ip6_output.c revision 1.8.2.1 1 /* $NetBSD: ip6_output.c,v 1.8.2.1 2000/11/20 18:10:53 bouyer Exp $ */
2 /* $KAME: ip6_output.c,v 1.122 2000/08/19 02:12:02 jinmei Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
66 */
67
68 #include "opt_inet.h"
69 #include "opt_ipsec.h"
70 #include "opt_pfil_hooks.h"
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/errno.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81
82 #include <net/if.h>
83 #include <net/route.h>
84 #ifdef PFIL_HOOKS
85 #include <net/pfil.h>
86 #endif
87
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip6.h>
91 #include <netinet/icmp6.h>
92 #include <netinet6/ip6_var.h>
93 #include <netinet6/in6_pcb.h>
94 #include <netinet6/nd6.h>
95
96 #ifdef IPSEC
97 #include <netinet6/ipsec.h>
98 #include <netkey/key.h>
99 #endif /* IPSEC */
100
101 #include "loop.h"
102
103 #include <net/net_osdep.h>
104
105 #ifdef IPV6FIREWALL
106 #include <netinet6/ip6_fw.h>
107 #endif
108
109 struct ip6_exthdrs {
110 struct mbuf *ip6e_ip6;
111 struct mbuf *ip6e_hbh;
112 struct mbuf *ip6e_dest1;
113 struct mbuf *ip6e_rthdr;
114 struct mbuf *ip6e_dest2;
115 };
116
117 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
118 struct socket *));
119 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
120 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
121 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
122 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
123 struct ip6_frag **));
124 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
125 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
126
127 extern struct ifnet loif[NLOOP];
128
129 /*
130 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
131 * header (with pri, len, nxt, hlim, src, dst).
132 * This function may modify ver and hlim only.
133 * The mbuf chain containing the packet will be freed.
134 * The mbuf opt, if present, will not be freed.
135 */
136 int
137 ip6_output(m0, opt, ro, flags, im6o, ifpp)
138 struct mbuf *m0;
139 struct ip6_pktopts *opt;
140 struct route_in6 *ro;
141 int flags;
142 struct ip6_moptions *im6o;
143 struct ifnet **ifpp; /* XXX: just for statistics */
144 {
145 struct ip6_hdr *ip6, *mhip6;
146 struct ifnet *ifp, *origifp;
147 struct mbuf *m = m0;
148 int hlen, tlen, len, off;
149 struct route_in6 ip6route;
150 struct sockaddr_in6 *dst;
151 int error = 0;
152 struct in6_ifaddr *ia;
153 u_long mtu;
154 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
155 struct ip6_exthdrs exthdrs;
156 struct in6_addr finaldst;
157 struct route_in6 *ro_pmtu = NULL;
158 int hdrsplit = 0;
159 int needipsec = 0;
160 #ifdef PFIL_HOOKS
161 struct packet_filter_hook *pfh;
162 struct mbuf *m1;
163 int rv;
164 #endif /* PFIL_HOOKS */
165 #ifdef IPSEC
166 int needipsectun = 0;
167 struct socket *so;
168 struct secpolicy *sp = NULL;
169
170 /* for AH processing. stupid to have "socket" variable in IP layer... */
171 so = ipsec_getsocket(m);
172 ipsec_setsocket(m, NULL);
173 ip6 = mtod(m, struct ip6_hdr *);
174 #endif /* IPSEC */
175
176 #define MAKE_EXTHDR(hp, mp) \
177 do { \
178 if (hp) { \
179 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
180 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
181 ((eh)->ip6e_len + 1) << 3); \
182 if (error) \
183 goto freehdrs; \
184 } \
185 } while (0)
186
187 bzero(&exthdrs, sizeof(exthdrs));
188 if (opt) {
189 /* Hop-by-Hop options header */
190 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
191 /* Destination options header(1st part) */
192 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
193 /* Routing header */
194 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
195 /* Destination options header(2nd part) */
196 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
197 }
198
199 #ifdef IPSEC
200 /* get a security policy for this packet */
201 if (so == NULL)
202 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
203 else
204 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
205
206 if (sp == NULL) {
207 ipsec6stat.out_inval++;
208 goto freehdrs;
209 }
210
211 error = 0;
212
213 /* check policy */
214 switch (sp->policy) {
215 case IPSEC_POLICY_DISCARD:
216 /*
217 * This packet is just discarded.
218 */
219 ipsec6stat.out_polvio++;
220 goto freehdrs;
221
222 case IPSEC_POLICY_BYPASS:
223 case IPSEC_POLICY_NONE:
224 /* no need to do IPsec. */
225 needipsec = 0;
226 break;
227
228 case IPSEC_POLICY_IPSEC:
229 if (sp->req == NULL) {
230 /* XXX should be panic ? */
231 printf("ip6_output: No IPsec request specified.\n");
232 error = EINVAL;
233 goto freehdrs;
234 }
235 needipsec = 1;
236 break;
237
238 case IPSEC_POLICY_ENTRUST:
239 default:
240 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
241 }
242 #endif /* IPSEC */
243
244 /*
245 * Calculate the total length of the extension header chain.
246 * Keep the length of the unfragmentable part for fragmentation.
247 */
248 optlen = 0;
249 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
250 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
251 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
252 unfragpartlen = optlen + sizeof(struct ip6_hdr);
253 /* NOTE: we don't add AH/ESP length here. do that later. */
254 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
255
256 /*
257 * If we need IPsec, or there is at least one extension header,
258 * separate IP6 header from the payload.
259 */
260 if ((needipsec || optlen) && !hdrsplit) {
261 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
262 m = NULL;
263 goto freehdrs;
264 }
265 m = exthdrs.ip6e_ip6;
266 hdrsplit++;
267 }
268
269 /* adjust pointer */
270 ip6 = mtod(m, struct ip6_hdr *);
271
272 /* adjust mbuf packet header length */
273 m->m_pkthdr.len += optlen;
274 plen = m->m_pkthdr.len - sizeof(*ip6);
275
276 /* If this is a jumbo payload, insert a jumbo payload option. */
277 if (plen > IPV6_MAXPACKET) {
278 if (!hdrsplit) {
279 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
280 m = NULL;
281 goto freehdrs;
282 }
283 m = exthdrs.ip6e_ip6;
284 hdrsplit++;
285 }
286 /* adjust pointer */
287 ip6 = mtod(m, struct ip6_hdr *);
288 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
289 goto freehdrs;
290 ip6->ip6_plen = 0;
291 } else
292 ip6->ip6_plen = htons(plen);
293
294 /*
295 * Concatenate headers and fill in next header fields.
296 * Here we have, on "m"
297 * IPv6 payload
298 * and we insert headers accordingly. Finally, we should be getting:
299 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
300 *
301 * during the header composing process, "m" points to IPv6 header.
302 * "mprev" points to an extension header prior to esp.
303 */
304 {
305 u_char *nexthdrp = &ip6->ip6_nxt;
306 struct mbuf *mprev = m;
307
308 /*
309 * we treat dest2 specially. this makes IPsec processing
310 * much easier.
311 *
312 * result: IPv6 dest2 payload
313 * m and mprev will point to IPv6 header.
314 */
315 if (exthdrs.ip6e_dest2) {
316 if (!hdrsplit)
317 panic("assumption failed: hdr not split");
318 exthdrs.ip6e_dest2->m_next = m->m_next;
319 m->m_next = exthdrs.ip6e_dest2;
320 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
321 ip6->ip6_nxt = IPPROTO_DSTOPTS;
322 }
323
324 #define MAKE_CHAIN(m, mp, p, i)\
325 do {\
326 if (m) {\
327 if (!hdrsplit) \
328 panic("assumption failed: hdr not split"); \
329 *mtod((m), u_char *) = *(p);\
330 *(p) = (i);\
331 p = mtod((m), u_char *);\
332 (m)->m_next = (mp)->m_next;\
333 (mp)->m_next = (m);\
334 (mp) = (m);\
335 }\
336 } while (0)
337 /*
338 * result: IPv6 hbh dest1 rthdr dest2 payload
339 * m will point to IPv6 header. mprev will point to the
340 * extension header prior to dest2 (rthdr in the above case).
