ip6_output.c revision 1.7 1 /* $NetBSD: ip6_output.c,v 1.7 1999/07/30 10:35:36 itojun Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * Copyright (c) 1982, 1986, 1988, 1990, 1993
34 * The Regents of the University of California. All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * 4. Neither the name of the University nor the names of its contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 *
64 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
65 */
66
67 #ifdef __FreeBSD__
68 #include "opt_ip6fw.h"
69 #endif
70 #if (defined(__FreeBSD__) && __FreeBSD__ >= 3) || defined(__NetBSD__)
71 #include "opt_inet.h"
72 #include "opt_ipsec.h"
73 #endif
74
75 #include <sys/param.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/errno.h>
79 #include <sys/protosw.h>
80 #include <sys/socket.h>
81 #include <sys/socketvar.h>
82 #include <sys/systm.h>
83 #include <sys/proc.h>
84
85 #include <net/if.h>
86 #include <net/route.h>
87
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <netinet6/ip6.h>
91 #include <netinet6/icmp6.h>
92 #if !defined(__FreeBSD__) || __FreeBSD__ < 3
93 #include <netinet6/in6_pcb.h>
94 #else
95 #include <netinet/in_pcb.h>
96 #endif
97 #include <netinet6/ip6_var.h>
98 #include <netinet6/nd6.h>
99
100 #ifdef IPSEC
101 #include <netinet6/ipsec.h>
102 #include <netkey/key.h>
103 #include <netkey/key_debug.h>
104 #endif /* IPSEC */
105
106 #include "loop.h"
107
108 struct ip6_exthdrs {
109 struct mbuf *ip6e_ip6;
110 struct mbuf *ip6e_hbh;
111 struct mbuf *ip6e_dest1;
112 struct mbuf *ip6e_rthdr;
113 struct mbuf *ip6e_dest2;
114 };
115
116 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
117 struct socket *));
118 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
119 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
120 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
121 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
122 struct ip6_frag **));
123 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
124 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
125 #ifdef __bsdi__
126 extern struct ifnet loif;
127 #endif
128
129 #ifdef __NetBSD__
130 extern struct ifnet **ifindex2ifnet;
131 extern struct ifnet loif[NLOOP];
132 #endif
133
134 /*
135 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
136 * header (with pri, len, nxt, hlim, src, dst).
137 * This function may modify ver and hlim only.
138 * The mbuf chain containing the packet will be freed.
139 * The mbuf opt, if present, will not be freed.
140 */
141 int
142 ip6_output(m0, opt, ro, flags, im6o)
143 struct mbuf *m0;
144 struct ip6_pktopts *opt;
145 struct route_in6 *ro;
146 int flags;
147 struct ip6_moptions *im6o;
148 {
149 struct ip6_hdr *ip6, *mhip6;
150 struct ifnet *ifp;
151 struct mbuf *m = m0;
152 int hlen, tlen, len, off;
153 struct route_in6 ip6route;
154 struct sockaddr_in6 *dst;
155 int error = 0;
156 struct in6_ifaddr *ia;
157 u_long mtu;
158 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
159 struct ip6_exthdrs exthdrs;
160 struct in6_addr finaldst;
161 struct route_in6 *ro_pmtu = NULL;
162 int hdrsplit = 0;
163 int needipsec = 0;
164 #ifdef IPSEC
165 int needipsectun = 0;
166 struct socket *so;
167 struct secpolicy *sp = NULL;
168
169 /* for AH processing. stupid to have "socket" variable in IP layer... */
170 so = (struct socket *)m->m_pkthdr.rcvif;
171 m->m_pkthdr.rcvif = NULL;
172 ip6 = mtod(m, struct ip6_hdr *);
173 #endif /* IPSEC */
174
175 #define MAKE_EXTHDR(hp,mp) \
176 { \
177 if (hp) { \
178 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
179 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
180 ((eh)->ip6e_len + 1) << 3); \
181 if (error) \
182 goto freehdrs; \
183 } \
184 }
185
186 bzero(&exthdrs, sizeof(exthdrs));
187 if (opt) {
188 /* Hop-by-Hop options header */
189 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
190 /* Destination options header(1st part) */
191 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
192 /* Routing header */
193 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
194 /* Destination options header(2nd part) */
195 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
196 }
197
198 #ifdef IPSEC
199 /* get a security policy for this packet */
200 if (so == NULL)
201 sp = ipsec6_getpolicybyaddr(m, 0, &error);
202 else
203 sp = ipsec6_getpolicybysock(m, so, &error);
204
205 if (sp == NULL) {
206 ipsec6stat.out_inval++;
207 goto bad;
208 }
209
210 error = 0;
211
212 /* check policy */
213 switch (sp->policy) {
214 case IPSEC_POLICY_DISCARD:
215 /*
216 * This packet is just discarded.
217 */
218 ipsec6stat.out_polvio++;
219 goto bad;
220
221 case IPSEC_POLICY_BYPASS:
222 case IPSEC_POLICY_NONE:
223 /* no need to do IPsec. */
224 needipsec = 0;
225 break;
226
227 case IPSEC_POLICY_IPSEC:
228 if (sp->req == NULL) {
229 /* XXX should be panic ? */
230 printf("ip6_output: No IPsec request specified.\n");
231 error = EINVAL;
232 goto bad;
233 }
234 needipsec = 1;
235 break;
236
237 case IPSEC_POLICY_ENTRUST:
238 default:
239 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
240 }
241 #endif /* IPSEC */
242
243 /*
244 * Calculate the total length of the extension header chain.
245 * Keep the length of the unfragmentable part for fragmentation.
246 */
247 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
248 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
249 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
250 unfragpartlen = plen + sizeof(struct ip6_hdr);
251 /* NOTE: we don't add AH/ESP length here. do that later. */
252 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
253
254 /*
255 * If we need IPsec, or there is at least one extension header,
256 * separate IP6 header from the payload.
257 */
258 if ((needipsec || optlen) && !hdrsplit) {
259 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
260 m = NULL;
261 goto freehdrs;
262 }
263 m = exthdrs.ip6e_ip6;
264 hdrsplit++;
265 }
266
267 /* adjust pointer */
268 ip6 = mtod(m, struct ip6_hdr *);
269
270 /* adjust mbuf packet header length */
271 m->m_pkthdr.len += optlen;
272 plen = m->m_pkthdr.len - sizeof(*ip6);
273
274 /* If this is a jumbo payload, insert a jumbo payload option. */
275 if (plen > IPV6_MAXPACKET) {
276 if (!hdrsplit) {
277 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
278 m = NULL;
279 goto freehdrs;
280 }
281 m = exthdrs.ip6e_ip6;
282 hdrsplit++;
283 }
284 /* adjust pointer */
285 ip6 = mtod(m, struct ip6_hdr *);
286 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
287 goto freehdrs;
288 ip6->ip6_plen = 0;
289 } else
290 ip6->ip6_plen = htons(plen);
291
292 /*
293 * Concatenate headers and fill in next header fields.
294 * Here we have, on "m"
295 * IPv6 payload or
296 * IPv6 [esp* dest2 payload]
297 * and we insert headers accordingly. Finally, we should be getting:
298 * IPv6 hbh dest1 rthdr ah* dest2 payload or
299 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
300 */
301 {
302 u_char *nexthdrp = &ip6->ip6_nxt;
303 struct mbuf *mprev = m;
304
305 /*
306 * we treat dest2 specially. this makes IPsec processing
307 * much easier.
