ip6_output.c revision 1.76 1 /* $NetBSD: ip6_output.c,v 1.76 2004/01/19 05:14:58 itojun Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.76 2004/01/19 05:14:58 itojun Exp $");
66
67 #include "opt_inet.h"
68 #include "opt_ipsec.h"
69 #include "opt_pfil_hooks.h"
70
71 #include <sys/param.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/errno.h>
75 #include <sys/protosw.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80
81 #include <net/if.h>
82 #include <net/route.h>
83 #ifdef PFIL_HOOKS
84 #include <net/pfil.h>
85 #endif
86
87 #include <netinet/in.h>
88 #include <netinet/in_var.h>
89 #include <netinet/ip6.h>
90 #include <netinet/icmp6.h>
91 #include <netinet6/ip6_var.h>
92 #include <netinet6/in6_pcb.h>
93 #include <netinet6/nd6.h>
94
95 #ifdef IPSEC
96 #include <netinet6/ipsec.h>
97 #include <netkey/key.h>
98 #endif /* IPSEC */
99
100 #include "loop.h"
101
102 #include <net/net_osdep.h>
103
104 #ifdef PFIL_HOOKS
105 extern struct pfil_head inet6_pfil_hook; /* XXX */
106 #endif
107
108 struct ip6_exthdrs {
109 struct mbuf *ip6e_ip6;
110 struct mbuf *ip6e_hbh;
111 struct mbuf *ip6e_dest1;
112 struct mbuf *ip6e_rthdr;
113 struct mbuf *ip6e_dest2;
114 };
115
116 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
117 struct socket *));
118 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
119 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
120 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
121 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
122 struct ip6_frag **));
123 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
124 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
125 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
126 struct ifnet *, struct in6_addr *, u_long *));
127
128 extern struct ifnet loif[NLOOP];
129
130 /*
131 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
132 * header (with pri, len, nxt, hlim, src, dst).
133 * This function may modify ver and hlim only.
134 * The mbuf chain containing the packet will be freed.
135 * The mbuf opt, if present, will not be freed.
136 *
137 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
138 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
139 * which is rt_rmx.rmx_mtu.
140 */
141 int
142 ip6_output(m0, opt, ro, flags, im6o, so, ifpp)
143 struct mbuf *m0;
144 struct ip6_pktopts *opt;
145 struct route_in6 *ro;
146 int flags;
147 struct ip6_moptions *im6o;
148 struct socket *so;
149 struct ifnet **ifpp; /* XXX: just for statistics */
150 {
151 struct ip6_hdr *ip6, *mhip6;
152 struct ifnet *ifp, *origifp;
153 struct mbuf *m = m0;
154 int hlen, tlen, len, off;
155 struct route_in6 ip6route;
156 struct sockaddr_in6 *dst;
157 int error = 0;
158 u_long mtu;
159 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
160 struct ip6_exthdrs exthdrs;
161 struct in6_addr finaldst;
162 struct route_in6 *ro_pmtu = NULL;
163 int hdrsplit = 0;
164 int needipsec = 0;
165 #ifdef IPSEC
166 int needipsectun = 0;
167 struct secpolicy *sp = NULL;
168
169 ip6 = mtod(m, struct ip6_hdr *);
170 #endif /* IPSEC */
171
172 #define MAKE_EXTHDR(hp, mp) \
173 do { \
174 if (hp) { \
175 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
176 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
177 ((eh)->ip6e_len + 1) << 3); \
178 if (error) \
179 goto freehdrs; \
180 } \
181 } while (/*CONSTCOND*/ 0)
182
183 bzero(&exthdrs, sizeof(exthdrs));
184 if (opt) {
185 /* Hop-by-Hop options header */
186 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
187 /* Destination options header(1st part) */
188 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
189 /* Routing header */
190 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
191 /* Destination options header(2nd part) */
192 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
193 }
194
195 #ifdef IPSEC
196 if ((flags & IPV6_FORWARDING) != 0) {
197 needipsec = 0;
198 goto skippolicycheck;
199 }
200
201 /* get a security policy for this packet */
202 if (so == NULL)
203 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
204 else
205 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
206
207 if (sp == NULL) {
208 ipsec6stat.out_inval++;
209 goto freehdrs;
210 }
211
212 error = 0;
213
214 /* check policy */
215 switch (sp->policy) {
216 case IPSEC_POLICY_DISCARD:
217 /*
218 * This packet is just discarded.
219 */
220 ipsec6stat.out_polvio++;
221 goto freehdrs;
222
223 case IPSEC_POLICY_BYPASS:
224 case IPSEC_POLICY_NONE:
225 /* no need to do IPsec. */
226 needipsec = 0;
227 break;
228
229 case IPSEC_POLICY_IPSEC:
230 if (sp->req == NULL) {
231 /* XXX should be panic ? */
232 printf("ip6_output: No IPsec request specified.\n");
233 error = EINVAL;
234 goto freehdrs;
235 }
236 needipsec = 1;
237 break;
238
239 case IPSEC_POLICY_ENTRUST:
240 default:
241 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
242 }
243
244 skippolicycheck:;
245 #endif /* IPSEC */
246
247 /*
248 * Calculate the total length of the extension header chain.
249 * Keep the length of the unfragmentable part for fragmentation.
250 */
251 optlen = 0;
252 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
253 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
254 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
255 unfragpartlen = optlen + sizeof(struct ip6_hdr);
256 /* NOTE: we don't add AH/ESP length here. do that later. */
257 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
258
259 /*
260 * If we need IPsec, or there is at least one extension header,
261 * separate IP6 header from the payload.
262 */
263 if ((needipsec || optlen) && !hdrsplit) {
264 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
265 m = NULL;
266 goto freehdrs;
267 }
268 m = exthdrs.ip6e_ip6;
269 hdrsplit++;
270 }
271
272 /* adjust pointer */
273 ip6 = mtod(m, struct ip6_hdr *);
274
275 /* adjust mbuf packet header length */
276 m->m_pkthdr.len += optlen;
277 plen = m->m_pkthdr.len - sizeof(*ip6);
278
279 /* If this is a jumbo payload, insert a jumbo payload option. */
280 if (plen > IPV6_MAXPACKET) {
281 if (!hdrsplit) {
282 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
283 m = NULL;
284 goto freehdrs;
285 }
286 m = exthdrs.ip6e_ip6;
287 hdrsplit++;
288 }
289 /* adjust pointer */
290 ip6 = mtod(m, struct ip6_hdr *);
291 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
292 goto freehdrs;
293 ip6->ip6_plen = 0;
294 } else
295 ip6->ip6_plen = htons(plen);
296
297 /*
298 * Concatenate headers and fill in next header fields.
299 * Here we have, on "m"
300 * IPv6 payload
301 * and we insert headers accordingly. Finally, we should be getting:
302 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
303 *
304 * during the header composing process, "m" points to IPv6 header.
305 * "mprev" points to an extension header prior to esp.
306 */
307 {
308 u_char *nexthdrp = &ip6->ip6_nxt;
309 struct mbuf *mprev = m;
310
311 /*
312 * we treat dest2 specially. this makes IPsec processing
313 * much easier.
314 *
315 * result: IPv6 dest2 payload
316 * m and mprev will point to IPv6 header.
317 */
318 if (exthdrs.ip6e_dest2) {
319 if (!hdrsplit)
320 panic("assumption failed: hdr not split");
321 exthdrs.ip6e_dest2->m_next = m->m_next;
322 m->m_next = exthdrs.ip6e_dest2;
323 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
324 ip6->ip6_nxt = IPPROTO_DSTOPTS;
325 }
326
327 #define MAKE_CHAIN(m, mp, p, i)\
328 do {\
329 if (m) {\
330 if (!hdrsplit) \
331 panic("assumption failed: hdr not split"); \
332 *mtod((m), u_char *) = *(p);\
333 *(p) = (i);\
334 p = mtod((m), u_char *);\
335 (m)->m_next = (mp)->m_next;\
336 (mp)->m_next = (m);\
337 (mp) = (m);\
338 }\
339 } while (/*CONSTCOND*/ 0)
340 /*
341 * result: IPv6 hbh dest1 rthdr dest2 payload
342 * m will point to IPv6 header. mprev will point to the
343 * extension header prior to dest2 (rthdr in the above case).
344 */
345 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
346 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
347 IPPROTO_DSTOPTS);
348 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
349 IPPROTO_ROUTING);
350
351 #ifdef IPSEC
352 if (!needipsec)
353 goto skip_ipsec2;
354
355 /*
356 * pointers after IPsec headers are not valid any more.
