ip6_output.c revision 1.79 1 /* $NetBSD: ip6_output.c,v 1.79 2004/02/06 08:07:55 itojun Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.79 2004/02/06 08:07:55 itojun Exp $");
66
67 #include "opt_inet.h"
68 #include "opt_ipsec.h"
69 #include "opt_pfil_hooks.h"
70
71 #include <sys/param.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/errno.h>
75 #include <sys/protosw.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80
81 #include <net/if.h>
82 #include <net/route.h>
83 #ifdef PFIL_HOOKS
84 #include <net/pfil.h>
85 #endif
86
87 #include <netinet/in.h>
88 #include <netinet/in_var.h>
89 #include <netinet/ip6.h>
90 #include <netinet/icmp6.h>
91 #include <netinet6/ip6_var.h>
92 #include <netinet6/in6_pcb.h>
93 #include <netinet6/nd6.h>
94 #include <netinet6/ip6protosw.h>
95
96 #ifdef IPSEC
97 #include <netinet6/ipsec.h>
98 #include <netkey/key.h>
99 #endif /* IPSEC */
100
101 #include "loop.h"
102
103 #include <net/net_osdep.h>
104
105 #ifdef PFIL_HOOKS
106 extern struct pfil_head inet6_pfil_hook; /* XXX */
107 #endif
108
109 struct ip6_exthdrs {
110 struct mbuf *ip6e_ip6;
111 struct mbuf *ip6e_hbh;
112 struct mbuf *ip6e_dest1;
113 struct mbuf *ip6e_rthdr;
114 struct mbuf *ip6e_dest2;
115 };
116
117 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
118 struct socket *));
119 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
120 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
121 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
122 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
123 struct ip6_frag **));
124 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
125 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
126 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
127 struct ifnet *, struct in6_addr *, u_long *, int *));
128
129 extern struct ifnet loif[NLOOP];
130
131 /*
132 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
133 * header (with pri, len, nxt, hlim, src, dst).
134 * This function may modify ver and hlim only.
135 * The mbuf chain containing the packet will be freed.
136 * The mbuf opt, if present, will not be freed.
137 *
138 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
139 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
140 * which is rt_rmx.rmx_mtu.
141 */
142 int
143 ip6_output(m0, opt, ro, flags, im6o, so, ifpp)
144 struct mbuf *m0;
145 struct ip6_pktopts *opt;
146 struct route_in6 *ro;
147 int flags;
148 struct ip6_moptions *im6o;
149 struct socket *so;
150 struct ifnet **ifpp; /* XXX: just for statistics */
151 {
152 struct ip6_hdr *ip6, *mhip6;
153 struct ifnet *ifp, *origifp;
154 struct mbuf *m = m0;
155 int hlen, tlen, len, off;
156 struct route_in6 ip6route;
157 struct sockaddr_in6 *dst;
158 int error = 0;
159 u_long mtu;
160 int alwaysfrag, dontfrag;
161 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
162 struct ip6_exthdrs exthdrs;
163 struct in6_addr finaldst;
164 struct route_in6 *ro_pmtu = NULL;
165 int hdrsplit = 0;
166 int needipsec = 0;
167 #ifdef IPSEC
168 int needipsectun = 0;
169 struct secpolicy *sp = NULL;
170
171 ip6 = mtod(m, struct ip6_hdr *);
172 #endif /* IPSEC */
173
174 #define MAKE_EXTHDR(hp, mp) \
175 do { \
176 if (hp) { \
177 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
178 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
179 ((eh)->ip6e_len + 1) << 3); \
180 if (error) \
181 goto freehdrs; \
182 } \
183 } while (/*CONSTCOND*/ 0)
184
185 bzero(&exthdrs, sizeof(exthdrs));
186 if (opt) {
187 /* Hop-by-Hop options header */
188 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
189 /* Destination options header(1st part) */
190 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
191 /* Routing header */
192 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
193 /* Destination options header(2nd part) */
194 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
195 }
196
197 #ifdef IPSEC
198 if ((flags & IPV6_FORWARDING) != 0) {
199 needipsec = 0;
200 goto skippolicycheck;
201 }
202
203 /* get a security policy for this packet */
204 if (so == NULL)
205 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
206 else
207 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
208
209 if (sp == NULL) {
210 ipsec6stat.out_inval++;
211 goto freehdrs;
212 }
213
214 error = 0;
215
216 /* check policy */
217 switch (sp->policy) {
218 case IPSEC_POLICY_DISCARD:
219 /*
220 * This packet is just discarded.
221 */
222 ipsec6stat.out_polvio++;
223 goto freehdrs;
224
225 case IPSEC_POLICY_BYPASS:
226 case IPSEC_POLICY_NONE:
227 /* no need to do IPsec. */
228 needipsec = 0;
229 break;
230
231 case IPSEC_POLICY_IPSEC:
232 if (sp->req == NULL) {
233 /* XXX should be panic ? */
234 printf("ip6_output: No IPsec request specified.\n");
235 error = EINVAL;
236 goto freehdrs;
237 }
238 needipsec = 1;
239 break;
240
241 case IPSEC_POLICY_ENTRUST:
242 default:
243 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
244 }
245
246 skippolicycheck:;
247 #endif /* IPSEC */
248
249 /*
250 * Calculate the total length of the extension header chain.
251 * Keep the length of the unfragmentable part for fragmentation.
252 */
253 optlen = 0;
254 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
255 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
256 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
257 unfragpartlen = optlen + sizeof(struct ip6_hdr);
258 /* NOTE: we don't add AH/ESP length here. do that later. */
259 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
260
261 /*
262 * If we need IPsec, or there is at least one extension header,
263 * separate IP6 header from the payload.
264 */
265 if ((needipsec || optlen) && !hdrsplit) {
266 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
267 m = NULL;
268 goto freehdrs;
269 }
270 m = exthdrs.ip6e_ip6;
271 hdrsplit++;
272 }
273
274 /* adjust pointer */
275 ip6 = mtod(m, struct ip6_hdr *);
276
277 /* adjust mbuf packet header length */
278 m->m_pkthdr.len += optlen;
279 plen = m->m_pkthdr.len - sizeof(*ip6);
280
281 /* If this is a jumbo payload, insert a jumbo payload option. */
282 if (plen > IPV6_MAXPACKET) {
283 if (!hdrsplit) {
284 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
285 m = NULL;
286 goto freehdrs;
287 }
288 m = exthdrs.ip6e_ip6;
289 hdrsplit++;
290 }
291 /* adjust pointer */
292 ip6 = mtod(m, struct ip6_hdr *);
293 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
294 goto freehdrs;
295 ip6->ip6_plen = 0;
296 } else
297 ip6->ip6_plen = htons(plen);
298
299 /*
300 * Concatenate headers and fill in next header fields.
301 * Here we have, on "m"
302 * IPv6 payload
303 * and we insert headers accordingly. Finally, we should be getting:
304 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
305 *
306 * during the header composing process, "m" points to IPv6 header.
307 * "mprev" points to an extension header prior to esp.
308 */
309 {
310 u_char *nexthdrp = &ip6->ip6_nxt;
311 struct mbuf *mprev = m;
312
313 /*
314 * we treat dest2 specially. this makes IPsec processing
315 * much easier. the goal here is to make mprev point the
316 * mbuf prior to dest2.
317 *
318 * result: IPv6 dest2 payload
319 * m and mprev will point to IPv6 header.
320 */
321 if (exthdrs.ip6e_dest2) {
322 if (!hdrsplit)
323 panic("assumption failed: hdr not split");
324 exthdrs.ip6e_dest2->m_next = m->m_next;
325 m->m_next = exthdrs.ip6e_dest2;
326 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
327 ip6->ip6_nxt = IPPROTO_DSTOPTS;
328 }
329
330 #define MAKE_CHAIN(m, mp, p, i)\
331 do {\
332 if (m) {\
333 if (!hdrsplit) \
334 panic("assumption failed: hdr not split"); \
335 *mtod((m), u_char *) = *(p);\
336 *(p) = (i);\
337 p = mtod((m), u_char *);\
338 (m)->m_next = (mp)->m_next;\
339 (mp)->m_next = (m);\
340 (mp) = (m);\
341 }\
342 } while (/*CONSTCOND*/ 0)
343 /*
344 * result: IPv6 hbh dest1 rthdr dest2 payload
345 * m will point to IPv6 header. mprev will point to the
346 * extension header prior to dest2 (rthdr in the above case).
347 */
348 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
349 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
350 IPPROTO_DSTOPTS);
351 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
352 IPPROTO_ROUTING);
353
354 #ifdef IPSEC
355 if (!needipsec)
356 goto skip_ipsec2;
357
358 /*
359 * pointers after IPsec headers are not valid any more.
360 * other pointers need a great care too.