341 */
342 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev,
343 nexthdrp, IPPROTO_HOPOPTS);
344 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev,
345 nexthdrp, IPPROTO_DSTOPTS);
346 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev,
347 nexthdrp, IPPROTO_ROUTING);
348
349 #ifdef IPSEC
350 if (!needipsec)
351 goto skip_ipsec2;
352
353 /*
354 * pointers after IPsec headers are not valid any more.
355 * other pointers need a great care too.
356 * (IPsec routines should not mangle mbufs prior to AH/ESP)
357 */
358 exthdrs.ip6e_dest2 = NULL;
359
360 {
361 struct ip6_rthdr *rh = NULL;
362 int segleft_org = 0;
363 struct ipsec_output_state state;
364
365 if (exthdrs.ip6e_rthdr) {
366 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
367 segleft_org = rh->ip6r_segleft;
368 rh->ip6r_segleft = 0;
369 }
370
371 bzero(&state, sizeof(state));
372 state.m = m;
373 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
374 &needipsectun);
375 m = state.m;
376 if (error) {
377 /* mbuf is already reclaimed in ipsec6_output_trans. */
378 m = NULL;
379 switch (error) {
380 case EHOSTUNREACH:
381 case ENETUNREACH:
382 case EMSGSIZE:
383 case ENOBUFS:
384 case ENOMEM:
385 break;
386 default:
387 printf("ip6_output (ipsec): error code %d\n", error);
388 /*fall through*/
389 case ENOENT:
390 /* don't show these error codes to the user */
391 error = 0;
392 break;
393 }
394 goto bad;
395 }
396 if (exthdrs.ip6e_rthdr) {
397 /* ah6_output doesn't modify mbuf chain */
398 rh->ip6r_segleft = segleft_org;
399 }
400 }
401 skip_ipsec2:;
402 #endif
403 }
404
405 /*
406 * If there is a routing header, replace destination address field
407 * with the first hop of the routing header.
408 */
409 if (exthdrs.ip6e_rthdr) {
410 struct ip6_rthdr *rh =
411 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
412 struct ip6_rthdr *));
413 struct ip6_rthdr0 *rh0;
414
415 finaldst = ip6->ip6_dst;
416 switch(rh->ip6r_type) {
417 case IPV6_RTHDR_TYPE_0:
418 rh0 = (struct ip6_rthdr0 *)rh;
419 ip6->ip6_dst = rh0->ip6r0_addr[0];
420 bcopy((caddr_t)&rh0->ip6r0_addr[1],
421 (caddr_t)&rh0->ip6r0_addr[0],
422 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)
423 );
424 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst;
425 break;
426 default: /* is it possible? */
427 error = EINVAL;
428 goto bad;
429 }
430 }
431
432 /* Source address validation */
433 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
434 (flags & IPV6_DADOUTPUT) == 0) {
435 error = EOPNOTSUPP;
436 ip6stat.ip6s_badscope++;
437 goto bad;
438 }
439 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
440 error = EOPNOTSUPP;
441 ip6stat.ip6s_badscope++;
442 goto bad;
443 }
444
445 ip6stat.ip6s_localout++;
446
447 /*
448 * Route packet.
449 */
450 if (ro == 0) {
451 ro = &ip6route;
452 bzero((caddr_t)ro, sizeof(*ro));
453 }
454 ro_pmtu = ro;
455 if (opt && opt->ip6po_rthdr)
456 ro = &opt->ip6po_route;
457 dst = (struct sockaddr_in6 *)&ro->ro_dst;
458 /*
459 * If there is a cached route,
460 * check that it is to the same destination
461 * and is still up. If not, free it and try again.
462 */
463 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
464 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
465 RTFREE(ro->ro_rt);
466 ro->ro_rt = (struct rtentry *)0;
467 }
468 if (ro->ro_rt == 0) {
469 bzero(dst, sizeof(*dst));
470 dst->sin6_family = AF_INET6;
471 dst->sin6_len = sizeof(struct sockaddr_in6);
472 dst->sin6_addr = ip6->ip6_dst;
473 }
474 #ifdef IPSEC
475 if (needipsec && needipsectun) {
476 struct ipsec_output_state state;
477
478 /*
479 * All the extension headers will become inaccessible
480 * (since they can be encrypted).
481 * Don't panic, we need no more updates to extension headers
482 * on inner IPv6 packet (since they are now encapsulated).
483 *
484 * IPv6 [ESP|AH] IPv6 [extension headers] payload
485 */
486 bzero(&exthdrs, sizeof(exthdrs));
487 exthdrs.ip6e_ip6 = m;
488
489 bzero(&state, sizeof(state));
490 state.m = m;
491 state.ro = (struct route *)ro;
492 state.dst = (struct sockaddr *)dst;
493
494 error = ipsec6_output_tunnel(&state, sp, flags);
495
496 m = state.m;
497 ro = (struct route_in6 *)state.ro;
498 dst = (struct sockaddr_in6 *)state.dst;
499 if (error) {
500 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
501 m0 = m = NULL;
502 m = NULL;
503 switch (error) {
504 case EHOSTUNREACH:
505 case ENETUNREACH:
506 case EMSGSIZE:
507 case ENOBUFS:
508 case ENOMEM:
509 break;
510 default:
511 printf("ip6_output (ipsec): error code %d\n", error);
512 /*fall through*/
513 case ENOENT:
514 /* don't show these error codes to the user */
515 error = 0;
516 break;
517 }
518 goto bad;
519 }
520
521 exthdrs.ip6e_ip6 = m;
522 }
523 #endif /*IPSEC*/
524
525 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
526 /* Unicast */
527
528 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
529 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
530 /* xxx
531 * interface selection comes here
532 * if an interface is specified from an upper layer,
533 * ifp must point it.
534 */
535 if (ro->ro_rt == 0) {
536 /*
537 * non-bsdi always clone routes, if parent is
538 * PRF_CLONING.
539 */
540 rtalloc((struct route *)ro);
541 }
542 if (ro->ro_rt == 0) {
543 ip6stat.ip6s_noroute++;
544 error = EHOSTUNREACH;
545 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
546 goto bad;
547 }
548 ia = ifatoia6(ro->ro_rt->rt_ifa);
549 ifp = ro->ro_rt->rt_ifp;
550 ro->ro_rt->rt_use++;
551 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
552 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
553 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
554
555 in6_ifstat_inc(ifp, ifs6_out_request);
556
557 /*
558 * Check if the outgoing interface conflicts with
559 * the interface specified by ifi6_ifindex (if specified).
560 * Note that loopback interface is always okay.
561 * (this may happen when we are sending a packet to one of
562 * our own addresses.)
563 */
564 if (opt && opt->ip6po_pktinfo
565 && opt->ip6po_pktinfo->ipi6_ifindex) {
566 if (!(ifp->if_flags & IFF_LOOPBACK)
567 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
568 ip6stat.ip6s_noroute++;
569 in6_ifstat_inc(ifp, ifs6_out_discard);
570 error = EHOSTUNREACH;
571 goto bad;
572 }
573 }
574
575 if (opt && opt->ip6po_hlim != -1)
576 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
577 } else {
578 /* Multicast */
579 struct in6_multi *in6m;
580
581 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
582
583 /*
584 * See if the caller provided any multicast options
585 */
586 ifp = NULL;
587 if (im6o != NULL) {
588 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
589 if (im6o->im6o_multicast_ifp != NULL)
590 ifp = im6o->im6o_multicast_ifp;
591 } else
592 ip6->ip6_hlim = ip6_defmcasthlim;
593
594 /*
595 * See if the caller provided the outgoing interface
596 * as an ancillary data.
597 * Boundary check for ifindex is assumed to be already done.
598 */
599 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
600 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
601
602 /*
603 * If the destination is a node-local scope multicast,
604 * the packet should be loop-backed only.
605 */
606 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
607 /*
608 * If the outgoing interface is already specified,
609 * it should be a loopback interface.
