 len = tlen - off;
911 else
912 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
913 mhip6->ip6_plen = htons((u_short)(len + hlen +
914 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
915 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
916 error = ENOBUFS;
917 ip6stat.ip6s_odropped++;
918 goto sendorfree;
919 }
920 m_cat(m, m_frgpart);
921 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
922 m->m_pkthdr.rcvif = (struct ifnet *)0;
923 ip6f->ip6f_reserved = 0;
924 ip6f->ip6f_ident = id;
925 ip6f->ip6f_nxt = nextproto;
926 ip6stat.ip6s_ofragments++;
927 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
928 }
929
930 in6_ifstat_inc(ifp, ifs6_out_fragok);
931 }
932
933 /*
934 * Remove leading garbages.
935 */
936 sendorfree:
937 m = m0->m_nextpkt;
938 m0->m_nextpkt = 0;
939 m_freem(m0);
940 for (m0 = m; m; m = m0) {
941 m0 = m->m_nextpkt;
942 m->m_nextpkt = 0;
943 if (error == 0) {
944 #ifdef IFA_STATS
945 struct in6_ifaddr *ia6;
946 ip6 = mtod(m, struct ip6_hdr *);
947 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
948 if (ia6) {
949 /*
950 * Record statistics for this interface
951 * address.
952 */
953 ia6->ia_ifa.ifa_data.ifad_outbytes +=
954 m->m_pkthdr.len;
955 }
956 #endif
957 #ifdef IPSEC
958 /* clean ipsec history once it goes out of the node */
959 ipsec_delaux(m);
960 #endif
961 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
962 } else
963 m_freem(m);
964 }
965
966 if (error == 0)
967 ip6stat.ip6s_fragmented++;
968
969 done:
970 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
971 RTFREE(ro->ro_rt);
972 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
973 RTFREE(ro_pmtu->ro_rt);
974 }
975
976 #ifdef IPSEC
977 if (sp != NULL)
978 key_freesp(sp);
979 #endif /* IPSEC */
980
981 return (error);
982
983 freehdrs:
984 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
985 m_freem(exthdrs.ip6e_dest1);
986 m_freem(exthdrs.ip6e_rthdr);
987 m_freem(exthdrs.ip6e_dest2);
988 /* FALLTHROUGH */
989 bad:
990 m_freem(m);
991 goto done;
992 }
993
994 static int
995 ip6_copyexthdr(mp, hdr, hlen)
996 struct mbuf **mp;
997 caddr_t hdr;
998 int hlen;
999 {
1000 struct mbuf *m;
1001
1002 if (hlen > MCLBYTES)
1003 return (ENOBUFS); /* XXX */
1004
1005 MGET(m, M_DONTWAIT, MT_DATA);
1006 if (!m)
1007 return (ENOBUFS);
1008
1009 if (hlen > MLEN) {
1010 MCLGET(m, M_DONTWAIT);
1011 if ((m->m_flags & M_EXT) == 0) {
1012 m_free(m);
1013 return (ENOBUFS);
1014 }
1015 }
1016 m->m_len = hlen;
1017 if (hdr)
1018 bcopy(hdr, mtod(m, caddr_t), hlen);
1019
1020 *mp = m;
1021 return (0);
1022 }
1023
1024 /*
1025 * Insert jumbo payload option.
1026 */
1027 static int
1028 ip6_insert_jumboopt(exthdrs, plen)
1029 struct ip6_exthdrs *exthdrs;
1030 u_int32_t plen;
1031 {
1032 struct mbuf *mopt;
1033 u_int8_t *optbuf;
1034 u_int32_t v;
1035
1036 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1037
1038 /*
1039 * If there is no hop-by-hop options header, allocate new one.
1040 * If there is one but it doesn't have enough space to store the
1041 * jumbo payload option, allocate a cluster to store the whole options.
1042 * Otherwise, use it to store the options.
1043 */
1044 if (exthdrs->ip6e_hbh == 0) {
1045 MGET(mopt, M_DONTWAIT, MT_DATA);
1046 if (mopt == 0)
1047 return (ENOBUFS);
1048 mopt->m_len = JUMBOOPTLEN;
1049 optbuf = mtod(mopt, u_int8_t *);
1050 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1051 exthdrs->ip6e_hbh = mopt;
1052 } else {
1053 struct ip6_hbh *hbh;
1054
1055 mopt = exthdrs->ip6e_hbh;
1056 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1057 /*
1058 * XXX assumption:
1059 * - exthdrs->ip6e_hbh is not referenced from places
1060 * other than exthdrs.
1061 * - exthdrs->ip6e_hbh is not an mbuf chain.
1062 */
1063 int oldoptlen = mopt->m_len;
1064 struct mbuf *n;
1065
1066 /*
1067 * XXX: give up if the whole (new) hbh header does
1068 * not fit even in an mbuf cluster.
1069 */
1070 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1071 return (ENOBUFS);
1072
1073 /*
1074 * As a consequence, we must always prepare a cluster
1075 * at this point.