361 * (IPsec routines should not mangle mbufs prior to AH/ESP)
362 */
363 exthdrs.ip6e_dest2 = NULL;
364
365 {
366 struct ip6_rthdr *rh = NULL;
367 int segleft_org = 0;
368 struct ipsec_output_state state;
369
370 if (exthdrs.ip6e_rthdr) {
371 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
372 segleft_org = rh->ip6r_segleft;
373 rh->ip6r_segleft = 0;
374 }
375
376 bzero(&state, sizeof(state));
377 state.m = m;
378 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
379 &needipsectun);
380 m = state.m;
381 if (error) {
382 /* mbuf is already reclaimed in ipsec6_output_trans. */
383 m = NULL;
384 switch (error) {
385 case EHOSTUNREACH:
386 case ENETUNREACH:
387 case EMSGSIZE:
388 case ENOBUFS:
389 case ENOMEM:
390 break;
391 default:
392 printf("ip6_output (ipsec): error code %d\n", error);
393 /* FALLTHROUGH */
394 case ENOENT:
395 /* don't show these error codes to the user */
396 error = 0;
397 break;
398 }
399 goto bad;
400 }
401 if (exthdrs.ip6e_rthdr) {
402 /* ah6_output doesn't modify mbuf chain */
403 rh->ip6r_segleft = segleft_org;
404 }
405 }
406 skip_ipsec2:;
407 #endif
408 }
409
410 /*
411 * If there is a routing header, replace destination address field
412 * with the first hop of the routing header.
413 */
414 if (exthdrs.ip6e_rthdr) {
415 struct ip6_rthdr *rh;
416 struct ip6_rthdr0 *rh0;
417 struct in6_addr *addr;
418
419 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
420 struct ip6_rthdr *));
421 finaldst = ip6->ip6_dst;
422 switch (rh->ip6r_type) {
423 case IPV6_RTHDR_TYPE_0:
424 rh0 = (struct ip6_rthdr0 *)rh;
425 addr = (struct in6_addr *)(rh0 + 1);
426 ip6->ip6_dst = addr[0];
427 bcopy(&addr[1], &addr[0],
428 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1));
429 addr[rh0->ip6r0_segleft - 1] = finaldst;
430 break;
431 default: /* is it possible? */
432 error = EINVAL;
433 goto bad;
434 }
435 }
436
437 /* Source address validation */
438 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
439 (flags & IPV6_UNSPECSRC) == 0) {
440 error = EOPNOTSUPP;
441 ip6stat.ip6s_badscope++;
442 goto bad;
443 }
444 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
445 error = EOPNOTSUPP;
446 ip6stat.ip6s_badscope++;
447 goto bad;
448 }
449
450 ip6stat.ip6s_localout++;
451
452 /*
453 * Route packet.
454 */
455 /* initialize cached route */
456 if (ro == 0) {
457 ro = &ip6route;
458 bzero((caddr_t)ro, sizeof(*ro));
459 }
460 ro_pmtu = ro;
461 if (opt && opt->ip6po_rthdr)
462 ro = &opt->ip6po_route;
463 dst = (struct sockaddr_in6 *)&ro->ro_dst;
464 /*
465 * If there is a cached route,
466 * check that it is to the same destination
467 * and is still up. If not, free it and try again.
468 */
469 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
470 dst->sin6_family != AF_INET6 ||
471 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
472 RTFREE(ro->ro_rt);
473 ro->ro_rt = (struct rtentry *)0;
474 }
475 if (ro->ro_rt == 0) {
476 bzero(dst, sizeof(*dst));
477 dst->sin6_family = AF_INET6;
478 dst->sin6_len = sizeof(struct sockaddr_in6);
479 dst->sin6_addr = ip6->ip6_dst;
480 }
481 #ifdef IPSEC
482 if (needipsec && needipsectun) {
483 struct ipsec_output_state state;
484
485 /*
486 * All the extension headers will become inaccessible
487 * (since they can be encrypted).
488 * Don't panic, we need no more updates to extension headers
489 * on inner IPv6 packet (since they are now encapsulated).
490 *
491 * IPv6 [ESP|AH] IPv6 [extension headers] payload
492 */
493 bzero(&exthdrs, sizeof(exthdrs));
494 exthdrs.ip6e_ip6 = m;
495
496 bzero(&state, sizeof(state));
497 state.m = m;
498 state.ro = (struct route *)ro;
499 state.dst = (struct sockaddr *)dst;
500
501 error = ipsec6_output_tunnel(&state, sp, flags);
502
503 m = state.m;
504 ro = (struct route_in6 *)state.ro;
505 dst = (struct sockaddr_in6 *)state.dst;
506 if (error) {
507 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
508 m0 = m = NULL;
509 m = NULL;
510 switch (error) {
511 case EHOSTUNREACH:
512 case ENETUNREACH:
513 case EMSGSIZE:
514 case ENOBUFS:
515 case ENOMEM:
516 break;
517 default:
518 printf("ip6_output (ipsec): error code %d\n", error);
519 /* FALLTHROUGH */
520 case ENOENT:
521 /* don't show these error codes to the user */
522 error = 0;
523 break;
524 }
525 goto bad;
526 }
527
528 exthdrs.ip6e_ip6 = m;
529 }
530 #endif /* IPSEC */
531
532 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
533 /* Unicast */
534
535 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
536 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
537 /* xxx
538 * interface selection comes here
539 * if an interface is specified from an upper layer,
540 * ifp must point it.
541 */
542 if (ro->ro_rt == 0) {
543 /*
544 * non-bsdi always clone routes, if parent is
545 * PRF_CLONING.
546 */
547 rtalloc((struct route *)ro);
548 }
549 if (ro->ro_rt == 0) {
550 ip6stat.ip6s_noroute++;
551 error = EHOSTUNREACH;
552 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
553 goto bad;
554 }
555 ifp = ro->ro_rt->rt_ifp;
556 ro->ro_rt->rt_use++;
557 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
558 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
559 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
560
561 in6_ifstat_inc(ifp, ifs6_out_request);
562
563 /*
564 * Check if the outgoing interface conflicts with
565 * the interface specified by ifi6_ifindex (if specified).
566 * Note that loopback interface is always okay.
567 * (this may happen when we are sending a packet to one of
568 * our own addresses.)
569 */
570 if (opt && opt->ip6po_pktinfo
571 && opt->ip6po_pktinfo->ipi6_ifindex) {
572 if (!(ifp->if_flags & IFF_LOOPBACK)
573 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
574 ip6stat.ip6s_noroute++;
575 in6_ifstat_inc(ifp, ifs6_out_discard);
576 error = EHOSTUNREACH;
577 goto bad;
578 }
579 }
580
581 if (opt && opt->ip6po_hlim != -1)
582 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
583 } else {
584 /* Multicast */
585 struct in6_multi *in6m;
586
587 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
588
589 /*
590 * See if the caller provided any multicast options
591 */
592 ifp = NULL;
593 if (im6o != NULL) {
594 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
595 if (im6o->im6o_multicast_ifp != NULL)
596 ifp = im6o->im6o_multicast_ifp;
597 } else
598 ip6->ip6_hlim = ip6_defmcasthlim;
599
600 /*
601 * See if the caller provided the outgoing interface
602 * as an ancillary data.
603 * Boundary check for ifindex is assumed to be already done.
604 */
605 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
606 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
607
608 /*
609 * If the destination is a node-local scope multicast,
610 * the packet should be loop-backed only.
611 */
612 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
613 /*
614 * If the outgoing interface is already specified,
615 * it should be a loopback interface.
616 */
617 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
618 ip6stat.ip6s_badscope++;
619 error = ENETUNREACH; /* XXX: better error? */
620 /* XXX correct ifp? */
621 in6_ifstat_inc(ifp, ifs6_out_discard);
622 goto bad;
623 } else {
624 ifp = &loif[0];
625 }
626 }
627
628 if (opt && opt->ip6po_hlim != -1)
629 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
630
631 /*
632 * If caller did not provide an interface lookup a
633 * default in the routing table. This is either a
634 * default for the speicfied group (i.e. a host
635 * route), or a multicast default (a route for the
636 * ``net'' ff00::/8).
637 */
638 if (ifp == NULL) {
639 if (ro->ro_rt == 0) {
640 ro->ro_rt = rtalloc1((struct sockaddr *)
641 &ro->ro_dst, 0);
642 }
643 if (ro->ro_rt == 0) {
644 ip6stat.ip6s_noroute++;
645 error = EHOSTUNREACH;
646 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
647 goto bad;
648 }
649 ifp = ro->ro_rt->rt_ifp;
650 ro->ro_rt->rt_use++;
651 }
652
653 if ((flags & IPV6_FORWARDING) == 0)
654 in6_ifstat_inc(ifp, ifs6_out_request);
655 in6_ifstat_inc(ifp, ifs6_out_mcast);
656
657 /*
658 * Confirm that the outgoing interface supports multicast.