308 */
309 if (exthdrs.ip6e_dest2) {
310 if (!hdrsplit)
311 panic("assumption failed: hdr not split");
312 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
313 ip6->ip6_nxt = IPPROTO_DSTOPTS;
314 }
315
316 #define MAKE_CHAIN(m,mp,p,i)\
317 {\
318 if (m) {\
319 if (!hdrsplit) \
320 panic("assumption failed: hdr not split"); \
321 *mtod((m), u_char *) = *(p);\
322 *(p) = (i);\
323 p = mtod((m), u_char *);\
324 (m)->m_next = (mp)->m_next;\
325 (mp)->m_next = (m);\
326 (mp) = (m);\
327 }\
328 }
329 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev,
330 nexthdrp, IPPROTO_HOPOPTS);
331 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev,
332 nexthdrp, IPPROTO_DSTOPTS);
333 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev,
334 nexthdrp, IPPROTO_ROUTING);
335
336 #ifdef IPSEC
337 if (!needipsec)
338 goto skip_ipsec2;
339
340 /*
341 * pointers after IPsec headers are not valid any more.
342 * other pointers need a great care too.
343 * (IPsec routines should not mangle mbufs prior to AH/ESP)
344 */
345 exthdrs.ip6e_dest2 = NULL;
346
347 {
348 struct ip6_rthdr *rh = NULL;
349 int segleft_org = 0;
350 struct ipsec_output_state state;
351
352 if (exthdrs.ip6e_rthdr) {
353 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
354 segleft_org = rh->ip6r_segleft;
355 rh->ip6r_segleft = 0;
356 }
357
358 bzero(&state, sizeof(state));
359 state.m = m;
360 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
361 &needipsectun);
362 m = state.m;
363 if (error) {
364 /* mbuf is already reclaimed in ipsec6_output_trans. */
365 m = NULL;
366 switch (error) {
367 case EHOSTUNREACH:
368 case ENETUNREACH:
369 case EMSGSIZE:
370 case ENOBUFS:
371 case ENOMEM:
372 break;
373 default:
374 printf("ip6_output (ipsec): error code %d\n", error);
375 /*fall through*/
376 case ENOENT:
377 /* don't show these error codes to the user */
378 error = 0;
379 break;
380 }
381 goto bad;
382 }
383 if (exthdrs.ip6e_rthdr) {
384 /* ah6_output doesn't modify mbuf chain */
385 rh->ip6r_segleft = segleft_org;
386 }
387 }
388 skip_ipsec2:;
389 #endif
390 }
391
392 /*
393 * If there is a routing header, replace destination address field
394 * with the first hop of the routing header.
395 */
396 if (exthdrs.ip6e_rthdr) {
397 struct ip6_rthdr *rh =
398 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
399 struct ip6_rthdr *));
400 struct ip6_rthdr0 *rh0;
401
402 finaldst = ip6->ip6_dst;
403 switch(rh->ip6r_type) {
404 case IPV6_RTHDR_TYPE_0:
405 rh0 = (struct ip6_rthdr0 *)rh;
406 ip6->ip6_dst = rh0->ip6r0_addr[0];
407 bcopy((caddr_t)&rh0->ip6r0_addr[1],
408 (caddr_t)&rh0->ip6r0_addr[0],
409 sizeof(struct in6_addr)*(rh0->ip6r0_segleft - 1)
410 );
411 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst;
412 break;
413 default: /* is it possible? */
414 error = EINVAL;
415 goto bad;
416 }
417 }
418
419 /* Source address validation */
420 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
421 (flags & IPV6_DADOUTPUT) == 0) {
422 error = EOPNOTSUPP;
423 ip6stat.ip6s_badscope++;
424 goto bad;
425 }
426 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
427 error = EOPNOTSUPP;
428 ip6stat.ip6s_badscope++;
429 goto bad;
430 }
431
432 ip6stat.ip6s_localout++;
433
434 /*
435 * Route packet.
436 */
437 if (ro == 0) {
438 ro = &ip6route;
439 bzero((caddr_t)ro, sizeof(*ro));
440 }
441 ro_pmtu = ro;
442 if (opt && opt->ip6po_rthdr)
443 ro = &opt->ip6po_route;
444 dst = (struct sockaddr_in6 *)&ro->ro_dst;
445 /*
446 * If there is a cached route,
447 * check that it is to the same destination
448 * and is still up. If not, free it and try again.
449 */
450 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
451 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
452 RTFREE(ro->ro_rt);
453 ro->ro_rt = (struct rtentry *)0;
454 }
455 if (ro->ro_rt == 0) {
456 bzero(dst, sizeof(*dst));
457 dst->sin6_family = AF_INET6;
458 dst->sin6_len = sizeof(struct sockaddr_in6);
459 dst->sin6_addr = ip6->ip6_dst;
460 }
461 #ifdef IPSEC
462 if (needipsec && needipsectun) {
463 struct ipsec_output_state state;
464
465 /*
466 * All the extension headers will become inaccessible
467 * (since they can be encrypted).
468 * Don't panic, we need no more updates to extension headers
469 * on inner IPv6 packet (since they are now encapsulated).
470 *
471 * IPv6 [ESP|AH] IPv6 [extension headers] payload
472 */
473 bzero(&exthdrs, sizeof(exthdrs));
474 exthdrs.ip6e_ip6 = m;
475
476 bzero(&state, sizeof(state));
477 state.m = m;
478 state.ro = (struct route *)ro;
479 state.dst = (struct sockaddr *)dst;
480
481 error = ipsec6_output_tunnel(&state, sp, flags);
482
483 m = state.m;
484 ro = (struct route_in6 *)state.ro;
485 dst = (struct sockaddr_in6 *)state.dst;
486 if (error) {
487 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
488 m0 = m = NULL;
489 m = NULL;
490 switch (error) {
491 case EHOSTUNREACH:
492 case ENETUNREACH:
493 case EMSGSIZE:
494 case ENOBUFS:
495 case ENOMEM:
496 break;
497 default:
498 printf("ip6_output (ipsec): error code %d\n", error);
499 /*fall through*/
500 case ENOENT:
501 /* don't show these error codes to the user */
502 error = 0;
503 break;
504 }
505 goto bad;
506 }
507
508 exthdrs.ip6e_ip6 = m;
509 }
510 #endif /*IPESC*/
511
512 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
513 /* Unicast */
514
515 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
516 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
517 /* xxx
518 * interface selection comes here
519 * if an interface is specified from an upper layer,
520 * ifp must point it.
521 */
522 if (ro->ro_rt == 0) {
523 #ifdef __NetBSD__
524 /*
525 * NetBSD always clones routes, if parent is
526 * PRF_CLONING.
527 */
528 rtalloc((struct route *)ro);
529 #else
530 if (ro == &ip6route) /* xxx kazu */
531 rtalloc((struct route *)ro);
532 else
533 rtcalloc((struct route *)ro);
534 #endif
535 }
536 if (ro->ro_rt == 0) {
537 ip6stat.ip6s_noroute++;
538 error = EHOSTUNREACH;
539 goto bad;
540 }
541 ia = ifatoia6(ro->ro_rt->rt_ifa);
542 ifp = ro->ro_rt->rt_ifp;
543 ro->ro_rt->rt_use++;
544 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
545 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
546 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
547
548 /*
549 * Check if there is the outgoing interface conflicts with
550 * the interface specified by ifi6_ifindex(if specified).
551 * Note that loopback interface is always okay.
