ip6_output.c revision 1.8.2.2 1 /* $NetBSD: ip6_output.c,v 1.8.2.2 2000/11/22 16:06:22 bouyer Exp $ */
2 /* $KAME: ip6_output.c,v 1.122 2000/08/19 02:12:02 jinmei Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
66 */
67
68 #include "opt_inet.h"
69 #include "opt_ipsec.h"
70 #include "opt_pfil_hooks.h"
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/errno.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81
82 #include <net/if.h>
83 #include <net/route.h>
84 #ifdef PFIL_HOOKS
85 #include <net/pfil.h>
86 #endif
87
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip6.h>
91 #include <netinet/icmp6.h>
92 #include <netinet6/ip6_var.h>
93 #include <netinet6/in6_pcb.h>
94 #include <netinet6/nd6.h>
95
96 #ifdef IPSEC
97 #include <netinet6/ipsec.h>
98 #include <netkey/key.h>
99 #endif /* IPSEC */
100
101 #include "loop.h"
102
103 #include <net/net_osdep.h>
104
105 #ifdef IPV6FIREWALL
106 #include <netinet6/ip6_fw.h>
107 #endif
108
109 #ifdef PFIL_HOOKS
110 extern struct pfil_head inet6_pfil_hook; /* XXX */
111 #endif
112
113 struct ip6_exthdrs {
114 struct mbuf *ip6e_ip6;
115 struct mbuf *ip6e_hbh;
116 struct mbuf *ip6e_dest1;
117 struct mbuf *ip6e_rthdr;
118 struct mbuf *ip6e_dest2;
119 };
120
121 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
122 struct socket *));
123 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
124 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
125 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
126 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
127 struct ip6_frag **));
128 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
129 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
130
131 extern struct ifnet loif[NLOOP];
132
133 /*
134 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
135 * header (with pri, len, nxt, hlim, src, dst).
136 * This function may modify ver and hlim only.
137 * The mbuf chain containing the packet will be freed.
138 * The mbuf opt, if present, will not be freed.
139 */
140 int
141 ip6_output(m0, opt, ro, flags, im6o, ifpp)
142 struct mbuf *m0;
143 struct ip6_pktopts *opt;
144 struct route_in6 *ro;
145 int flags;
146 struct ip6_moptions *im6o;
147 struct ifnet **ifpp; /* XXX: just for statistics */
148 {
149 struct ip6_hdr *ip6, *mhip6;
150 struct ifnet *ifp, *origifp;
151 struct mbuf *m = m0;
152 int hlen, tlen, len, off;
153 struct route_in6 ip6route;
154 struct sockaddr_in6 *dst;
155 int error = 0;
156 struct in6_ifaddr *ia;
157 u_long mtu;
158 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
159 struct ip6_exthdrs exthdrs;
160 struct in6_addr finaldst;
161 struct route_in6 *ro_pmtu = NULL;
162 int hdrsplit = 0;
163 int needipsec = 0;
164 #ifdef IPSEC
165 int needipsectun = 0;
166 struct socket *so;
167 struct secpolicy *sp = NULL;
168
169 /* for AH processing. stupid to have "socket" variable in IP layer... */
170 so = ipsec_getsocket(m);
171 ipsec_setsocket(m, NULL);
172 ip6 = mtod(m, struct ip6_hdr *);
173 #endif /* IPSEC */
174
175 #define MAKE_EXTHDR(hp, mp) \
176 do { \
177 if (hp) { \
178 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
179 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
180 ((eh)->ip6e_len + 1) << 3); \
181 if (error) \
182 goto freehdrs; \
183 } \
184 } while (0)
185
186 bzero(&exthdrs, sizeof(exthdrs));
187 if (opt) {
188 /* Hop-by-Hop options header */
189 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
190 /* Destination options header(1st part) */
191 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
192 /* Routing header */
193 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
194 /* Destination options header(2nd part) */
195 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
196 }
197
198 #ifdef IPSEC
199 /* get a security policy for this packet */
200 if (so == NULL)
201 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
202 else
203 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
204
205 if (sp == NULL) {
206 ipsec6stat.out_inval++;
207 goto freehdrs;
208 }
209
210 error = 0;
211
212 /* check policy */
213 switch (sp->policy) {
214 case IPSEC_POLICY_DISCARD:
215 /*
216 * This packet is just discarded.
217 */
218 ipsec6stat.out_polvio++;
219 goto freehdrs;
220
221 case IPSEC_POLICY_BYPASS:
222 case IPSEC_POLICY_NONE:
223 /* no need to do IPsec. */
224 needipsec = 0;
225 break;
226
227 case IPSEC_POLICY_IPSEC:
228 if (sp->req == NULL) {
229 /* XXX should be panic ? */
230 printf("ip6_output: No IPsec request specified.\n");
231 error = EINVAL;
232 goto freehdrs;
233 }
234 needipsec = 1;
235 break;
236
237 case IPSEC_POLICY_ENTRUST:
238 default:
239 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
240 }
241 #endif /* IPSEC */
242
243 /*
244 * Calculate the total length of the extension header chain.
245 * Keep the length of the unfragmentable part for fragmentation.
246 */
247 optlen = 0;
248 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
249 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
250 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
251 unfragpartlen = optlen + sizeof(struct ip6_hdr);
252 /* NOTE: we don't add AH/ESP length here. do that later. */
253 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
254
255 /*
256 * If we need IPsec, or there is at least one extension header,
257 * separate IP6 header from the payload.
258 */
259 if ((needipsec || optlen) && !hdrsplit) {
260 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
261 m = NULL;
262 goto freehdrs;
263 }
264 m = exthdrs.ip6e_ip6;
265 hdrsplit++;
266 }
267
268 /* adjust pointer */
269 ip6 = mtod(m, struct ip6_hdr *);
270
271 /* adjust mbuf packet header length */
272 m->m_pkthdr.len += optlen;
273 plen = m->m_pkthdr.len - sizeof(*ip6);
274
275 /* If this is a jumbo payload, insert a jumbo payload option. */
276 if (plen > IPV6_MAXPACKET) {
277 if (!hdrsplit) {
278 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
279 m = NULL;
280 goto freehdrs;
281 }
282 m = exthdrs.ip6e_ip6;
283 hdrsplit++;
284 }
285 /* adjust pointer */
286 ip6 = mtod(m, struct ip6_hdr *);
287 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
288 goto freehdrs;
289 ip6->ip6_plen = 0;
290 } else
291 ip6->ip6_plen = htons(plen);
292
293 /*
294 * Concatenate headers and fill in next header fields.