357 * other pointers need a great care too.
358 * (IPsec routines should not mangle mbufs prior to AH/ESP)
359 */
360 exthdrs.ip6e_dest2 = NULL;
361
362 {
363 struct ip6_rthdr *rh = NULL;
364 int segleft_org = 0;
365 struct ipsec_output_state state;
366
367 if (exthdrs.ip6e_rthdr) {
368 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
369 segleft_org = rh->ip6r_segleft;
370 rh->ip6r_segleft = 0;
371 }
372
373 bzero(&state, sizeof(state));
374 state.m = m;
375 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
376 &needipsectun);
377 m = state.m;
378 if (error) {
379 /* mbuf is already reclaimed in ipsec6_output_trans. */
380 m = NULL;
381 switch (error) {
382 case EHOSTUNREACH:
383 case ENETUNREACH:
384 case EMSGSIZE:
385 case ENOBUFS:
386 case ENOMEM:
387 break;
388 default:
389 printf("ip6_output (ipsec): error code %d\n", error);
390 /* FALLTHROUGH */
391 case ENOENT:
392 /* don't show these error codes to the user */
393 error = 0;
394 break;
395 }
396 goto bad;
397 }
398 if (exthdrs.ip6e_rthdr) {
399 /* ah6_output doesn't modify mbuf chain */
400 rh->ip6r_segleft = segleft_org;
401 }
402 }
403 skip_ipsec2:;
404 #endif
405 }
406
407 /*
408 * If there is a routing header, replace destination address field
409 * with the first hop of the routing header.
410 */
411 if (exthdrs.ip6e_rthdr) {
412 struct ip6_rthdr *rh;
413 struct ip6_rthdr0 *rh0;
414 struct in6_addr *addr;
415
416 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
417 struct ip6_rthdr *));
418 finaldst = ip6->ip6_dst;
419 switch (rh->ip6r_type) {
420 case IPV6_RTHDR_TYPE_0:
421 rh0 = (struct ip6_rthdr0 *)rh;
422 addr = (struct in6_addr *)(rh0 + 1);
423 ip6->ip6_dst = addr[0];
424 bcopy(&addr[1], &addr[0],
425 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1));
426 addr[rh0->ip6r0_segleft - 1] = finaldst;
427 break;
428 default: /* is it possible? */
429 error = EINVAL;
430 goto bad;
431 }
432 }
433
434 /* Source address validation */
435 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
436 (flags & IPV6_UNSPECSRC) == 0) {
437 error = EOPNOTSUPP;
438 ip6stat.ip6s_badscope++;
439 goto bad;
440 }
441 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
442 error = EOPNOTSUPP;
443 ip6stat.ip6s_badscope++;
444 goto bad;
445 }
446
447 ip6stat.ip6s_localout++;
448
449 /*
450 * Route packet.
451 */
452 if (ro == 0) {
453 ro = &ip6route;
454 bzero((caddr_t)ro, sizeof(*ro));
455 }
456 ro_pmtu = ro;
457 if (opt && opt->ip6po_rthdr)
458 ro = &opt->ip6po_route;
459 dst = (struct sockaddr_in6 *)&ro->ro_dst;
460 /*
461 * If there is a cached route,
462 * check that it is to the same destination
463 * and is still up. If not, free it and try again.
464 */
465 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
466 dst->sin6_family != AF_INET6 ||
467 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
468 RTFREE(ro->ro_rt);
469 ro->ro_rt = (struct rtentry *)0;
470 }
471 if (ro->ro_rt == 0) {
472 bzero(dst, sizeof(*dst));
473 dst->sin6_family = AF_INET6;
474 dst->sin6_len = sizeof(struct sockaddr_in6);
475 dst->sin6_addr = ip6->ip6_dst;
476 }
477 #ifdef IPSEC
478 if (needipsec && needipsectun) {
479 struct ipsec_output_state state;
480
481 /*
482 * All the extension headers will become inaccessible
483 * (since they can be encrypted).
484 * Don't panic, we need no more updates to extension headers
485 * on inner IPv6 packet (since they are now encapsulated).
486 *
487 * IPv6 [ESP|AH] IPv6 [extension headers] payload
488 */
489 bzero(&exthdrs, sizeof(exthdrs));
490 exthdrs.ip6e_ip6 = m;
491
492 bzero(&state, sizeof(state));
493 state.m = m;
494 state.ro = (struct route *)ro;
495 state.dst = (struct sockaddr *)dst;
496
497 error = ipsec6_output_tunnel(&state, sp, flags);
498
499 m = state.m;
500 ro = (struct route_in6 *)state.ro;
501 dst = (struct sockaddr_in6 *)state.dst;
502 if (error) {
503 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
504 m0 = m = NULL;
505 m = NULL;
506 switch (error) {
507 case EHOSTUNREACH:
508 case ENETUNREACH:
509 case EMSGSIZE:
510 case ENOBUFS:
511 case ENOMEM:
512 break;
513 default:
514 printf("ip6_output (ipsec): error code %d\n", error);
515 /* FALLTHROUGH */
516 case ENOENT:
517 /* don't show these error codes to the user */
518 error = 0;
519 break;
520 }
521 goto bad;
522 }
523
524 exthdrs.ip6e_ip6 = m;
525 }
526 #endif /* IPSEC */
527
528 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
529 /* Unicast */
530
531 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
532 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
533 /* xxx
534 * interface selection comes here
535 * if an interface is specified from an upper layer,
536 * ifp must point it.
537 */
538 if (ro->ro_rt == 0) {
539 /*
540 * non-bsdi always clone routes, if parent is
541 * PRF_CLONING.
542 */
543 rtalloc((struct route *)ro);
544 }
545 if (ro->ro_rt == 0) {
546 ip6stat.ip6s_noroute++;
547 error = EHOSTUNREACH;
548 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
549 goto bad;
550 }
551 ifp = ro->ro_rt->rt_ifp;
552 ro->ro_rt->rt_use++;
553 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
554 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
555 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
556
557 in6_ifstat_inc(ifp, ifs6_out_request);
558
559 /*
560 * Check if the outgoing interface conflicts with
561 * the interface specified by ifi6_ifindex (if specified).
562 * Note that loopback interface is always okay.
563 * (this may happen when we are sending a packet to one of
564 * our own addresses.)
565 */
566 if (opt && opt->ip6po_pktinfo
567 && opt->ip6po_pktinfo->ipi6_ifindex) {
568 if (!(ifp->if_flags & IFF_LOOPBACK)
569 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
570 ip6stat.ip6s_noroute++;
571 in6_ifstat_inc(ifp, ifs6_out_discard);
572 error = EHOSTUNREACH;
573 goto bad;
574 }
575 }
576
577 if (opt && opt->ip6po_hlim != -1)
578 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
579 } else {
580 /* Multicast */
581 struct in6_multi *in6m;
582
583 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
584
585 /*
586 * See if the caller provided any multicast options
587 */
588 ifp = NULL;
589 if (im6o != NULL) {
590 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
591 if (im6o->im6o_multicast_ifp != NULL)
592 ifp = im6o->im6o_multicast_ifp;
593 } else
594 ip6->ip6_hlim = ip6_defmcasthlim;
595
596 /*
597 * See if the caller provided the outgoing interface
598 * as an ancillary data.
599 * Boundary check for ifindex is assumed to be already done.
600 */
601 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
602 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
603
604 /*
605 * If the destination is a node-local scope multicast,
606 * the packet should be loop-backed only.
607 */
608 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
609 /*
610 * If the outgoing interface is already specified,
611 * it should be a loopback interface.
612 */
613 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
614 ip6stat.ip6s_badscope++;
615 error = ENETUNREACH; /* XXX: better error? */
616 /* XXX correct ifp? */
617 in6_ifstat_inc(ifp, ifs6_out_discard);
618 goto bad;
619 } else {
620 ifp = &loif[0];
621 }
622 }
623
624 if (opt && opt->ip6po_hlim != -1)
625 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
626
627 /*
628 * If caller did not provide an interface lookup a
629 * default in the routing table. This is either a
630 * default for the speicfied group (i.e. a host
631 * route), or a multicast default (a route for the
632 * ``net'' ff00::/8).