1076 */
1077 MGET(n, M_DONTWAIT, MT_DATA);
1078 if (n) {
1079 MCLGET(n, M_DONTWAIT);
1080 if ((n->m_flags & M_EXT) == 0) {
1081 m_freem(n);
1082 n = NULL;
1083 }
1084 }
1085 if (!n)
1086 return (ENOBUFS);
1087 n->m_len = oldoptlen + JUMBOOPTLEN;
1088 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1089 oldoptlen);
1090 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1091 m_freem(mopt);
1092 mopt = exthdrs->ip6e_hbh = n;
1093 } else {
1094 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1095 mopt->m_len += JUMBOOPTLEN;
1096 }
1097 optbuf[0] = IP6OPT_PADN;
1098 optbuf[1] = 0;
1099
1100 /*
1101 * Adjust the header length according to the pad and
1102 * the jumbo payload option.
1103 */
1104 hbh = mtod(mopt, struct ip6_hbh *);
1105 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1106 }
1107
1108 /* fill in the option. */
1109 optbuf[2] = IP6OPT_JUMBO;
1110 optbuf[3] = 4;
1111 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1112 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1113
1114 /* finally, adjust the packet header length */
1115 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1116
1117 return (0);
1118 #undef JUMBOOPTLEN
1119 }
1120
1121 /*
1122 * Insert fragment header and copy unfragmentable header portions.
1123 */
1124 static int
1125 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1126 struct mbuf *m0, *m;
1127 int hlen;
1128 struct ip6_frag **frghdrp;
1129 {
1130 struct mbuf *n, *mlast;
1131
1132 if (hlen > sizeof(struct ip6_hdr)) {
1133 n = m_copym(m0, sizeof(struct ip6_hdr),
1134 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1135 if (n == 0)
1136 return (ENOBUFS);
1137 m->m_next = n;
1138 } else
1139 n = m;
1140
1141 /* Search for the last mbuf of unfragmentable part. */
1142 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1143 ;
1144
1145 if ((mlast->m_flags & M_EXT) == 0 &&
1146 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1147 /* use the trailing space of the last mbuf for the fragment hdr */
1148 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1149 mlast->m_len);
1150 mlast->m_len += sizeof(struct ip6_frag);
1151 m->m_pkthdr.len += sizeof(struct ip6_frag);
1152 } else {
1153 /* allocate a new mbuf for the fragment header */
1154 struct mbuf *mfrg;
1155
1156 MGET(mfrg, M_DONTWAIT, MT_DATA);
1157 if (mfrg == 0)
1158 return (ENOBUFS);
1159 mfrg->m_len = sizeof(struct ip6_frag);
1160 *frghdrp = mtod(mfrg, struct ip6_frag *);
1161 mlast->m_next = mfrg;
1162 }
1163
1164 return (0);
1165 }
1166
1167 static int
1168 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup)
1169 struct route_in6 *ro_pmtu, *ro;
1170 struct ifnet *ifp;
1171 struct in6_addr *dst;
1172 u_long *mtup;
1173 {
1174 u_int32_t mtu = 0;
1175 int error = 0;
1176
1177 if (ro_pmtu != ro) {
1178 /* The first hop and the final destination may differ. */
1179 struct sockaddr_in6 *sa6_dst =
1180 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1181 if (ro_pmtu->ro_rt &&
1182 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1183 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1184 RTFREE(ro_pmtu->ro_rt);
1185 ro_pmtu->ro_rt = (struct rtentry *)0;
1186 }
1187 if (ro_pmtu->ro_rt == 0) {
1188 bzero(sa6_dst, sizeof(*sa6_dst));
1189 sa6_dst->sin6_family = AF_INET6;
1190 sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1191 sa6_dst->sin6_addr = *dst;
1192
1193 rtalloc((struct route *)ro_pmtu);
1194 }
1195 }
1196 if (ro_pmtu->ro_rt) {
1197 u_int32_t ifmtu;
1198
1199 if (ifp == NULL)
1200 ifp = ro_pmtu->ro_rt->rt_ifp;
1201 ifmtu = IN6_LINKMTU(ifp);
1202 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1203 if (mtu == 0)
1204 mtu = ifmtu;
1205 else if (mtu > ifmtu) {
1206 /*
1207 * The MTU on the route is larger than the MTU on
1208 * the interface! This shouldn't happen, unless the
1209 * MTU of the interface has been changed after the
1210 * interface was brought up. Change the MTU in the
1211 * route to match the interface MTU (as long as the
1212 * field isn't locked).
1213 *
1214 * if MTU on the route is 0, we need to fix the MTU.
1215 * this case happens with path MTU discovery timeouts.
1216 */
1217 mtu = ifmtu;
1218 if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU))
1219 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1220 }
1221 } else if (ifp) {
1222 mtu = IN6_LINKMTU(ifp);
1223 } else
1224 error = EHOSTUNREACH; /* XXX */
1225
1226 *mtup = mtu;
1227 return (error);
1228 }
1229
1230 /*
1231 * IP6 socket option processing.