552 * (this happens when we are sending packet toward my
553 * interface)
554 */
555 if (opt && opt->ip6po_pktinfo
556 && opt->ip6po_pktinfo->ipi6_ifindex) {
557 if (!(ifp->if_flags & IFF_LOOPBACK)
558 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
559 ip6stat.ip6s_noroute++;
560 error = EHOSTUNREACH;
561 goto bad;
562 }
563 }
564
565 if (opt && opt->ip6po_hlim != -1)
566 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
567 } else {
568 /* Multicast */
569 struct in6_multi *in6m;
570
571 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
572
573 /*
574 * See if the caller provided any multicast options
575 */
576 ifp = NULL;
577 if (im6o != NULL) {
578 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
579 if (im6o->im6o_multicast_ifp != NULL)
580 ifp = im6o->im6o_multicast_ifp;
581 } else
582 ip6->ip6_hlim = ip6_defmcasthlim;
583
584 /*
585 * See if the caller provided the outgoing interface
586 * as an ancillary data.
587 * Boundary check for ifindex is assumed to be already done.
588 */
589 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
590 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
591
592 /*
593 * If the destination is a node-local scope multicast,
594 * the packet should be loop-backed only.
595 */
596 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
597 /*
598 * If the outgoing interface is already specified,
599 * it should be a loopback interface.
600 */
601 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
602 ip6stat.ip6s_badscope++;
603 error = ENETUNREACH; /* XXX: better error? */
604 goto bad;
605 }
606 else {
607 #ifdef __bsdi__
608 ifp = &loif;
609 #else
610 ifp = &loif[0];
611 #endif
612 }
613 }
614
615 if (opt && opt->ip6po_hlim != -1)
616 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
617
618 /*
619 * If caller did not provide an interface lookup a
620 * default in the routing table. This is either a
621 * default for the speicfied group (i.e. a host
622 * route), or a multicast default (a route for the
623 * ``net'' ff00::/8).
624 */
625 if (ifp == NULL) {
626 if (ro->ro_rt == 0) {
627 #ifdef __FreeBSD__
628 ro->ro_rt = rtalloc1((struct sockaddr *)
629 &ro->ro_dst, 0, 0UL);
630 #endif /*__FreeBSD__*/
631 #if defined(__bsdi__) || defined(__NetBSD__)
632 ro->ro_rt = rtalloc1((struct sockaddr *)
633 &ro->ro_dst, 0);
634 #endif /*__bsdi__*/
635 }
636 if (ro->ro_rt == 0) {
637 ip6stat.ip6s_noroute++;
638 error = EHOSTUNREACH;
639 goto bad;
640 }
641 ia = ifatoia6(ro->ro_rt->rt_ifa);
642 ifp = ro->ro_rt->rt_ifp;
643 ro->ro_rt->rt_use++;
644 }
645 /*
646 * Confirm that the outgoing interface supports multicast.
647 */
648 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
649 ip6stat.ip6s_noroute++;
650 error = ENETUNREACH;
651 goto bad;
652 }
653 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
654 if (in6m != NULL &&
655 (im6o == NULL || im6o->im6o_multicast_loop)) {
656 /*
657 * If we belong to the destination multicast group
658 * on the outgoing interface, and the caller did not
659 * forbid loopback, loop back a copy.
660 */
661 ip6_mloopback(ifp, m, dst);
662 } else {
663 /*
664 * If we are acting as a multicast router, perform
665 * multicast forwarding as if the packet had just
666 * arrived on the interface to which we are about
667 * to send. The multicast forwarding function
668 * recursively calls this function, using the
669 * IPV6_FORWARDING flag to prevent infinite recursion.
670 *
671 * Multicasts that are looped back by ip6_mloopback(),
672 * above, will be forwarded by the ip6_input() routine,
673 * if necessary.
674 */
675 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
676 if (ip6_mforward(ip6, ifp, m) != NULL) {
677 m_freem(m);
678 goto done;
679 }
680 }
681 }
682 /*
683 * Multicasts with a hoplimit of zero may be looped back,
684 * above, but must not be transmitted on a network.
685 * Also, multicasts addressed to the loopback interface
686 * are not sent -- the above call to ip6_mloopback() will
687 * loop back a copy if this host actually belongs to the
688 * destination group on the loopback interface.
689 */
690 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
691 m_freem(m);
692 goto done;
693 }
694 }
695
696 /*
697 * Determine path MTU.
698 */
699 if (ro_pmtu != ro) {
700 /* The first hop and the final destination may differ. */
701 struct sockaddr_in6 *sin6_fin =
702 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
703 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
704 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr,
705 &finaldst))) {
706 RTFREE(ro_pmtu->ro_rt);
707 ro_pmtu->ro_rt = (struct rtentry *)0;
708 }
709 if (ro_pmtu->ro_rt == 0) {
710 bzero(sin6_fin, sizeof(*sin6_fin));
711 sin6_fin->sin6_family = AF_INET6;
712 sin6_fin->sin6_len = sizeof(struct sockaddr_in6);
713 sin6_fin->sin6_addr = finaldst;
714
715 #if 0
716 rtcalloc((struct route *)ro_pmtu);
717 #else
718 rtalloc((struct route *)ro_pmtu);
719 #endif
720 }
721 }
722 if (ro_pmtu->ro_rt != NULL) {
723 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu;
724
725 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
726 if (mtu > ifmtu) {
727 /*
728 * The MTU on the route is larger than the MTU on
729 * the interface! This shouldn't happen, unless the
730 * MTU of the interface has been changed after the
731 * interface was brought up. Change the MTU in the
732 * route to match the interface MTU (as long as the
733 * field isn't locked).
734 */
735 mtu = ifmtu;
736 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
737 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */
738 }
739 } else {
740 mtu = nd_ifinfo[ifp->if_index].linkmtu;
741 }
742
743 /*
744 * Fake link-local scope-class addresses
745 */
746 if ((ifp->if_flags & IFF_LOOPBACK) == 0) {
747 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
748 ip6->ip6_src.s6_addr16[1] = 0;
749 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
750 ip6->ip6_dst.s6_addr16[1] = 0;
751 }
752
753 /*
754 * If the outgoing packet contains a hop-by-hop options header,
755 * it must be examined and processed even by the source node.
756 * (RFC 2460, section 4.)
757 */
758 if (exthdrs.ip6e_hbh) {
759 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh,
760 struct ip6_hbh *);
761 u_int32_t dummy1; /* XXX unused */
762 u_int32_t dummy2; /* XXX unused */
763
764 /*
765 * XXX: if we have to send an ICMPv6 error to the sender,
766 * we need the M_LOOP flag since icmp6_error() expects
767 * the IPv6 and the hop-by-hop options header are
768 * continuous unless the flag is set.
769 */
770 m->m_flags |= M_LOOP;
771 m->m_pkthdr.rcvif = ifp;
772 if (ip6_process_hopopts(m,
773 (u_int8_t *)(hbh + 1),
774 ((hbh->ip6h_len + 1) << 3) -
775 sizeof(struct ip6_hbh),
776 &dummy1, &dummy2) < 0) {
777 /* m was already freed at this point */
778 error = EINVAL;/* better error? */
779 goto done;
780 }
781 m->m_flags &= ~M_LOOP; /* XXX */
782 m->m_pkthdr.rcvif = NULL;
783 }
784
785 /*
786 * Send the packet to the outgoing interface.
787 * If necessary, do IPv6 fragmentation before sending.