295 * Here we have, on "m"
296 * IPv6 payload
297 * and we insert headers accordingly. Finally, we should be getting:
298 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
299 *
300 * during the header composing process, "m" points to IPv6 header.
301 * "mprev" points to an extension header prior to esp.
302 */
303 {
304 u_char *nexthdrp = &ip6->ip6_nxt;
305 struct mbuf *mprev = m;
306
307 /*
308 * we treat dest2 specially. this makes IPsec processing
309 * much easier.
310 *
311 * result: IPv6 dest2 payload
312 * m and mprev will point to IPv6 header.
313 */
314 if (exthdrs.ip6e_dest2) {
315 if (!hdrsplit)
316 panic("assumption failed: hdr not split");
317 exthdrs.ip6e_dest2->m_next = m->m_next;
318 m->m_next = exthdrs.ip6e_dest2;
319 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
320 ip6->ip6_nxt = IPPROTO_DSTOPTS;
321 }
322
323 #define MAKE_CHAIN(m, mp, p, i)\
324 do {\
325 if (m) {\
326 if (!hdrsplit) \
327 panic("assumption failed: hdr not split"); \
328 *mtod((m), u_char *) = *(p);\
329 *(p) = (i);\
330 p = mtod((m), u_char *);\
331 (m)->m_next = (mp)->m_next;\
332 (mp)->m_next = (m);\
333 (mp) = (m);\
334 }\
335 } while (0)
336 /*
337 * result: IPv6 hbh dest1 rthdr dest2 payload
338 * m will point to IPv6 header. mprev will point to the
339 * extension header prior to dest2 (rthdr in the above case).
340 */
341 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev,
342 nexthdrp, IPPROTO_HOPOPTS);
343 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev,
344 nexthdrp, IPPROTO_DSTOPTS);
345 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev,
346 nexthdrp, IPPROTO_ROUTING);
347
348 #ifdef IPSEC
349 if (!needipsec)
350 goto skip_ipsec2;
351
352 /*
353 * pointers after IPsec headers are not valid any more.
354 * other pointers need a great care too.
355 * (IPsec routines should not mangle mbufs prior to AH/ESP)
356 */
357 exthdrs.ip6e_dest2 = NULL;
358
359 {
360 struct ip6_rthdr *rh = NULL;
361 int segleft_org = 0;
362 struct ipsec_output_state state;
363
364 if (exthdrs.ip6e_rthdr) {
365 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
366 segleft_org = rh->ip6r_segleft;
367 rh->ip6r_segleft = 0;
368 }
369
370 bzero(&state, sizeof(state));
371 state.m = m;
372 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
373 &needipsectun);
374 m = state.m;
375 if (error) {
376 /* mbuf is already reclaimed in ipsec6_output_trans. */
377 m = NULL;
378 switch (error) {
379 case EHOSTUNREACH:
380 case ENETUNREACH:
381 case EMSGSIZE:
382 case ENOBUFS:
383 case ENOMEM:
384 break;
385 default:
386 printf("ip6_output (ipsec): error code %d\n", error);
387 /*fall through*/
388 case ENOENT:
389 /* don't show these error codes to the user */
390 error = 0;
391 break;
392 }
393 goto bad;
394 }
395 if (exthdrs.ip6e_rthdr) {
396 /* ah6_output doesn't modify mbuf chain */
397 rh->ip6r_segleft = segleft_org;
398 }
399 }
400 skip_ipsec2:;
401 #endif
402 }
403
404 /*
405 * If there is a routing header, replace destination address field
406 * with the first hop of the routing header.
407 */
408 if (exthdrs.ip6e_rthdr) {
409 struct ip6_rthdr *rh =
410 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
411 struct ip6_rthdr *));
412 struct ip6_rthdr0 *rh0;
413
414 finaldst = ip6->ip6_dst;
415 switch(rh->ip6r_type) {
416 case IPV6_RTHDR_TYPE_0:
417 rh0 = (struct ip6_rthdr0 *)rh;
418 ip6->ip6_dst = rh0->ip6r0_addr[0];
419 bcopy((caddr_t)&rh0->ip6r0_addr[1],
420 (caddr_t)&rh0->ip6r0_addr[0],
421 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)
422 );
423 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst;
424 break;
425 default: /* is it possible? */
426 error = EINVAL;
427 goto bad;
428 }
429 }
430
431 /* Source address validation */
432 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
433 (flags & IPV6_DADOUTPUT) == 0) {
434 error = EOPNOTSUPP;
435 ip6stat.ip6s_badscope++;
436 goto bad;
437 }
438 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
439 error = EOPNOTSUPP;
440 ip6stat.ip6s_badscope++;
441 goto bad;
442 }
443
444 ip6stat.ip6s_localout++;
445
446 /*
447 * Route packet.
448 */
449 if (ro == 0) {
450 ro = &ip6route;
451 bzero((caddr_t)ro, sizeof(*ro));
452 }
453 ro_pmtu = ro;
454 if (opt && opt->ip6po_rthdr)
455 ro = &opt->ip6po_route;
456 dst = (struct sockaddr_in6 *)&ro->ro_dst;
457 /*
458 * If there is a cached route,
459 * check that it is to the same destination
460 * and is still up. If not, free it and try again.
461 */
462 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
463 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
464 RTFREE(ro->ro_rt);
465 ro->ro_rt = (struct rtentry *)0;
466 }
467 if (ro->ro_rt == 0) {
468 bzero(dst, sizeof(*dst));
469 dst->sin6_family = AF_INET6;
470 dst->sin6_len = sizeof(struct sockaddr_in6);
471 dst->sin6_addr = ip6->ip6_dst;
472 }
473 #ifdef IPSEC
474 if (needipsec && needipsectun) {
475 struct ipsec_output_state state;
476
477 /*
478 * All the extension headers will become inaccessible
479 * (since they can be encrypted).
480 * Don't panic, we need no more updates to extension headers
481 * on inner IPv6 packet (since they are now encapsulated).