659 */
660 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
661 ip6stat.ip6s_noroute++;
662 in6_ifstat_inc(ifp, ifs6_out_discard);
663 error = ENETUNREACH;
664 goto bad;
665 }
666 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
667 if (in6m != NULL &&
668 (im6o == NULL || im6o->im6o_multicast_loop)) {
669 /*
670 * If we belong to the destination multicast group
671 * on the outgoing interface, and the caller did not
672 * forbid loopback, loop back a copy.
673 */
674 ip6_mloopback(ifp, m, dst);
675 } else {
676 /*
677 * If we are acting as a multicast router, perform
678 * multicast forwarding as if the packet had just
679 * arrived on the interface to which we are about
680 * to send. The multicast forwarding function
681 * recursively calls this function, using the
682 * IPV6_FORWARDING flag to prevent infinite recursion.
683 *
684 * Multicasts that are looped back by ip6_mloopback(),
685 * above, will be forwarded by the ip6_input() routine,
686 * if necessary.
687 */
688 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
689 if (ip6_mforward(ip6, ifp, m) != 0) {
690 m_freem(m);
691 goto done;
692 }
693 }
694 }
695 /*
696 * Multicasts with a hoplimit of zero may be looped back,
697 * above, but must not be transmitted on a network.
698 * Also, multicasts addressed to the loopback interface
699 * are not sent -- the above call to ip6_mloopback() will
700 * loop back a copy if this host actually belongs to the
701 * destination group on the loopback interface.
702 */
703 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
704 m_freem(m);
705 goto done;
706 }
707 }
708
709 /*
710 * Fill the outgoing inteface to tell the upper layer
711 * to increment per-interface statistics.
712 */
713 if (ifpp)
714 *ifpp = ifp;
715
716 /* Determine path MTU. */
717 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
718 &alwaysfrag)) != 0)
719 goto bad;
720
721 /*
722 * The caller of this function may specify to use the minimum MTU
723 * in some cases.
724 */
725 if (mtu > IPV6_MMTU) {
726 if ((flags & IPV6_MINMTU))
727 mtu = IPV6_MMTU;
728 }
729
730 /* Fake scoped addresses */
731 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
732 /*
733 * If source or destination address is a scoped address, and
734 * the packet is going to be sent to a loopback interface,
735 * we should keep the original interface.
736 */
737
738 /*
739 * XXX: this is a very experimental and temporary solution.
740 * We eventually have sockaddr_in6 and use the sin6_scope_id
741 * field of the structure here.
742 * We rely on the consistency between two scope zone ids
743 * of source add destination, which should already be assured
744 * Larger scopes than link will be supported in the near
745 * future.
746 */
747 origifp = NULL;
748 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
749 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
750 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
751 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
752 /*
753 * XXX: origifp can be NULL even in those two cases above.
754 * For example, if we remove the (only) link-local address
755 * from the loopback interface, and try to send a link-local
756 * address without link-id information. Then the source
757 * address is ::1, and the destination address is the
758 * link-local address with its s6_addr16[1] being zero.
759 * What is worse, if the packet goes to the loopback interface
760 * by a default rejected route, the null pointer would be
761 * passed to looutput, and the kernel would hang.
762 * The following last resort would prevent such disaster.
763 */
764 if (origifp == NULL)
765 origifp = ifp;
766 } else
767 origifp = ifp;
768 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
769 ip6->ip6_src.s6_addr16[1] = 0;
770 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
771 ip6->ip6_dst.s6_addr16[1] = 0;
772
773 /*
774 * If the outgoing packet contains a hop-by-hop options header,
775 * it must be examined and processed even by the source node.
776 * (RFC 2460, section 4.)
777 */
778 if (exthdrs.ip6e_hbh) {
779 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
780 u_int32_t dummy1; /* XXX unused */
781 u_int32_t dummy2; /* XXX unused */
782
783 /*
784 * XXX: if we have to send an ICMPv6 error to the sender,
785 * we need the M_LOOP flag since icmp6_error() expects
786 * the IPv6 and the hop-by-hop options header are
787 * continuous unless the flag is set.
788 */
789 m->m_flags |= M_LOOP;
790 m->m_pkthdr.rcvif = ifp;
791 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
792 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
793 &dummy1, &dummy2) < 0) {
794 /* m was already freed at this point */
795 error = EINVAL;/* better error? */
796 goto done;
797 }
798 m->m_flags &= ~M_LOOP; /* XXX */
799 m->m_pkthdr.rcvif = NULL;
800 }
801
802 #ifdef PFIL_HOOKS
803 /*
804 * Run through list of hooks for output packets.
805 */
806 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
807 goto done;
808 if (m == NULL)
809 goto done;
810 ip6 = mtod(m, struct ip6_hdr *);
811 #endif /* PFIL_HOOKS */
812 /*
813 * Send the packet to the outgoing interface.
814 * If necessary, do IPv6 fragmentation before sending.
815 *
816 * the logic here is rather complex:
817 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
818 * 1-a: send as is if tlen <= path mtu
819 * 1-b: fragment if tlen > path mtu
820 *
821 * 2: if user asks us not to fragment (dontfrag == 1)
822 * 2-a: send as is if tlen <= interface mtu
823 * 2-b: error if tlen > interface mtu
824 *
825 * 3: if we always need to attach fragment header (alwaysfrag == 1)
826 * always fragment
827 *
828 * 4: if dontfrag == 1 && alwaysfrag == 1
829 * error, as we cannot handle this conflicting request
830 */
831 tlen = m->m_pkthdr.len;
832
833 dontfrag = 0;
834 if (dontfrag && alwaysfrag) { /* case 4 */
835 /* conflicting request - can't transmit */
836 error = EMSGSIZE;
837 goto bad;
838 }
839 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */
840 /*
841 * Even if the DONTFRAG option is specified, we cannot send the
842 * packet when the data length is larger than the MTU of the
843 * outgoing interface.
844 * Notify the error by sending IPV6_PATHMTU ancillary data as
845 * well as returning an error code (the latter is not described
846 * in the API spec.)
847 */
848 u_int32_t mtu32;
849 struct ip6ctlparam ip6cp;
850
851 mtu32 = (u_int32_t)mtu;
852 bzero(&ip6cp, sizeof(ip6cp));
853 ip6cp.ip6c_cmdarg = (void *)&mtu32;
854 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
855 (void *)&ip6cp);
856
857 error = EMSGSIZE;
858 goto bad;
859 }
860
861 /*
862 * transmit packet without fragmentation
863 */
864 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */
865 struct in6_ifaddr *ia6;
866
867 ip6 = mtod(m, struct ip6_hdr *);
868 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
869 if (ia6) {
870 /* Record statistics for this interface address. */
871 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
872 }
873 #ifdef IPSEC
874 /* clean ipsec history once it goes out of the node */
875 ipsec_delaux(m);
876 #endif
877 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
878 goto done;
879 }
880
881 /*
882 * try to fragment the packet. case 1-b and 3
883 */
884 if (mtu < IPV6_MMTU) {
885 /* path MTU cannot be less than IPV6_MMTU */
886 error = EMSGSIZE;
887 in6_ifstat_inc(ifp, ifs6_out_fragfail);
888 goto bad;
889 } else if (ip6->ip6_plen == 0) {
890 /* jumbo payload cannot be fragmented */
891 error = EMSGSIZE;
892 in6_ifstat_inc(ifp, ifs6_out_fragfail);
893 goto bad;
894 } else {
895 struct mbuf **mnext, *m_frgpart;
896 struct ip6_frag *ip6f;
897 u_int32_t id = htonl(ip6_randomid());
898 u_char nextproto;
899 struct ip6ctlparam ip6cp;
900 u_int32_t mtu32;
901
902 /*
903 * Too large for the destination or interface;
904 * fragment if possible.
905 * Must be able to put at least 8 bytes per fragment.
906 */
907 hlen = unfragpartlen;
908 if (mtu > IPV6_MAXPACKET)
909 mtu = IPV6_MAXPACKET;
910
911 /* Notify a proper path MTU to applications. */
912 mtu32 = (u_int32_t)mtu;
913 bzero(&ip6cp, sizeof(ip6cp));
914 ip6cp.ip6c_cmdarg = (void *)&mtu32;
915 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
916 (void *)&ip6cp);
917
918 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
919 if (len < 8) {
920 error = EMSGSIZE;
921 in6_ifstat_inc(ifp, ifs6_out_fragfail);
922 goto bad;
923 }
924
925 mnext = &m->m_nextpkt;
926
927 /*
928 * Change the next header field of the last header in the
929 * unfragmentable part.