610 */
611 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
612 ip6stat.ip6s_badscope++;
613 error = ENETUNREACH; /* XXX: better error? */
614 /* XXX correct ifp? */
615 in6_ifstat_inc(ifp, ifs6_out_discard);
616 goto bad;
617 } else {
618 ifp = &loif[0];
619 }
620 }
621
622 if (opt && opt->ip6po_hlim != -1)
623 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
624
625 /*
626 * If caller did not provide an interface lookup a
627 * default in the routing table. This is either a
628 * default for the speicfied group (i.e. a host
629 * route), or a multicast default (a route for the
630 * ``net'' ff00::/8).
631 */
632 if (ifp == NULL) {
633 if (ro->ro_rt == 0) {
634 ro->ro_rt = rtalloc1((struct sockaddr *)
635 &ro->ro_dst, 0
636 );
637 }
638 if (ro->ro_rt == 0) {
639 ip6stat.ip6s_noroute++;
640 error = EHOSTUNREACH;
641 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
642 goto bad;
643 }
644 ia = ifatoia6(ro->ro_rt->rt_ifa);
645 ifp = ro->ro_rt->rt_ifp;
646 ro->ro_rt->rt_use++;
647 }
648
649 if ((flags & IPV6_FORWARDING) == 0)
650 in6_ifstat_inc(ifp, ifs6_out_request);
651 in6_ifstat_inc(ifp, ifs6_out_mcast);
652
653 /*
654 * Confirm that the outgoing interface supports multicast.
655 */
656 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
657 ip6stat.ip6s_noroute++;
658 in6_ifstat_inc(ifp, ifs6_out_discard);
659 error = ENETUNREACH;
660 goto bad;
661 }
662 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
663 if (in6m != NULL &&
664 (im6o == NULL || im6o->im6o_multicast_loop)) {
665 /*
666 * If we belong to the destination multicast group
667 * on the outgoing interface, and the caller did not
668 * forbid loopback, loop back a copy.
669 */
670 ip6_mloopback(ifp, m, dst);
671 } else {
672 /*
673 * If we are acting as a multicast router, perform
674 * multicast forwarding as if the packet had just
675 * arrived on the interface to which we are about
676 * to send. The multicast forwarding function
677 * recursively calls this function, using the
678 * IPV6_FORWARDING flag to prevent infinite recursion.
679 *
680 * Multicasts that are looped back by ip6_mloopback(),
681 * above, will be forwarded by the ip6_input() routine,
682 * if necessary.
683 */
684 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
685 if (ip6_mforward(ip6, ifp, m) != 0) {
686 m_freem(m);
687 goto done;
688 }
689 }
690 }
691 /*
692 * Multicasts with a hoplimit of zero may be looped back,
693 * above, but must not be transmitted on a network.
694 * Also, multicasts addressed to the loopback interface
695 * are not sent -- the above call to ip6_mloopback() will
696 * loop back a copy if this host actually belongs to the
697 * destination group on the loopback interface.
698 */
699 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
700 m_freem(m);
701 goto done;
702 }
703 }
704
705 /*
706 * Fill the outgoing inteface to tell the upper layer
707 * to increment per-interface statistics.
708 */
709 if (ifpp)
710 *ifpp = ifp;
711
712 /*
713 * Determine path MTU.
714 */
715 if (ro_pmtu != ro) {
716 /* The first hop and the final destination may differ. */
717 struct sockaddr_in6 *sin6_fin =
718 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
719 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
720 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr,
721 &finaldst))) {
722 RTFREE(ro_pmtu->ro_rt);
723 ro_pmtu->ro_rt = (struct rtentry *)0;
724 }
725 if (ro_pmtu->ro_rt == 0) {
726 bzero(sin6_fin, sizeof(*sin6_fin));
727 sin6_fin->sin6_family = AF_INET6;
728 sin6_fin->sin6_len = sizeof(struct sockaddr_in6);
729 sin6_fin->sin6_addr = finaldst;
730
731 rtalloc((struct route *)ro_pmtu);
732 }
733 }
734 if (ro_pmtu->ro_rt != NULL) {
735 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu;
736
737 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
738 if (mtu > ifmtu) {
739 /*
740 * The MTU on the route is larger than the MTU on
741 * the interface! This shouldn't happen, unless the
742 * MTU of the interface has been changed after the
743 * interface was brought up. Change the MTU in the
744 * route to match the interface MTU (as long as the
745 * field isn't locked).
746 */
747 mtu = ifmtu;
748 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
749 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */
750 }
751 } else {
752 mtu = nd_ifinfo[ifp->if_index].linkmtu;
753 }
754
755 /* Fake scoped addresses */
756 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
757 /*
758 * If source or destination address is a scoped address, and
759 * the packet is going to be sent to a loopback interface,
760 * we should keep the original interface.
761 */
762
763 /*
764 * XXX: this is a very experimental and temporary solution.
765 * We eventually have sockaddr_in6 and use the sin6_scope_id
766 * field of the structure here.
767 * We rely on the consistency between two scope zone ids
768 * of source add destination, which should already be assured
769 * Larger scopes than link will be supported in the near
770 * future.
771 */
772 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
773 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
774 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
775 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
776 else
777 origifp = ifp;
778 }
779 else
780 origifp = ifp;
781 #ifndef FAKE_LOOPBACK_IF
782 if ((ifp->if_flags & IFF_LOOPBACK) == 0)
783 #else
784 if (1)
785 #endif
786 {
787 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
788 ip6->ip6_src.s6_addr16[1] = 0;
789 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
790 ip6->ip6_dst.s6_addr16[1] = 0;
791 }
792
793 /*
794 * If the outgoing packet contains a hop-by-hop options header,
795 * it must be examined and processed even by the source node.
796 * (RFC 2460, section 4.)
797 */
798 if (exthdrs.ip6e_hbh) {
799 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh,
800 struct ip6_hbh *);
801 u_int32_t dummy1; /* XXX unused */
802 u_int32_t dummy2; /* XXX unused */
803
804 /*
805 * XXX: if we have to send an ICMPv6 error to the sender,
806 * we need the M_LOOP flag since icmp6_error() expects
807 * the IPv6 and the hop-by-hop options header are
808 * continuous unless the flag is set.
809 */
810 m->m_flags |= M_LOOP;
811 m->m_pkthdr.rcvif = ifp;
812 if (ip6_process_hopopts(m,
813 (u_int8_t *)(hbh + 1),
814 ((hbh->ip6h_len + 1) << 3) -
815 sizeof(struct ip6_hbh),
816 &dummy1, &dummy2) < 0) {
817 /* m was already freed at this point */
818 error = EINVAL;/* better error? */
819 goto done;
820 }
821 m->m_flags &= ~M_LOOP; /* XXX */
822 m->m_pkthdr.rcvif = NULL;
823 }
824
825 #ifdef PFIL_HOOKS
826 /*
827 * Run through list of hooks for output packets.
828 */
829 m1 = m;
830 pfh = pfil_hook_get(PFIL_OUT, &inetsw[ip_protox[IPPROTO_IPV6]].pr_pfh);
831 for (; pfh; pfh = pfh->pfil_link.tqe_next)
832 if (pfh->pfil_func) {
833 rv = pfh->pfil_func(ip6, sizeof(*ip6), ifp, 1, &m1);
834 if (rv) {
835 error = EHOSTUNREACH;
836 goto done;
837 }
838 m = m1;
839 if (m == NULL)
840 goto done;
841 ip6 = mtod(m, struct ip6_hdr *);
842 }
843 #endif /* PFIL_HOOKS */
844 /*
845 * Send the packet to the outgoing interface.
846 * If necessary, do IPv6 fragmentation before sending.
847 */
848 tlen = m->m_pkthdr.len;
849 if (tlen <= mtu
850 #ifdef notyet
851 /*
852 * On any link that cannot convey a 1280-octet packet in one piece,
853 * link-specific fragmentation and reassembly must be provided at
854 * a layer below IPv6. [RFC 2460, sec.5]
855 * Thus if the interface has ability of link-level fragmentation,
856 * we can just send the packet even if the packet size is
857 * larger than the link's MTU.
858 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet...