633 */
634 if (ifp == NULL) {
635 if (ro->ro_rt == 0) {
636 ro->ro_rt = rtalloc1((struct sockaddr *)
637 &ro->ro_dst, 0);
638 }
639 if (ro->ro_rt == 0) {
640 ip6stat.ip6s_noroute++;
641 error = EHOSTUNREACH;
642 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
643 goto bad;
644 }
645 ifp = ro->ro_rt->rt_ifp;
646 ro->ro_rt->rt_use++;
647 }
648
649 if ((flags & IPV6_FORWARDING) == 0)
650 in6_ifstat_inc(ifp, ifs6_out_request);
651 in6_ifstat_inc(ifp, ifs6_out_mcast);
652
653 /*
654 * Confirm that the outgoing interface supports multicast.
655 */
656 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
657 ip6stat.ip6s_noroute++;
658 in6_ifstat_inc(ifp, ifs6_out_discard);
659 error = ENETUNREACH;
660 goto bad;
661 }
662 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
663 if (in6m != NULL &&
664 (im6o == NULL || im6o->im6o_multicast_loop)) {
665 /*
666 * If we belong to the destination multicast group
667 * on the outgoing interface, and the caller did not
668 * forbid loopback, loop back a copy.
669 */
670 ip6_mloopback(ifp, m, dst);
671 } else {
672 /*
673 * If we are acting as a multicast router, perform
674 * multicast forwarding as if the packet had just
675 * arrived on the interface to which we are about
676 * to send. The multicast forwarding function
677 * recursively calls this function, using the
678 * IPV6_FORWARDING flag to prevent infinite recursion.
679 *
680 * Multicasts that are looped back by ip6_mloopback(),
681 * above, will be forwarded by the ip6_input() routine,
682 * if necessary.
683 */
684 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
685 if (ip6_mforward(ip6, ifp, m) != 0) {
686 m_freem(m);
687 goto done;
688 }
689 }
690 }
691 /*
692 * Multicasts with a hoplimit of zero may be looped back,
693 * above, but must not be transmitted on a network.
694 * Also, multicasts addressed to the loopback interface
695 * are not sent -- the above call to ip6_mloopback() will
696 * loop back a copy if this host actually belongs to the
697 * destination group on the loopback interface.
698 */
699 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
700 m_freem(m);
701 goto done;
702 }
703 }
704
705 /*
706 * Fill the outgoing inteface to tell the upper layer
707 * to increment per-interface statistics.
708 */
709 if (ifpp)
710 *ifpp = ifp;
711
712 /* Determine path MTU. */
713 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu)) != 0)
714 goto bad;
715
716 /*
717 * The caller of this function may specify to use the minimum MTU
718 * in some cases.
719 */
720 if (mtu > IPV6_MMTU) {
721 if ((flags & IPV6_MINMTU))
722 mtu = IPV6_MMTU;
723 }
724
725 /* Fake scoped addresses */
726 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
727 /*
728 * If source or destination address is a scoped address, and
729 * the packet is going to be sent to a loopback interface,
730 * we should keep the original interface.
731 */
732
733 /*
734 * XXX: this is a very experimental and temporary solution.
735 * We eventually have sockaddr_in6 and use the sin6_scope_id
736 * field of the structure here.
737 * We rely on the consistency between two scope zone ids
738 * of source add destination, which should already be assured
739 * Larger scopes than link will be supported in the near
740 * future.
741 */
742 origifp = NULL;
743 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
744 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
745 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
746 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
747 /*
748 * XXX: origifp can be NULL even in those two cases above.
749 * For example, if we remove the (only) link-local address
750 * from the loopback interface, and try to send a link-local
751 * address without link-id information. Then the source
752 * address is ::1, and the destination address is the
753 * link-local address with its s6_addr16[1] being zero.
754 * What is worse, if the packet goes to the loopback interface
755 * by a default rejected route, the null pointer would be
756 * passed to looutput, and the kernel would hang.
757 * The following last resort would prevent such disaster.
758 */
759 if (origifp == NULL)
760 origifp = ifp;
761 } else
762 origifp = ifp;
763 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
764 ip6->ip6_src.s6_addr16[1] = 0;
765 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
766 ip6->ip6_dst.s6_addr16[1] = 0;
767
768 /*
769 * If the outgoing packet contains a hop-by-hop options header,
770 * it must be examined and processed even by the source node.
771 * (RFC 2460, section 4.)
772 */
773 if (exthdrs.ip6e_hbh) {
774 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
775 u_int32_t dummy1; /* XXX unused */
776 u_int32_t dummy2; /* XXX unused */
777
778 /*
779 * XXX: if we have to send an ICMPv6 error to the sender,
780 * we need the M_LOOP flag since icmp6_error() expects
781 * the IPv6 and the hop-by-hop options header are
782 * continuous unless the flag is set.
783 */
784 m->m_flags |= M_LOOP;
785 m->m_pkthdr.rcvif = ifp;
786 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
787 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
788 &dummy1, &dummy2) < 0) {
789 /* m was already freed at this point */
790 error = EINVAL;/* better error? */
791 goto done;
792 }
793 m->m_flags &= ~M_LOOP; /* XXX */
794 m->m_pkthdr.rcvif = NULL;
795 }
796
797 #ifdef PFIL_HOOKS
798 /*
799 * Run through list of hooks for output packets.
800 */
801 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
802 goto done;
803 if (m == NULL)
804 goto done;
805 ip6 = mtod(m, struct ip6_hdr *);
806 #endif /* PFIL_HOOKS */
807 /*
808 * Send the packet to the outgoing interface.
809 * If necessary, do IPv6 fragmentation before sending.
810 */
811 tlen = m->m_pkthdr.len;
812 if (tlen <= mtu) {
813 #ifdef IFA_STATS
814 struct in6_ifaddr *ia6;
815 ip6 = mtod(m, struct ip6_hdr *);
816 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
817 if (ia6) {
818 /* Record statistics for this interface address. */
819 ia6->ia_ifa.ifa_data.ifad_outbytes +=
820 m->m_pkthdr.len;
821 }
822 #endif
823 #ifdef IPSEC
824 /* clean ipsec history once it goes out of the node */
825 ipsec_delaux(m);
826 #endif
827 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
828 goto done;
829 } else if (mtu < IPV6_MMTU) {
830 /*
831 * note that path MTU is never less than IPV6_MMTU
832 * (see icmp6_input).
833 */
834 error = EMSGSIZE;
835 in6_ifstat_inc(ifp, ifs6_out_fragfail);
836 goto bad;
837 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
838 error = EMSGSIZE;
839 in6_ifstat_inc(ifp, ifs6_out_fragfail);
840 goto bad;
841 } else {
842 struct mbuf **mnext, *m_frgpart;
843 struct ip6_frag *ip6f;
844 u_int32_t id = htonl(ip6_randomid());
845 u_char nextproto;
846
847 /*
848 * Too large for the destination or interface;
849 * fragment if possible.
850 * Must be able to put at least 8 bytes per fragment.
851 */
852 hlen = unfragpartlen;
853 if (mtu > IPV6_MAXPACKET)
854 mtu = IPV6_MAXPACKET;
855 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
856 if (len < 8) {
857 error = EMSGSIZE;
858 in6_ifstat_inc(ifp, ifs6_out_fragfail);
859 goto bad;
860 }
861
862 mnext = &m->m_nextpkt;
863
864 /*
865 * Change the next header field of the last header in the
866 * unfragmentable part.
867 */
868 if (exthdrs.ip6e_rthdr) {
869 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
870 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
871 } else if (exthdrs.ip6e_dest1) {
872 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
873 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
874 } else if (exthdrs.ip6e_hbh) {
875 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
876 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
877 } else {
878 nextproto = ip6->ip6_nxt;
879 ip6->ip6_nxt = IPPROTO_FRAGMENT;
880 }
881
882 /*
883 * Loop through length of segment after first fragment,
884 * make new header and copy data of each part and link onto
885 * chain.
886 */
887 m0 = m;
888 for (off = hlen; off < tlen; off += len) {
889 struct mbuf *mlast;
890
891 MGETHDR(m, M_DONTWAIT, MT_HEADER);
892 if (!m) {
893 error = ENOBUFS;
894 ip6stat.ip6s_odropped++;
895 goto sendorfree;
896 }
897 m->m_flags = m0->m_flags & M_COPYFLAGS;
898 *mnext = m;
899 mnext = &m->m_nextpkt;
900 m->m_data += max_linkhdr;
901 mhip6 = mtod(m, struct ip6_hdr *);
902 *mhip6 = *ip6;
903 m->m_len = sizeof(*mhip6);
904 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
905 if (error) {
906 ip6stat.ip6s_odropped++;
907 goto sendorfree;
908 }
909 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
910 if (off + len >= tlen)
911 len = tlen - off;
912 else
913 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
914 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
915 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
916 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
917 error = ENOBUFS;
918 ip6stat.ip6s_odropped++;
919 goto sendorfree;
920 }
921 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
922 ;
923 mlast->m_next = m_frgpart;
924 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
925 m->m_pkthdr.rcvif = (struct ifnet *)0;
926 ip6f->ip6f_reserved = 0;
927 ip6f->ip6f_ident = id;
928 ip6f->ip6f_nxt = nextproto;
929 ip6stat.ip6s_ofragments++;
930 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
931 }
932
933 in6_ifstat_inc(ifp, ifs6_out_fragok);
934 }
935
936 /*
937 * Remove leading garbages.