1232 */
1233 int
1234 ip6_ctloutput(op, so, level, optname, mp)
1235 int op;
1236 struct socket *so;
1237 int level, optname;
1238 struct mbuf **mp;
1239 {
1240 struct in6pcb *in6p = sotoin6pcb(so);
1241 struct mbuf *m = *mp;
1242 int optval = 0;
1243 int error = 0;
1244 struct proc *p = curproc; /* XXX */
1245
1246 if (level == IPPROTO_IPV6) {
1247 switch (op) {
1248 case PRCO_SETOPT:
1249 switch (optname) {
1250 case IPV6_PKTOPTIONS:
1251 /* m is freed in ip6_pcbopts */
1252 return (ip6_pcbopts(&in6p->in6p_outputopts,
1253 m, so));
1254 case IPV6_HOPOPTS:
1255 case IPV6_DSTOPTS:
1256 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1257 error = EPERM;
1258 break;
1259 }
1260 /* FALLTHROUGH */
1261 case IPV6_UNICAST_HOPS:
1262 case IPV6_RECVOPTS:
1263 case IPV6_RECVRETOPTS:
1264 case IPV6_RECVDSTADDR:
1265 case IPV6_PKTINFO:
1266 case IPV6_HOPLIMIT:
1267 case IPV6_RTHDR:
1268 case IPV6_FAITH:
1269 case IPV6_V6ONLY:
1270 if (!m || m->m_len != sizeof(int)) {
1271 error = EINVAL;
1272 break;
1273 }
1274 optval = *mtod(m, int *);
1275 switch (optname) {
1276
1277 case IPV6_UNICAST_HOPS:
1278 if (optval < -1 || optval >= 256)
1279 error = EINVAL;
1280 else {
1281 /* -1 = kernel default */
1282 in6p->in6p_hops = optval;
1283 }
1284 break;
1285 #define OPTSET(bit) \
1286 do { \
1287 if (optval) \
1288 in6p->in6p_flags |= (bit); \
1289 else \
1290 in6p->in6p_flags &= ~(bit); \
1291 } while (/*CONSTCOND*/ 0)
1292
1293 case IPV6_RECVOPTS:
1294 OPTSET(IN6P_RECVOPTS);
1295 break;
1296
1297 case IPV6_RECVRETOPTS:
1298 OPTSET(IN6P_RECVRETOPTS);
1299 break;
1300
1301 case IPV6_RECVDSTADDR:
1302 OPTSET(IN6P_RECVDSTADDR);
1303 break;
1304
1305 case IPV6_PKTINFO:
1306 OPTSET(IN6P_PKTINFO);
1307 break;
1308
1309 case IPV6_HOPLIMIT:
1310 OPTSET(IN6P_HOPLIMIT);
1311 break;
1312
1313 case IPV6_HOPOPTS:
1314 OPTSET(IN6P_HOPOPTS);
1315 break;
1316
1317 case IPV6_DSTOPTS:
1318 OPTSET(IN6P_DSTOPTS);
1319 break;
1320
1321 case IPV6_RTHDR:
1322 OPTSET(IN6P_RTHDR);
1323 break;
1324
1325 case IPV6_FAITH:
1326 OPTSET(IN6P_FAITH);
1327 break;
1328
1329 case IPV6_V6ONLY:
1330 /*
1331 * make setsockopt(IPV6_V6ONLY)
1332 * available only prior to bind(2).
1333 * see ipng mailing list, Jun 22 2001.
1334 */
1335 if (in6p->in6p_lport ||
1336 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1337 error = EINVAL;
1338 break;
1339 }
1340 #ifdef INET6_BINDV6ONLY
1341 if (!optval)
1342 error = EINVAL;
1343 #else
1344 OPTSET(IN6P_IPV6_V6ONLY);
1345 #endif
1346 break;
1347 }
1348 break;
1349 #undef OPTSET
1350
1351 case IPV6_MULTICAST_IF:
1352 case IPV6_MULTICAST_HOPS:
1353 case IPV6_MULTICAST_LOOP:
1354 case IPV6_JOIN_GROUP:
1355 case IPV6_LEAVE_GROUP:
1356 error = ip6_setmoptions(optname,
1357 &in6p->in6p_moptions, m);
1358 break;
1359
1360 case IPV6_PORTRANGE:
1361 optval = *mtod(m, int *);
1362
1363 switch (optval) {
1364 case IPV6_PORTRANGE_DEFAULT:
1365 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1366 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1367 break;
1368
1369 case IPV6_PORTRANGE_HIGH:
1370 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1371 in6p->in6p_flags |= IN6P_HIGHPORT;
1372 break;
1373
1374 case IPV6_PORTRANGE_LOW:
1375 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1376 in6p->in6p_flags |= IN6P_LOWPORT;
1377 break;
1378
1379 default:
1380 error = EINVAL;
1381 break;
1382 }
1383 break;
1384
1385 #ifdef IPSEC
1386 case IPV6_IPSEC_POLICY:
1387 {
1388 caddr_t req = NULL;
1389 size_t len = 0;
1390
1391 int priv = 0;
1392 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1393 priv = 0;
1394 else
1395 priv = 1;
1396 if (m) {
1397 req = mtod(m, caddr_t);
1398 len = m->m_len;
1399 }
1400 error = ipsec6_set_policy(in6p,
1401 optname, req, len, priv);
1402 }
1403 break;
1404 #endif /* IPSEC */
1405
1406 default:
1407 error = ENOPROTOOPT;
1408 break;
1409 }
1410 if (m)
1411 (void)m_free(m);
1412 break;
1413
1414 case PRCO_GETOPT:
1415 switch (optname) {
1416
1417 case IPV6_OPTIONS:
1418 case IPV6_RETOPTS:
1419 error = ENOPROTOOPT;
1420 break;
1421
1422 case IPV6_PKTOPTIONS:
1423 if (in6p->in6p_options) {
1424 *mp = m_copym(in6p->in6p_options, 0,
1425 M_COPYALL, M_WAIT);
1426 } else {
1427 *mp = m_get(M_WAIT, MT_SOOPTS);
1428 (*mp)->m_len = 0;
1429 }
1430 break;
1431
1432 case IPV6_HOPOPTS:
1433 case IPV6_DSTOPTS:
1434 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1435 error = EPERM;
1436 break;
1437 }
1438 /* FALLTHROUGH */
1439 case IPV6_UNICAST_HOPS:
1440 case IPV6_RECVOPTS:
1441 case IPV6_RECVRETOPTS:
1442 case IPV6_RECVDSTADDR:
1443 case IPV6_PORTRANGE:
1444 case IPV6_PKTINFO:
1445 case IPV6_HOPLIMIT:
1446 case IPV6_RTHDR:
1447 case IPV6_FAITH:
1448 case IPV6_V6ONLY:
1449 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1450 m->m_len = sizeof(int);
1451 switch (optname) {
1452
1453 case IPV6_UNICAST_HOPS:
1454 optval = in6p->in6p_hops;
1455 break;
1456
1457 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1458
1459 case IPV6_RECVOPTS:
1460 optval = OPTBIT(IN6P_RECVOPTS);
1461 break;
1462
1463 case IPV6_RECVRETOPTS:
1464 optval = OPTBIT(IN6P_RECVRETOPTS);
1465 break;
1466
1467 case IPV6_RECVDSTADDR:
1468 optval = OPTBIT(IN6P_RECVDSTADDR);
1469 break;
1470
1471 case IPV6_PORTRANGE:
1472 {
1473 int flags;
1474 flags = in6p->in6p_flags;
1475 if (flags & IN6P_HIGHPORT)
1476 optval = IPV6_PORTRANGE_HIGH;
1477 else if (flags & IN6P_LOWPORT)
1478 optval = IPV6_PORTRANGE_LOW;
1479 else
1480 optval = 0;
1481 break;
1482 }
1483
1484 case IPV6_PKTINFO:
1485 optval = OPTBIT(IN6P_PKTINFO);
1486 break;
1487
1488 case IPV6_HOPLIMIT:
1489 optval = OPTBIT(IN6P_HOPLIMIT);
1490 break;
1491
1492 case IPV6_HOPOPTS:
1493 optval = OPTBIT(IN6P_HOPOPTS);
1494 break;
1495
1496 case IPV6_DSTOPTS:
1497 optval = OPTBIT(IN6P_DSTOPTS);
1498 break;
1499
1500 case IPV6_RTHDR:
1501 optval = OPTBIT(IN6P_RTHDR);
1502 break;
1503
1504 case IPV6_FAITH:
1505 optval = OPTBIT(IN6P_FAITH);
1506 break;
1507
1508 case IPV6_V6ONLY:
1509 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1510 break;
1511 }
1512 *mtod(m, int *) = optval;
1513 break;
1514
1515 case IPV6_MULTICAST_IF:
1516 case IPV6_MULTICAST_HOPS:
1517 case IPV6_MULTICAST_LOOP:
1518 case IPV6_JOIN_GROUP:
1519 case IPV6_LEAVE_GROUP:
1520 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1521 break;
1522
1523 #ifdef IPSEC
1524 case IPV6_IPSEC_POLICY:
1525 {
1526 caddr_t req = NULL;
1527 size_t len = 0;
1528
1529 if (m) {
1530 req = mtod(m, caddr_t);
1531 len = m->m_len;
1532 }
1533 error = ipsec6_get_policy(in6p, req, len, mp);
1534 break;
1535 }
1536 #endif /* IPSEC */
1537
1538 default:
1539 error = ENOPROTOOPT;
1540 break;
1541 }
1542 break;
1543 }
1544 } else {
1545 error = EINVAL;
1546 if (op == PRCO_SETOPT && *mp)
1547 (void)m_free(*mp);
1548 }
1549 return (error);
1550 }
1551
1552 int
1553 ip6_raw_ctloutput(op, so, level, optname, mp)
1554 int op;
1555 struct socket *so;
1556 int level, optname;
1557 struct mbuf **mp;
1558 {
1559 int error = 0, optval, optlen;
1560 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1561 struct in6pcb *in6p = sotoin6pcb(so);
1562 struct mbuf *m = *mp;
1563
1564 optlen = m ? m->m_len : 0;
1565
1566 if (level != IPPROTO_IPV6) {
1567 if (op == PRCO_SETOPT && *mp)
1568 (void)m_free(*mp);
1569 return (EINVAL);
1570 }
1571
1572 switch (optname) {
1573 case IPV6_CHECKSUM:
1574 /*
1575 * For ICMPv6 sockets, no modification allowed for checksum
1576 * offset, permit "no change" values to help existing apps.
1577 *
1578 * XXX 2292bis says: "An attempt to set IPV6_CHECKSUM
1579 * for an ICMPv6 socket will fail."
1580 * The current behavior does not meet 2292bis.