482 *
483 * IPv6 [ESP|AH] IPv6 [extension headers] payload
484 */
485 bzero(&exthdrs, sizeof(exthdrs));
486 exthdrs.ip6e_ip6 = m;
487
488 bzero(&state, sizeof(state));
489 state.m = m;
490 state.ro = (struct route *)ro;
491 state.dst = (struct sockaddr *)dst;
492
493 error = ipsec6_output_tunnel(&state, sp, flags);
494
495 m = state.m;
496 ro = (struct route_in6 *)state.ro;
497 dst = (struct sockaddr_in6 *)state.dst;
498 if (error) {
499 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
500 m0 = m = NULL;
501 m = NULL;
502 switch (error) {
503 case EHOSTUNREACH:
504 case ENETUNREACH:
505 case EMSGSIZE:
506 case ENOBUFS:
507 case ENOMEM:
508 break;
509 default:
510 printf("ip6_output (ipsec): error code %d\n", error);
511 /*fall through*/
512 case ENOENT:
513 /* don't show these error codes to the user */
514 error = 0;
515 break;
516 }
517 goto bad;
518 }
519
520 exthdrs.ip6e_ip6 = m;
521 }
522 #endif /*IPSEC*/
523
524 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
525 /* Unicast */
526
527 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
528 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
529 /* xxx
530 * interface selection comes here
531 * if an interface is specified from an upper layer,
532 * ifp must point it.
533 */
534 if (ro->ro_rt == 0) {
535 /*
536 * non-bsdi always clone routes, if parent is
537 * PRF_CLONING.
538 */
539 rtalloc((struct route *)ro);
540 }
541 if (ro->ro_rt == 0) {
542 ip6stat.ip6s_noroute++;
543 error = EHOSTUNREACH;
544 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
545 goto bad;
546 }
547 ia = ifatoia6(ro->ro_rt->rt_ifa);
548 ifp = ro->ro_rt->rt_ifp;
549 ro->ro_rt->rt_use++;
550 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
551 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
552 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
553
554 in6_ifstat_inc(ifp, ifs6_out_request);
555
556 /*
557 * Check if the outgoing interface conflicts with
558 * the interface specified by ifi6_ifindex (if specified).
559 * Note that loopback interface is always okay.
560 * (this may happen when we are sending a packet to one of
561 * our own addresses.)
562 */
563 if (opt && opt->ip6po_pktinfo
564 && opt->ip6po_pktinfo->ipi6_ifindex) {
565 if (!(ifp->if_flags & IFF_LOOPBACK)
566 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
567 ip6stat.ip6s_noroute++;
568 in6_ifstat_inc(ifp, ifs6_out_discard);
569 error = EHOSTUNREACH;
570 goto bad;
571 }
572 }
573
574 if (opt && opt->ip6po_hlim != -1)
575 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
576 } else {
577 /* Multicast */
578 struct in6_multi *in6m;
579
580 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
581
582 /*
583 * See if the caller provided any multicast options
584 */
585 ifp = NULL;
586 if (im6o != NULL) {
587 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
588 if (im6o->im6o_multicast_ifp != NULL)
589 ifp = im6o->im6o_multicast_ifp;
590 } else
591 ip6->ip6_hlim = ip6_defmcasthlim;
592
593 /*
594 * See if the caller provided the outgoing interface
595 * as an ancillary data.
596 * Boundary check for ifindex is assumed to be already done.
597 */
598 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
599 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
600
601 /*
602 * If the destination is a node-local scope multicast,
603 * the packet should be loop-backed only.
604 */
605 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
606 /*
607 * If the outgoing interface is already specified,
608 * it should be a loopback interface.
609 */
610 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
611 ip6stat.ip6s_badscope++;
612 error = ENETUNREACH; /* XXX: better error? */
613 /* XXX correct ifp? */
614 in6_ifstat_inc(ifp, ifs6_out_discard);
615 goto bad;
616 } else {
617 ifp = &loif[0];
618 }
619 }
620
621 if (opt && opt->ip6po_hlim != -1)
622 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
623
624 /*
625 * If caller did not provide an interface lookup a
626 * default in the routing table. This is either a
627 * default for the speicfied group (i.e. a host
628 * route), or a multicast default (a route for the
629 * ``net'' ff00::/8).
630 */
631 if (ifp == NULL) {
632 if (ro->ro_rt == 0) {
633 ro->ro_rt = rtalloc1((struct sockaddr *)
634 &ro->ro_dst, 0
635 );
636 }
637 if (ro->ro_rt == 0) {
638 ip6stat.ip6s_noroute++;
639 error = EHOSTUNREACH;
640 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
641 goto bad;
642 }
643 ia = ifatoia6(ro->ro_rt->rt_ifa);
644 ifp = ro->ro_rt->rt_ifp;
645 ro->ro_rt->rt_use++;
646 }
647
648 if ((flags & IPV6_FORWARDING) == 0)
649 in6_ifstat_inc(ifp, ifs6_out_request);
650 in6_ifstat_inc(ifp, ifs6_out_mcast);
651
652 /*
653 * Confirm that the outgoing interface supports multicast.
654 */
655 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
656 ip6stat.ip6s_noroute++;
657 in6_ifstat_inc(ifp, ifs6_out_discard);
658 error = ENETUNREACH;
659 goto bad;
660 }
661 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
662 if (in6m != NULL &&
663 (im6o == NULL || im6o->im6o_multicast_loop)) {
664 /*
665 * If we belong to the destination multicast group
666 * on the outgoing interface, and the caller did not
667 * forbid loopback, loop back a copy.
668 */
669 ip6_mloopback(ifp, m, dst);
670 } else {
671 /*
672 * If we are acting as a multicast router, perform
673 * multicast forwarding as if the packet had just
674 * arrived on the interface to which we are about
675 * to send. The multicast forwarding function
676 * recursively calls this function, using the
677 * IPV6_FORWARDING flag to prevent infinite recursion.
678 *
679 * Multicasts that are looped back by ip6_mloopback(),
680 * above, will be forwarded by the ip6_input() routine,
681 * if necessary.
682 */
683 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
684 if (ip6_mforward(ip6, ifp, m) != 0) {
685 m_freem(m);
686 goto done;
687 }
688 }
689 }
690 /*
691 * Multicasts with a hoplimit of zero may be looped back,
692 * above, but must not be transmitted on a network.
693 * Also, multicasts addressed to the loopback interface
694 * are not sent -- the above call to ip6_mloopback() will
695 * loop back a copy if this host actually belongs to the
696 * destination group on the loopback interface.
697 */
698 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
699 m_freem(m);
700 goto done;
701 }
702 }
703
704 /*
705 * Fill the outgoing inteface to tell the upper layer
706 * to increment per-interface statistics.
707 */
708 if (ifpp)
709 *ifpp = ifp;
710
711 /*
712 * Determine path MTU.