930 */
931 if (exthdrs.ip6e_rthdr) {
932 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
933 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
934 } else if (exthdrs.ip6e_dest1) {
935 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
936 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
937 } else if (exthdrs.ip6e_hbh) {
938 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
939 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
940 } else {
941 nextproto = ip6->ip6_nxt;
942 ip6->ip6_nxt = IPPROTO_FRAGMENT;
943 }
944
945 /*
946 * Loop through length of segment after first fragment,
947 * make new header and copy data of each part and link onto
948 * chain.
949 */
950 m0 = m;
951 for (off = hlen; off < tlen; off += len) {
952 struct mbuf *mlast;
953
954 MGETHDR(m, M_DONTWAIT, MT_HEADER);
955 if (!m) {
956 error = ENOBUFS;
957 ip6stat.ip6s_odropped++;
958 goto sendorfree;
959 }
960 m->m_pkthdr.rcvif = NULL;
961 m->m_flags = m0->m_flags & M_COPYFLAGS;
962 *mnext = m;
963 mnext = &m->m_nextpkt;
964 m->m_data += max_linkhdr;
965 mhip6 = mtod(m, struct ip6_hdr *);
966 *mhip6 = *ip6;
967 m->m_len = sizeof(*mhip6);
968 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
969 if (error) {
970 ip6stat.ip6s_odropped++;
971 goto sendorfree;
972 }
973 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
974 if (off + len >= tlen)
975 len = tlen - off;
976 else
977 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
978 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
979 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
980 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
981 error = ENOBUFS;
982 ip6stat.ip6s_odropped++;
983 goto sendorfree;
984 }
985 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
986 ;
987 mlast->m_next = m_frgpart;
988 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
989 m->m_pkthdr.rcvif = (struct ifnet *)0;
990 ip6f->ip6f_reserved = 0;
991 ip6f->ip6f_ident = id;
992 ip6f->ip6f_nxt = nextproto;
993 ip6stat.ip6s_ofragments++;
994 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
995 }
996
997 in6_ifstat_inc(ifp, ifs6_out_fragok);
998 }
999
1000 /*
1001 * Remove leading garbages.
1002 */
1003 sendorfree:
1004 m = m0->m_nextpkt;
1005 m0->m_nextpkt = 0;
1006 m_freem(m0);
1007 for (m0 = m; m; m = m0) {
1008 m0 = m->m_nextpkt;
1009 m->m_nextpkt = 0;
1010 if (error == 0) {
1011 struct in6_ifaddr *ia6;
1012 ip6 = mtod(m, struct ip6_hdr *);
1013 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1014 if (ia6) {
1015 /*
1016 * Record statistics for this interface
1017 * address.
1018 */
1019 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1020 m->m_pkthdr.len;
1021 }
1022 #ifdef IPSEC
1023 /* clean ipsec history once it goes out of the node */
1024 ipsec_delaux(m);
1025 #endif
1026 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1027 } else
1028 m_freem(m);
1029 }
1030
1031 if (error == 0)
1032 ip6stat.ip6s_fragmented++;
1033
1034 done:
1035 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1036 RTFREE(ro->ro_rt);
1037 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1038 RTFREE(ro_pmtu->ro_rt);
1039 }
1040
1041 #ifdef IPSEC
1042 if (sp != NULL)
1043 key_freesp(sp);
1044 #endif /* IPSEC */
1045
1046 return (error);
1047
1048 freehdrs:
1049 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1050 m_freem(exthdrs.ip6e_dest1);
1051 m_freem(exthdrs.ip6e_rthdr);
1052 m_freem(exthdrs.ip6e_dest2);
1053 /* FALLTHROUGH */
1054 bad:
1055 m_freem(m);
1056 goto done;
1057 }
1058
1059 static int
1060 ip6_copyexthdr(mp, hdr, hlen)
1061 struct mbuf **mp;
1062 caddr_t hdr;
1063 int hlen;
1064 {
1065 struct mbuf *m;
1066
1067 if (hlen > MCLBYTES)
1068 return (ENOBUFS); /* XXX */
1069
1070 MGET(m, M_DONTWAIT, MT_DATA);
1071 if (!m)
1072 return (ENOBUFS);
1073
1074 if (hlen > MLEN) {
1075 MCLGET(m, M_DONTWAIT);
1076 if ((m->m_flags & M_EXT) == 0) {
1077 m_free(m);
1078 return (ENOBUFS);
1079 }
1080 }
1081 m->m_len = hlen;
1082 if (hdr)
1083 bcopy(hdr, mtod(m, caddr_t), hlen);
1084
1085 *mp = m;
1086 return (0);
1087 }
1088
1089 /*
1090 * Insert jumbo payload option.
1091 */
1092 static int
1093 ip6_insert_jumboopt(exthdrs, plen)
1094 struct ip6_exthdrs *exthdrs;
1095 u_int32_t plen;
1096 {
1097 struct mbuf *mopt;
1098 u_int8_t *optbuf;
1099 u_int32_t v;
1100
1101 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1102
1103 /*
1104 * If there is no hop-by-hop options header, allocate new one.
1105 * If there is one but it doesn't have enough space to store the
1106 * jumbo payload option, allocate a cluster to store the whole options.
1107 * Otherwise, use it to store the options.
1108 */
1109 if (exthdrs->ip6e_hbh == 0) {
1110 MGET(mopt, M_DONTWAIT, MT_DATA);
1111 if (mopt == 0)
1112 return (ENOBUFS);
1113 mopt->m_len = JUMBOOPTLEN;
1114 optbuf = mtod(mopt, u_int8_t *);
1115 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1116 exthdrs->ip6e_hbh = mopt;
1117 } else {
1118 struct ip6_hbh *hbh;
1119
1120 mopt = exthdrs->ip6e_hbh;
1121 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1122 /*
1123 * XXX assumption:
1124 * - exthdrs->ip6e_hbh is not referenced from places
1125 * other than exthdrs.
1126 * - exthdrs->ip6e_hbh is not an mbuf chain.
1127 */
1128 int oldoptlen = mopt->m_len;
1129 struct mbuf *n;
1130
1131 /*
1132 * XXX: give up if the whole (new) hbh header does
1133 * not fit even in an mbuf cluster.
1134 */
1135 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1136 return (ENOBUFS);
1137
1138 /*
1139 * As a consequence, we must always prepare a cluster
1140 * at this point.
1141 */
1142 MGET(n, M_DONTWAIT, MT_DATA);
1143 if (n) {
1144 MCLGET(n, M_DONTWAIT);
1145 if ((n->m_flags & M_EXT) == 0) {
1146 m_freem(n);
1147 n = NULL;
1148 }
1149 }
1150 if (!n)
1151 return (ENOBUFS);
1152 n->m_len = oldoptlen + JUMBOOPTLEN;
1153 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1154 oldoptlen);
1155 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1156 m_freem(mopt);
1157 mopt = exthdrs->ip6e_hbh = n;
1158 } else {
1159 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1160 mopt->m_len += JUMBOOPTLEN;
1161 }
1162 optbuf[0] = IP6OPT_PADN;
1163 optbuf[1] = 0;
1164
1165 /*
1166 * Adjust the header length according to the pad and
1167 * the jumbo payload option.
1168 */
1169 hbh = mtod(mopt, struct ip6_hbh *);
1170 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1171 }
1172
1173 /* fill in the option. */
1174 optbuf[2] = IP6OPT_JUMBO;
1175 optbuf[3] = 4;
1176 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1177 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1178
1179 /* finally, adjust the packet header length */
1180 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1181
1182 return (0);
1183 #undef JUMBOOPTLEN
1184 }
1185
1186 /*
1187 * Insert fragment header and copy unfragmentable header portions.