788 */
789 tlen = m->m_pkthdr.len;
790 if (tlen <= mtu
791 #ifdef notyet
792 /*
793 * On any link that cannot convey a 1280-octet packet in one piece,
794 * link-specific fragmentation and reassembly must be provided at
795 * a layer below IPv6. [RFC 2460, sec.5]
796 * Thus if the interface has ability of link-level fragmentation,
797 * we can just send the packet even if the packet size is
798 * larger than the link's MTU.
799 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet...
800 */
801
802 || ifp->if_flags & IFF_FRAGMENTABLE
803 #endif
804 )
805 {
806 #ifdef NEWIP6OUTPUT
807 error = nd6_output(ifp, m, dst, ro->ro_rt);
808 #else
809 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst,
810 ro->ro_rt);
811 #endif
812 goto done;
813 } else if (mtu < IPV6_MMTU) {
814 /*
815 * note that path MTU is never less than IPV6_MMTU
816 * (see icmp6_input).
817 */
818 error = EMSGSIZE;
819 goto bad;
820 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
821 error = EMSGSIZE;
822 goto bad;
823 } else {
824 struct mbuf **mnext, *m_frgpart;
825 struct ip6_frag *ip6f;
826 u_int32_t id = htonl(ip6_id++);
827 u_char nextproto;
828
829 /*
830 * Too large for the destination or interface;
831 * fragment if possible.
832 * Must be able to put at least 8 bytes per fragment.
833 */
834 hlen = unfragpartlen;
835 if (mtu > IPV6_MAXPACKET)
836 mtu = IPV6_MAXPACKET;
837 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
838 if (len < 8) {
839 error = EMSGSIZE;
840 goto bad;
841 }
842
843 mnext = &m->m_nextpkt;
844
845 /*
846 * Change the next header field of the last header in the
847 * unfragmentable part.
848 */
849 if (exthdrs.ip6e_rthdr) {
850 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
851 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
852 }
853 else if (exthdrs.ip6e_dest1) {
854 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
855 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
856 }
857 else if (exthdrs.ip6e_hbh) {
858 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
859 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
860 }
861 else {
862 nextproto = ip6->ip6_nxt;
863 ip6->ip6_nxt = IPPROTO_FRAGMENT;
864 }
865
866 /*
867 * Loop through length of segment after first fragment,
868 * make new header and copy data of each part and link onto chain.
869 */
870 m0 = m;
871 for (off = hlen; off < tlen; off += len) {
872 MGETHDR(m, M_DONTWAIT, MT_HEADER);
873 if (!m) {
874 error = ENOBUFS;
875 ip6stat.ip6s_odropped++;
876 goto sendorfree;
877 }
878 m->m_flags = m0->m_flags & M_COPYFLAGS;
879 *mnext = m;
880 mnext = &m->m_nextpkt;
881 m->m_data += max_linkhdr;
882 mhip6 = mtod(m, struct ip6_hdr *);
883 *mhip6 = *ip6;
884 m->m_len = sizeof(*mhip6);
885 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
886 if (error) {
887 ip6stat.ip6s_odropped++;
888 goto sendorfree;
889 }
890 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
891 if (off + len >= tlen)
892 len = tlen - off;
893 else
894 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
895 mhip6->ip6_plen = htons((u_short)(len + hlen +
896 sizeof(*ip6f) -
897 sizeof(struct ip6_hdr)));
898 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
899 error = ENOBUFS;
900 ip6stat.ip6s_odropped++;
901 goto sendorfree;
902 }
903 m_cat(m, m_frgpart);
904 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
905 m->m_pkthdr.rcvif = (struct ifnet *)0;
906 ip6f->ip6f_reserved = 0;
907 ip6f->ip6f_ident = id;
908 ip6f->ip6f_nxt = nextproto;
909 ip6stat.ip6s_ofragments++;
910 }
911 }
912
913 /*
914 * Remove leading garbages.
915 */
916 sendorfree:
917 m = m0->m_nextpkt;
918 m0->m_nextpkt = 0;
919 m_freem(m0);
920 for (m0 = m; m; m = m0) {
921 m0 = m->m_nextpkt;
922 m->m_nextpkt = 0;
923 if (error == 0) {
924 #ifdef NEWIP6OUTPUT
925 error = nd6_output(ifp, m, dst, ro->ro_rt);
926 #else
927 error = (*ifp->if_output)(ifp, m,
928 (struct sockaddr *)dst,
929 ro->ro_rt);
930 #endif
931 }
932 else
933 m_freem(m);
934 }
935
936 if (error == 0)
937 ip6stat.ip6s_fragmented++;
938
939 done:
940 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
941 RTFREE(ro->ro_rt);
942 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
943 RTFREE(ro_pmtu->ro_rt);
944 }
945
946 #ifdef IPSEC
947 if (sp != NULL)
948 key_freesp(sp);
949 #endif /* IPSEC */
950
951 return(error);
952
953 freehdrs:
954 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
955 m_freem(exthdrs.ip6e_dest1);
956 m_freem(exthdrs.ip6e_rthdr);
957 m_freem(exthdrs.ip6e_dest2);
958 /* fall through */
959 bad:
960 m_freem(m);
961 goto done;
962 }
963
964 static int
965 ip6_copyexthdr(mp, hdr, hlen)
966 struct mbuf **mp;
967 caddr_t hdr;
968 int hlen;
969 {
970 struct mbuf *m;
971
972 if (hlen > MCLBYTES)
973 return(ENOBUFS); /* XXX */
974
975 MGET(m, M_DONTWAIT, MT_DATA);
976 if (!m)
977 return(ENOBUFS);
978
979 if (hlen > MLEN) {
980 MCLGET(m, M_DONTWAIT);
981 if ((m->m_flags & M_EXT) == 0) {
982 m_free(m);
983 return(ENOBUFS);
984 }
985 }
986 m->m_len = hlen;
987 if (hdr)
988 bcopy(hdr, mtod(m, caddr_t), hlen);
989
990 *mp = m;
991 return(0);
992 }
993
994 /*
995 * Insert jumbo payload option.
996 */
997 static int
998 ip6_insert_jumboopt(exthdrs, plen)
999 struct ip6_exthdrs *exthdrs;
1000 u_int32_t plen;
1001 {
1002 struct mbuf *mopt;
1003 u_char *optbuf;
1004
1005 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1006
1007 /*
1008 * If there is no hop-by-hop options header, allocate new one.
1009 * If there is one but it doesn't have enough space to store the
1010 * jumbo payload option, allocate a cluster to store the whole options.
1011 * Otherwise, use it to store the options.
1012 */
1013 if (exthdrs->ip6e_hbh == 0) {
1014 MGET(mopt, M_DONTWAIT, MT_DATA);
1015 if (mopt == 0)
1016 return(ENOBUFS);
1017 mopt->m_len = JUMBOOPTLEN;
1018 optbuf = mtod(mopt, u_char *);
1019 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1020 exthdrs->ip6e_hbh = mopt;
1021 }
1022 else {
1023 struct ip6_hbh *hbh;
1024
1025 mopt = exthdrs->ip6e_hbh;
1026 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1027 caddr_t oldoptp = mtod(mopt, caddr_t);
1028 int oldoptlen = mopt->m_len;
1029
1030 if (mopt->m_flags & M_EXT)
1031 return(ENOBUFS); /* XXX */
1032 MCLGET(mopt, M_DONTWAIT);
1033 if ((mopt->m_flags & M_EXT) == 0)
1034 return(ENOBUFS);
1035
1036 bcopy(oldoptp, mtod(mopt, caddr_t), oldoptlen);
1037 optbuf = mtod(mopt, caddr_t) + oldoptlen;
1038 mopt->m_len = oldoptlen + JUMBOOPTLEN;
1039 }
1040 else {
1041 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1042 mopt->m_len += JUMBOOPTLEN;
1043 }
1044 optbuf[0] = IP6OPT_PADN;
1045 optbuf[1] = 1;
1046
1047 /*
1048 * Adjust the header length according to the pad and
1049 * the jumbo payload option.