938 */
939 sendorfree:
940 m = m0->m_nextpkt;
941 m0->m_nextpkt = 0;
942 m_freem(m0);
943 for (m0 = m; m; m = m0) {
944 m0 = m->m_nextpkt;
945 m->m_nextpkt = 0;
946 if (error == 0) {
947 #ifdef IFA_STATS
948 struct in6_ifaddr *ia6;
949 ip6 = mtod(m, struct ip6_hdr *);
950 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
951 if (ia6) {
952 /*
953 * Record statistics for this interface
954 * address.
955 */
956 ia6->ia_ifa.ifa_data.ifad_outbytes +=
957 m->m_pkthdr.len;
958 }
959 #endif
960 #ifdef IPSEC
961 /* clean ipsec history once it goes out of the node */
962 ipsec_delaux(m);
963 #endif
964 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
965 } else
966 m_freem(m);
967 }
968
969 if (error == 0)
970 ip6stat.ip6s_fragmented++;
971
972 done:
973 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
974 RTFREE(ro->ro_rt);
975 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
976 RTFREE(ro_pmtu->ro_rt);
977 }
978
979 #ifdef IPSEC
980 if (sp != NULL)
981 key_freesp(sp);
982 #endif /* IPSEC */
983
984 return (error);
985
986 freehdrs:
987 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
988 m_freem(exthdrs.ip6e_dest1);
989 m_freem(exthdrs.ip6e_rthdr);
990 m_freem(exthdrs.ip6e_dest2);
991 /* FALLTHROUGH */
992 bad:
993 m_freem(m);
994 goto done;
995 }
996
997 static int
998 ip6_copyexthdr(mp, hdr, hlen)
999 struct mbuf **mp;
1000 caddr_t hdr;
1001 int hlen;
1002 {
1003 struct mbuf *m;
1004
1005 if (hlen > MCLBYTES)
1006 return (ENOBUFS); /* XXX */
1007
1008 MGET(m, M_DONTWAIT, MT_DATA);
1009 if (!m)
1010 return (ENOBUFS);
1011
1012 if (hlen > MLEN) {
1013 MCLGET(m, M_DONTWAIT);
1014 if ((m->m_flags & M_EXT) == 0) {
1015 m_free(m);
1016 return (ENOBUFS);
1017 }
1018 }
1019 m->m_len = hlen;
1020 if (hdr)
1021 bcopy(hdr, mtod(m, caddr_t), hlen);
1022
1023 *mp = m;
1024 return (0);
1025 }
1026
1027 /*
1028 * Insert jumbo payload option.
1029 */
1030 static int
1031 ip6_insert_jumboopt(exthdrs, plen)
1032 struct ip6_exthdrs *exthdrs;
1033 u_int32_t plen;
1034 {
1035 struct mbuf *mopt;
1036 u_int8_t *optbuf;
1037 u_int32_t v;
1038
1039 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1040
1041 /*
1042 * If there is no hop-by-hop options header, allocate new one.
1043 * If there is one but it doesn't have enough space to store the
1044 * jumbo payload option, allocate a cluster to store the whole options.
1045 * Otherwise, use it to store the options.
1046 */
1047 if (exthdrs->ip6e_hbh == 0) {
1048 MGET(mopt, M_DONTWAIT, MT_DATA);
1049 if (mopt == 0)
1050 return (ENOBUFS);
1051 mopt->m_len = JUMBOOPTLEN;
1052 optbuf = mtod(mopt, u_int8_t *);
1053 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1054 exthdrs->ip6e_hbh = mopt;
1055 } else {
1056 struct ip6_hbh *hbh;
1057
1058 mopt = exthdrs->ip6e_hbh;
1059 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1060 /*
1061 * XXX assumption:
1062 * - exthdrs->ip6e_hbh is not referenced from places
1063 * other than exthdrs.
1064 * - exthdrs->ip6e_hbh is not an mbuf chain.
1065 */
1066 int oldoptlen = mopt->m_len;
1067 struct mbuf *n;
1068
1069 /*
1070 * XXX: give up if the whole (new) hbh header does
1071 * not fit even in an mbuf cluster.
1072 */
1073 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1074 return (ENOBUFS);
1075
1076 /*
1077 * As a consequence, we must always prepare a cluster
1078 * at this point.
1079 */
1080 MGET(n, M_DONTWAIT, MT_DATA);
1081 if (n) {
1082 MCLGET(n, M_DONTWAIT);
1083 if ((n->m_flags & M_EXT) == 0) {
1084 m_freem(n);
1085 n = NULL;
1086 }
1087 }
1088 if (!n)
1089 return (ENOBUFS);
1090 n->m_len = oldoptlen + JUMBOOPTLEN;
1091 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1092 oldoptlen);
1093 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1094 m_freem(mopt);
1095 mopt = exthdrs->ip6e_hbh = n;
1096 } else {
1097 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1098 mopt->m_len += JUMBOOPTLEN;
1099 }
1100 optbuf[0] = IP6OPT_PADN;
1101 optbuf[1] = 0;
1102
1103 /*
1104 * Adjust the header length according to the pad and
1105 * the jumbo payload option.
1106 */
1107 hbh = mtod(mopt, struct ip6_hbh *);
1108 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1109 }
1110
1111 /* fill in the option. */
1112 optbuf[2] = IP6OPT_JUMBO;
1113 optbuf[3] = 4;
1114 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1115 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1116
1117 /* finally, adjust the packet header length */
1118 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1119
1120 return (0);
1121 #undef JUMBOOPTLEN
1122 }
1123
1124 /*
1125 * Insert fragment header and copy unfragmentable header portions.
1126 */
1127 static int
1128 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1129 struct mbuf *m0, *m;
1130 int hlen;
1131 struct ip6_frag **frghdrp;
1132 {
1133 struct mbuf *n, *mlast;
1134
1135 if (hlen > sizeof(struct ip6_hdr)) {
1136 n = m_copym(m0, sizeof(struct ip6_hdr),
1137 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1138 if (n == 0)
1139 return (ENOBUFS);
1140 m->m_next = n;
1141 } else
1142 n = m;
1143
1144 /* Search for the last mbuf of unfragmentable part. */
1145 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1146 ;
1147
1148 if ((mlast->m_flags & M_EXT) == 0 &&
1149 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1150 /* use the trailing space of the last mbuf for the fragment hdr */
1151 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1152 mlast->m_len);
1153 mlast->m_len += sizeof(struct ip6_frag);
1154 m->m_pkthdr.len += sizeof(struct ip6_frag);
1155 } else {
1156 /* allocate a new mbuf for the fragment header */
1157 struct mbuf *mfrg;
1158
1159 MGET(mfrg, M_DONTWAIT, MT_DATA);
1160 if (mfrg == 0)
1161 return (ENOBUFS);
1162 mfrg->m_len = sizeof(struct ip6_frag);
1163 *frghdrp = mtod(mfrg, struct ip6_frag *);
1164 mlast->m_next = mfrg;
1165 }
1166
1167 return (0);
1168 }
1169
1170 static int
1171 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup)
1172 struct route_in6 *ro_pmtu, *ro;
1173 struct ifnet *ifp;
1174 struct in6_addr *dst;
1175 u_long *mtup;
1176 {
1177 u_int32_t mtu = 0;
1178 int error = 0;
1179
1180 if (ro_pmtu != ro) {
1181 /* The first hop and the final destination may differ. */
1182 struct sockaddr_in6 *sa6_dst =
1183 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1184 if (ro_pmtu->ro_rt &&
1185 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1186 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1187 RTFREE(ro_pmtu->ro_rt);
1188 ro_pmtu->ro_rt = (struct rtentry *)0;
1189 }
1190 if (ro_pmtu->ro_rt == 0) {
1191 bzero(sa6_dst, sizeof(*sa6_dst));
1192 sa6_dst->sin6_family = AF_INET6;
1193 sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1194 sa6_dst->sin6_addr = *dst;
1195
1196 rtalloc((struct route *)ro_pmtu);
1197 }
1198 }
1199 if (ro_pmtu->ro_rt) {
1200 u_int32_t ifmtu;
1201
1202 if (ifp == NULL)
1203 ifp = ro_pmtu->ro_rt->rt_ifp;
1204 ifmtu = IN6_LINKMTU(ifp);
1205 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1206 if (mtu == 0)
1207 mtu = ifmtu;
1208 else if (mtu > ifmtu) {
1209 /*
1210 * The MTU on the route is larger than the MTU on
1211 * the interface! This shouldn't happen, unless the
1212 * MTU of the interface has been changed after the
1213 * interface was brought up. Change the MTU in the
1214 * route to match the interface MTU (as long as the
1215 * field isn't locked).