1581 */
1582 switch (op) {
1583 case PRCO_SETOPT:
1584 if (optlen != sizeof(int)) {
1585 error = EINVAL;
1586 break;
1587 }
1588 optval = *mtod(m, int *);
1589 if ((optval % 2) != 0) {
1590 /* the API assumes even offset values */
1591 error = EINVAL;
1592 } else if (so->so_proto->pr_protocol ==
1593 IPPROTO_ICMPV6) {
1594 if (optval != icmp6off)
1595 error = EINVAL;
1596 } else
1597 in6p->in6p_cksum = optval;
1598 break;
1599
1600 case PRCO_GETOPT:
1601 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
1602 optval = icmp6off;
1603 else
1604 optval = in6p->in6p_cksum;
1605
1606 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1607 m->m_len = sizeof(int);
1608 *mtod(m, int *) = optval;
1609 break;
1610
1611 default:
1612 error = EINVAL;
1613 break;
1614 }
1615 break;
1616
1617 default:
1618 error = ENOPROTOOPT;
1619 break;
1620 }
1621
1622 if (op == PRCO_SETOPT && m)
1623 (void)m_free(m);
1624
1625 return (error);
1626 }
1627
1628 /*
1629 * Set up IP6 options in pcb for insertion in output packets.
1630 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1631 * with destination address if source routed.
1632 */
1633 static int
1634 ip6_pcbopts(pktopt, m, so)
1635 struct ip6_pktopts **pktopt;
1636 struct mbuf *m;
1637 struct socket *so;
1638 {
1639 struct ip6_pktopts *opt = *pktopt;
1640 int error = 0;
1641 struct proc *p = curproc; /* XXX */
1642 int priv = 0;
1643
1644 /* turn off any old options. */
1645 if (opt) {
1646 if (opt->ip6po_m)
1647 (void)m_free(opt->ip6po_m);
1648 } else
1649 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1650 *pktopt = 0;
1651
1652 if (!m || m->m_len == 0) {
1653 /*
1654 * Only turning off any previous options.
1655 */
1656 free(opt, M_IP6OPT);
1657 if (m)
1658 (void)m_free(m);
1659 return (0);
1660 }
1661
1662 /* set options specified by user. */
1663 if (p && !suser(p->p_ucred, &p->p_acflag))
1664 priv = 1;
1665 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1666 (void)m_free(m);
1667 free(opt, M_IP6OPT);
1668 return (error);
1669 }
1670 *pktopt = opt;
1671 return (0);
1672 }
1673
1674 /*
1675 * Set the IP6 multicast options in response to user setsockopt().
1676 */
1677 static int
1678 ip6_setmoptions(optname, im6op, m)
1679 int optname;
1680 struct ip6_moptions **im6op;
1681 struct mbuf *m;
1682 {
1683 int error = 0;
1684 u_int loop, ifindex;
1685 struct ipv6_mreq *mreq;
1686 struct ifnet *ifp;
1687 struct ip6_moptions *im6o = *im6op;
1688 struct route_in6 ro;
1689 struct sockaddr_in6 *dst;
1690 struct in6_multi_mship *imm;
1691 struct proc *p = curproc; /* XXX */
1692
1693 if (im6o == NULL) {
1694 /*
1695 * No multicast option buffer attached to the pcb;
1696 * allocate one and initialize to default values.
1697 */
1698 im6o = (struct ip6_moptions *)
1699 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1700
1701 if (im6o == NULL)
1702 return (ENOBUFS);
1703 *im6op = im6o;
1704 im6o->im6o_multicast_ifp = NULL;
1705 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1706 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1707 LIST_INIT(&im6o->im6o_memberships);
1708 }
1709
1710 switch (optname) {
1711
1712 case IPV6_MULTICAST_IF:
1713 /*
1714 * Select the interface for outgoing multicast packets.
1715 */
1716 if (m == NULL || m->m_len != sizeof(u_int)) {
1717 error = EINVAL;
1718 break;
1719 }
1720 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1721 if (ifindex < 0 || if_index < ifindex) {
1722 error = ENXIO; /* XXX EINVAL? */
1723 break;
1724 }
1725 ifp = ifindex2ifnet[ifindex];
1726 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1727 error = EADDRNOTAVAIL;
1728 break;
1729 }
1730 im6o->im6o_multicast_ifp = ifp;
1731 break;
1732
1733 case IPV6_MULTICAST_HOPS:
1734 {
1735 /*
1736 * Set the IP6 hoplimit for outgoing multicast packets.
1737 */
1738 int optval;
1739 if (m == NULL || m->m_len != sizeof(int)) {
1740 error = EINVAL;
1741 break;
1742 }
1743 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1744 if (optval < -1 || optval >= 256)
1745 error = EINVAL;
1746 else if (optval == -1)
1747 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1748 else
1749 im6o->im6o_multicast_hlim = optval;
1750 break;
1751 }
1752
1753 case IPV6_MULTICAST_LOOP:
1754 /*
1755 * Set the loopback flag for outgoing multicast packets.
1756 * Must be zero or one.