1050 */
1051 hbh = mtod(mopt, struct ip6_hbh *);
1052 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1053 }
1054
1055 /* fill in the option. */
1056 optbuf[2] = IP6OPT_JUMBO;
1057 optbuf[3] = 4;
1058 *(u_int32_t *)&optbuf[4] = htonl(plen + JUMBOOPTLEN);
1059
1060 /* finally, adjust the packet header length */
1061 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1062
1063 return(0);
1064 #undef JUMBOOPTLEN
1065 }
1066
1067 /*
1068 * Insert fragment header and copy unfragmentable header portions.
1069 */
1070 static int
1071 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1072 struct mbuf *m0, *m;
1073 int hlen;
1074 struct ip6_frag **frghdrp;
1075 {
1076 struct mbuf *n, *mlast;
1077
1078 if (hlen > sizeof(struct ip6_hdr)) {
1079 n = m_copym(m0, sizeof(struct ip6_hdr),
1080 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1081 if (n == 0)
1082 return(ENOBUFS);
1083 m->m_next = n;
1084 }
1085 else
1086 n = m;
1087
1088 /* Search for the last mbuf of unfragmentable part. */
1089 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1090 ;
1091
1092 if ((mlast->m_flags & M_EXT) == 0 &&
1093 M_TRAILINGSPACE(mlast) < sizeof(struct ip6_frag)) {
1094 /* use the trailing space of the last mbuf for the fragment hdr */
1095 *frghdrp =
1096 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
1097 mlast->m_len += sizeof(struct ip6_frag);
1098 m->m_pkthdr.len += sizeof(struct ip6_frag);
1099 }
1100 else {
1101 /* allocate a new mbuf for the fragment header */
1102 struct mbuf *mfrg;
1103
1104 MGET(mfrg, M_DONTWAIT, MT_DATA);
1105 if (mfrg == 0)
1106 return(ENOBUFS);
1107 mfrg->m_len = sizeof(struct ip6_frag);
1108 *frghdrp = mtod(mfrg, struct ip6_frag *);
1109 mlast->m_next = mfrg;
1110 }
1111
1112 return(0);
1113 }
1114
1115 /*
1116 * IP6 socket option processing.
1117 */
1118 int
1119 ip6_ctloutput(op, so, level, optname, mp)
1120 int op;
1121 struct socket *so;
1122 int level, optname;
1123 struct mbuf **mp;
1124 {
1125 register struct in6pcb *in6p = sotoin6pcb(so);
1126 register struct mbuf *m = *mp;
1127 register int optval = 0;
1128 int error = 0;
1129 struct proc *p = curproc; /* XXX */
1130
1131 if (level == IPPROTO_IPV6)
1132 switch (op) {
1133
1134 case PRCO_SETOPT:
1135 switch (optname) {
1136 case IPV6_PKTOPTIONS:
1137 return(ip6_pcbopts(&in6p->in6p_outputopts,
1138 m, so));
1139 case IPV6_HOPOPTS:
1140 case IPV6_DSTOPTS:
1141 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1142 error = EPERM;
1143 break;
1144 }
1145 /* fall through */
1146 case IPV6_UNICAST_HOPS:
1147 case IPV6_RECVOPTS:
1148 case IPV6_RECVRETOPTS:
1149 case IPV6_RECVDSTADDR:
1150 case IPV6_PKTINFO:
1151 case IPV6_HOPLIMIT:
1152 case IPV6_RTHDR:
1153 case IPV6_CHECKSUM:
1154 case IPV6_FAITH:
1155 if (!m || m->m_len != sizeof(int))
1156 error = EINVAL;
1157 else {
1158 optval = *mtod(m, int *);
1159 switch (optname) {
1160
1161 case IPV6_UNICAST_HOPS:
1162 if (optval < -1 || optval >= 256)
1163 error = EINVAL;
1164 else {
1165 /* -1 = kernel default */
1166 in6p->in6p_hops = optval;
1167 }
1168 break;
1169 #define OPTSET(bit) \
1170 if (optval) \
1171 in6p->in6p_flags |= bit; \
1172 else \
1173 in6p->in6p_flags &= ~bit;
1174
1175 case IPV6_RECVOPTS:
1176 OPTSET(IN6P_RECVOPTS);
1177 break;
1178
1179 case IPV6_RECVRETOPTS:
1180 OPTSET(IN6P_RECVRETOPTS);
1181 break;
1182
1183 case IPV6_RECVDSTADDR:
1184 OPTSET(IN6P_RECVDSTADDR);
1185 break;
1186
1187 case IPV6_PKTINFO:
1188 OPTSET(IN6P_PKTINFO);
1189 break;
1190
1191 case IPV6_HOPLIMIT:
1192 OPTSET(IN6P_HOPLIMIT);
1193 break;
1194
1195 case IPV6_HOPOPTS:
1196 OPTSET(IN6P_HOPOPTS);
1197 break;
1198
1199 case IPV6_DSTOPTS:
1200 OPTSET(IN6P_DSTOPTS);
1201 break;
1202
1203 case IPV6_RTHDR:
1204 OPTSET(IN6P_RTHDR);
1205 break;
1206
1207 case IPV6_CHECKSUM:
1208 in6p->in6p_cksum = optval;
1209 break;
1210
1211 case IPV6_FAITH:
1212 OPTSET(IN6P_FAITH);
1213 break;
1214 }
1215 }
1216 break;
1217 #undef OPTSET
1218
1219 case IPV6_MULTICAST_IF:
1220 case IPV6_MULTICAST_HOPS:
1221 case IPV6_MULTICAST_LOOP:
1222 case IPV6_JOIN_GROUP:
1223 case IPV6_LEAVE_GROUP:
1224 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m);
1225 break;
1226
1227 #ifdef IPSEC
1228 case IPV6_IPSEC_POLICY:
1229 {
1230 caddr_t req = NULL;
1231 int len = 0;
1232 int priv = 0;
1233 #ifdef __NetBSD__
1234 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1235 priv = 0;
1236 else
1237 priv = 1;
1238 #else
1239 priv = (in6p->in6p_socket->so_state & SS_PRIV);
1240 #endif
1241 if (m != 0) {
1242 req = mtod(m, caddr_t);
1243 len = m->m_len;
1244 }
1245 error = ipsec_set_policy(&in6p->in6p_sp,
1246 optname, req, len,
1247 priv);
1248 }
1249 break;
1250 #endif /* IPSEC */
1251
1252 default:
1253 error = ENOPROTOOPT;
1254 break;
1255 }
1256 if (m)
1257 (void)m_free(m);
1258 break;
1259
1260 case PRCO_GETOPT:
1261 switch (optname) {
1262
1263 case IPV6_OPTIONS:
1264 case IPV6_RETOPTS:
1265 #if 0
1266 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1267 if (in6p->in6p_options) {
1268 m->m_len = in6p->in6p_options->m_len;
1269 bcopy(mtod(in6p->in6p_options, caddr_t),
1270 mtod(m, caddr_t),
1271 (unsigned)m->m_len);
1272 } else
1273 m->m_len = 0;
1274 break;
1275 #else
1276 error = ENOPROTOOPT;
1277 break;
1278 #endif
1279
1280 case IPV6_PKTOPTIONS:
1281 if (in6p->in6p_options) {
1282 *mp = m_copym(in6p->in6p_options, 0,
1283 M_COPYALL, M_WAIT);
1284 } else {
1285 *mp = m_get(M_WAIT, MT_SOOPTS);
1286 (*mp)->m_len = 0;
1287 }
1288 break;
1289
1290 case IPV6_HOPOPTS:
1291 case IPV6_DSTOPTS:
1292 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1293 error = EPERM;