1216 *
1217 * if MTU on the route is 0, we need to fix the MTU.
1218 * this case happens with path MTU discovery timeouts.
1219 */
1220 mtu = ifmtu;
1221 if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU))
1222 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1223 }
1224 } else if (ifp) {
1225 mtu = IN6_LINKMTU(ifp);
1226 } else
1227 error = EHOSTUNREACH; /* XXX */
1228
1229 *mtup = mtu;
1230 return (error);
1231 }
1232
1233 /*
1234 * IP6 socket option processing.
1235 */
1236 int
1237 ip6_ctloutput(op, so, level, optname, mp)
1238 int op;
1239 struct socket *so;
1240 int level, optname;
1241 struct mbuf **mp;
1242 {
1243 struct in6pcb *in6p = sotoin6pcb(so);
1244 struct mbuf *m = *mp;
1245 int optval = 0;
1246 int error = 0;
1247 struct proc *p = curproc; /* XXX */
1248
1249 if (level == IPPROTO_IPV6) {
1250 switch (op) {
1251 case PRCO_SETOPT:
1252 switch (optname) {
1253 case IPV6_PKTOPTIONS:
1254 /* m is freed in ip6_pcbopts */
1255 return (ip6_pcbopts(&in6p->in6p_outputopts,
1256 m, so));
1257 case IPV6_HOPOPTS:
1258 case IPV6_DSTOPTS:
1259 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1260 error = EPERM;
1261 break;
1262 }
1263 /* FALLTHROUGH */
1264 case IPV6_UNICAST_HOPS:
1265 case IPV6_RECVOPTS:
1266 case IPV6_RECVRETOPTS:
1267 case IPV6_RECVDSTADDR:
1268 case IPV6_PKTINFO:
1269 case IPV6_HOPLIMIT:
1270 case IPV6_RTHDR:
1271 case IPV6_FAITH:
1272 case IPV6_V6ONLY:
1273 if (!m || m->m_len != sizeof(int)) {
1274 error = EINVAL;
1275 break;
1276 }
1277 optval = *mtod(m, int *);
1278 switch (optname) {
1279
1280 case IPV6_UNICAST_HOPS:
1281 if (optval < -1 || optval >= 256)
1282 error = EINVAL;
1283 else {
1284 /* -1 = kernel default */
1285 in6p->in6p_hops = optval;
1286 }
1287 break;
1288 #define OPTSET(bit) \
1289 do { \
1290 if (optval) \
1291 in6p->in6p_flags |= (bit); \
1292 else \
1293 in6p->in6p_flags &= ~(bit); \
1294 } while (/*CONSTCOND*/ 0)
1295
1296 case IPV6_RECVOPTS:
1297 OPTSET(IN6P_RECVOPTS);
1298 break;
1299
1300 case IPV6_RECVRETOPTS:
1301 OPTSET(IN6P_RECVRETOPTS);
1302 break;
1303
1304 case IPV6_RECVDSTADDR:
1305 OPTSET(IN6P_RECVDSTADDR);
1306 break;
1307
1308 case IPV6_PKTINFO:
1309 OPTSET(IN6P_PKTINFO);
1310 break;
1311
1312 case IPV6_HOPLIMIT:
1313 OPTSET(IN6P_HOPLIMIT);
1314 break;
1315
1316 case IPV6_HOPOPTS:
1317 OPTSET(IN6P_HOPOPTS);
1318 break;
1319
1320 case IPV6_DSTOPTS:
1321 OPTSET(IN6P_DSTOPTS);
1322 break;
1323
1324 case IPV6_RTHDR:
1325 OPTSET(IN6P_RTHDR);
1326 break;
1327
1328 case IPV6_FAITH:
1329 OPTSET(IN6P_FAITH);
1330 break;
1331
1332 case IPV6_V6ONLY:
1333 /*
1334 * make setsockopt(IPV6_V6ONLY)
1335 * available only prior to bind(2).
1336 * see ipng mailing list, Jun 22 2001.
1337 */
1338 if (in6p->in6p_lport ||
1339 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1340 error = EINVAL;
1341 break;
1342 }
1343 #ifdef INET6_BINDV6ONLY
1344 if (!optval)
1345 error = EINVAL;
1346 #else
1347 OPTSET(IN6P_IPV6_V6ONLY);
1348 #endif
1349 break;
1350 }
1351 break;
1352 #undef OPTSET
1353
1354 case IPV6_MULTICAST_IF:
1355 case IPV6_MULTICAST_HOPS:
1356 case IPV6_MULTICAST_LOOP:
1357 case IPV6_JOIN_GROUP:
1358 case IPV6_LEAVE_GROUP:
1359 error = ip6_setmoptions(optname,
1360 &in6p->in6p_moptions, m);
1361 break;
1362
1363 case IPV6_PORTRANGE:
1364 optval = *mtod(m, int *);
1365
1366 switch (optval) {
1367 case IPV6_PORTRANGE_DEFAULT:
1368 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1369 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1370 break;
1371
1372 case IPV6_PORTRANGE_HIGH:
1373 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1374 in6p->in6p_flags |= IN6P_HIGHPORT;
1375 break;
1376
1377 case IPV6_PORTRANGE_LOW:
1378 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1379 in6p->in6p_flags |= IN6P_LOWPORT;
1380 break;
1381
1382 default:
1383 error = EINVAL;
1384 break;
1385 }
1386 break;
1387
1388 #ifdef IPSEC
1389 case IPV6_IPSEC_POLICY:
1390 {
1391 caddr_t req = NULL;
1392 size_t len = 0;
1393
1394 int priv = 0;
1395 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1396 priv = 0;
1397 else
1398 priv = 1;
1399 if (m) {
1400 req = mtod(m, caddr_t);
1401 len = m->m_len;
1402 }
1403 error = ipsec6_set_policy(in6p,
1404 optname, req, len, priv);
1405 }
1406 break;
1407 #endif /* IPSEC */
1408
1409 default:
1410 error = ENOPROTOOPT;
1411 break;
1412 }
1413 if (m)
1414 (void)m_free(m);
1415 break;
1416
1417 case PRCO_GETOPT:
1418 switch (optname) {
1419
1420 case IPV6_OPTIONS:
1421 case IPV6_RETOPTS:
1422 error = ENOPROTOOPT;
1423 break;
1424
1425 case IPV6_PKTOPTIONS:
1426 if (in6p->in6p_options) {
1427 *mp = m_copym(in6p->in6p_options, 0,
1428 M_COPYALL, M_WAIT);
1429 } else {
1430 *mp = m_get(M_WAIT, MT_SOOPTS);
1431 (*mp)->m_len = 0;
1432 }
1433 break;
1434
1435 case IPV6_HOPOPTS:
1436 case IPV6_DSTOPTS:
1437 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1438 error = EPERM;
1439 break;
1440 }
1441 /* FALLTHROUGH */
1442 case IPV6_UNICAST_HOPS:
1443 case IPV6_RECVOPTS:
1444 case IPV6_RECVRETOPTS:
1445 case IPV6_RECVDSTADDR:
1446 case IPV6_PORTRANGE:
1447 case IPV6_PKTINFO:
1448 case IPV6_HOPLIMIT:
1449 case IPV6_RTHDR:
1450 case IPV6_FAITH:
1451 case IPV6_V6ONLY:
1452 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1453 m->m_len = sizeof(int);
1454 switch (optname) {
1455
1456 case IPV6_UNICAST_HOPS:
1457 optval = in6p->in6p_hops;
1458 break;
1459
1460 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1461
1462 case IPV6_RECVOPTS:
1463 optval = OPTBIT(IN6P_RECVOPTS);
1464 break;
1465
1466 case IPV6_RECVRETOPTS:
1467 optval = OPTBIT(IN6P_RECVRETOPTS);
1468 break;
1469
1470 case IPV6_RECVDSTADDR:
1471 optval = OPTBIT(IN6P_RECVDSTADDR);
1472 break;
1473
1474 case IPV6_PORTRANGE:
1475 {
1476 int flags;
1477 flags = in6p->in6p_flags;
1478 if (flags & IN6P_HIGHPORT)
1479 optval = IPV6_PORTRANGE_HIGH;
1480 else if (flags & IN6P_LOWPORT)
1481 optval = IPV6_PORTRANGE_LOW;
1482 else
1483 optval = 0;
1484 break;
1485 }
1486
1487 case IPV6_PKTINFO:
1488 optval = OPTBIT(IN6P_PKTINFO);
1489 break;
1490
1491 case IPV6_HOPLIMIT:
1492 optval = OPTBIT(IN6P_HOPLIMIT);
1493 break;
1494
1495 case IPV6_HOPOPTS:
1496 optval = OPTBIT(IN6P_HOPOPTS);
1497 break;
1498
1499 case IPV6_DSTOPTS:
1500 optval = OPTBIT(IN6P_DSTOPTS);
1501 break;
1502
1503 case IPV6_RTHDR:
1504 optval = OPTBIT(IN6P_RTHDR);
1505 break;
1506
1507 case IPV6_FAITH:
1508 optval = OPTBIT(IN6P_FAITH);
1509 break;
1510
1511 case IPV6_V6ONLY:
1512 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1513 break;
1514 }
1515 *mtod(m, int *) = optval;
1516 break;
1517
1518 case IPV6_MULTICAST_IF:
1519 case IPV6_MULTICAST_HOPS:
1520 case IPV6_MULTICAST_LOOP:
1521 case IPV6_JOIN_GROUP:
1522 case IPV6_LEAVE_GROUP:
1523 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1524 break;
1525
1526 #ifdef IPSEC
1527 case IPV6_IPSEC_POLICY:
1528 {
1529 caddr_t req = NULL;
1530 size_t len = 0;
1531
1532 if (m) {
1533 req = mtod(m, caddr_t);
1534 len = m->m_len;
1535 }
1536 error = ipsec6_get_policy(in6p, req, len, mp);
1537 break;
1538 }
1539 #endif /* IPSEC */
1540
1541 default:
1542 error = ENOPROTOOPT;
1543 break;
1544 }
1545 break;
1546 }
1547 } else {
1548 error = EINVAL;
1549 if (op == PRCO_SETOPT && *mp)
1550 (void)m_free(*mp);
1551 }
1552 return (error);
1553 }
1554
1555 int
1556 ip6_raw_ctloutput(op, so, level, optname, mp)
1557 int op;
1558 struct socket *so;
1559 int level, optname;
1560 struct mbuf **mp;
1561 {
1562 int error = 0, optval, optlen;
1563 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1564 struct in6pcb *in6p = sotoin6pcb(so);
1565 struct mbuf *m = *mp;
1566
1567 optlen = m ? m->m_len : 0;
1568
1569 if (level != IPPROTO_IPV6) {
1570 if (op == PRCO_SETOPT && *mp)
1571 (void)m_free(*mp);
1572 return (EINVAL);
1573 }
1574
1575 switch (optname) {
1576 case IPV6_CHECKSUM:
1577 /*
1578 * For ICMPv6 sockets, no modification allowed for checksum
1579 * offset, permit "no change" values to help existing apps.
1580 *
1581 * XXX 2292bis says: "An attempt to set IPV6_CHECKSUM
1582 * for an ICMPv6 socket will fail."
1583 * The current behavior does not meet 2292bis.
1584 */
1585 switch (op) {
1586 case PRCO_SETOPT:
1587 if (optlen != sizeof(int)) {
1588 error = EINVAL;
1589 break;
1590 }
1591 optval = *mtod(m, int *);
1592 if ((optval % 2) != 0) {
1593 /* the API assumes even offset values */
1594 error = EINVAL;
1595 } else if (so->so_proto->pr_protocol ==
1596 IPPROTO_ICMPV6) {
1597 if (optval != icmp6off)
1598 error = EINVAL;
1599 } else
1600 in6p->in6p_cksum = optval;
1601 break;
1602
1603 case PRCO_GETOPT:
1604 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
1605 optval = icmp6off;
1606 else
1607 optval = in6p->in6p_cksum;
1608
1609 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1610 m->m_len = sizeof(int);
1611 *mtod(m, int *) = optval;
1612 break;
1613
1614 default:
1615 error = EINVAL;
1616 break;
1617 }
1618 break;
1619
1620 default:
1621 error = ENOPROTOOPT;
1622 break;
1623 }
1624
1625 if (op == PRCO_SETOPT && m)
1626 (void)m_free(m);
1627
1628 return (error);
1629 }
1630
1631 /*
1632 * Set up IP6 options in pcb for insertion in output packets.
1633 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1634 * with destination address if source routed.
1635 */
1636 static int
1637 ip6_pcbopts(pktopt, m, so)
1638 struct ip6_pktopts **pktopt;
1639 struct mbuf *m;
1640 struct socket *so;
1641 {
1642 struct ip6_pktopts *opt = *pktopt;
1643 int error = 0;
1644 struct proc *p = curproc; /* XXX */
1645 int priv = 0;
1646
1647 /* turn off any old options. */
1648 if (opt) {
1649 if (opt->ip6po_m)
1650 (void)m_free(opt->ip6po_m);
1651 } else
1652 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1653 *pktopt = 0;
1654
1655 if (!m || m->m_len == 0) {
1656 /*
1657 * Only turning off any previous options.
1658 */
1659 free(opt, M_IP6OPT);
1660 if (m)
1661 (void)m_free(m);
1662 return (0);
1663 }
1664
1665 /* set options specified by user. */
1666 if (p && !suser(p->p_ucred, &p->p_acflag))
1667 priv = 1;
1668 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1669 (void)m_free(m);
1670 free(opt, M_IP6OPT);
1671 return (error);
1672 }
1673 *pktopt = opt;
1674 return (0);
1675 }
1676
1677 /*
1678 * Set the IP6 multicast options in response to user setsockopt().
1679 */
1680 static int
1681 ip6_setmoptions(optname, im6op, m)
1682 int optname;
1683 struct ip6_moptions **im6op;
1684 struct mbuf *m;
1685 {
1686 int error = 0;
1687 u_int loop, ifindex;
1688 struct ipv6_mreq *mreq;
1689 struct ifnet *ifp;
1690 struct ip6_moptions *im6o = *im6op;
1691 struct route_in6 ro;
1692 struct sockaddr_in6 *dst;
1693 struct in6_multi_mship *imm;
1694 struct proc *p = curproc; /* XXX */
1695
1696 if (im6o == NULL) {
1697 /*
1698 * No multicast option buffer attached to the pcb;
1699 * allocate one and initialize to default values.
1700 */
1701 im6o = (struct ip6_moptions *)
1702 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1703
1704 if (im6o == NULL)
1705 return (ENOBUFS);
1706 *im6op = im6o;
1707 im6o->im6o_multicast_ifp = NULL;
1708 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1709 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1710 LIST_INIT(&im6o->im6o_memberships);
1711 }
1712
1713 switch (optname) {
1714
1715 case IPV6_MULTICAST_IF:
1716 /*
1717 * Select the interface for outgoing multicast packets.
1718 */
1719 if (m == NULL || m->m_len != sizeof(u_int)) {
1720 error = EINVAL;
1721 break;
1722 }
1723 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1724 if (ifindex < 0 || if_indexlim <= ifindex ||
1725 !ifindex2ifnet[ifindex]) {
1726 error = ENXIO; /* XXX EINVAL? */
1727 break;
1728 }
1729 ifp = ifindex2ifnet[ifindex];
1730 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1731 error = EADDRNOTAVAIL;
1732 break;
1733 }
1734 im6o->im6o_multicast_ifp = ifp;
1735 break;
1736
1737 case IPV6_MULTICAST_HOPS:
1738 {
1739 /*
1740 * Set the IP6 hoplimit for outgoing multicast packets.
1741 */
1742 int optval;
1743 if (m == NULL || m->m_len != sizeof(int)) {
1744 error = EINVAL;
1745 break;
1746 }
1747 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1748 if (optval < -1 || optval >= 256)
1749 error = EINVAL;
1750 else if (optval == -1)
1751 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1752 else
1753 im6o->im6o_multicast_hlim = optval;
1754 break;
1755 }
1756
1757 case IPV6_MULTICAST_LOOP:
1758 /*
1759 * Set the loopback flag for outgoing multicast packets.