1188 */
1189 static int
1190 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1191 struct mbuf *m0, *m;
1192 int hlen;
1193 struct ip6_frag **frghdrp;
1194 {
1195 struct mbuf *n, *mlast;
1196
1197 if (hlen > sizeof(struct ip6_hdr)) {
1198 n = m_copym(m0, sizeof(struct ip6_hdr),
1199 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1200 if (n == 0)
1201 return (ENOBUFS);
1202 m->m_next = n;
1203 } else
1204 n = m;
1205
1206 /* Search for the last mbuf of unfragmentable part. */
1207 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1208 ;
1209
1210 if ((mlast->m_flags & M_EXT) == 0 &&
1211 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1212 /* use the trailing space of the last mbuf for the fragment hdr */
1213 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1214 mlast->m_len);
1215 mlast->m_len += sizeof(struct ip6_frag);
1216 m->m_pkthdr.len += sizeof(struct ip6_frag);
1217 } else {
1218 /* allocate a new mbuf for the fragment header */
1219 struct mbuf *mfrg;
1220
1221 MGET(mfrg, M_DONTWAIT, MT_DATA);
1222 if (mfrg == 0)
1223 return (ENOBUFS);
1224 mfrg->m_len = sizeof(struct ip6_frag);
1225 *frghdrp = mtod(mfrg, struct ip6_frag *);
1226 mlast->m_next = mfrg;
1227 }
1228
1229 return (0);
1230 }
1231
1232 static int
1233 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup, alwaysfragp)
1234 struct route_in6 *ro_pmtu, *ro;
1235 struct ifnet *ifp;
1236 struct in6_addr *dst;
1237 u_long *mtup;
1238 int *alwaysfragp;
1239 {
1240 u_int32_t mtu = 0;
1241 int alwaysfrag = 0;
1242 int error = 0;
1243
1244 if (ro_pmtu != ro) {
1245 /* The first hop and the final destination may differ. */
1246 struct sockaddr_in6 *sa6_dst =
1247 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1248 if (ro_pmtu->ro_rt &&
1249 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1250 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1251 RTFREE(ro_pmtu->ro_rt);
1252 ro_pmtu->ro_rt = (struct rtentry *)NULL;
1253 }
1254 if (ro_pmtu->ro_rt == NULL) {
1255 bzero(sa6_dst, sizeof(*sa6_dst)); /* for safety */
1256 sa6_dst->sin6_family = AF_INET6;
1257 sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1258 sa6_dst->sin6_addr = *dst;
1259
1260 rtalloc((struct route *)ro_pmtu);
1261 }
1262 }
1263 if (ro_pmtu->ro_rt) {
1264 u_int32_t ifmtu;
1265
1266 if (ifp == NULL)
1267 ifp = ro_pmtu->ro_rt->rt_ifp;
1268 ifmtu = IN6_LINKMTU(ifp);
1269 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1270 if (mtu == 0)
1271 mtu = ifmtu;
1272 else if (mtu < IPV6_MMTU) {
1273 /*
1274 * RFC2460 section 5, last paragraph:
1275 * if we record ICMPv6 too big message with
1276 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1277 * or smaller, with fragment header attached.
1278 * (fragment header is needed regardless from the
1279 * packet size, for translators to identify packets)
1280 */
1281 alwaysfrag = 1;
1282 mtu = IPV6_MMTU;
1283 } else if (mtu > ifmtu) {
1284 /*
1285 * The MTU on the route is larger than the MTU on
1286 * the interface! This shouldn't happen, unless the
1287 * MTU of the interface has been changed after the
1288 * interface was brought up. Change the MTU in the
1289 * route to match the interface MTU (as long as the
1290 * field isn't locked).
1291 */
1292 mtu = ifmtu;
1293 if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU))
1294 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1295 }
1296 } else if (ifp) {
1297 mtu = IN6_LINKMTU(ifp);
1298 } else
1299 error = EHOSTUNREACH; /* XXX */
1300
1301 *mtup = mtu;
1302 if (alwaysfragp)
1303 *alwaysfragp = alwaysfrag;
1304 return (error);
1305 }
1306
1307 /*
1308 * IP6 socket option processing.
1309 */
1310 int
1311 ip6_ctloutput(op, so, level, optname, mp)
1312 int op;
1313 struct socket *so;
1314 int level, optname;
1315 struct mbuf **mp;
1316 {
1317 struct in6pcb *in6p = sotoin6pcb(so);
1318 struct mbuf *m = *mp;
1319 int optval = 0;
1320 int error = 0;
1321 struct proc *p = curproc; /* XXX */
1322
1323 if (level == IPPROTO_IPV6) {
1324 switch (op) {
1325 case PRCO_SETOPT:
1326 switch (optname) {
1327 case IPV6_PKTOPTIONS:
1328 /* m is freed in ip6_pcbopts */
1329 return (ip6_pcbopts(&in6p->in6p_outputopts,
1330 m, so));
1331 case IPV6_HOPOPTS:
1332 case IPV6_DSTOPTS:
1333 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1334 error = EPERM;
1335 break;
1336 }
1337 /* FALLTHROUGH */
1338 case IPV6_UNICAST_HOPS:
1339 case IPV6_RECVOPTS:
1340 case IPV6_RECVRETOPTS:
1341 case IPV6_RECVDSTADDR:
1342 case IPV6_PKTINFO:
1343 case IPV6_HOPLIMIT:
1344 case IPV6_RTHDR:
1345 case IPV6_FAITH:
1346 case IPV6_V6ONLY:
1347 if (!m || m->m_len != sizeof(int)) {
1348 error = EINVAL;
1349 break;
1350 }
1351 optval = *mtod(m, int *);
1352 switch (optname) {
1353
1354 case IPV6_UNICAST_HOPS:
1355 if (optval < -1 || optval >= 256)
1356 error = EINVAL;
1357 else {
1358 /* -1 = kernel default */
1359 in6p->in6p_hops = optval;
1360 }
1361 break;
1362 #define OPTSET(bit) \
1363 do { \
1364 if (optval) \
1365 in6p->in6p_flags |= (bit); \
1366 else \
1367 in6p->in6p_flags &= ~(bit); \
1368 } while (/*CONSTCOND*/ 0)
1369
1370 case IPV6_RECVOPTS:
1371 OPTSET(IN6P_RECVOPTS);
1372 break;
1373
1374 case IPV6_RECVRETOPTS:
1375 OPTSET(IN6P_RECVRETOPTS);
1376 break;
1377
1378 case IPV6_RECVDSTADDR:
1379 OPTSET(IN6P_RECVDSTADDR);
1380 break;
1381
1382 case IPV6_PKTINFO:
1383 OPTSET(IN6P_PKTINFO);
1384 break;
1385
1386 case IPV6_HOPLIMIT:
1387 OPTSET(IN6P_HOPLIMIT);
1388 break;
1389
1390 case IPV6_HOPOPTS:
1391 OPTSET(IN6P_HOPOPTS);
1392 break;
1393
1394 case IPV6_DSTOPTS:
1395 OPTSET(IN6P_DSTOPTS);
1396 break;
1397
1398 case IPV6_RTHDR:
1399 OPTSET(IN6P_RTHDR);
1400 break;
1401
1402 case IPV6_FAITH:
1403 OPTSET(IN6P_FAITH);
1404 break;
1405
1406 case IPV6_V6ONLY:
1407 /*
1408 * make setsockopt(IPV6_V6ONLY)
1409 * available only prior to bind(2).
1410 * see ipng mailing list, Jun 22 2001.
1411 */
1412 if (in6p->in6p_lport ||
1413 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1414 error = EINVAL;
1415 break;
1416 }
1417 #ifdef INET6_BINDV6ONLY
1418 if (!optval)
1419 error = EINVAL;
1420 #else
1421 OPTSET(IN6P_IPV6_V6ONLY);
1422 #endif
1423 break;
1424 }
1425 break;
1426 #undef OPTSET
1427
1428 case IPV6_MULTICAST_IF:
1429 case IPV6_MULTICAST_HOPS:
1430 case IPV6_MULTICAST_LOOP:
1431 case IPV6_JOIN_GROUP:
1432 case IPV6_LEAVE_GROUP:
1433 error = ip6_setmoptions(optname,
1434 &in6p->in6p_moptions, m);
1435 break;
1436
1437 case IPV6_PORTRANGE:
1438 optval = *mtod(m, int *);
1439
1440 switch (optval) {
1441 case IPV6_PORTRANGE_DEFAULT:
1442 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1443 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1444 break;
1445
1446 case IPV6_PORTRANGE_HIGH:
1447 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1448 in6p->in6p_flags |= IN6P_HIGHPORT;
1449 break;
1450
1451 case IPV6_PORTRANGE_LOW:
1452 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1453 in6p->in6p_flags |= IN6P_LOWPORT;
1454 break;
1455
1456 default:
1457 error = EINVAL;
1458 break;
1459 }
1460 break;
1461
1462 #ifdef IPSEC
1463 case IPV6_IPSEC_POLICY:
1464 {
1465 caddr_t req = NULL;
1466 size_t len = 0;
1467
1468 int priv = 0;
1469 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1470 priv = 0;
1471 else
1472 priv = 1;