713 */
714 if (ro_pmtu != ro) {
715 /* The first hop and the final destination may differ. */
716 struct sockaddr_in6 *sin6_fin =
717 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
718 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
719 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr,
720 &finaldst))) {
721 RTFREE(ro_pmtu->ro_rt);
722 ro_pmtu->ro_rt = (struct rtentry *)0;
723 }
724 if (ro_pmtu->ro_rt == 0) {
725 bzero(sin6_fin, sizeof(*sin6_fin));
726 sin6_fin->sin6_family = AF_INET6;
727 sin6_fin->sin6_len = sizeof(struct sockaddr_in6);
728 sin6_fin->sin6_addr = finaldst;
729
730 rtalloc((struct route *)ro_pmtu);
731 }
732 }
733 if (ro_pmtu->ro_rt != NULL) {
734 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu;
735
736 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
737 if (mtu > ifmtu) {
738 /*
739 * The MTU on the route is larger than the MTU on
740 * the interface! This shouldn't happen, unless the
741 * MTU of the interface has been changed after the
742 * interface was brought up. Change the MTU in the
743 * route to match the interface MTU (as long as the
744 * field isn't locked).
745 */
746 mtu = ifmtu;
747 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
748 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */
749 }
750 } else {
751 mtu = nd_ifinfo[ifp->if_index].linkmtu;
752 }
753
754 /* Fake scoped addresses */
755 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
756 /*
757 * If source or destination address is a scoped address, and
758 * the packet is going to be sent to a loopback interface,
759 * we should keep the original interface.
760 */
761
762 /*
763 * XXX: this is a very experimental and temporary solution.
764 * We eventually have sockaddr_in6 and use the sin6_scope_id
765 * field of the structure here.
766 * We rely on the consistency between two scope zone ids
767 * of source add destination, which should already be assured
768 * Larger scopes than link will be supported in the near
769 * future.
770 */
771 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
772 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
773 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
774 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
775 else
776 origifp = ifp;
777 }
778 else
779 origifp = ifp;
780 #ifndef FAKE_LOOPBACK_IF
781 if ((ifp->if_flags & IFF_LOOPBACK) == 0)
782 #else
783 if (1)
784 #endif
785 {
786 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
787 ip6->ip6_src.s6_addr16[1] = 0;
788 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
789 ip6->ip6_dst.s6_addr16[1] = 0;
790 }
791
792 /*
793 * If the outgoing packet contains a hop-by-hop options header,
794 * it must be examined and processed even by the source node.
795 * (RFC 2460, section 4.)
796 */
797 if (exthdrs.ip6e_hbh) {
798 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh,
799 struct ip6_hbh *);
800 u_int32_t dummy1; /* XXX unused */
801 u_int32_t dummy2; /* XXX unused */
802
803 /*
804 * XXX: if we have to send an ICMPv6 error to the sender,
805 * we need the M_LOOP flag since icmp6_error() expects
806 * the IPv6 and the hop-by-hop options header are
807 * continuous unless the flag is set.
808 */
809 m->m_flags |= M_LOOP;
810 m->m_pkthdr.rcvif = ifp;
811 if (ip6_process_hopopts(m,
812 (u_int8_t *)(hbh + 1),
813 ((hbh->ip6h_len + 1) << 3) -
814 sizeof(struct ip6_hbh),
815 &dummy1, &dummy2) < 0) {
816 /* m was already freed at this point */
817 error = EINVAL;/* better error? */
818 goto done;
819 }
820 m->m_flags &= ~M_LOOP; /* XXX */
821 m->m_pkthdr.rcvif = NULL;
822 }
823
824 #ifdef PFIL_HOOKS
825 /*
826 * Run through list of hooks for output packets.
827 */
828 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp,
829 PFIL_OUT)) != 0)
830 goto done;
831 if (m == NULL)
832 goto done;
833 ip6 = mtod(m, struct ip6_hdr *);
834 #endif /* PFIL_HOOKS */
835 /*
836 * Send the packet to the outgoing interface.
837 * If necessary, do IPv6 fragmentation before sending.
838 */
839 tlen = m->m_pkthdr.len;
840 if (tlen <= mtu
841 #ifdef notyet
842 /*
843 * On any link that cannot convey a 1280-octet packet in one piece,
844 * link-specific fragmentation and reassembly must be provided at
845 * a layer below IPv6. [RFC 2460, sec.5]
846 * Thus if the interface has ability of link-level fragmentation,
847 * we can just send the packet even if the packet size is
848 * larger than the link's MTU.
849 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet...
850 */
851
852 || ifp->if_flags & IFF_FRAGMENTABLE
853 #endif
854 )
855 {
856 #ifdef IFA_STATS
857 struct in6_ifaddr *ia6;
858 ip6 = mtod(m, struct ip6_hdr *);
859 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
860 if (ia6) {
861 ia6->ia_ifa.ifa_data.ifad_outbytes +=
862 m->m_pkthdr.len;
863 }
864 #endif
865 #ifdef OLDIP6OUTPUT
866 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst,
867 ro->ro_rt);
868 #else
869 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
870 #endif
871 goto done;
872 } else if (mtu < IPV6_MMTU) {
873 /*
874 * note that path MTU is never less than IPV6_MMTU
875 * (see icmp6_input).
876 */
877 error = EMSGSIZE;
878 in6_ifstat_inc(ifp, ifs6_out_fragfail);
879 goto bad;
880 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
881 error = EMSGSIZE;
882 in6_ifstat_inc(ifp, ifs6_out_fragfail);
883 goto bad;
884 } else {
885 struct mbuf **mnext, *m_frgpart;
886 struct ip6_frag *ip6f;
887 u_int32_t id = htonl(ip6_id++);
888 u_char nextproto;
889
890 /*
891 * Too large for the destination or interface;
892 * fragment if possible.
893 * Must be able to put at least 8 bytes per fragment.
894 */
895 hlen = unfragpartlen;
896 if (mtu > IPV6_MAXPACKET)
897 mtu = IPV6_MAXPACKET;
898 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
899 if (len < 8) {
900 error = EMSGSIZE;
901 in6_ifstat_inc(ifp, ifs6_out_fragfail);
902 goto bad;
903 }
904
905 mnext = &m->m_nextpkt;
906
907 /*
908 * Change the next header field of the last header in the
909 * unfragmentable part.
910 */
911 if (exthdrs.ip6e_rthdr) {
912 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
913 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
914 } else if (exthdrs.ip6e_dest1) {
915 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
916 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
917 } else if (exthdrs.ip6e_hbh) {
918 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
919 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
920 } else {
921 nextproto = ip6->ip6_nxt;
922 ip6->ip6_nxt = IPPROTO_FRAGMENT;
923 }
924
925 /*
926 * Loop through length of segment after first fragment,
927 * make new header and copy data of each part and link onto chain.