1757 */
1758 if (m == NULL || m->m_len != sizeof(u_int)) {
1759 error = EINVAL;
1760 break;
1761 }
1762 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1763 if (loop > 1) {
1764 error = EINVAL;
1765 break;
1766 }
1767 im6o->im6o_multicast_loop = loop;
1768 break;
1769
1770 case IPV6_JOIN_GROUP:
1771 /*
1772 * Add a multicast group membership.
1773 * Group must be a valid IP6 multicast address.
1774 */
1775 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1776 error = EINVAL;
1777 break;
1778 }
1779 mreq = mtod(m, struct ipv6_mreq *);
1780 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1781 /*
1782 * We use the unspecified address to specify to accept
1783 * all multicast addresses. Only super user is allowed
1784 * to do this.
1785 */
1786 if (suser(p->p_ucred, &p->p_acflag))
1787 {
1788 error = EACCES;
1789 break;
1790 }
1791 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1792 error = EINVAL;
1793 break;
1794 }
1795
1796 /*
1797 * If the interface is specified, validate it.
1798 */
1799 if (mreq->ipv6mr_interface < 0
1800 || if_index < mreq->ipv6mr_interface) {
1801 error = ENXIO; /* XXX EINVAL? */
1802 break;
1803 }
1804 /*
1805 * If no interface was explicitly specified, choose an
1806 * appropriate one according to the given multicast address.
1807 */
1808 if (mreq->ipv6mr_interface == 0) {
1809 /*
1810 * If the multicast address is in node-local scope,
1811 * the interface should be a loopback interface.
1812 * Otherwise, look up the routing table for the
1813 * address, and choose the outgoing interface.
1814 * XXX: is it a good approach?
1815 */
1816 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1817 ifp = &loif[0];
1818 } else {
1819 ro.ro_rt = NULL;
1820 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1821 bzero(dst, sizeof(*dst));
1822 dst->sin6_len = sizeof(struct sockaddr_in6);
1823 dst->sin6_family = AF_INET6;
1824 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1825 rtalloc((struct route *)&ro);
1826 if (ro.ro_rt == NULL) {
1827 error = EADDRNOTAVAIL;
1828 break;
1829 }
1830 ifp = ro.ro_rt->rt_ifp;
1831 rtfree(ro.ro_rt);
1832 }
1833 } else
1834 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1835
1836 /*
1837 * See if we found an interface, and confirm that it
1838 * supports multicast
1839 */
1840 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1841 error = EADDRNOTAVAIL;
1842 break;
1843 }
1844 /*
1845 * Put interface index into the multicast address,
1846 * if the address has link-local scope.
1847 */
1848 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1849 mreq->ipv6mr_multiaddr.s6_addr16[1] =
1850 htons(mreq->ipv6mr_interface);
1851 }
1852 /*
1853 * See if the membership already exists.
1854 */
1855 for (imm = im6o->im6o_memberships.lh_first;
1856 imm != NULL; imm = imm->i6mm_chain.le_next)
1857 if (imm->i6mm_maddr->in6m_ifp == ifp &&
1858 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1859 &mreq->ipv6mr_multiaddr))
1860 break;
1861 if (imm != NULL) {
1862 error = EADDRINUSE;
1863 break;
1864 }
1865 /*
1866 * Everything looks good; add a new record to the multicast
1867 * address list for the given interface.
1868 */
1869 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error);
1870 if (!imm)
1871 break;
1872 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
1873 break;
1874
1875 case IPV6_LEAVE_GROUP:
1876 /*
1877 * Drop a multicast group membership.
1878 * Group must be a valid IP6 multicast address.
1879 */
1880 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1881 error = EINVAL;
1882 break;
1883 }
1884 mreq = mtod(m, struct ipv6_mreq *);
1885 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1886 if (suser(p->p_ucred, &p->p_acflag))
1887 {
1888 error = EACCES;
1889 break;
1890 }
1891 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1892 error = EINVAL;
1893 break;
1894 }
1895 /*
1896 * If an interface address was specified, get a pointer
1897 * to its ifnet structure.
1898 */
1899 if (mreq->ipv6mr_interface < 0
1900 || if_index < mreq->ipv6mr_interface) {
1901 error = ENXIO; /* XXX EINVAL? */
1902 break;
1903 }
1904 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1905 /*
1906 * Put interface index into the multicast address,
1907 * if the address has link-local scope.
1908 */
1909 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1910 mreq->ipv6mr_multiaddr.s6_addr16[1] =
1911 htons(mreq->ipv6mr_interface);
1912 }
1913 /*
1914 * Find the membership in the membership list.
1915 */
1916 for (imm = im6o->im6o_memberships.lh_first;
1917 imm != NULL; imm = imm->i6mm_chain.le_next) {
1918 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
1919 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1920 &mreq->ipv6mr_multiaddr))
1921 break;
1922 }
1923 if (imm == NULL) {
1924 /* Unable to resolve interface */
1925 error = EADDRNOTAVAIL;
1926 break;
1927 }
1928 /*
1929 * Give up the multicast address record to which the
1930 * membership points.
1931 */
1932 LIST_REMOVE(imm, i6mm_chain);
1933 in6_leavegroup(imm);
1934 break;
1935
1936 default:
1937 error = EOPNOTSUPP;
1938 break;
1939 }
1940
1941 /*
1942 * If all options have default values, no need to keep the mbuf.