1473 if (m) {
1474 req = mtod(m, caddr_t);
1475 len = m->m_len;
1476 }
1477 error = ipsec6_set_policy(in6p,
1478 optname, req, len, priv);
1479 }
1480 break;
1481 #endif /* IPSEC */
1482
1483 default:
1484 error = ENOPROTOOPT;
1485 break;
1486 }
1487 if (m)
1488 (void)m_free(m);
1489 break;
1490
1491 case PRCO_GETOPT:
1492 switch (optname) {
1493
1494 case IPV6_OPTIONS:
1495 case IPV6_RETOPTS:
1496 error = ENOPROTOOPT;
1497 break;
1498
1499 case IPV6_PKTOPTIONS:
1500 if (in6p->in6p_options) {
1501 *mp = m_copym(in6p->in6p_options, 0,
1502 M_COPYALL, M_WAIT);
1503 } else {
1504 *mp = m_get(M_WAIT, MT_SOOPTS);
1505 (*mp)->m_len = 0;
1506 }
1507 break;
1508
1509 case IPV6_HOPOPTS:
1510 case IPV6_DSTOPTS:
1511 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1512 error = EPERM;
1513 break;
1514 }
1515 /* FALLTHROUGH */
1516 case IPV6_UNICAST_HOPS:
1517 case IPV6_RECVOPTS:
1518 case IPV6_RECVRETOPTS:
1519 case IPV6_RECVDSTADDR:
1520 case IPV6_PORTRANGE:
1521 case IPV6_PKTINFO:
1522 case IPV6_HOPLIMIT:
1523 case IPV6_RTHDR:
1524 case IPV6_FAITH:
1525 case IPV6_V6ONLY:
1526 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1527 m->m_len = sizeof(int);
1528 switch (optname) {
1529
1530 case IPV6_UNICAST_HOPS:
1531 optval = in6p->in6p_hops;
1532 break;
1533
1534 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1535
1536 case IPV6_RECVOPTS:
1537 optval = OPTBIT(IN6P_RECVOPTS);
1538 break;
1539
1540 case IPV6_RECVRETOPTS:
1541 optval = OPTBIT(IN6P_RECVRETOPTS);
1542 break;
1543
1544 case IPV6_RECVDSTADDR:
1545 optval = OPTBIT(IN6P_RECVDSTADDR);
1546 break;
1547
1548 case IPV6_PORTRANGE:
1549 {
1550 int flags;
1551 flags = in6p->in6p_flags;
1552 if (flags & IN6P_HIGHPORT)
1553 optval = IPV6_PORTRANGE_HIGH;
1554 else if (flags & IN6P_LOWPORT)
1555 optval = IPV6_PORTRANGE_LOW;
1556 else
1557 optval = 0;
1558 break;
1559 }
1560
1561 case IPV6_PKTINFO:
1562 optval = OPTBIT(IN6P_PKTINFO);
1563 break;
1564
1565 case IPV6_HOPLIMIT:
1566 optval = OPTBIT(IN6P_HOPLIMIT);
1567 break;
1568
1569 case IPV6_HOPOPTS:
1570 optval = OPTBIT(IN6P_HOPOPTS);
1571 break;
1572
1573 case IPV6_DSTOPTS:
1574 optval = OPTBIT(IN6P_DSTOPTS);
1575 break;
1576
1577 case IPV6_RTHDR:
1578 optval = OPTBIT(IN6P_RTHDR);
1579 break;
1580
1581 case IPV6_FAITH:
1582 optval = OPTBIT(IN6P_FAITH);
1583 break;
1584
1585 case IPV6_V6ONLY:
1586 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1587 break;
1588 }
1589 *mtod(m, int *) = optval;
1590 break;
1591
1592 case IPV6_MULTICAST_IF:
1593 case IPV6_MULTICAST_HOPS:
1594 case IPV6_MULTICAST_LOOP:
1595 case IPV6_JOIN_GROUP:
1596 case IPV6_LEAVE_GROUP:
1597 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1598 break;
1599
1600 #ifdef IPSEC
1601 case IPV6_IPSEC_POLICY:
1602 {
1603 caddr_t req = NULL;
1604 size_t len = 0;
1605
1606 if (m) {
1607 req = mtod(m, caddr_t);
1608 len = m->m_len;
1609 }
1610 error = ipsec6_get_policy(in6p, req, len, mp);
1611 break;
1612 }
1613 #endif /* IPSEC */
1614
1615 default:
1616 error = ENOPROTOOPT;
1617 break;
1618 }
1619 break;
1620 }
1621 } else {
1622 error = EINVAL;
1623 if (op == PRCO_SETOPT && *mp)
1624 (void)m_free(*mp);
1625 }
1626 return (error);
1627 }
1628
1629 int
1630 ip6_raw_ctloutput(op, so, level, optname, mp)
1631 int op;
1632 struct socket *so;
1633 int level, optname;
1634 struct mbuf **mp;
1635 {
1636 int error = 0, optval, optlen;
1637 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1638 struct in6pcb *in6p = sotoin6pcb(so);
1639 struct mbuf *m = *mp;
1640
1641 optlen = m ? m->m_len : 0;
1642
1643 if (level != IPPROTO_IPV6) {
1644 if (op == PRCO_SETOPT && *mp)
1645 (void)m_free(*mp);
1646 return (EINVAL);
1647 }
1648
1649 switch (optname) {
1650 case IPV6_CHECKSUM:
1651 /*
1652 * For ICMPv6 sockets, no modification allowed for checksum
1653 * offset, permit "no change" values to help existing apps.
1654 *
1655 * XXX 2292bis says: "An attempt to set IPV6_CHECKSUM
1656 * for an ICMPv6 socket will fail."
1657 * The current behavior does not meet 2292bis.
1658 */
1659 switch (op) {
1660 case PRCO_SETOPT:
1661 if (optlen != sizeof(int)) {
1662 error = EINVAL;
1663 break;
1664 }
1665 optval = *mtod(m, int *);
1666 if ((optval % 2) != 0) {
1667 /* the API assumes even offset values */
1668 error = EINVAL;
1669 } else if (so->so_proto->pr_protocol ==
1670 IPPROTO_ICMPV6) {
1671 if (optval != icmp6off)
1672 error = EINVAL;
1673 } else
1674 in6p->in6p_cksum = optval;
1675 break;
1676
1677 case PRCO_GETOPT:
1678 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
1679 optval = icmp6off;
1680 else
1681 optval = in6p->in6p_cksum;
1682
1683 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1684 m->m_len = sizeof(int);
1685 *mtod(m, int *) = optval;
1686 break;
1687
1688 default:
1689 error = EINVAL;
1690 break;
1691 }
1692 break;
1693
1694 default:
1695 error = ENOPROTOOPT;
1696 break;
1697 }
1698
1699 if (op == PRCO_SETOPT && m)
1700 (void)m_free(m);
1701
1702 return (error);
1703 }
1704
1705 /*
1706 * Set up IP6 options in pcb for insertion in output packets.
1707 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1708 * with destination address if source routed.
1709 */
1710 static int
1711 ip6_pcbopts(pktopt, m, so)
1712 struct ip6_pktopts **pktopt;
1713 struct mbuf *m;
1714 struct socket *so;
1715 {
1716 struct ip6_pktopts *opt = *pktopt;
1717 int error = 0;
1718 struct proc *p = curproc; /* XXX */
1719 int priv = 0;
1720
1721 /* turn off any old options. */
1722 if (opt) {
1723 if (opt->ip6po_m)
1724 (void)m_free(opt->ip6po_m);
1725 } else
1726 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1727 *pktopt = 0;
1728
1729 if (!m || m->m_len == 0) {
1730 /*
1731 * Only turning off any previous options.
1732 */
1733 free(opt, M_IP6OPT);
1734 if (m)
1735 (void)m_free(m);
1736 return (0);
1737 }
1738
1739 /* set options specified by user. */
1740 if (p && !suser(p->p_ucred, &p->p_acflag))
1741 priv = 1;
1742 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1743 (void)m_free(m);
1744 free(opt, M_IP6OPT);
1745 return (error);
1746 }
1747 *pktopt = opt;
1748 return (0);
1749 }
1750
1751 /*
1752 * Set the IP6 multicast options in response to user setsockopt().
1753 */
1754 static int
1755 ip6_setmoptions(optname, im6op, m)
1756 int optname;
1757 struct ip6_moptions **im6op;
1758 struct mbuf *m;
1759 {
1760 int error = 0;
1761 u_int loop, ifindex;
1762 struct ipv6_mreq *mreq;
1763 struct ifnet *ifp;
1764 struct ip6_moptions *im6o = *im6op;
1765 struct route_in6 ro;
1766 struct sockaddr_in6 *dst;
1767 struct in6_multi_mship *imm;
1768 struct proc *p = curproc; /* XXX */
1769
1770 if (im6o == NULL) {
1771 /*
1772 * No multicast option buffer attached to the pcb;
1773 * allocate one and initialize to default values.
1774 */
1775 im6o = (struct ip6_moptions *)
1776 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1777
1778 if (im6o == NULL)
1779 return (ENOBUFS);
1780 *im6op = im6o;
1781 im6o->im6o_multicast_ifp = NULL;
1782 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1783 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1784 LIST_INIT(&im6o->im6o_memberships);
1785 }
1786
1787 switch (optname) {
1788
1789 case IPV6_MULTICAST_IF:
1790 /*
1791 * Select the interface for outgoing multicast packets.