928 */
929 m0 = m;
930 for (off = hlen; off < tlen; off += len) {
931 MGETHDR(m, M_DONTWAIT, MT_HEADER);
932 if (!m) {
933 error = ENOBUFS;
934 ip6stat.ip6s_odropped++;
935 goto sendorfree;
936 }
937 m->m_flags = m0->m_flags & M_COPYFLAGS;
938 *mnext = m;
939 mnext = &m->m_nextpkt;
940 m->m_data += max_linkhdr;
941 mhip6 = mtod(m, struct ip6_hdr *);
942 *mhip6 = *ip6;
943 m->m_len = sizeof(*mhip6);
944 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
945 if (error) {
946 ip6stat.ip6s_odropped++;
947 goto sendorfree;
948 }
949 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
950 if (off + len >= tlen)
951 len = tlen - off;
952 else
953 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
954 mhip6->ip6_plen = htons((u_short)(len + hlen +
955 sizeof(*ip6f) -
956 sizeof(struct ip6_hdr)));
957 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
958 error = ENOBUFS;
959 ip6stat.ip6s_odropped++;
960 goto sendorfree;
961 }
962 m_cat(m, m_frgpart);
963 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
964 m->m_pkthdr.rcvif = (struct ifnet *)0;
965 ip6f->ip6f_reserved = 0;
966 ip6f->ip6f_ident = id;
967 ip6f->ip6f_nxt = nextproto;
968 ip6stat.ip6s_ofragments++;
969 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
970 }
971
972 in6_ifstat_inc(ifp, ifs6_out_fragok);
973 }
974
975 /*
976 * Remove leading garbages.
977 */
978 sendorfree:
979 m = m0->m_nextpkt;
980 m0->m_nextpkt = 0;
981 m_freem(m0);
982 for (m0 = m; m; m = m0) {
983 m0 = m->m_nextpkt;
984 m->m_nextpkt = 0;
985 if (error == 0) {
986 #ifdef IFA_STATS
987 struct in6_ifaddr *ia6;
988 ip6 = mtod(m, struct ip6_hdr *);
989 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
990 if (ia6) {
991 ia6->ia_ifa.ifa_data.ifad_outbytes +=
992 m->m_pkthdr.len;
993 }
994 #endif
995 #ifdef OLDIP6OUTPUT
996 error = (*ifp->if_output)(ifp, m,
997 (struct sockaddr *)dst,
998 ro->ro_rt);
999 #else
1000 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1001 #endif
1002 } else
1003 m_freem(m);
1004 }
1005
1006 if (error == 0)
1007 ip6stat.ip6s_fragmented++;
1008
1009 done:
1010 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1011 RTFREE(ro->ro_rt);
1012 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1013 RTFREE(ro_pmtu->ro_rt);
1014 }
1015
1016 #ifdef IPSEC
1017 if (sp != NULL)
1018 key_freesp(sp);
1019 #endif /* IPSEC */
1020
1021 return(error);
1022
1023 freehdrs:
1024 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1025 m_freem(exthdrs.ip6e_dest1);
1026 m_freem(exthdrs.ip6e_rthdr);
1027 m_freem(exthdrs.ip6e_dest2);
1028 /* fall through */
1029 bad:
1030 m_freem(m);
1031 goto done;
1032 }
1033
1034 static int
1035 ip6_copyexthdr(mp, hdr, hlen)
1036 struct mbuf **mp;
1037 caddr_t hdr;
1038 int hlen;
1039 {
1040 struct mbuf *m;
1041
1042 if (hlen > MCLBYTES)
1043 return(ENOBUFS); /* XXX */
1044
1045 MGET(m, M_DONTWAIT, MT_DATA);
1046 if (!m)
1047 return(ENOBUFS);
1048
1049 if (hlen > MLEN) {
1050 MCLGET(m, M_DONTWAIT);
1051 if ((m->m_flags & M_EXT) == 0) {
1052 m_free(m);
1053 return(ENOBUFS);
1054 }
1055 }
1056 m->m_len = hlen;
1057 if (hdr)
1058 bcopy(hdr, mtod(m, caddr_t), hlen);
1059
1060 *mp = m;
1061 return(0);
1062 }
1063
1064 /*
1065 * Insert jumbo payload option.
1066 */
1067 static int
1068 ip6_insert_jumboopt(exthdrs, plen)
1069 struct ip6_exthdrs *exthdrs;
1070 u_int32_t plen;
1071 {
1072 struct mbuf *mopt;
1073 u_char *optbuf;
1074 u_int32_t v;
1075
1076 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1077
1078 /*
1079 * If there is no hop-by-hop options header, allocate new one.
1080 * If there is one but it doesn't have enough space to store the
1081 * jumbo payload option, allocate a cluster to store the whole options.
1082 * Otherwise, use it to store the options.
1083 */
1084 if (exthdrs->ip6e_hbh == 0) {
1085 MGET(mopt, M_DONTWAIT, MT_DATA);
1086 if (mopt == 0)
1087 return(ENOBUFS);
1088 mopt->m_len = JUMBOOPTLEN;
1089 optbuf = mtod(mopt, u_char *);
1090 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1091 exthdrs->ip6e_hbh = mopt;
1092 } else {
1093 struct ip6_hbh *hbh;
1094
1095 mopt = exthdrs->ip6e_hbh;
1096 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1097 /*
1098 * XXX assumption:
1099 * - exthdrs->ip6e_hbh is not referenced from places
1100 * other than exthdrs.
1101 * - exthdrs->ip6e_hbh is not an mbuf chain.
1102 */
1103 int oldoptlen = mopt->m_len;
1104 struct mbuf *n;
1105
1106 /*
1107 * XXX: give up if the whole (new) hbh header does
1108 * not fit even in an mbuf cluster.
1109 */
1110 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1111 return(ENOBUFS);
1112
1113 /*
1114 * As a consequence, we must always prepare a cluster
1115 * at this point.