1760 * Must be zero or one.
1761 */
1762 if (m == NULL || m->m_len != sizeof(u_int)) {
1763 error = EINVAL;
1764 break;
1765 }
1766 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1767 if (loop > 1) {
1768 error = EINVAL;
1769 break;
1770 }
1771 im6o->im6o_multicast_loop = loop;
1772 break;
1773
1774 case IPV6_JOIN_GROUP:
1775 /*
1776 * Add a multicast group membership.
1777 * Group must be a valid IP6 multicast address.
1778 */
1779 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1780 error = EINVAL;
1781 break;
1782 }
1783 mreq = mtod(m, struct ipv6_mreq *);
1784 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1785 /*
1786 * We use the unspecified address to specify to accept
1787 * all multicast addresses. Only super user is allowed
1788 * to do this.
1789 */
1790 if (suser(p->p_ucred, &p->p_acflag))
1791 {
1792 error = EACCES;
1793 break;
1794 }
1795 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1796 error = EINVAL;
1797 break;
1798 }
1799
1800 /*
1801 * If the interface is specified, validate it.
1802 */
1803 if (mreq->ipv6mr_interface < 0 ||
1804 if_indexlim <= mreq->ipv6mr_interface ||
1805 !ifindex2ifnet[mreq->ipv6mr_interface]) {
1806 error = ENXIO; /* XXX EINVAL? */
1807 break;
1808 }
1809 /*
1810 * If no interface was explicitly specified, choose an
1811 * appropriate one according to the given multicast address.
1812 */
1813 if (mreq->ipv6mr_interface == 0) {
1814 /*
1815 * If the multicast address is in node-local scope,
1816 * the interface should be a loopback interface.
1817 * Otherwise, look up the routing table for the
1818 * address, and choose the outgoing interface.
1819 * XXX: is it a good approach?
1820 */
1821 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1822 ifp = &loif[0];
1823 } else {
1824 ro.ro_rt = NULL;
1825 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1826 bzero(dst, sizeof(*dst));
1827 dst->sin6_len = sizeof(struct sockaddr_in6);
1828 dst->sin6_family = AF_INET6;
1829 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1830 rtalloc((struct route *)&ro);
1831 if (ro.ro_rt == NULL) {
1832 error = EADDRNOTAVAIL;
1833 break;
1834 }
1835 ifp = ro.ro_rt->rt_ifp;
1836 rtfree(ro.ro_rt);
1837 }
1838 } else
1839 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1840
1841 /*
1842 * See if we found an interface, and confirm that it
1843 * supports multicast
1844 */
1845 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1846 error = EADDRNOTAVAIL;
1847 break;
1848 }
1849 /*
1850 * Put interface index into the multicast address,
1851 * if the address has link-local scope.
1852 */
1853 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1854 mreq->ipv6mr_multiaddr.s6_addr16[1] =
1855 htons(ifp->if_index);
1856 }
1857 /*
1858 * See if the membership already exists.
1859 */
1860 for (imm = im6o->im6o_memberships.lh_first;
1861 imm != NULL; imm = imm->i6mm_chain.le_next)
1862 if (imm->i6mm_maddr->in6m_ifp == ifp &&
1863 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1864 &mreq->ipv6mr_multiaddr))
1865 break;
1866 if (imm != NULL) {
1867 error = EADDRINUSE;
1868 break;
1869 }
1870 /*
1871 * Everything looks good; add a new record to the multicast
1872 * address list for the given interface.
1873 */
1874 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error);
1875 if (!imm)
1876 break;
1877 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
1878 break;
1879
1880 case IPV6_LEAVE_GROUP:
1881 /*
1882 * Drop a multicast group membership.
1883 * Group must be a valid IP6 multicast address.
1884 */
1885 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1886 error = EINVAL;
1887 break;
1888 }
1889 mreq = mtod(m, struct ipv6_mreq *);
1890 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1891 if (suser(p->p_ucred, &p->p_acflag))
1892 {
1893 error = EACCES;
1894 break;
1895 }
1896 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1897 error = EINVAL;
1898 break;
1899 }
1900 /*
1901 * If an interface address was specified, get a pointer
1902 * to its ifnet structure.
1903 */
1904 if (mreq->ipv6mr_interface < 0 ||
1905 if_indexlim <= mreq->ipv6mr_interface ||
1906 !ifindex2ifnet[mreq->ipv6mr_interface]) {
1907 error = ENXIO; /* XXX EINVAL? */
1908 break;
1909 }
1910 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1911 /*
1912 * Put interface index into the multicast address,
1913 * if the address has link-local scope.
1914 */
1915 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1916 mreq->ipv6mr_multiaddr.s6_addr16[1] =
1917 htons(mreq->ipv6mr_interface);
1918 }
1919 /*
1920 * Find the membership in the membership list.
1921 */
1922 for (imm = im6o->im6o_memberships.lh_first;
1923 imm != NULL; imm = imm->i6mm_chain.le_next) {
1924 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
1925 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1926 &mreq->ipv6mr_multiaddr))
1927 break;
1928 }
1929 if (imm == NULL) {
1930 /* Unable to resolve interface */
1931 error = EADDRNOTAVAIL;
1932 break;
1933 }
1934 /*
1935 * Give up the multicast address record to which the
1936 * membership points.
1937 */
1938 LIST_REMOVE(imm, i6mm_chain);
1939 in6_leavegroup(imm);
1940 break;
1941
1942 default:
1943 error = EOPNOTSUPP;
1944 break;
1945 }
1946
1947 /*
1948 * If all options have default values, no need to keep the mbuf.
1949 */
1950 if (im6o->im6o_multicast_ifp == NULL &&
1951 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
1952 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
1953 im6o->im6o_memberships.lh_first == NULL) {
1954 free(*im6op, M_IPMOPTS);
1955 *im6op = NULL;
1956 }
1957
1958 return (error);
1959 }
1960
1961 /*
1962 * Return the IP6 multicast options in response to user getsockopt().
1963 */
1964 static int
1965 ip6_getmoptions(optname, im6o, mp)
1966 int optname;
1967 struct ip6_moptions *im6o;
1968 struct mbuf **mp;
1969 {
1970 u_int *hlim, *loop, *ifindex;
1971
1972 *mp = m_get(M_WAIT, MT_SOOPTS);
1973
1974 switch (optname) {
1975
1976 case IPV6_MULTICAST_IF:
1977 ifindex = mtod(*mp, u_int *);
1978 (*mp)->m_len = sizeof(u_int);
1979 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
1980 *ifindex = 0;
1981 else
1982 *ifindex = im6o->im6o_multicast_ifp->if_index;
1983 return (0);
1984
1985 case IPV6_MULTICAST_HOPS:
1986 hlim = mtod(*mp, u_int *);
1987 (*mp)->m_len = sizeof(u_int);
1988 if (im6o == NULL)
1989 *hlim = ip6_defmcasthlim;
1990 else
1991 *hlim = im6o->im6o_multicast_hlim;
1992 return (0);
1993
1994 case IPV6_MULTICAST_LOOP:
1995 loop = mtod(*mp, u_int *);
1996 (*mp)->m_len = sizeof(u_int);
1997 if (im6o == NULL)
1998 *loop = ip6_defmcasthlim;
1999 else
2000 *loop = im6o->im6o_multicast_loop;
2001 return (0);
2002
2003 default:
2004 return (EOPNOTSUPP);
2005 }
2006 }
2007
2008 /*
2009 * Discard the IP6 multicast options.
2010 */
2011 void
2012 ip6_freemoptions(im6o)
2013 struct ip6_moptions *im6o;
2014 {
2015 struct in6_multi_mship *imm;
2016
2017 if (im6o == NULL)
2018 return;
2019
2020 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2021 LIST_REMOVE(imm, i6mm_chain);
2022 in6_leavegroup(imm);
2023 }
2024 free(im6o, M_IPMOPTS);
2025 }
2026
2027 /*
2028 * Set IPv6 outgoing packet options based on advanced API.
2029 */
2030 int
2031 ip6_setpktoptions(control, opt, priv)
2032 struct mbuf *control;
2033 struct ip6_pktopts *opt;
2034 int priv;
2035 {
2036 struct cmsghdr *cm = 0;
2037
2038 if (control == 0 || opt == 0)
2039 return (EINVAL);
2040
2041 bzero(opt, sizeof(*opt));
2042 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
2043
2044 /*
2045 * XXX: Currently, we assume all the optional information is stored
2046 * in a single mbuf.