859 */
860
861 || ifp->if_flags & IFF_FRAGMENTABLE
862 #endif
863 )
864 {
865 #ifdef IFA_STATS
866 struct in6_ifaddr *ia6;
867 ip6 = mtod(m, struct ip6_hdr *);
868 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
869 if (ia6) {
870 ia6->ia_ifa.ifa_data.ifad_outbytes +=
871 m->m_pkthdr.len;
872 }
873 #endif
874 #ifdef OLDIP6OUTPUT
875 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst,
876 ro->ro_rt);
877 #else
878 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
879 #endif
880 goto done;
881 } else if (mtu < IPV6_MMTU) {
882 /*
883 * note that path MTU is never less than IPV6_MMTU
884 * (see icmp6_input).
885 */
886 error = EMSGSIZE;
887 in6_ifstat_inc(ifp, ifs6_out_fragfail);
888 goto bad;
889 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
890 error = EMSGSIZE;
891 in6_ifstat_inc(ifp, ifs6_out_fragfail);
892 goto bad;
893 } else {
894 struct mbuf **mnext, *m_frgpart;
895 struct ip6_frag *ip6f;
896 u_int32_t id = htonl(ip6_id++);
897 u_char nextproto;
898
899 /*
900 * Too large for the destination or interface;
901 * fragment if possible.
902 * Must be able to put at least 8 bytes per fragment.
903 */
904 hlen = unfragpartlen;
905 if (mtu > IPV6_MAXPACKET)
906 mtu = IPV6_MAXPACKET;
907 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
908 if (len < 8) {
909 error = EMSGSIZE;
910 in6_ifstat_inc(ifp, ifs6_out_fragfail);
911 goto bad;
912 }
913
914 mnext = &m->m_nextpkt;
915
916 /*
917 * Change the next header field of the last header in the
918 * unfragmentable part.
919 */
920 if (exthdrs.ip6e_rthdr) {
921 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
922 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
923 } else if (exthdrs.ip6e_dest1) {
924 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
925 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
926 } else if (exthdrs.ip6e_hbh) {
927 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
928 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
929 } else {
930 nextproto = ip6->ip6_nxt;
931 ip6->ip6_nxt = IPPROTO_FRAGMENT;
932 }
933
934 /*
935 * Loop through length of segment after first fragment,
936 * make new header and copy data of each part and link onto chain.
937 */
938 m0 = m;
939 for (off = hlen; off < tlen; off += len) {
940 MGETHDR(m, M_DONTWAIT, MT_HEADER);
941 if (!m) {
942 error = ENOBUFS;
943 ip6stat.ip6s_odropped++;
944 goto sendorfree;
945 }
946 m->m_flags = m0->m_flags & M_COPYFLAGS;
947 *mnext = m;
948 mnext = &m->m_nextpkt;
949 m->m_data += max_linkhdr;
950 mhip6 = mtod(m, struct ip6_hdr *);
951 *mhip6 = *ip6;
952 m->m_len = sizeof(*mhip6);
953 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
954 if (error) {
955 ip6stat.ip6s_odropped++;
956 goto sendorfree;
957 }
958 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
959 if (off + len >= tlen)
960 len = tlen - off;
961 else
962 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
963 mhip6->ip6_plen = htons((u_short)(len + hlen +
964 sizeof(*ip6f) -
965 sizeof(struct ip6_hdr)));
966 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
967 error = ENOBUFS;
968 ip6stat.ip6s_odropped++;
969 goto sendorfree;
970 }
971 m_cat(m, m_frgpart);
972 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
973 m->m_pkthdr.rcvif = (struct ifnet *)0;
974 ip6f->ip6f_reserved = 0;
975 ip6f->ip6f_ident = id;
976 ip6f->ip6f_nxt = nextproto;
977 ip6stat.ip6s_ofragments++;
978 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
979 }
980
981 in6_ifstat_inc(ifp, ifs6_out_fragok);
982 }
983
984 /*
985 * Remove leading garbages.
986 */
987 sendorfree:
988 m = m0->m_nextpkt;
989 m0->m_nextpkt = 0;
990 m_freem(m0);
991 for (m0 = m; m; m = m0) {
992 m0 = m->m_nextpkt;
993 m->m_nextpkt = 0;
994 if (error == 0) {
995 #ifdef IFA_STATS
996 struct in6_ifaddr *ia6;
997 ip6 = mtod(m, struct ip6_hdr *);
998 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
999 if (ia6) {
1000 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1001 m->m_pkthdr.len;
1002 }
1003 #endif
1004 #ifdef OLDIP6OUTPUT
1005 error = (*ifp->if_output)(ifp, m,
1006 (struct sockaddr *)dst,
1007 ro->ro_rt);
1008 #else
1009 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1010 #endif
1011 } else
1012 m_freem(m);
1013 }
1014
1015 if (error == 0)
1016 ip6stat.ip6s_fragmented++;
1017
1018 done:
1019 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1020 RTFREE(ro->ro_rt);
1021 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1022 RTFREE(ro_pmtu->ro_rt);
1023 }
1024
1025 #ifdef IPSEC
1026 if (sp != NULL)
1027 key_freesp(sp);
1028 #endif /* IPSEC */
1029
1030 return(error);
1031
1032 freehdrs:
1033 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1034 m_freem(exthdrs.ip6e_dest1);
1035 m_freem(exthdrs.ip6e_rthdr);
1036 m_freem(exthdrs.ip6e_dest2);
1037 /* fall through */
1038 bad:
1039 m_freem(m);
1040 goto done;
1041 }
1042
1043 static int
1044 ip6_copyexthdr(mp, hdr, hlen)
1045 struct mbuf **mp;
1046 caddr_t hdr;
1047 int hlen;
1048 {
1049 struct mbuf *m;
1050
1051 if (hlen > MCLBYTES)
1052 return(ENOBUFS); /* XXX */
1053
1054 MGET(m, M_DONTWAIT, MT_DATA);
1055 if (!m)
1056 return(ENOBUFS);
1057
1058 if (hlen > MLEN) {
1059 MCLGET(m, M_DONTWAIT);
1060 if ((m->m_flags & M_EXT) == 0) {
1061 m_free(m);
1062 return(ENOBUFS);
1063 }
1064 }
1065 m->m_len = hlen;
1066 if (hdr)
1067 bcopy(hdr, mtod(m, caddr_t), hlen);
1068
1069 *mp = m;
1070 return(0);
1071 }
1072
1073 /*
1074 * Insert jumbo payload option.
1075 */
1076 static int
1077 ip6_insert_jumboopt(exthdrs, plen)
1078 struct ip6_exthdrs *exthdrs;
1079 u_int32_t plen;
1080 {
1081 struct mbuf *mopt;
1082 u_char *optbuf;
1083 u_int32_t v;
1084
1085 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1086
1087 /*
1088 * If there is no hop-by-hop options header, allocate new one.
1089 * If there is one but it doesn't have enough space to store the
1090 * jumbo payload option, allocate a cluster to store the whole options.
1091 * Otherwise, use it to store the options.
1092 */
1093 if (exthdrs->ip6e_hbh == 0) {
1094 MGET(mopt, M_DONTWAIT, MT_DATA);
1095 if (mopt == 0)
1096 return(ENOBUFS);
1097 mopt->m_len = JUMBOOPTLEN;
1098 optbuf = mtod(mopt, u_char *);
1099 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1100 exthdrs->ip6e_hbh = mopt;
1101 } else {
1102 struct ip6_hbh *hbh;
1103
1104 mopt = exthdrs->ip6e_hbh;
1105 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1106 /*
1107 * XXX assumption:
1108 * - exthdrs->ip6e_hbh is not referenced from places
1109 * other than exthdrs.
1110 * - exthdrs->ip6e_hbh is not an mbuf chain.
1111 */
1112 int oldoptlen = mopt->m_len;
1113 struct mbuf *n;
1114
1115 /*
1116 * XXX: give up if the whole (new) hbh header does
1117 * not fit even in an mbuf cluster.
1118 */
1119 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1120 return(ENOBUFS);
1121
1122 /*
1123 * As a consequence, we must always prepare a cluster
1124 * at this point.