1116 */
1117 MGET(n, M_DONTWAIT, MT_DATA);
1118 if (n) {
1119 MCLGET(n, M_DONTWAIT);
1120 if ((n->m_flags & M_EXT) == 0) {
1121 m_freem(n);
1122 n = NULL;
1123 }
1124 }
1125 if (!n)
1126 return(ENOBUFS);
1127 n->m_len = oldoptlen + JUMBOOPTLEN;
1128 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1129 oldoptlen);
1130 optbuf = mtod(n, caddr_t) + oldoptlen;
1131 m_freem(mopt);
1132 exthdrs->ip6e_hbh = n;
1133 } else {
1134 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1135 mopt->m_len += JUMBOOPTLEN;
1136 }
1137 optbuf[0] = IP6OPT_PADN;
1138 optbuf[1] = 1;
1139
1140 /*
1141 * Adjust the header length according to the pad and
1142 * the jumbo payload option.
1143 */
1144 hbh = mtod(mopt, struct ip6_hbh *);
1145 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1146 }
1147
1148 /* fill in the option. */
1149 optbuf[2] = IP6OPT_JUMBO;
1150 optbuf[3] = 4;
1151 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1152 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1153
1154 /* finally, adjust the packet header length */
1155 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1156
1157 return(0);
1158 #undef JUMBOOPTLEN
1159 }
1160
1161 /*
1162 * Insert fragment header and copy unfragmentable header portions.
1163 */
1164 static int
1165 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1166 struct mbuf *m0, *m;
1167 int hlen;
1168 struct ip6_frag **frghdrp;
1169 {
1170 struct mbuf *n, *mlast;
1171
1172 if (hlen > sizeof(struct ip6_hdr)) {
1173 n = m_copym(m0, sizeof(struct ip6_hdr),
1174 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1175 if (n == 0)
1176 return(ENOBUFS);
1177 m->m_next = n;
1178 } else
1179 n = m;
1180
1181 /* Search for the last mbuf of unfragmentable part. */
1182 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1183 ;
1184
1185 if ((mlast->m_flags & M_EXT) == 0 &&
1186 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1187 /* use the trailing space of the last mbuf for the fragment hdr */
1188 *frghdrp =
1189 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
1190 mlast->m_len += sizeof(struct ip6_frag);
1191 m->m_pkthdr.len += sizeof(struct ip6_frag);
1192 } else {
1193 /* allocate a new mbuf for the fragment header */
1194 struct mbuf *mfrg;
1195
1196 MGET(mfrg, M_DONTWAIT, MT_DATA);
1197 if (mfrg == 0)
1198 return(ENOBUFS);
1199 mfrg->m_len = sizeof(struct ip6_frag);
1200 *frghdrp = mtod(mfrg, struct ip6_frag *);
1201 mlast->m_next = mfrg;
1202 }
1203
1204 return(0);
1205 }
1206
1207 /*
1208 * IP6 socket option processing.
1209 */
1210 int
1211 ip6_ctloutput(op, so, level, optname, mp)
1212 int op;
1213 struct socket *so;
1214 int level, optname;
1215 struct mbuf **mp;
1216 {
1217 register struct in6pcb *in6p = sotoin6pcb(so);
1218 register struct mbuf *m = *mp;
1219 register int optval = 0;
1220 int error = 0;
1221 struct proc *p = curproc; /* XXX */
1222
1223 if (level == IPPROTO_IPV6) {
1224 switch (op) {
1225
1226 case PRCO_SETOPT:
1227 switch (optname) {
1228 case IPV6_PKTOPTIONS:
1229 /* m is freed in ip6_pcbopts */
1230 return(ip6_pcbopts(&in6p->in6p_outputopts,
1231 m, so));
1232 case IPV6_HOPOPTS:
1233 case IPV6_DSTOPTS:
1234 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1235 error = EPERM;
1236 break;
1237 }
1238 /* fall through */
1239 case IPV6_UNICAST_HOPS:
1240 case IPV6_RECVOPTS:
1241 case IPV6_RECVRETOPTS:
1242 case IPV6_RECVDSTADDR:
1243 case IPV6_PKTINFO:
1244 case IPV6_HOPLIMIT:
1245 case IPV6_RTHDR:
1246 case IPV6_CHECKSUM:
1247 case IPV6_FAITH:
1248 #ifndef INET6_BINDV6ONLY
1249 case IPV6_BINDV6ONLY:
1250 #endif
1251 if (!m || m->m_len != sizeof(int))
1252 error = EINVAL;
1253 else {
1254 optval = *mtod(m, int *);
1255 switch (optname) {
1256
1257 case IPV6_UNICAST_HOPS:
1258 if (optval < -1 || optval >= 256)
1259 error = EINVAL;
1260 else {
1261 /* -1 = kernel default */
1262 in6p->in6p_hops = optval;
1263 }
1264 break;
1265 #define OPTSET(bit) \
1266 if (optval) \
1267 in6p->in6p_flags |= bit; \
1268 else \
1269 in6p->in6p_flags &= ~bit;
1270
1271 case IPV6_RECVOPTS:
1272 OPTSET(IN6P_RECVOPTS);
1273 break;
1274
1275 case IPV6_RECVRETOPTS:
1276 OPTSET(IN6P_RECVRETOPTS);
1277 break;
1278
1279 case IPV6_RECVDSTADDR:
1280 OPTSET(IN6P_RECVDSTADDR);
1281 break;
1282
1283 case IPV6_PKTINFO:
1284 OPTSET(IN6P_PKTINFO);
1285 break;
1286
1287 case IPV6_HOPLIMIT:
1288 OPTSET(IN6P_HOPLIMIT);
1289 break;
1290
1291 case IPV6_HOPOPTS:
1292 OPTSET(IN6P_HOPOPTS);
1293 break;
1294
1295 case IPV6_DSTOPTS:
1296 OPTSET(IN6P_DSTOPTS);
1297 break;
1298
1299 case IPV6_RTHDR:
1300 OPTSET(IN6P_RTHDR);
1301 break;
1302
1303 case IPV6_CHECKSUM:
1304 in6p->in6p_cksum = optval;
1305 break;
1306
1307 case IPV6_FAITH:
1308 OPTSET(IN6P_FAITH);
1309 break;
1310
1311 #ifndef INET6_BINDV6ONLY
1312 case IPV6_BINDV6ONLY:
1313 OPTSET(IN6P_BINDV6ONLY);
1314 break;
1315 #endif
1316 }
1317 }
1318 break;
1319 #undef OPTSET
1320