1943 */
1944 if (im6o->im6o_multicast_ifp == NULL &&
1945 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
1946 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
1947 im6o->im6o_memberships.lh_first == NULL) {
1948 free(*im6op, M_IPMOPTS);
1949 *im6op = NULL;
1950 }
1951
1952 return (error);
1953 }
1954
1955 /*
1956 * Return the IP6 multicast options in response to user getsockopt().
1957 */
1958 static int
1959 ip6_getmoptions(optname, im6o, mp)
1960 int optname;
1961 struct ip6_moptions *im6o;
1962 struct mbuf **mp;
1963 {
1964 u_int *hlim, *loop, *ifindex;
1965
1966 *mp = m_get(M_WAIT, MT_SOOPTS);
1967
1968 switch (optname) {
1969
1970 case IPV6_MULTICAST_IF:
1971 ifindex = mtod(*mp, u_int *);
1972 (*mp)->m_len = sizeof(u_int);
1973 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
1974 *ifindex = 0;
1975 else
1976 *ifindex = im6o->im6o_multicast_ifp->if_index;
1977 return (0);
1978
1979 case IPV6_MULTICAST_HOPS:
1980 hlim = mtod(*mp, u_int *);
1981 (*mp)->m_len = sizeof(u_int);
1982 if (im6o == NULL)
1983 *hlim = ip6_defmcasthlim;
1984 else
1985 *hlim = im6o->im6o_multicast_hlim;
1986 return (0);
1987
1988 case IPV6_MULTICAST_LOOP:
1989 loop = mtod(*mp, u_int *);
1990 (*mp)->m_len = sizeof(u_int);
1991 if (im6o == NULL)
1992 *loop = ip6_defmcasthlim;
1993 else
1994 *loop = im6o->im6o_multicast_loop;
1995 return (0);
1996
1997 default:
1998 return (EOPNOTSUPP);
1999 }
2000 }
2001
2002 /*
2003 * Discard the IP6 multicast options.
2004 */
2005 void
2006 ip6_freemoptions(im6o)
2007 struct ip6_moptions *im6o;
2008 {
2009 struct in6_multi_mship *imm;
2010
2011 if (im6o == NULL)
2012 return;
2013
2014 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2015 LIST_REMOVE(imm, i6mm_chain);
2016 in6_leavegroup(imm);
2017 }
2018 free(im6o, M_IPMOPTS);
2019 }
2020
2021 /*
2022 * Set IPv6 outgoing packet options based on advanced API.
2023 */
2024 int
2025 ip6_setpktoptions(control, opt, priv)
2026 struct mbuf *control;
2027 struct ip6_pktopts *opt;
2028 int priv;
2029 {
2030 struct cmsghdr *cm = 0;
2031
2032 if (control == 0 || opt == 0)
2033 return (EINVAL);
2034
2035 bzero(opt, sizeof(*opt));
2036 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
2037
2038 /*
2039 * XXX: Currently, we assume all the optional information is stored
2040 * in a single mbuf.
2041 */
2042 if (control->m_next)
2043 return (EINVAL);
2044
2045 opt->ip6po_m = control;
2046
2047 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2048 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2049 cm = mtod(control, struct cmsghdr *);
2050 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2051 return (EINVAL);
2052 if (cm->cmsg_level != IPPROTO_IPV6)
2053 continue;
2054
2055 switch (cm->cmsg_type) {
2056 case IPV6_PKTINFO:
2057 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
2058 return (EINVAL);
2059 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
2060 if (opt->ip6po_pktinfo->ipi6_ifindex &&
2061 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
2062 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
2063 htons(opt->ip6po_pktinfo->ipi6_ifindex);
2064
2065 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index ||
2066 opt->ip6po_pktinfo->ipi6_ifindex < 0) {
2067 return (ENXIO);
2068 }
2069
2070 /*
2071 * Check if the requested source address is indeed a
2072 * unicast address assigned to the node, and can be
2073 * used as the packet's source address.
2074 */
2075 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2076 struct ifaddr *ia;
2077 struct in6_ifaddr *ia6;
2078 struct sockaddr_in6 sin6;
2079
2080 bzero(&sin6, sizeof(sin6));
2081 sin6.sin6_len = sizeof(sin6);
2082 sin6.sin6_family = AF_INET6;
2083 sin6.sin6_addr =
2084 opt->ip6po_pktinfo->ipi6_addr;
2085 ia = ifa_ifwithaddr(sin6tosa(&sin6));
2086 if (ia == NULL ||
2087 (opt->ip6po_pktinfo->ipi6_ifindex &&
2088 (ia->ifa_ifp->if_index !=
2089 opt->ip6po_pktinfo->ipi6_ifindex))) {
2090 return (EADDRNOTAVAIL);
2091 }
2092 ia6 = (struct in6_ifaddr *)ia;
2093 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) {
2094 return (EADDRNOTAVAIL);
2095 }
2096
2097 /*
2098 * Check if the requested source address is
2099 * indeed a unicast address assigned to the
2100 * node.