1125 */
1126 MGET(n, M_DONTWAIT, MT_DATA);
1127 if (n) {
1128 MCLGET(n, M_DONTWAIT);
1129 if ((n->m_flags & M_EXT) == 0) {
1130 m_freem(n);
1131 n = NULL;
1132 }
1133 }
1134 if (!n)
1135 return(ENOBUFS);
1136 n->m_len = oldoptlen + JUMBOOPTLEN;
1137 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1138 oldoptlen);
1139 optbuf = mtod(n, caddr_t) + oldoptlen;
1140 m_freem(mopt);
1141 exthdrs->ip6e_hbh = n;
1142 } else {
1143 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1144 mopt->m_len += JUMBOOPTLEN;
1145 }
1146 optbuf[0] = IP6OPT_PADN;
1147 optbuf[1] = 1;
1148
1149 /*
1150 * Adjust the header length according to the pad and
1151 * the jumbo payload option.
1152 */
1153 hbh = mtod(mopt, struct ip6_hbh *);
1154 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1155 }
1156
1157 /* fill in the option. */
1158 optbuf[2] = IP6OPT_JUMBO;
1159 optbuf[3] = 4;
1160 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1161 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1162
1163 /* finally, adjust the packet header length */
1164 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1165
1166 return(0);
1167 #undef JUMBOOPTLEN
1168 }
1169
1170 /*
1171 * Insert fragment header and copy unfragmentable header portions.
1172 */
1173 static int
1174 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1175 struct mbuf *m0, *m;
1176 int hlen;
1177 struct ip6_frag **frghdrp;
1178 {
1179 struct mbuf *n, *mlast;
1180
1181 if (hlen > sizeof(struct ip6_hdr)) {
1182 n = m_copym(m0, sizeof(struct ip6_hdr),
1183 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1184 if (n == 0)
1185 return(ENOBUFS);
1186 m->m_next = n;
1187 } else
1188 n = m;
1189
1190 /* Search for the last mbuf of unfragmentable part. */
1191 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1192 ;
1193
1194 if ((mlast->m_flags & M_EXT) == 0 &&
1195 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1196 /* use the trailing space of the last mbuf for the fragment hdr */
1197 *frghdrp =
1198 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
1199 mlast->m_len += sizeof(struct ip6_frag);
1200 m->m_pkthdr.len += sizeof(struct ip6_frag);
1201 } else {
1202 /* allocate a new mbuf for the fragment header */
1203 struct mbuf *mfrg;
1204
1205 MGET(mfrg, M_DONTWAIT, MT_DATA);
1206 if (mfrg == 0)
1207 return(ENOBUFS);
1208 mfrg->m_len = sizeof(struct ip6_frag);
1209 *frghdrp = mtod(mfrg, struct ip6_frag *);
1210 mlast->m_next = mfrg;
1211 }
1212
1213 return(0);
1214 }
1215
1216 /*
1217 * IP6 socket option processing.
1218 */
1219 int
1220 ip6_ctloutput(op, so, level, optname, mp)
1221 int op;
1222 struct socket *so;
1223 int level, optname;
1224 struct mbuf **mp;
1225 {
1226 register struct in6pcb *in6p = sotoin6pcb(so);
1227 register struct mbuf *m = *mp;
1228 register int optval = 0;
1229 int error = 0;
1230 struct proc *p = curproc; /* XXX */
1231
1232 if (level == IPPROTO_IPV6) {
1233 switch (op) {
1234
1235 case PRCO_SETOPT:
1236 switch (optname) {
1237 case IPV6_PKTOPTIONS:
1238 /* m is freed in ip6_pcbopts */
1239 return(ip6_pcbopts(&in6p->in6p_outputopts,
1240 m, so));
1241 case IPV6_HOPOPTS:
1242 case IPV6_DSTOPTS:
1243 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1244 error = EPERM;
1245 break;
1246 }
1247 /* fall through */
1248 case IPV6_UNICAST_HOPS:
1249 case IPV6_RECVOPTS:
1250 case IPV6_RECVRETOPTS:
1251 case IPV6_RECVDSTADDR:
1252 case IPV6_PKTINFO:
1253 case IPV6_HOPLIMIT:
1254 case IPV6_RTHDR:
1255 case IPV6_CHECKSUM:
1256 case IPV6_FAITH:
1257 #ifndef INET6_BINDV6ONLY
1258 case IPV6_BINDV6ONLY:
1259 #endif
1260 if (!m || m->m_len != sizeof(int))
1261 error = EINVAL;
1262 else {
1263 optval = *mtod(m, int *);
1264 switch (optname) {
1265
1266 case IPV6_UNICAST_HOPS:
1267 if (optval < -1 || optval >= 256)
1268 error = EINVAL;
1269 else {
1270 /* -1 = kernel default */
1271 in6p->in6p_hops = optval;
1272 }
1273 break;
1274 #define OPTSET(bit) \
1275 if (optval) \
1276 in6p->in6p_flags |= bit; \
1277 else \
1278 in6p->in6p_flags &= ~bit;
1279
1280 case IPV6_RECVOPTS:
1281 OPTSET(IN6P_RECVOPTS);
1282 break;
1283
1284 case IPV6_RECVRETOPTS:
1285 OPTSET(IN6P_RECVRETOPTS);
1286 break;
1287
1288 case IPV6_RECVDSTADDR:
1289 OPTSET(IN6P_RECVDSTADDR);
1290 break;
1291
1292 case IPV6_PKTINFO:
1293 OPTSET(IN6P_PKTINFO);
1294 break;
1295
1296 case IPV6_HOPLIMIT:
1297 OPTSET(IN6P_HOPLIMIT);
1298 break;
1299
1300 case IPV6_HOPOPTS:
1301 OPTSET(IN6P_HOPOPTS);
1302 break;
1303
1304 case IPV6_DSTOPTS:
1305 OPTSET(IN6P_DSTOPTS);
1306 break;
1307
1308 case IPV6_RTHDR:
1309 OPTSET(IN6P_RTHDR);
1310 break;
1311
1312 case IPV6_CHECKSUM:
1313 in6p->in6p_cksum = optval;
1314 break;
1315
1316 case IPV6_FAITH:
1317 OPTSET(IN6P_FAITH);
1318 break;
1319
1320 #ifndef INET6_BINDV6ONLY
1321 case IPV6_BINDV6ONLY:
1322 OPTSET(IN6P_BINDV6ONLY);
1323 break;
1324 #endif
1325 }
1326 }
1327 break;
1328 #undef OPTSET
1329
1330 case IPV6_MULTICAST_IF:
1331 case IPV6_MULTICAST_HOPS:
1332 case IPV6_MULTICAST_LOOP:
1333 case IPV6_JOIN_GROUP:
1334 case IPV6_LEAVE_GROUP:
1335 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m);
1336 break;
1337
1338 case IPV6_PORTRANGE:
1339 optval = *mtod(m, int *);
1340
1341 switch (optval) {
1342 case IPV6_PORTRANGE_DEFAULT:
1343 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1344 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1345 break;
1346
1347 case IPV6_PORTRANGE_HIGH:
1348 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1349 in6p->in6p_flags |= IN6P_HIGHPORT;
1350 break;
1351
1352 case IPV6_PORTRANGE_LOW:
1353 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1354 in6p->in6p_flags |= IN6P_LOWPORT;
1355 break;
1356
1357 default:
1358 error = EINVAL;
1359 break;
1360 }
1361 break;
1362
1363 #ifdef IPSEC
1364 case IPV6_IPSEC_POLICY:
1365 {
1366 caddr_t req = NULL;
1367 size_t len = 0;
1368
1369 int priv = 0;
1370 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1371 priv = 0;
1372 else
1373 priv = 1;
1374 if (m) {
1375 req = mtod(m, caddr_t);
1376 len = m->m_len;
1377 }
1378 error = ipsec6_set_policy(in6p,
1379 optname, req, len, priv);
1380 }
1381 break;
1382 #endif /* IPSEC */
1383
1384 default:
1385 error = ENOPROTOOPT;
1386 break;
1387 }
1388 if (m)
1389 (void)m_free(m);
1390 break;
1391
1392 case PRCO_GETOPT:
1393 switch (optname) {
1394
1395 case IPV6_OPTIONS:
1396 case IPV6_RETOPTS:
1397 #if 0
1398 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1399 if (in6p->in6p_options) {
1400 m->m_len = in6p->in6p_options->m_len;