1294 break;
1295 }
1296 /* fall through */
1297 case IPV6_UNICAST_HOPS:
1298 case IPV6_RECVOPTS:
1299 case IPV6_RECVRETOPTS:
1300 case IPV6_RECVDSTADDR:
1301 case IPV6_PKTINFO:
1302 case IPV6_HOPLIMIT:
1303 case IPV6_RTHDR:
1304 case IPV6_CHECKSUM:
1305 case IPV6_FAITH:
1306 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1307 m->m_len = sizeof(int);
1308 switch (optname) {
1309
1310 case IPV6_UNICAST_HOPS:
1311 optval = in6p->in6p_hops;
1312 break;
1313
1314 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1315
1316 case IPV6_RECVOPTS:
1317 optval = OPTBIT(IN6P_RECVOPTS);
1318 break;
1319
1320 case IPV6_RECVRETOPTS:
1321 optval = OPTBIT(IN6P_RECVRETOPTS);
1322 break;
1323
1324 case IPV6_RECVDSTADDR:
1325 optval = OPTBIT(IN6P_RECVDSTADDR);
1326 break;
1327
1328 case IPV6_PKTINFO:
1329 optval = OPTBIT(IN6P_PKTINFO);
1330 break;
1331
1332 case IPV6_HOPLIMIT:
1333 optval = OPTBIT(IN6P_HOPLIMIT);
1334 break;
1335
1336 case IPV6_HOPOPTS:
1337 optval = OPTBIT(IN6P_HOPOPTS);
1338 break;
1339
1340 case IPV6_DSTOPTS:
1341 optval = OPTBIT(IN6P_DSTOPTS);
1342 break;
1343
1344 case IPV6_RTHDR:
1345 optval = OPTBIT(IN6P_RTHDR);
1346 break;
1347
1348 case IPV6_CHECKSUM:
1349 optval = in6p->in6p_cksum;
1350 break;
1351
1352 case IPV6_FAITH:
1353 optval = OPTBIT(IN6P_FAITH);
1354 break;
1355 }
1356 *mtod(m, int *) = optval;
1357 break;
1358
1359 case IPV6_MULTICAST_IF:
1360 case IPV6_MULTICAST_HOPS:
1361 case IPV6_MULTICAST_LOOP:
1362 case IPV6_JOIN_GROUP:
1363 case IPV6_LEAVE_GROUP:
1364 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1365 break;
1366
1367 #ifdef IPSEC
1368 case IPV6_IPSEC_POLICY:
1369 error = ipsec_get_policy(in6p->in6p_sp, mp);
1370 break;
1371 #endif /* IPSEC */
1372
1373 default:
1374 error = ENOPROTOOPT;
1375 break;
1376 }
1377 break;
1378 }
1379 else {
1380 error = EINVAL;
1381 if (op == PRCO_SETOPT && *mp)
1382 (void)m_free(*mp);
1383 }
1384 return(error);
1385 }
1386
1387 /*
1388 * Set up IP6 options in pcb for insertion in output packets.
1389 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1390 * with destination address if source routed.
1391 */
1392 static int
1393 ip6_pcbopts(pktopt, m, so)
1394 struct ip6_pktopts **pktopt;
1395 register struct mbuf *m;
1396 struct socket *so;
1397 {
1398 register struct ip6_pktopts *opt = *pktopt;
1399 int error = 0;
1400 struct proc *p = curproc; /* XXX */
1401 int priv = 0;
1402
1403 /* turn off any old options. */
1404 if (opt) {
1405 if (opt->ip6po_m)
1406 (void)m_free(opt->ip6po_m);
1407 }
1408 else
1409 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1410 *pktopt = 0;
1411
1412 if (!m || m->m_len == 0) {
1413 /*
1414 * Only turning off any previous options.
1415 */
1416 if (opt)
1417 free(opt, M_IP6OPT);
1418 if (m)
1419 (void)m_free(m);
1420 return(0);
1421 }
1422
1423 /* set options specified by user. */
1424 if (p && !suser(p->p_ucred, &p->p_acflag))
1425 priv = 1;
1426 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1427 (void)m_free(m);
1428 return(error);
1429 }
1430 *pktopt = opt;
1431 return(0);
1432 }
1433
1434 /*
1435 * Set the IP6 multicast options in response to user setsockopt().
1436 */
1437 static int
1438 ip6_setmoptions(optname, im6op, m)
1439 int optname;
1440 struct ip6_moptions **im6op;
1441 struct mbuf *m;
1442 {
1443 int error = 0;
1444 u_int loop, ifindex;
1445 struct ipv6_mreq *mreq;
1446 struct ifnet *ifp;
1447 struct ip6_moptions *im6o = *im6op;
1448 struct route_in6 ro;
1449 struct sockaddr_in6 *dst;
1450 struct in6_multi_mship *imm;
1451 struct proc *p = curproc; /* XXX */
1452
1453 if (im6o == NULL) {
1454 /*
1455 * No multicast option buffer attached to the pcb;
1456 * allocate one and initialize to default values.
1457 */
1458 im6o = (struct ip6_moptions *)
1459 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1460
1461 if (im6o == NULL)
1462 return(ENOBUFS);
1463 *im6op = im6o;
1464 im6o->im6o_multicast_ifp = NULL;
1465 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1466 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1467 LIST_INIT(&im6o->im6o_memberships);
1468 }
1469
1470 switch (optname) {
1471
1472 case IPV6_MULTICAST_IF:
1473 /*
1474 * Select the interface for outgoing multicast packets.
1475 */
1476 if (m == NULL || m->m_len != sizeof(u_int)) {
1477 error = EINVAL;
1478 break;
1479 }
1480 ifindex = *(mtod(m, u_int *));
1481 if (ifindex < 0 || if_index < ifindex) {
1482 error = ENXIO; /* XXX EINVAL? */
1483 break;
1484 }
1485 ifp = ifindex2ifnet[ifindex];
1486 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1487 error = EADDRNOTAVAIL;
1488 break;
1489 }
1490 im6o->im6o_multicast_ifp = ifp;
1491 break;
1492
1493 case IPV6_MULTICAST_HOPS:
1494 {
1495 /*
1496 * Set the IP6 hoplimit for outgoing multicast packets.
1497 */
1498 int optval;
1499 if (m == NULL || m->m_len != sizeof(int)) {
1500 error = EINVAL;
1501 break;
1502 }
1503 optval = *(mtod(m, u_int *));
1504 if (optval < -1 || optval >= 256)
1505 error = EINVAL;
1506 else if (optval == -1)
1507 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1508 else
1509 im6o->im6o_multicast_hlim = optval;
1510 break;
1511 }
1512
1513 case IPV6_MULTICAST_LOOP:
1514 /*
1515 * Set the loopback flag for outgoing multicast packets.
1516 * Must be zero or one.
1517 */
1518 if (m == NULL || m->m_len != sizeof(u_int) ||
1519 (loop = *(mtod(m, u_int *))) > 1) {
1520 error = EINVAL;
1521 break;
1522 }
1523 im6o->im6o_multicast_loop = loop;
1524 break;
1525
1526 case IPV6_JOIN_GROUP:
1527 /*
1528 * Add a multicast group membership.