1321 case IPV6_MULTICAST_IF:
1322 case IPV6_MULTICAST_HOPS:
1323 case IPV6_MULTICAST_LOOP:
1324 case IPV6_JOIN_GROUP:
1325 case IPV6_LEAVE_GROUP:
1326 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m);
1327 break;
1328
1329 case IPV6_PORTRANGE:
1330 optval = *mtod(m, int *);
1331
1332 switch (optval) {
1333 case IPV6_PORTRANGE_DEFAULT:
1334 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1335 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1336 break;
1337
1338 case IPV6_PORTRANGE_HIGH:
1339 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1340 in6p->in6p_flags |= IN6P_HIGHPORT;
1341 break;
1342
1343 case IPV6_PORTRANGE_LOW:
1344 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1345 in6p->in6p_flags |= IN6P_LOWPORT;
1346 break;
1347
1348 default:
1349 error = EINVAL;
1350 break;
1351 }
1352 break;
1353
1354 #ifdef IPSEC
1355 case IPV6_IPSEC_POLICY:
1356 {
1357 caddr_t req = NULL;
1358 size_t len = 0;
1359
1360 int priv = 0;
1361 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1362 priv = 0;
1363 else
1364 priv = 1;
1365 if (m) {
1366 req = mtod(m, caddr_t);
1367 len = m->m_len;
1368 }
1369 error = ipsec6_set_policy(in6p,
1370 optname, req, len, priv);
1371 }
1372 break;
1373 #endif /* IPSEC */
1374
1375 default:
1376 error = ENOPROTOOPT;
1377 break;
1378 }
1379 if (m)
1380 (void)m_free(m);
1381 break;
1382
1383 case PRCO_GETOPT:
1384 switch (optname) {
1385
1386 case IPV6_OPTIONS:
1387 case IPV6_RETOPTS:
1388 #if 0
1389 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1390 if (in6p->in6p_options) {
1391 m->m_len = in6p->in6p_options->m_len;
1392 bcopy(mtod(in6p->in6p_options, caddr_t),
1393 mtod(m, caddr_t),
1394 (unsigned)m->m_len);
1395 } else
1396 m->m_len = 0;
1397 break;
1398 #else
1399 error = ENOPROTOOPT;
1400 break;
1401 #endif
1402
1403 case IPV6_PKTOPTIONS:
1404 if (in6p->in6p_options) {
1405 *mp = m_copym(in6p->in6p_options, 0,
1406 M_COPYALL, M_WAIT);
1407 } else {
1408 *mp = m_get(M_WAIT, MT_SOOPTS);
1409 (*mp)->m_len = 0;
1410 }
1411 break;
1412
1413 case IPV6_HOPOPTS:
1414 case IPV6_DSTOPTS:
1415 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1416 error = EPERM;
1417 break;
1418 }
1419 /* fall through */
1420 case IPV6_UNICAST_HOPS:
1421 case IPV6_RECVOPTS:
1422 case IPV6_RECVRETOPTS:
1423 case IPV6_RECVDSTADDR:
1424 case IPV6_PORTRANGE:
1425 case IPV6_PKTINFO:
1426 case IPV6_HOPLIMIT:
1427 case IPV6_RTHDR:
1428 case IPV6_CHECKSUM:
1429 case IPV6_FAITH:
1430 #ifndef INET6_BINDV6ONLY
1431 case IPV6_BINDV6ONLY:
1432 #endif
1433 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1434 m->m_len = sizeof(int);
1435 switch (optname) {
1436
1437 case IPV6_UNICAST_HOPS:
1438 optval = in6p->in6p_hops;
1439 break;
1440
1441 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1442
1443 case IPV6_RECVOPTS:
1444 optval = OPTBIT(IN6P_RECVOPTS);
1445 break;
1446
1447 case IPV6_RECVRETOPTS:
1448 optval = OPTBIT(IN6P_RECVRETOPTS);
1449 break;
1450
1451 case IPV6_RECVDSTADDR:
1452 optval = OPTBIT(IN6P_RECVDSTADDR);
1453 break;
1454
1455 case IPV6_PORTRANGE:
1456 {
1457 int flags;
1458 flags = in6p->in6p_flags;
1459 if (flags & IN6P_HIGHPORT)
1460 optval = IPV6_PORTRANGE_HIGH;
1461 else if (flags & IN6P_LOWPORT)
1462 optval = IPV6_PORTRANGE_LOW;
1463 else
1464 optval = 0;
1465 break;
1466 }
1467
1468 case IPV6_PKTINFO:
1469 optval = OPTBIT(IN6P_PKTINFO);
1470 break;
1471
1472 case IPV6_HOPLIMIT:
1473 optval = OPTBIT(IN6P_HOPLIMIT);
1474 break;
1475
1476 case IPV6_HOPOPTS:
1477 optval = OPTBIT(IN6P_HOPOPTS);
1478 break;
1479
1480 case IPV6_DSTOPTS:
1481 optval = OPTBIT(IN6P_DSTOPTS);
1482 break;
1483
1484 case IPV6_RTHDR:
1485 optval = OPTBIT(IN6P_RTHDR);
1486 break;
1487
1488 case IPV6_CHECKSUM:
1489 optval = in6p->in6p_cksum;
1490 break;
1491
1492 case IPV6_FAITH:
1493 optval = OPTBIT(IN6P_FAITH);
1494 break;
1495
1496 #ifndef INET6_BINDV6ONLY
1497 case IPV6_BINDV6ONLY:
1498 optval = OPTBIT(IN6P_BINDV6ONLY);
1499 break;
1500 #endif
1501 }
1502 *mtod(m, int *) = optval;
1503 break;
1504
1505 case IPV6_MULTICAST_IF:
1506 case IPV6_MULTICAST_HOPS:
1507 case IPV6_MULTICAST_LOOP:
1508 case IPV6_JOIN_GROUP:
1509 case IPV6_LEAVE_GROUP:
1510 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1511 break;
1512
1513 #ifdef IPSEC
1514 case IPV6_IPSEC_POLICY:
1515 {
1516 caddr_t req = NULL;
1517 size_t len = 0;
1518
1519 if (m) {
1520 req = mtod(m, caddr_t);
1521 len = m->m_len;
1522 }
1523 error = ipsec6_get_policy(in6p, req, len, mp);
1524 break;
1525 }
1526 #endif /* IPSEC */
1527
1528 default:
1529 error = ENOPROTOOPT;
1530 break;
1531 }
1532 break;
1533 }
1534 } else {
1535 error = EINVAL;
1536 if (op == PRCO_SETOPT && *mp)
1537 (void)m_free(*mp);
1538 }
1539 return(error);
1540 }
1541
1542 /*
1543 * Set up IP6 options in pcb for insertion in output packets.
1544 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1545 * with destination address if source routed.