1401 bcopy(mtod(in6p->in6p_options, caddr_t),
1402 mtod(m, caddr_t),
1403 (unsigned)m->m_len);
1404 } else
1405 m->m_len = 0;
1406 break;
1407 #else
1408 error = ENOPROTOOPT;
1409 break;
1410 #endif
1411
1412 case IPV6_PKTOPTIONS:
1413 if (in6p->in6p_options) {
1414 *mp = m_copym(in6p->in6p_options, 0,
1415 M_COPYALL, M_WAIT);
1416 } else {
1417 *mp = m_get(M_WAIT, MT_SOOPTS);
1418 (*mp)->m_len = 0;
1419 }
1420 break;
1421
1422 case IPV6_HOPOPTS:
1423 case IPV6_DSTOPTS:
1424 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1425 error = EPERM;
1426 break;
1427 }
1428 /* fall through */
1429 case IPV6_UNICAST_HOPS:
1430 case IPV6_RECVOPTS:
1431 case IPV6_RECVRETOPTS:
1432 case IPV6_RECVDSTADDR:
1433 case IPV6_PORTRANGE:
1434 case IPV6_PKTINFO:
1435 case IPV6_HOPLIMIT:
1436 case IPV6_RTHDR:
1437 case IPV6_CHECKSUM:
1438 case IPV6_FAITH:
1439 #ifndef INET6_BINDV6ONLY
1440 case IPV6_BINDV6ONLY:
1441 #endif
1442 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1443 m->m_len = sizeof(int);
1444 switch (optname) {
1445
1446 case IPV6_UNICAST_HOPS:
1447 optval = in6p->in6p_hops;
1448 break;
1449
1450 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1451
1452 case IPV6_RECVOPTS:
1453 optval = OPTBIT(IN6P_RECVOPTS);
1454 break;
1455
1456 case IPV6_RECVRETOPTS:
1457 optval = OPTBIT(IN6P_RECVRETOPTS);
1458 break;
1459
1460 case IPV6_RECVDSTADDR:
1461 optval = OPTBIT(IN6P_RECVDSTADDR);
1462 break;
1463
1464 case IPV6_PORTRANGE:
1465 {
1466 int flags;
1467 flags = in6p->in6p_flags;
1468 if (flags & IN6P_HIGHPORT)
1469 optval = IPV6_PORTRANGE_HIGH;
1470 else if (flags & IN6P_LOWPORT)
1471 optval = IPV6_PORTRANGE_LOW;
1472 else
1473 optval = 0;
1474 break;
1475 }
1476
1477 case IPV6_PKTINFO:
1478 optval = OPTBIT(IN6P_PKTINFO);
1479 break;
1480
1481 case IPV6_HOPLIMIT:
1482 optval = OPTBIT(IN6P_HOPLIMIT);
1483 break;
1484
1485 case IPV6_HOPOPTS:
1486 optval = OPTBIT(IN6P_HOPOPTS);
1487 break;
1488
1489 case IPV6_DSTOPTS:
1490 optval = OPTBIT(IN6P_DSTOPTS);
1491 break;
1492
1493 case IPV6_RTHDR:
1494 optval = OPTBIT(IN6P_RTHDR);
1495 break;
1496
1497 case IPV6_CHECKSUM:
1498 optval = in6p->in6p_cksum;
1499 break;
1500
1501 case IPV6_FAITH:
1502 optval = OPTBIT(IN6P_FAITH);
1503 break;
1504
1505 #ifndef INET6_BINDV6ONLY
1506 case IPV6_BINDV6ONLY:
1507 optval = OPTBIT(IN6P_BINDV6ONLY);
1508 break;
1509 #endif
1510 }
1511 *mtod(m, int *) = optval;
1512 break;
1513
1514 case IPV6_MULTICAST_IF:
1515 case IPV6_MULTICAST_HOPS:
1516 case IPV6_MULTICAST_LOOP:
1517 case IPV6_JOIN_GROUP:
1518 case IPV6_LEAVE_GROUP:
1519 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1520 break;
1521
1522 #ifdef IPSEC
1523 case IPV6_IPSEC_POLICY:
1524 {
1525 caddr_t req = NULL;
1526 size_t len = 0;
1527
1528 if (m) {
1529 req = mtod(m, caddr_t);
1530 len = m->m_len;
1531 }
1532 error = ipsec6_get_policy(in6p, req, len, mp);
1533 break;
1534 }
1535 #endif /* IPSEC */
1536
1537 default:
1538 error = ENOPROTOOPT;
1539 break;
1540 }
1541 break;
1542 }
1543 } else {
1544 error = EINVAL;
1545 if (op == PRCO_SETOPT && *mp)
1546 (void)m_free(*mp);
1547 }
1548 return(error);
1549 }
1550
1551 /*
1552 * Set up IP6 options in pcb for insertion in output packets.
1553 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1554 * with destination address if source routed.
1555 */
1556 static int
1557 ip6_pcbopts(pktopt, m, so)
1558 struct ip6_pktopts **pktopt;
1559 register struct mbuf *m;
1560 struct socket *so;
1561 {
1562 register struct ip6_pktopts *opt = *pktopt;
1563 int error = 0;
1564 struct proc *p = curproc; /* XXX */
1565 int priv = 0;
1566
1567 /* turn off any old options. */
1568 if (opt) {
1569 if (opt->ip6po_m)
1570 (void)m_free(opt->ip6po_m);
1571 } else
1572 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1573 *pktopt = 0;
1574
1575 if (!m || m->m_len == 0) {
1576 /*
1577 * Only turning off any previous options.
1578 */
1579 if (opt)
1580 free(opt, M_IP6OPT);
1581 if (m)
1582 (void)m_free(m);
1583 return(0);
1584 }
1585
1586 /* set options specified by user. */
1587 if (p && !suser(p->p_ucred, &p->p_acflag))
1588 priv = 1;
1589 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1590 (void)m_free(m);
1591 return(error);
1592 }
1593 *pktopt = opt;
1594 return(0);
1595 }
1596
1597 /*
1598 * Set the IP6 multicast options in response to user setsockopt().
1599 */
1600 static int
1601 ip6_setmoptions(optname, im6op, m)
1602 int optname;
1603 struct ip6_moptions **im6op;
1604 struct mbuf *m;
1605 {
1606 int error = 0;
1607 u_int loop, ifindex;
1608 struct ipv6_mreq *mreq;
1609 struct ifnet *ifp;
1610 struct ip6_moptions *im6o = *im6op;
1611 struct route_in6 ro;
1612 struct sockaddr_in6 *dst;
1613 struct in6_multi_mship *imm;
1614 struct proc *p = curproc; /* XXX */
1615
1616 if (im6o == NULL) {
1617 /*
1618 * No multicast option buffer attached to the pcb;
1619 * allocate one and initialize to default values.
1620 */
1621 im6o = (struct ip6_moptions *)
1622 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1623
1624 if (im6o == NULL)
1625 return(ENOBUFS);
1626 *im6op = im6o;
1627 im6o->im6o_multicast_ifp = NULL;
1628 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1629 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1630 LIST_INIT(&im6o->im6o_memberships);
1631 }
1632
1633 switch (optname) {
1634
1635 case IPV6_MULTICAST_IF:
1636 /*
1637 * Select the interface for outgoing multicast packets.
1638 */
1639 if (m == NULL || m->m_len != sizeof(u_int)) {
1640 error = EINVAL;
1641 break;
1642 }
1643 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1644 if (ifindex < 0 || if_index < ifindex) {
1645 error = ENXIO; /* XXX EINVAL? */
1646 break;
1647 }
1648 ifp = ifindex2ifnet[ifindex];
1649 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1650 error = EADDRNOTAVAIL;
1651 break;
1652 }
1653 im6o->im6o_multicast_ifp = ifp;
1654 break;
1655
1656 case IPV6_MULTICAST_HOPS:
1657 {
1658 /*
1659 * Set the IP6 hoplimit for outgoing multicast packets.
1660 */
1661 int optval;
1662 if (m == NULL || m->m_len != sizeof(int)) {
1663 error = EINVAL;
1664 break;
1665 }
1666 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1667 if (optval < -1 || optval >= 256)
1668 error = EINVAL;
1669 else if (optval == -1)
1670 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1671 else
1672 im6o->im6o_multicast_hlim = optval;
1673 break;
1674 }
1675
1676 case IPV6_MULTICAST_LOOP:
1677 /*
1678 * Set the loopback flag for outgoing multicast packets.