2101 */
2102 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
2103 return (EADDRNOTAVAIL);
2104 }
2105 break;
2106
2107 case IPV6_HOPLIMIT:
2108 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2109 return (EINVAL);
2110
2111 bcopy(CMSG_DATA(cm), &opt->ip6po_hlim,
2112 sizeof(opt->ip6po_hlim));
2113 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255)
2114 return (EINVAL);
2115 break;
2116
2117 case IPV6_NEXTHOP:
2118 if (!priv)
2119 return (EPERM);
2120
2121 /* check if cmsg_len is large enough for sa_len */
2122 if (cm->cmsg_len < sizeof(u_char) ||
2123 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2124 return (EINVAL);
2125
2126 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2127
2128 break;
2129
2130 case IPV6_HOPOPTS:
2131 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2132 return (EINVAL);
2133 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm);
2134 if (cm->cmsg_len !=
2135 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3))
2136 return (EINVAL);
2137 break;
2138
2139 case IPV6_DSTOPTS:
2140 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2141 return (EINVAL);
2142
2143 /*
2144 * If there is no routing header yet, the destination
2145 * options header should be put on the 1st part.
2146 * Otherwise, the header should be on the 2nd part.
2147 * (See RFC 2460, section 4.1)
2148 */
2149 if (opt->ip6po_rthdr == NULL) {
2150 opt->ip6po_dest1 =
2151 (struct ip6_dest *)CMSG_DATA(cm);
2152 if (cm->cmsg_len !=
2153 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1) << 3));
2154 return (EINVAL);
2155 }
2156 else {
2157 opt->ip6po_dest2 =
2158 (struct ip6_dest *)CMSG_DATA(cm);
2159 if (cm->cmsg_len !=
2160 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) << 3))
2161 return (EINVAL);
2162 }
2163 break;
2164
2165 case IPV6_RTHDR:
2166 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2167 return (EINVAL);
2168 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm);
2169 if (cm->cmsg_len !=
2170 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3))
2171 return (EINVAL);
2172 switch (opt->ip6po_rthdr->ip6r_type) {
2173 case IPV6_RTHDR_TYPE_0:
2174 if (opt->ip6po_rthdr->ip6r_segleft == 0)
2175 return (EINVAL);
2176 break;
2177 default:
2178 return (EINVAL);
2179 }
2180 break;
2181
2182 default:
2183 return (ENOPROTOOPT);
2184 }
2185 }
2186
2187 return (0);
2188 }
2189
2190 /*
2191 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2192 * packet to the input queue of a specified interface. Note that this
2193 * calls the output routine of the loopback "driver", but with an interface
2194 * pointer that might NOT be &loif -- easier than replicating that code here.
2195 */
2196 void
2197 ip6_mloopback(ifp, m, dst)
2198 struct ifnet *ifp;
2199 struct mbuf *m;
2200 struct sockaddr_in6 *dst;
2201 {
2202 struct mbuf *copym;
2203 struct ip6_hdr *ip6;
2204
2205 copym = m_copy(m, 0, M_COPYALL);
2206 if (copym == NULL)
2207 return;
2208
2209 /*
2210 * Make sure to deep-copy IPv6 header portion in case the data
2211 * is in an mbuf cluster, so that we can safely override the IPv6
2212 * header portion later.
2213 */
2214 if ((copym->m_flags & M_EXT) != 0 ||
2215 copym->m_len < sizeof(struct ip6_hdr)) {
2216 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2217 if (copym == NULL)
2218 return;
2219 }
2220
2221 #ifdef DIAGNOSTIC
2222 if (copym->m_len < sizeof(*ip6)) {
2223 m_freem(copym);
2224 return;
2225 }
2226 #endif
2227
2228 ip6 = mtod(copym, struct ip6_hdr *);
2229 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
2230 ip6->ip6_src.s6_addr16[1] = 0;
2231 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
2232 ip6->ip6_dst.s6_addr16[1] = 0;
2233
2234 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2235 }
2236
2237 /*
2238 * Chop IPv6 header off from the payload.
2239 */
2240 static int
2241 ip6_splithdr(m, exthdrs)
2242 struct mbuf *m;
2243 struct ip6_exthdrs *exthdrs;
2244 {
2245 struct mbuf *mh;
2246 struct ip6_hdr *ip6;
2247
2248 ip6 = mtod(m, struct ip6_hdr *);
2249 if (m->m_len > sizeof(*ip6)) {
2250 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2251 if (mh == 0) {
2252 m_freem(m);
2253 return ENOBUFS;
2254 }
2255 M_COPY_PKTHDR(mh, m);
2256 MH_ALIGN(mh, sizeof(*ip6));
2257 m->m_flags &= ~M_PKTHDR;
2258 m->m_len -= sizeof(*ip6);
2259 m->m_data += sizeof(*ip6);
2260 mh->m_next = m;
2261 m = mh;
2262 m->m_len = sizeof(*ip6);
2263 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2264 }
2265 exthdrs->ip6e_ip6 = m;
2266 return 0;
2267 }
2268
2269 /*
2270 * Compute IPv6 extension header length.
2271 */
2272 int
2273 ip6_optlen(in6p)
2274 struct in6pcb *in6p;
2275 {
2276 int len;
2277
2278 if (!in6p->in6p_outputopts)
2279 return 0;
2280
2281 len = 0;
2282 #define elen(x) \
2283 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2284
2285 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2286 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2287 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2288 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2289 return len;
2290 #undef elen
2291 }
2292