2047 */
2048 if (control->m_next)
2049 return (EINVAL);
2050
2051 opt->ip6po_m = control;
2052
2053 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2054 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2055 cm = mtod(control, struct cmsghdr *);
2056 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2057 return (EINVAL);
2058 if (cm->cmsg_level != IPPROTO_IPV6)
2059 continue;
2060
2061 switch (cm->cmsg_type) {
2062 case IPV6_PKTINFO:
2063 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
2064 return (EINVAL);
2065 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
2066 if (opt->ip6po_pktinfo->ipi6_ifindex &&
2067 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
2068 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
2069 htons(opt->ip6po_pktinfo->ipi6_ifindex);
2070
2071 if (opt->ip6po_pktinfo->ipi6_ifindex >= if_indexlim ||
2072 opt->ip6po_pktinfo->ipi6_ifindex < 0)
2073 return (ENXIO);
2074 if (opt->ip6po_pktinfo->ipi6_ifindex > 0 &&
2075 !ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex])
2076 return (ENXIO);
2077
2078 /*
2079 * Check if the requested source address is indeed a
2080 * unicast address assigned to the node, and can be
2081 * used as the packet's source address.
2082 */
2083 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2084 struct ifaddr *ia;
2085 struct in6_ifaddr *ia6;
2086 struct sockaddr_in6 sin6;
2087
2088 bzero(&sin6, sizeof(sin6));
2089 sin6.sin6_len = sizeof(sin6);
2090 sin6.sin6_family = AF_INET6;
2091 sin6.sin6_addr =
2092 opt->ip6po_pktinfo->ipi6_addr;
2093 ia = ifa_ifwithaddr(sin6tosa(&sin6));
2094 if (ia == NULL ||
2095 (opt->ip6po_pktinfo->ipi6_ifindex &&
2096 (ia->ifa_ifp->if_index !=
2097 opt->ip6po_pktinfo->ipi6_ifindex))) {
2098 return (EADDRNOTAVAIL);
2099 }
2100 ia6 = (struct in6_ifaddr *)ia;
2101 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) {
2102 return (EADDRNOTAVAIL);
2103 }
2104
2105 /*
2106 * Check if the requested source address is
2107 * indeed a unicast address assigned to the
2108 * node.
2109 */
2110 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
2111 return (EADDRNOTAVAIL);
2112 }
2113 break;
2114
2115 case IPV6_HOPLIMIT:
2116 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2117 return (EINVAL);
2118 else {
2119 int t;
2120
2121 bcopy(CMSG_DATA(cm), &t, sizeof(t));
2122 if (t < -1 || t > 255)
2123 return (EINVAL);
2124 opt->ip6po_hlim = t;
2125 }
2126 break;
2127
2128 case IPV6_NEXTHOP:
2129 if (!priv)
2130 return (EPERM);
2131
2132 /* check if cmsg_len is large enough for sa_len */
2133 if (cm->cmsg_len < sizeof(u_char) ||
2134 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2135 return (EINVAL);
2136
2137 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2138
2139 break;
2140
2141 case IPV6_HOPOPTS:
2142 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2143 return (EINVAL);
2144 else {
2145 struct ip6_hbh *t;
2146
2147 t = (struct ip6_hbh *)CMSG_DATA(cm);
2148 if (cm->cmsg_len !=
2149 CMSG_LEN((t->ip6h_len + 1) << 3))
2150 return (EINVAL);
2151 opt->ip6po_hbh = t;
2152 }
2153 break;
2154
2155 case IPV6_DSTOPTS:
2156 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2157 return (EINVAL);
2158
2159 /*
2160 * If there is no routing header yet, the destination
2161 * options header should be put on the 1st part.
2162 * Otherwise, the header should be on the 2nd part.
2163 * (See RFC 2460, section 4.1)
2164 */
2165 if (opt->ip6po_rthdr == NULL) {
2166 struct ip6_dest *t;
2167
2168 t = (struct ip6_dest *)CMSG_DATA(cm);
2169 if (cm->cmsg_len !=
2170 CMSG_LEN((t->ip6d_len + 1) << 3));
2171 return (EINVAL);
2172 opt->ip6po_dest1 = t;
2173 }
2174 else {
2175 struct ip6_dest *t;
2176
2177 t = (struct ip6_dest *)CMSG_DATA(cm);
2178 if (cm->cmsg_len !=
2179 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) << 3))
2180 return (EINVAL);
2181 opt->ip6po_dest2 = t;
2182 }
2183 break;
2184
2185 case IPV6_RTHDR:
2186 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2187 return (EINVAL);
2188 else {
2189 struct ip6_rthdr *t;
2190
2191 t = (struct ip6_rthdr *)CMSG_DATA(cm);
2192 if (cm->cmsg_len !=
2193 CMSG_LEN((t->ip6r_len + 1) << 3))
2194 return (EINVAL);
2195 switch (t->ip6r_type) {
2196 case IPV6_RTHDR_TYPE_0:
2197 if (t->ip6r_segleft == 0)
2198 return (EINVAL);
2199 break;
2200 default:
2201 return (EINVAL);
2202 }
2203 opt->ip6po_rthdr = t;
2204 }
2205 break;
2206
2207 default:
2208 return (ENOPROTOOPT);
2209 }
2210 }
2211
2212 return (0);
2213 }
2214
2215 /*
2216 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2217 * packet to the input queue of a specified interface. Note that this
2218 * calls the output routine of the loopback "driver", but with an interface
2219 * pointer that might NOT be &loif -- easier than replicating that code here.
2220 */
2221 void
2222 ip6_mloopback(ifp, m, dst)
2223 struct ifnet *ifp;
2224 struct mbuf *m;
2225 struct sockaddr_in6 *dst;
2226 {
2227 struct mbuf *copym;
2228 struct ip6_hdr *ip6;
2229
2230 copym = m_copy(m, 0, M_COPYALL);
2231 if (copym == NULL)
2232 return;
2233
2234 /*
2235 * Make sure to deep-copy IPv6 header portion in case the data
2236 * is in an mbuf cluster, so that we can safely override the IPv6
2237 * header portion later.
2238 */
2239 if ((copym->m_flags & M_EXT) != 0 ||
2240 copym->m_len < sizeof(struct ip6_hdr)) {
2241 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2242 if (copym == NULL)
2243 return;
2244 }
2245
2246 #ifdef DIAGNOSTIC
2247 if (copym->m_len < sizeof(*ip6)) {
2248 m_freem(copym);
2249 return;
2250 }
2251 #endif
2252
2253 ip6 = mtod(copym, struct ip6_hdr *);
2254 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
2255 ip6->ip6_src.s6_addr16[1] = 0;
2256 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
2257 ip6->ip6_dst.s6_addr16[1] = 0;
2258
2259 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2260 }
2261
2262 /*
2263 * Chop IPv6 header off from the payload.
2264 */
2265 static int
2266 ip6_splithdr(m, exthdrs)
2267 struct mbuf *m;
2268 struct ip6_exthdrs *exthdrs;
2269 {
2270 struct mbuf *mh;
2271 struct ip6_hdr *ip6;
2272
2273 ip6 = mtod(m, struct ip6_hdr *);
2274 if (m->m_len > sizeof(*ip6)) {
2275 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2276 if (mh == 0) {
2277 m_freem(m);
2278 return ENOBUFS;
2279 }
2280 M_COPY_PKTHDR(mh, m);
2281 MH_ALIGN(mh, sizeof(*ip6));
2282 m_tag_delete_chain(m, NULL);
2283 m->m_flags &= ~M_PKTHDR;
2284 m->m_len -= sizeof(*ip6);
2285 m->m_data += sizeof(*ip6);
2286 mh->m_next = m;
2287 m = mh;
2288 m->m_len = sizeof(*ip6);
2289 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2290 }
2291 exthdrs->ip6e_ip6 = m;
2292 return 0;
2293 }
2294
2295 /*
2296 * Compute IPv6 extension header length.
2297 */
2298 int
2299 ip6_optlen(in6p)
2300 struct in6pcb *in6p;
2301 {
2302 int len;
2303
2304 if (!in6p->in6p_outputopts)
2305 return 0;
2306
2307 len = 0;
2308 #define elen(x) \
2309 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2310
2311 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2312 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2313 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2314 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2315 return len;
2316 #undef elen
2317 }
2318