1679 * Must be zero or one.
1680 */
1681 if (m == NULL || m->m_len != sizeof(u_int)) {
1682 error = EINVAL;
1683 break;
1684 }
1685 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1686 if (loop > 1) {
1687 error = EINVAL;
1688 break;
1689 }
1690 im6o->im6o_multicast_loop = loop;
1691 break;
1692
1693 case IPV6_JOIN_GROUP:
1694 /*
1695 * Add a multicast group membership.
1696 * Group must be a valid IP6 multicast address.
1697 */
1698 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1699 error = EINVAL;
1700 break;
1701 }
1702 mreq = mtod(m, struct ipv6_mreq *);
1703 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1704 /*
1705 * We use the unspecified address to specify to accept
1706 * all multicast addresses. Only super user is allowed
1707 * to do this.
1708 */
1709 if (suser(p->p_ucred, &p->p_acflag)) {
1710 error = EACCES;
1711 break;
1712 }
1713 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1714 error = EINVAL;
1715 break;
1716 }
1717
1718 /*
1719 * If the interface is specified, validate it.
1720 */
1721 if (mreq->ipv6mr_interface < 0
1722 || if_index < mreq->ipv6mr_interface) {
1723 error = ENXIO; /* XXX EINVAL? */
1724 break;
1725 }
1726 /*
1727 * If no interface was explicitly specified, choose an
1728 * appropriate one according to the given multicast address.
1729 */
1730 if (mreq->ipv6mr_interface == 0) {
1731 /*
1732 * If the multicast address is in node-local scope,
1733 * the interface should be a loopback interface.
1734 * Otherwise, look up the routing table for the
1735 * address, and choose the outgoing interface.
1736 * XXX: is it a good approach?
1737 */
1738 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1739 ifp = &loif[0];
1740 } else {
1741 ro.ro_rt = NULL;
1742 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1743 bzero(dst, sizeof(*dst));
1744 dst->sin6_len = sizeof(struct sockaddr_in6);
1745 dst->sin6_family = AF_INET6;
1746 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1747 rtalloc((struct route *)&ro);
1748 if (ro.ro_rt == NULL) {
1749 error = EADDRNOTAVAIL;
1750 break;
1751 }
1752 ifp = ro.ro_rt->rt_ifp;
1753 rtfree(ro.ro_rt);
1754 }
1755 } else
1756 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1757
1758 /*
1759 * See if we found an interface, and confirm that it
1760 * supports multicast
1761 */
1762 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1763 error = EADDRNOTAVAIL;
1764 break;
1765 }
1766 /*
1767 * Put interface index into the multicast address,
1768 * if the address has link-local scope.
1769 */
1770 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1771 mreq->ipv6mr_multiaddr.s6_addr16[1]
1772 = htons(mreq->ipv6mr_interface);
1773 }
1774 /*
1775 * See if the membership already exists.
1776 */
1777 for (imm = im6o->im6o_memberships.lh_first;
1778 imm != NULL; imm = imm->i6mm_chain.le_next)
1779 if (imm->i6mm_maddr->in6m_ifp == ifp &&
1780 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1781 &mreq->ipv6mr_multiaddr))
1782 break;
1783 if (imm != NULL) {
1784 error = EADDRINUSE;
1785 break;
1786 }
1787 /*
1788 * Everything looks good; add a new record to the multicast
1789 * address list for the given interface.
1790 */
1791 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
1792 if (imm == NULL) {
1793 error = ENOBUFS;
1794 break;
1795 }
1796 if ((imm->i6mm_maddr =
1797 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
1798 free(imm, M_IPMADDR);
1799 break;
1800 }
1801 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
1802 break;
1803
1804 case IPV6_LEAVE_GROUP:
1805 /*
1806 * Drop a multicast group membership.
1807 * Group must be a valid IP6 multicast address.
1808 */
1809 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1810 error = EINVAL;
1811 break;
1812 }
1813 mreq = mtod(m, struct ipv6_mreq *);
1814 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1815 if (suser(p->p_ucred, &p->p_acflag)) {
1816 error = EACCES;
1817 break;
1818 }
1819 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1820 error = EINVAL;
1821 break;
1822 }
1823 /*
1824 * If an interface address was specified, get a pointer
1825 * to its ifnet structure.
1826 */
1827 if (mreq->ipv6mr_interface < 0
1828 || if_index < mreq->ipv6mr_interface) {
1829 error = ENXIO; /* XXX EINVAL? */
1830 break;
1831 }
1832 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1833 /*
1834 * Put interface index into the multicast address,
1835 * if the address has link-local scope.
1836 */
1837 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1838 mreq->ipv6mr_multiaddr.s6_addr16[1]
1839 = htons(mreq->ipv6mr_interface);
1840 }
1841 /*
1842 * Find the membership in the membership list.
1843 */
1844 for (imm = im6o->im6o_memberships.lh_first;
1845 imm != NULL; imm = imm->i6mm_chain.le_next) {
1846 if ((ifp == NULL ||
1847 imm->i6mm_maddr->in6m_ifp == ifp) &&
1848 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1849 &mreq->ipv6mr_multiaddr))
1850 break;
1851 }
1852 if (imm == NULL) {
1853 /* Unable to resolve interface */
1854 error = EADDRNOTAVAIL;
1855 break;
1856 }
1857 /*
1858 * Give up the multicast address record to which the
1859 * membership points.
1860 */
1861 LIST_REMOVE(imm, i6mm_chain);
1862 in6_delmulti(imm->i6mm_maddr);
1863 free(imm, M_IPMADDR);
1864 break;
1865
1866 default:
1867 error = EOPNOTSUPP;
1868 break;
1869 }
1870
1871 /*
1872 * If all options have default values, no need to keep the mbuf.
1873 */
1874 if (im6o->im6o_multicast_ifp == NULL &&
1875 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
1876 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
1877 im6o->im6o_memberships.lh_first == NULL) {
1878 free(*im6op, M_IPMOPTS);
1879 *im6op = NULL;
1880 }
1881
1882 return(error);
1883 }
1884
1885 /*
1886 * Return the IP6 multicast options in response to user getsockopt().
1887 */
1888 static int
1889 ip6_getmoptions(optname, im6o, mp)
1890 int optname;
1891 register struct ip6_moptions *im6o;
1892 register struct mbuf **mp;
1893 {
1894 u_int *hlim, *loop, *ifindex;
1895
1896 *mp = m_get(M_WAIT, MT_SOOPTS);
1897
1898 switch (optname) {
1899
1900 case IPV6_MULTICAST_IF:
1901 ifindex = mtod(*mp, u_int *);
1902 (*mp)->m_len = sizeof(u_int);
1903 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
1904 *ifindex = 0;
1905 else
1906 *ifindex = im6o->im6o_multicast_ifp->if_index;
1907 return(0);
1908
1909 case IPV6_MULTICAST_HOPS:
1910 hlim = mtod(*mp, u_int *);
1911 (*mp)->m_len = sizeof(u_int);
1912 if (im6o == NULL)
1913 *hlim = ip6_defmcasthlim;
1914 else
1915 *hlim = im6o->im6o_multicast_hlim;
1916 return(0);
1917
1918 case IPV6_MULTICAST_LOOP:
1919 loop = mtod(*mp, u_int *);
1920 (*mp)->m_len = sizeof(u_int);
1921 if (im6o == NULL)
1922 *loop = ip6_defmcasthlim;
1923 else
1924 *loop = im6o->im6o_multicast_loop;
1925 return(0);
1926
1927 default:
1928 return(EOPNOTSUPP);
1929 }
1930 }
1931
1932 /*
1933 * Discard the IP6 multicast options.
1934 */
1935 void
1936 ip6_freemoptions(im6o)
1937 register struct ip6_moptions *im6o;
1938 {
1939 struct in6_multi_mship *imm;
1940
1941 if (im6o == NULL)
1942 return;
1943
1944 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
1945 LIST_REMOVE(imm, i6mm_chain);
1946 if (imm->i6mm_maddr)
1947 in6_delmulti(imm->i6mm_maddr);
1948 free(imm, M_IPMADDR);
1949 }
1950 free(im6o, M_IPMOPTS);
1951 }
1952
1953 /*
1954 * Set IPv6 outgoing packet options based on advanced API.