1529 * Group must be a valid IP6 multicast address.
1530 */
1531 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1532 error = EINVAL;
1533 break;
1534 }
1535 mreq = mtod(m, struct ipv6_mreq *);
1536 if (IN6_IS_ADDR_ANY(&mreq->ipv6mr_multiaddr)) {
1537 /*
1538 * We use the unspecified address to specify to accept
1539 * all multicast addresses. Only super user is allowed
1540 * to do this.
1541 */
1542 if (suser(p->p_ucred, &p->p_acflag)) {
1543 error = EACCES;
1544 break;
1545 }
1546 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1547 error = EINVAL;
1548 break;
1549 }
1550
1551 /*
1552 * If the interface is specified, validate it.
1553 */
1554 if (mreq->ipv6mr_interface < 0
1555 || if_index < mreq->ipv6mr_interface) {
1556 error = ENXIO; /* XXX EINVAL? */
1557 break;
1558 }
1559 /*
1560 * If no interface was explicitly specified, choose an
1561 * appropriate one according to the given multicast address.
1562 */
1563 if (mreq->ipv6mr_interface == 0) {
1564 /*
1565 * If the multicast address is in node-local scope,
1566 * the interface should be a loopback interface.
1567 * Otherwise, look up the routing table for the
1568 * address, and choose the outgoing interface.
1569 * XXX: is it a good approach?
1570 */
1571 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1572 #ifdef __bsdi__
1573 ifp = &loif;
1574 #else
1575 ifp = &loif[0];
1576 #endif
1577 }
1578 else {
1579 ro.ro_rt = NULL;
1580 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1581 bzero(dst, sizeof(*dst));
1582 dst->sin6_len = sizeof(struct sockaddr_in6);
1583 dst->sin6_family = AF_INET6;
1584 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1585 rtalloc((struct route *)&ro);
1586 if (ro.ro_rt == NULL) {
1587 error = EADDRNOTAVAIL;
1588 break;
1589 }
1590 ifp = ro.ro_rt->rt_ifp;
1591 rtfree(ro.ro_rt);
1592 }
1593 } else
1594 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1595
1596 /*
1597 * See if we found an interface, and confirm that it
1598 * supports multicast
1599 */
1600 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1601 error = EADDRNOTAVAIL;
1602 break;
1603 }
1604 /*
1605 * Put interface index into the multicast address,
1606 * if the address has link-local scope.
1607 */
1608 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1609 mreq->ipv6mr_multiaddr.s6_addr16[1]
1610 = htons(mreq->ipv6mr_interface);
1611 }
1612 /*
1613 * See if the membership already exists.
1614 */
1615 for (imm = im6o->im6o_memberships.lh_first;
1616 imm != NULL; imm = imm->i6mm_chain.le_next)
1617 if (imm->i6mm_maddr->in6m_ifp == ifp &&
1618 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1619 &mreq->ipv6mr_multiaddr))
1620 break;
1621 if (imm != NULL) {
1622 error = EADDRINUSE;
1623 break;
1624 }
1625 /*
1626 * Everything looks good; add a new record to the multicast
1627 * address list for the given interface.
1628 */
1629 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
1630 if (imm == NULL) {
1631 error = ENOBUFS;
1632 break;
1633 }
1634 if ((imm->i6mm_maddr =
1635 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
1636 free(imm, M_IPMADDR);
1637 break;
1638 }
1639 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
1640 break;
1641
1642 case IPV6_LEAVE_GROUP:
1643 /*
1644 * Drop a multicast group membership.
1645 * Group must be a valid IP6 multicast address.
1646 */
1647 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1648 error = EINVAL;
1649 break;
1650 }
1651 mreq = mtod(m, struct ipv6_mreq *);
1652 if (IN6_IS_ADDR_ANY(&mreq->ipv6mr_multiaddr)) {
1653 if (suser(p->p_ucred, &p->p_acflag)) {
1654 error = EACCES;
1655 break;
1656 }
1657 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1658 error = EINVAL;
1659 break;
1660 }
1661 /*
1662 * If an interface address was specified, get a pointer
1663 * to its ifnet structure.
1664 */
1665 if (mreq->ipv6mr_interface < 0
1666 || if_index < mreq->ipv6mr_interface) {
1667 error = ENXIO; /* XXX EINVAL? */
1668 break;
1669 }
1670 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1671 /*
1672 * Put interface index into the multicast address,
1673 * if the address has link-local scope.
1674 */
1675 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1676 mreq->ipv6mr_multiaddr.s6_addr16[1]
1677 = htons(mreq->ipv6mr_interface);
1678 }
1679 /*
1680 * Find the membership in the membership list.
1681 */
1682 for (imm = im6o->im6o_memberships.lh_first;
1683 imm != NULL; imm = imm->i6mm_chain.le_next) {
1684 if ((ifp == NULL ||
1685 imm->i6mm_maddr->in6m_ifp == ifp) &&
1686 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1687 &mreq->ipv6mr_multiaddr))
1688 break;
1689 }
1690 if (imm == NULL) {
1691 /* Unable to resolve interface */
1692 error = EADDRNOTAVAIL;
1693 break;
1694 }
1695 /*
1696 * Give up the multicast address record to which the
1697 * membership points.
1698 */
1699 LIST_REMOVE(imm, i6mm_chain);
1700 in6_delmulti(imm->i6mm_maddr);
1701 free(imm, M_IPMADDR);
1702 break;
1703
1704 default:
1705 error = EOPNOTSUPP;
1706 break;
1707 }
1708
1709 /*
1710 * If all options have default values, no need to keep the mbuf.
1711 */
1712 if (im6o->im6o_multicast_ifp == NULL &&
1713 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
1714 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
1715 im6o->im6o_memberships.lh_first == NULL) {
1716 free(*im6op, M_IPMOPTS);
1717 *im6op = NULL;
1718 }
1719
1720 return(error);
1721 }
1722
1723 /*
1724 * Return the IP6 multicast options in response to user getsockopt().
1725 */
1726 static int
1727 ip6_getmoptions(optname, im6o, mp)
1728 int optname;
1729 register struct ip6_moptions *im6o;
1730 register struct mbuf **mp;
1731 {
1732 u_int *hlim, *loop, *ifindex;
1733
1734 *mp = m_get(M_WAIT, MT_SOOPTS);
1735
1736 switch (optname) {
1737
1738 case IPV6_MULTICAST_IF:
1739 ifindex = mtod(*mp, u_int *);
1740 (*mp)->m_len = sizeof(u_int);
1741 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
1742 *ifindex = 0;
1743 else
1744 *ifindex = im6o->im6o_multicast_ifp->if_index;
1745 return(0);
1746
1747 case IPV6_MULTICAST_HOPS:
1748 hlim = mtod(*mp, u_int *);
1749 (*mp)->m_len = sizeof(u_int);
1750 if (im6o == NULL)
1751 *hlim = ip6_defmcasthlim;
1752 else
1753 *hlim = im6o->im6o_multicast_hlim;
1754 return(0);
1755
1756 case IPV6_MULTICAST_LOOP:
1757 loop = mtod(*mp, u_int *);
1758 (*mp)->m_len = sizeof(u_int);
1759 if (im6o == NULL)
1760 *loop = ip6_defmcasthlim;
1761 else
1762 *loop = im6o->im6o_multicast_loop;
1763 return(0);
1764
1765 default:
1766 return(EOPNOTSUPP);
1767 }
1768 }
1769
1770 /*
1771 * Discard the IP6 multicast options.