1792 */
1793 if (m == NULL || m->m_len != sizeof(u_int)) {
1794 error = EINVAL;
1795 break;
1796 }
1797 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1798 if (ifindex < 0 || if_indexlim <= ifindex ||
1799 !ifindex2ifnet[ifindex]) {
1800 error = ENXIO; /* XXX EINVAL? */
1801 break;
1802 }
1803 ifp = ifindex2ifnet[ifindex];
1804 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1805 error = EADDRNOTAVAIL;
1806 break;
1807 }
1808 im6o->im6o_multicast_ifp = ifp;
1809 break;
1810
1811 case IPV6_MULTICAST_HOPS:
1812 {
1813 /*
1814 * Set the IP6 hoplimit for outgoing multicast packets.
1815 */
1816 int optval;
1817 if (m == NULL || m->m_len != sizeof(int)) {
1818 error = EINVAL;
1819 break;
1820 }
1821 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1822 if (optval < -1 || optval >= 256)
1823 error = EINVAL;
1824 else if (optval == -1)
1825 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1826 else
1827 im6o->im6o_multicast_hlim = optval;
1828 break;
1829 }
1830
1831 case IPV6_MULTICAST_LOOP:
1832 /*
1833 * Set the loopback flag for outgoing multicast packets.
1834 * Must be zero or one.
1835 */
1836 if (m == NULL || m->m_len != sizeof(u_int)) {
1837 error = EINVAL;
1838 break;
1839 }
1840 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1841 if (loop > 1) {
1842 error = EINVAL;
1843 break;
1844 }
1845 im6o->im6o_multicast_loop = loop;
1846 break;
1847
1848 case IPV6_JOIN_GROUP:
1849 /*
1850 * Add a multicast group membership.
1851 * Group must be a valid IP6 multicast address.
1852 */
1853 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1854 error = EINVAL;
1855 break;
1856 }
1857 mreq = mtod(m, struct ipv6_mreq *);
1858 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1859 /*
1860 * We use the unspecified address to specify to accept
1861 * all multicast addresses. Only super user is allowed
1862 * to do this.
1863 */
1864 if (suser(p->p_ucred, &p->p_acflag))
1865 {
1866 error = EACCES;
1867 break;
1868 }
1869 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1870 error = EINVAL;
1871 break;
1872 }
1873
1874 /*
1875 * If the interface is specified, validate it.
1876 */
1877 if (mreq->ipv6mr_interface < 0 ||
1878 if_indexlim <= mreq->ipv6mr_interface ||
1879 !ifindex2ifnet[mreq->ipv6mr_interface]) {
1880 error = ENXIO; /* XXX EINVAL? */
1881 break;
1882 }
1883 /*
1884 * If no interface was explicitly specified, choose an
1885 * appropriate one according to the given multicast address.
1886 */
1887 if (mreq->ipv6mr_interface == 0) {
1888 /*
1889 * If the multicast address is in node-local scope,
1890 * the interface should be a loopback interface.
1891 * Otherwise, look up the routing table for the
1892 * address, and choose the outgoing interface.
1893 * XXX: is it a good approach?
1894 */
1895 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1896 ifp = &loif[0];
1897 } else {
1898 ro.ro_rt = NULL;
1899 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1900 bzero(dst, sizeof(*dst));
1901 dst->sin6_len = sizeof(struct sockaddr_in6);
1902 dst->sin6_family = AF_INET6;
1903 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1904 rtalloc((struct route *)&ro);
1905 if (ro.ro_rt == NULL) {
1906 error = EADDRNOTAVAIL;
1907 break;
1908 }
1909 ifp = ro.ro_rt->rt_ifp;
1910 rtfree(ro.ro_rt);
1911 }
1912 } else
1913 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1914
1915 /*
1916 * See if we found an interface, and confirm that it
1917 * supports multicast
1918 */
1919 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1920 error = EADDRNOTAVAIL;
1921 break;
1922 }
1923 /*
1924 * Put interface index into the multicast address,
1925 * if the address has link-local scope.
1926 */
1927 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1928 mreq->ipv6mr_multiaddr.s6_addr16[1] =
1929 htons(ifp->if_index);
1930 }
1931 /*
1932 * See if the membership already exists.
1933 */
1934 for (imm = im6o->im6o_memberships.lh_first;
1935 imm != NULL; imm = imm->i6mm_chain.le_next)
1936 if (imm->i6mm_maddr->in6m_ifp == ifp &&
1937 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1938 &mreq->ipv6mr_multiaddr))
1939 break;
1940 if (imm != NULL) {
1941 error = EADDRINUSE;
1942 break;
1943 }
1944 /*
1945 * Everything looks good; add a new record to the multicast
1946 * address list for the given interface.
1947 */
1948 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error);
1949 if (!imm)
1950 break;
1951 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
1952 break;
1953
1954 case IPV6_LEAVE_GROUP:
1955 /*
1956 * Drop a multicast group membership.
1957 * Group must be a valid IP6 multicast address.
1958 */
1959 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1960 error = EINVAL;
1961 break;
1962 }
1963 mreq = mtod(m, struct ipv6_mreq *);
1964 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1965 if (suser(p->p_ucred, &p->p_acflag))
1966 {
1967 error = EACCES;
1968 break;
1969 }
1970 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1971 error = EINVAL;
1972 break;
1973 }
1974 /*
1975 * If an interface address was specified, get a pointer
1976 * to its ifnet structure.
1977 */
1978 if (mreq->ipv6mr_interface < 0 ||
1979 if_indexlim <= mreq->ipv6mr_interface ||
1980 !ifindex2ifnet[mreq->ipv6mr_interface]) {
1981 error = ENXIO; /* XXX EINVAL? */
1982 break;
1983 }
1984 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1985 /*
1986 * Put interface index into the multicast address,
1987 * if the address has link-local scope.
1988 */
1989 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1990 mreq->ipv6mr_multiaddr.s6_addr16[1] =
1991 htons(mreq->ipv6mr_interface);
1992 }
1993 /*
1994 * Find the membership in the membership list.
1995 */
1996 for (imm = im6o->im6o_memberships.lh_first;
1997 imm != NULL; imm = imm->i6mm_chain.le_next) {
1998 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
1999 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2000 &mreq->ipv6mr_multiaddr))
2001 break;
2002 }
2003 if (imm == NULL) {
2004 /* Unable to resolve interface */
2005 error = EADDRNOTAVAIL;
2006 break;
2007 }
2008 /*
2009 * Give up the multicast address record to which the
2010 * membership points.
2011 */
2012 LIST_REMOVE(imm, i6mm_chain);
2013 in6_leavegroup(imm);
2014 break;
2015
2016 default:
2017 error = EOPNOTSUPP;
2018 break;
2019 }
2020
2021 /*
2022 * If all options have default values, no need to keep the mbuf.
2023 */
2024 if (im6o->im6o_multicast_ifp == NULL &&
2025 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2026 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2027 im6o->im6o_memberships.lh_first == NULL) {
2028 free(*im6op, M_IPMOPTS);
2029 *im6op = NULL;
2030 }
2031
2032 return (error);
2033 }
2034
2035 /*
2036 * Return the IP6 multicast options in response to user getsockopt().
2037 */
2038 static int
2039 ip6_getmoptions(optname, im6o, mp)
2040 int optname;
2041 struct ip6_moptions *im6o;
2042 struct mbuf **mp;
2043 {
2044 u_int *hlim, *loop, *ifindex;
2045
2046 *mp = m_get(M_WAIT, MT_SOOPTS);
2047
2048 switch (optname) {
2049
2050 case IPV6_MULTICAST_IF:
2051 ifindex = mtod(*mp, u_int *);
2052 (*mp)->m_len = sizeof(u_int);
2053 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2054 *ifindex = 0;
2055 else
2056 *ifindex = im6o->im6o_multicast_ifp->if_index;
2057 return (0);
2058
2059 case IPV6_MULTICAST_HOPS:
2060 hlim = mtod(*mp, u_int *);
2061 (*mp)->m_len = sizeof(u_int);
2062 if (im6o == NULL)
2063 *hlim = ip6_defmcasthlim;
2064 else
2065 *hlim = im6o->im6o_multicast_hlim;
2066 return (0);
2067
2068 case IPV6_MULTICAST_LOOP:
2069 loop = mtod(*mp, u_int *);
2070 (*mp)->m_len = sizeof(u_int);
2071 if (im6o == NULL)
2072 *loop = ip6_defmcasthlim;
2073 else
2074 *loop = im6o->im6o_multicast_loop;
2075 return (0);
2076
2077 default:
2078 return (EOPNOTSUPP);
2079 }
2080 }
2081
2082 /*
2083 * Discard the IP6 multicast options.
2084 */
2085 void
2086 ip6_freemoptions(im6o)
2087 struct ip6_moptions *im6o;
2088 {
2089 struct in6_multi_mship *imm;
2090
2091 if (im6o == NULL)
2092 return;
2093
2094 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2095 LIST_REMOVE(imm, i6mm_chain);
2096 in6_leavegroup(imm);
2097 }
2098 free(im6o, M_IPMOPTS);
2099 }
2100
2101 /*
2102 * Set IPv6 outgoing packet options based on advanced API.