1955 */
1956 int
1957 ip6_setpktoptions(control, opt, priv)
1958 struct mbuf *control;
1959 struct ip6_pktopts *opt;
1960 int priv;
1961 {
1962 register struct cmsghdr *cm = 0;
1963
1964 if (control == 0 || opt == 0)
1965 return(EINVAL);
1966
1967 bzero(opt, sizeof(*opt));
1968 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
1969
1970 /*
1971 * XXX: Currently, we assume all the optional information is stored
1972 * in a single mbuf.
1973 */
1974 if (control->m_next)
1975 return(EINVAL);
1976
1977 opt->ip6po_m = control;
1978
1979 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
1980 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1981 cm = mtod(control, struct cmsghdr *);
1982 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
1983 return(EINVAL);
1984 if (cm->cmsg_level != IPPROTO_IPV6)
1985 continue;
1986
1987 switch(cm->cmsg_type) {
1988 case IPV6_PKTINFO:
1989 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
1990 return(EINVAL);
1991 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
1992 if (opt->ip6po_pktinfo->ipi6_ifindex &&
1993 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
1994 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
1995 htons(opt->ip6po_pktinfo->ipi6_ifindex);
1996
1997 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index
1998 || opt->ip6po_pktinfo->ipi6_ifindex < 0) {
1999 return(ENXIO);
2000 }
2001
2002 /*
2003 * Check if the requested source address is indeed a
2004 * unicast address assigned to the node.
2005 */
2006 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2007 struct ifaddr *ia;
2008 struct sockaddr_in6 sin6;
2009
2010 bzero(&sin6, sizeof(sin6));
2011 sin6.sin6_len = sizeof(sin6);
2012 sin6.sin6_family = AF_INET6;
2013 sin6.sin6_addr =
2014 opt->ip6po_pktinfo->ipi6_addr;
2015 ia = ifa_ifwithaddr(sin6tosa(&sin6));
2016 if (ia == NULL ||
2017 (opt->ip6po_pktinfo->ipi6_ifindex &&
2018 (ia->ifa_ifp->if_index !=
2019 opt->ip6po_pktinfo->ipi6_ifindex))) {
2020 return(EADDRNOTAVAIL);
2021 }
2022 /*
2023 * Check if the requested source address is
2024 * indeed a unicast address assigned to the
2025 * node.
2026 */
2027 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
2028 return(EADDRNOTAVAIL);
2029 }
2030 break;
2031
2032 case IPV6_HOPLIMIT:
2033 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2034 return(EINVAL);
2035
2036 bcopy(CMSG_DATA(cm), &opt->ip6po_hlim,
2037 sizeof(opt->ip6po_hlim));
2038 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255)
2039 return(EINVAL);
2040 break;
2041
2042 case IPV6_NEXTHOP:
2043 if (!priv)
2044 return(EPERM);
2045
2046 if (cm->cmsg_len < sizeof(u_char) ||
2047 /* check if cmsg_len is large enough for sa_len */
2048 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2049 return(EINVAL);
2050
2051 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2052
2053 break;
2054
2055 case IPV6_HOPOPTS:
2056 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2057 return(EINVAL);
2058 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm);
2059 if (cm->cmsg_len !=
2060 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3))
2061 return(EINVAL);
2062 break;
2063
2064 case IPV6_DSTOPTS:
2065 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2066 return(EINVAL);
2067
2068 /*
2069 * If there is no routing header yet, the destination
2070 * options header should be put on the 1st part.
2071 * Otherwise, the header should be on the 2nd part.
2072 * (See RFC 2460, section 4.1)
2073 */
2074 if (opt->ip6po_rthdr == NULL) {
2075 opt->ip6po_dest1 =
2076 (struct ip6_dest *)CMSG_DATA(cm);
2077 if (cm->cmsg_len !=
2078 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1)
2079 << 3))
2080 return(EINVAL);
2081 }
2082 else {
2083 opt->ip6po_dest2 =
2084 (struct ip6_dest *)CMSG_DATA(cm);
2085 if (cm->cmsg_len !=
2086 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1)
2087 << 3))
2088 return(EINVAL);
2089 }
2090 break;
2091
2092 case IPV6_RTHDR:
2093 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2094 return(EINVAL);
2095 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm);
2096 if (cm->cmsg_len !=
2097 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3))
2098 return(EINVAL);
2099 switch(opt->ip6po_rthdr->ip6r_type) {
2100 case IPV6_RTHDR_TYPE_0:
2101 if (opt->ip6po_rthdr->ip6r_segleft == 0)
2102 return(EINVAL);
2103 break;
2104 default:
2105 return(EINVAL);
2106 }
2107 break;
2108
2109 default:
2110 return(ENOPROTOOPT);
2111 }
2112 }
2113
2114 return(0);
2115 }
2116
2117 /*
2118 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2119 * packet to the input queue of a specified interface. Note that this
2120 * calls the output routine of the loopback "driver", but with an interface
2121 * pointer that might NOT be &loif -- easier than replicating that code here.
2122 */
2123 void
2124 ip6_mloopback(ifp, m, dst)
2125 struct ifnet *ifp;
2126 register struct mbuf *m;
2127 register struct sockaddr_in6 *dst;
2128 {
2129 struct mbuf *copym;
2130 struct ip6_hdr *ip6;
2131
2132 copym = m_copy(m, 0, M_COPYALL);
2133 if (copym == NULL)
2134 return;
2135
2136 /*
2137 * Make sure to deep-copy IPv6 header portion in case the data
2138 * is in an mbuf cluster, so that we can safely override the IPv6
2139 * header portion later.
2140 */
2141 if ((copym->m_flags & M_EXT) != 0 ||
2142 copym->m_len < sizeof(struct ip6_hdr)) {
2143 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2144 if (copym == NULL)
2145 return;
2146 }
2147
2148 #ifdef DIAGNOSTIC
2149 if (copym->m_len < sizeof(*ip6)) {
2150 m_freem(copym);
2151 return;
2152 }
2153 #endif
2154
2155 #ifndef FAKE_LOOPBACK_IF
2156 if ((ifp->if_flags & IFF_LOOPBACK) == 0)
2157 #else
2158 if (1)
2159 #endif
2160 {
2161 ip6 = mtod(copym, struct ip6_hdr *);
2162 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
2163 ip6->ip6_src.s6_addr16[1] = 0;
2164 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
2165 ip6->ip6_dst.s6_addr16[1] = 0;
2166 }
2167
2168 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2169 }
2170
2171 /*
2172 * Chop IPv6 header off from the payload.
2173 */
2174 static int
2175 ip6_splithdr(m, exthdrs)
2176 struct mbuf *m;
2177 struct ip6_exthdrs *exthdrs;
2178 {
2179 struct mbuf *mh;
2180 struct ip6_hdr *ip6;
2181
2182 ip6 = mtod(m, struct ip6_hdr *);
2183 if (m->m_len > sizeof(*ip6)) {
2184 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2185 if (mh == 0) {
2186 m_freem(m);
2187 return ENOBUFS;
2188 }
2189 M_COPY_PKTHDR(mh, m);
2190 MH_ALIGN(mh, sizeof(*ip6));
2191 m->m_flags &= ~M_PKTHDR;
2192 m->m_len -= sizeof(*ip6);
2193 m->m_data += sizeof(*ip6);
2194 mh->m_next = m;
2195 m = mh;
2196 m->m_len = sizeof(*ip6);
2197 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2198 }
2199 exthdrs->ip6e_ip6 = m;
2200 return 0;
2201 }
2202
2203 /*
2204 * Compute IPv6 extension header length.
2205 */
2206 int
2207 ip6_optlen(in6p)
2208 struct in6pcb *in6p;
2209 {
2210 int len;
2211
2212 if (!in6p->in6p_outputopts)
2213 return 0;
2214
2215 len = 0;
2216 #define elen(x) \
2217 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2218
2219 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2220 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2221 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2222 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2223 return len;
2224 #undef elen
2225 }
2226