1772 */
1773 void
1774 ip6_freemoptions(im6o)
1775 register struct ip6_moptions *im6o;
1776 {
1777 struct in6_multi_mship *imm;
1778
1779 if (im6o == NULL)
1780 return;
1781
1782 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
1783 LIST_REMOVE(imm, i6mm_chain);
1784 if (imm->i6mm_maddr)
1785 in6_delmulti(imm->i6mm_maddr);
1786 free(imm, M_IPMADDR);
1787 }
1788 free(im6o, M_IPMOPTS);
1789 }
1790
1791 /*
1792 * Set IPv6 outgoing packet options based on advanced API.
1793 */
1794 int
1795 ip6_setpktoptions(control, opt, priv)
1796 struct mbuf *control;
1797 struct ip6_pktopts *opt;
1798 int priv;
1799 {
1800 register struct cmsghdr *cm = 0;
1801
1802 if (control == 0 || opt == 0)
1803 return(EINVAL);
1804
1805 bzero(opt, sizeof(*opt));
1806 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
1807
1808 /*
1809 * XXX: Currently, we assume all the optional information is stored
1810 * in a single mbuf.
1811 */
1812 if (control->m_next)
1813 return(EINVAL);
1814
1815 opt->ip6po_m = control;
1816
1817 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
1818 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1819 cm = mtod(control, struct cmsghdr *);
1820 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
1821 return(EINVAL);
1822 if (cm->cmsg_level != IPPROTO_IPV6)
1823 continue;
1824
1825 switch(cm->cmsg_type) {
1826 case IPV6_PKTINFO:
1827 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
1828 return(EINVAL);
1829 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
1830 if (opt->ip6po_pktinfo->ipi6_ifindex &&
1831 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
1832 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
1833 htons(opt->ip6po_pktinfo->ipi6_ifindex);
1834
1835 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index
1836 || opt->ip6po_pktinfo->ipi6_ifindex < 0) {
1837 return(ENXIO);
1838 }
1839
1840 if (!IN6_IS_ADDR_ANY(&opt->ip6po_pktinfo->ipi6_addr)) {
1841 struct ifaddr *ia;
1842 struct sockaddr_in6 sin6;
1843
1844 bzero(&sin6, sizeof(sin6));
1845 sin6.sin6_len = sizeof(sin6);
1846 sin6.sin6_family = AF_INET6;
1847 sin6.sin6_addr =
1848 opt->ip6po_pktinfo->ipi6_addr;
1849 ia = ifa_ifwithaddr(sin6tosa(&sin6));
1850 if (ia == NULL ||
1851 (opt->ip6po_pktinfo->ipi6_ifindex &&
1852 (ia->ifa_ifp->if_index !=
1853 opt->ip6po_pktinfo->ipi6_ifindex))) {
1854 return(EADDRNOTAVAIL);
1855 }
1856 /*
1857 * Check if the requested source address is
1858 * indeed a unicast address assigned to the
1859 * node.
1860 */
1861 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
1862 return(EADDRNOTAVAIL);
1863 }
1864 break;
1865
1866 case IPV6_HOPLIMIT:
1867 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
1868 return(EINVAL);
1869
1870 opt->ip6po_hlim = *(int *)CMSG_DATA(cm);
1871 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255)
1872 return(EINVAL);
1873 break;
1874
1875 case IPV6_NEXTHOP:
1876 if (!priv)
1877 return(EPERM);
1878 if (cm->cmsg_len < sizeof(u_char) ||
1879 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
1880 return(EINVAL);
1881
1882 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
1883
1884 break;
1885
1886 case IPV6_HOPOPTS:
1887 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
1888 return(EINVAL);
1889 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm);
1890 if (cm->cmsg_len !=
1891 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3))
1892 return(EINVAL);
1893 break;
1894
1895 case IPV6_DSTOPTS:
1896 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
1897 return(EINVAL);
1898
1899 /*
1900 * If there is no routing header yet, the destination
1901 * options header should be put on the 1st part.
1902 * Otherwise, the header should be on the 2nd part.
1903 * (See RFC 2460, section 4.1)
1904 */
1905 if (opt->ip6po_rthdr == NULL) {
1906 opt->ip6po_dest1 =
1907 (struct ip6_dest *)CMSG_DATA(cm);
1908 if (cm->cmsg_len !=
1909 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1)
1910 << 3))
1911 return(EINVAL);
1912 }
1913 else {
1914 opt->ip6po_dest2 =
1915 (struct ip6_dest *)CMSG_DATA(cm);
1916 if (cm->cmsg_len !=
1917 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1)
1918 << 3))
1919 return(EINVAL);
1920 }
1921 break;
1922
1923 case IPV6_RTHDR:
1924 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
1925 return(EINVAL);
1926 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm);
1927 if (cm->cmsg_len !=
1928 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3))
1929 return(EINVAL);
1930 switch(opt->ip6po_rthdr->ip6r_type) {
1931 case IPV6_RTHDR_TYPE_0:
1932 if (opt->ip6po_rthdr->ip6r_segleft == 0)
1933 return(EINVAL);
1934 break;
1935 default:
1936 return(EINVAL);
1937 }
1938 break;
1939
1940 default:
1941 return(ENOPROTOOPT);
1942 }
1943 }
1944
1945 return(0);
1946 }
1947
1948 /*
1949 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
1950 * packet to the input queue of a specified interface. Note that this
1951 * calls the output routine of the loopback "driver", but with an interface
1952 * pointer that might NOT be &loif -- easier than replicating that code here.
1953 */
1954 void
1955 ip6_mloopback(ifp, m, dst)
1956 struct ifnet *ifp;
1957 register struct mbuf *m;
1958 register struct sockaddr_in6 *dst;
1959 {
1960 struct mbuf *copym;
1961
1962 copym = m_copy(m, 0, M_COPYALL);
1963 if (copym != NULL)
1964 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
1965 }
1966
1967 /*
1968 * Chop IPv6 header off from the payload.
1969 */
1970 static int
1971 ip6_splithdr(m, exthdrs)
1972 struct mbuf *m;
1973 struct ip6_exthdrs *exthdrs;
1974 {
1975 struct mbuf *mh;
1976 struct ip6_hdr *ip6;
1977
1978 ip6 = mtod(m, struct ip6_hdr *);
1979 if (m->m_len > sizeof(*ip6)) {
1980 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
1981 if (mh == 0) {
1982 m_freem(m);
1983 return ENOBUFS;
1984 }
1985 M_COPY_PKTHDR(mh, m);
1986 MH_ALIGN(mh, sizeof(*ip6));
1987 m->m_flags &= ~M_PKTHDR;
1988 m->m_len -= sizeof(*ip6);
1989 m->m_data += sizeof(*ip6);
1990 mh->m_next = m;
1991 m = mh;
1992 m->m_len = sizeof(*ip6);
1993 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
1994 }
1995 exthdrs->ip6e_ip6 = m;
1996 return 0;
1997 }
1998
1999 /*
2000 * Compute IPv6 extension header length.
2001 */
2002 int
2003 ip6_optlen(in6p)
2004 struct in6pcb *in6p;
2005 {
2006 int len;
2007
2008 if (!in6p->in6p_outputopts)
2009 return 0;
2010
2011 len = 0;
2012 #define elen(x) \
2013 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2014
2015 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2016 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2017 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2018 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2019 return len;
2020 #undef elen
2021 }
2022