2103 */
2104 int
2105 ip6_setpktoptions(control, opt, priv)
2106 struct mbuf *control;
2107 struct ip6_pktopts *opt;
2108 int priv;
2109 {
2110 struct cmsghdr *cm = 0;
2111
2112 if (control == 0 || opt == 0)
2113 return (EINVAL);
2114
2115 bzero(opt, sizeof(*opt));
2116 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
2117
2118 /*
2119 * XXX: Currently, we assume all the optional information is stored
2120 * in a single mbuf.
2121 */
2122 if (control->m_next)
2123 return (EINVAL);
2124
2125 opt->ip6po_m = control;
2126
2127 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2128 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2129 cm = mtod(control, struct cmsghdr *);
2130 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2131 return (EINVAL);
2132 if (cm->cmsg_level != IPPROTO_IPV6)
2133 continue;
2134
2135 switch (cm->cmsg_type) {
2136 case IPV6_PKTINFO:
2137 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
2138 return (EINVAL);
2139 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
2140 if (opt->ip6po_pktinfo->ipi6_ifindex &&
2141 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
2142 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
2143 htons(opt->ip6po_pktinfo->ipi6_ifindex);
2144
2145 if (opt->ip6po_pktinfo->ipi6_ifindex >= if_indexlim ||
2146 opt->ip6po_pktinfo->ipi6_ifindex < 0)
2147 return (ENXIO);
2148 if (opt->ip6po_pktinfo->ipi6_ifindex > 0 &&
2149 !ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex])
2150 return (ENXIO);
2151
2152 /*
2153 * Check if the requested source address is indeed a
2154 * unicast address assigned to the node, and can be
2155 * used as the packet's source address.
2156 */
2157 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2158 struct ifaddr *ia;
2159 struct in6_ifaddr *ia6;
2160 struct sockaddr_in6 sin6;
2161
2162 bzero(&sin6, sizeof(sin6));
2163 sin6.sin6_len = sizeof(sin6);
2164 sin6.sin6_family = AF_INET6;
2165 sin6.sin6_addr =
2166 opt->ip6po_pktinfo->ipi6_addr;
2167 ia = ifa_ifwithaddr(sin6tosa(&sin6));
2168 if (ia == NULL ||
2169 (opt->ip6po_pktinfo->ipi6_ifindex &&
2170 (ia->ifa_ifp->if_index !=
2171 opt->ip6po_pktinfo->ipi6_ifindex))) {
2172 return (EADDRNOTAVAIL);
2173 }
2174 ia6 = (struct in6_ifaddr *)ia;
2175 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) {
2176 return (EADDRNOTAVAIL);
2177 }
2178
2179 /*
2180 * Check if the requested source address is
2181 * indeed a unicast address assigned to the
2182 * node.
2183 */
2184 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
2185 return (EADDRNOTAVAIL);
2186 }
2187 break;
2188
2189 case IPV6_HOPLIMIT:
2190 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2191 return (EINVAL);
2192 else {
2193 int t;
2194
2195 bcopy(CMSG_DATA(cm), &t, sizeof(t));
2196 if (t < -1 || t > 255)
2197 return (EINVAL);
2198 opt->ip6po_hlim = t;
2199 }
2200 break;
2201
2202 case IPV6_NEXTHOP:
2203 if (!priv)
2204 return (EPERM);
2205
2206 /* check if cmsg_len is large enough for sa_len */
2207 if (cm->cmsg_len < sizeof(u_char) ||
2208 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2209 return (EINVAL);
2210
2211 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2212
2213 break;
2214
2215 case IPV6_HOPOPTS:
2216 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2217 return (EINVAL);
2218 else {
2219 struct ip6_hbh *t;
2220
2221 t = (struct ip6_hbh *)CMSG_DATA(cm);
2222 if (cm->cmsg_len !=
2223 CMSG_LEN((t->ip6h_len + 1) << 3))
2224 return (EINVAL);
2225 opt->ip6po_hbh = t;
2226 }
2227 break;
2228
2229 case IPV6_DSTOPTS:
2230 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2231 return (EINVAL);
2232
2233 /*
2234 * If there is no routing header yet, the destination
2235 * options header should be put on the 1st part.
2236 * Otherwise, the header should be on the 2nd part.
2237 * (See RFC 2460, section 4.1)
2238 */
2239 if (opt->ip6po_rthdr == NULL) {
2240 struct ip6_dest *t;
2241
2242 t = (struct ip6_dest *)CMSG_DATA(cm);
2243 if (cm->cmsg_len !=
2244 CMSG_LEN((t->ip6d_len + 1) << 3));
2245 return (EINVAL);
2246 opt->ip6po_dest1 = t;
2247 }
2248 else {
2249 struct ip6_dest *t;
2250
2251 t = (struct ip6_dest *)CMSG_DATA(cm);
2252 if (cm->cmsg_len !=
2253 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) << 3))
2254 return (EINVAL);
2255 opt->ip6po_dest2 = t;
2256 }
2257 break;
2258
2259 case IPV6_RTHDR:
2260 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2261 return (EINVAL);
2262 else {
2263 struct ip6_rthdr *t;
2264
2265 t = (struct ip6_rthdr *)CMSG_DATA(cm);
2266 if (cm->cmsg_len !=
2267 CMSG_LEN((t->ip6r_len + 1) << 3))
2268 return (EINVAL);
2269 switch (t->ip6r_type) {
2270 case IPV6_RTHDR_TYPE_0:
2271 if (t->ip6r_segleft == 0)
2272 return (EINVAL);
2273 break;
2274 default:
2275 return (EINVAL);
2276 }
2277 opt->ip6po_rthdr = t;
2278 }
2279 break;
2280
2281 default:
2282 return (ENOPROTOOPT);
2283 }
2284 }
2285
2286 return (0);
2287 }
2288
2289 /*
2290 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2291 * packet to the input queue of a specified interface. Note that this
2292 * calls the output routine of the loopback "driver", but with an interface
2293 * pointer that might NOT be &loif -- easier than replicating that code here.
2294 */
2295 void
2296 ip6_mloopback(ifp, m, dst)
2297 struct ifnet *ifp;
2298 struct mbuf *m;
2299 struct sockaddr_in6 *dst;
2300 {
2301 struct mbuf *copym;
2302 struct ip6_hdr *ip6;
2303
2304 copym = m_copy(m, 0, M_COPYALL);
2305 if (copym == NULL)
2306 return;
2307
2308 /*
2309 * Make sure to deep-copy IPv6 header portion in case the data
2310 * is in an mbuf cluster, so that we can safely override the IPv6
2311 * header portion later.
2312 */
2313 if ((copym->m_flags & M_EXT) != 0 ||
2314 copym->m_len < sizeof(struct ip6_hdr)) {
2315 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2316 if (copym == NULL)
2317 return;
2318 }
2319
2320 #ifdef DIAGNOSTIC
2321 if (copym->m_len < sizeof(*ip6)) {
2322 m_freem(copym);
2323 return;
2324 }
2325 #endif
2326
2327 ip6 = mtod(copym, struct ip6_hdr *);
2328 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
2329 ip6->ip6_src.s6_addr16[1] = 0;
2330 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
2331 ip6->ip6_dst.s6_addr16[1] = 0;
2332
2333 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2334 }
2335
2336 /*
2337 * Chop IPv6 header off from the payload.
2338 */
2339 static int
2340 ip6_splithdr(m, exthdrs)
2341 struct mbuf *m;
2342 struct ip6_exthdrs *exthdrs;
2343 {
2344 struct mbuf *mh;
2345 struct ip6_hdr *ip6;
2346
2347 ip6 = mtod(m, struct ip6_hdr *);
2348 if (m->m_len > sizeof(*ip6)) {
2349 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2350 if (mh == 0) {
2351 m_freem(m);
2352 return ENOBUFS;
2353 }
2354 M_COPY_PKTHDR(mh, m);
2355 MH_ALIGN(mh, sizeof(*ip6));
2356 m_tag_delete_chain(m, NULL);
2357 m->m_flags &= ~M_PKTHDR;
2358 m->m_len -= sizeof(*ip6);
2359 m->m_data += sizeof(*ip6);
2360 mh->m_next = m;
2361 m = mh;
2362 m->m_len = sizeof(*ip6);
2363 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2364 }
2365 exthdrs->ip6e_ip6 = m;
2366 return 0;
2367 }
2368
2369 /*
2370 * Compute IPv6 extension header length.
2371 */
2372 int
2373 ip6_optlen(in6p)
2374 struct in6pcb *in6p;
2375 {
2376 int len;
2377
2378 if (!in6p->in6p_outputopts)
2379 return 0;
2380
2381 len = 0;
2382 #define elen(x) \
2383 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2384
2385 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2386 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2387 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2388 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2389 return len;
2390 #undef elen
2391 }
2392