1546 */
1547 static int
1548 ip6_pcbopts(pktopt, m, so)
1549 struct ip6_pktopts **pktopt;
1550 register struct mbuf *m;
1551 struct socket *so;
1552 {
1553 register struct ip6_pktopts *opt = *pktopt;
1554 int error = 0;
1555 struct proc *p = curproc; /* XXX */
1556 int priv = 0;
1557
1558 /* turn off any old options. */
1559 if (opt) {
1560 if (opt->ip6po_m)
1561 (void)m_free(opt->ip6po_m);
1562 } else
1563 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1564 *pktopt = 0;
1565
1566 if (!m || m->m_len == 0) {
1567 /*
1568 * Only turning off any previous options.
1569 */
1570 if (opt)
1571 free(opt, M_IP6OPT);
1572 if (m)
1573 (void)m_free(m);
1574 return(0);
1575 }
1576
1577 /* set options specified by user. */
1578 if (p && !suser(p->p_ucred, &p->p_acflag))
1579 priv = 1;
1580 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1581 (void)m_free(m);
1582 return(error);
1583 }
1584 *pktopt = opt;
1585 return(0);
1586 }
1587
1588 /*
1589 * Set the IP6 multicast options in response to user setsockopt().
1590 */
1591 static int
1592 ip6_setmoptions(optname, im6op, m)
1593 int optname;
1594 struct ip6_moptions **im6op;
1595 struct mbuf *m;
1596 {
1597 int error = 0;
1598 u_int loop, ifindex;
1599 struct ipv6_mreq *mreq;
1600 struct ifnet *ifp;
1601 struct ip6_moptions *im6o = *im6op;
1602 struct route_in6 ro;
1603 struct sockaddr_in6 *dst;
1604 struct in6_multi_mship *imm;
1605 struct proc *p = curproc; /* XXX */
1606
1607 if (im6o == NULL) {
1608 /*
1609 * No multicast option buffer attached to the pcb;
1610 * allocate one and initialize to default values.
1611 */
1612 im6o = (struct ip6_moptions *)
1613 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1614
1615 if (im6o == NULL)
1616 return(ENOBUFS);
1617 *im6op = im6o;
1618 im6o->im6o_multicast_ifp = NULL;
1619 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1620 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1621 LIST_INIT(&im6o->im6o_memberships);
1622 }
1623
1624 switch (optname) {
1625
1626 case IPV6_MULTICAST_IF:
1627 /*
1628 * Select the interface for outgoing multicast packets.
1629 */
1630 if (m == NULL || m->m_len != sizeof(u_int)) {
1631 error = EINVAL;
1632 break;
1633 }
1634 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1635 if (ifindex < 0 || if_index < ifindex) {
1636 error = ENXIO; /* XXX EINVAL? */
1637 break;
1638 }
1639 ifp = ifindex2ifnet[ifindex];
1640 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1641 error = EADDRNOTAVAIL;
1642 break;
1643 }
1644 im6o->im6o_multicast_ifp = ifp;
1645 break;
1646
1647 case IPV6_MULTICAST_HOPS:
1648 {
1649 /*
1650 * Set the IP6 hoplimit for outgoing multicast packets.
1651 */
1652 int optval;
1653 if (m == NULL || m->m_len != sizeof(int)) {
1654 error = EINVAL;
1655 break;
1656 }
1657 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1658 if (optval < -1 || optval >= 256)
1659 error = EINVAL;
1660 else if (optval == -1)
1661 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1662 else
1663 im6o->im6o_multicast_hlim = optval;
1664 break;
1665 }
1666
1667 case IPV6_MULTICAST_LOOP:
1668 /*
1669 * Set the loopback flag for outgoing multicast packets.
1670 * Must be zero or one.
1671 */
1672 if (m == NULL || m->m_len != sizeof(u_int)) {
1673 error = EINVAL;
1674 break;
1675 }
1676 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1677 if (loop > 1) {
1678 error = EINVAL;
1679 break;
1680 }
1681 im6o->im6o_multicast_loop = loop;
1682 break;
1683
1684 case IPV6_JOIN_GROUP:
1685 /*
1686 * Add a multicast group membership.
1687 * Group must be a valid IP6 multicast address.
1688 */
1689 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1690 error = EINVAL;
1691 break;
1692 }
1693 mreq = mtod(m, struct ipv6_mreq *);
1694 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1695 /*
1696 * We use the unspecified address to specify to accept
1697 * all multicast addresses. Only super user is allowed
1698 * to do this.
1699 */
1700 if (suser(p->p_ucred, &p->p_acflag)) {
1701 error = EACCES;
1702 break;
1703 }
1704 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1705 error = EINVAL;
1706 break;
1707 }
1708
1709 /*
1710 * If the interface is specified, validate it.
1711 */
1712 if (mreq->ipv6mr_interface < 0
1713 || if_index < mreq->ipv6mr_interface) {
1714 error = ENXIO; /* XXX EINVAL? */
1715 break;
1716 }
1717 /*
1718 * If no interface was explicitly specified, choose an
1719 * appropriate one according to the given multicast address.
1720 */
1721 if (mreq->ipv6mr_interface == 0) {
1722 /*
1723 * If the multicast address is in node-local scope,
1724 * the interface should be a loopback interface.
1725 * Otherwise, look up the routing table for the
1726 * address, and choose the outgoing interface.
1727 * XXX: is it a good approach?
1728 */
1729 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1730 ifp = &loif[0];
1731 } else {
1732 ro.ro_rt = NULL;
1733 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1734 bzero(dst, sizeof(*dst));
1735 dst->sin6_len = sizeof(struct sockaddr_in6);
1736 dst->sin6_family = AF_INET6;
1737 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1738 rtalloc((struct route *)&ro);
1739 if (ro.ro_rt == NULL) {
1740 error = EADDRNOTAVAIL;
1741 break;
1742 }
1743 ifp = ro.ro_rt->rt_ifp;
1744 rtfree(ro.ro_rt);
1745 }
1746 } else
1747 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1748
1749 /*
1750 * See if we found an interface, and confirm that it
1751 * supports multicast
1752 */
1753 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1754 error = EADDRNOTAVAIL;
1755 break;
1756 }
1757 /*
1758 * Put interface index into the multicast address,
1759 * if the address has link-local scope.
1760 */
1761 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1762 mreq->ipv6mr_multiaddr.s6_addr16[1]
1763 = htons(mreq->ipv6mr_interface);
1764 }
1765 /*
1766 * See if the membership already exists.
1767 */
1768 for (imm = im6o->im6o_memberships.lh_first;
1769 imm != NULL; imm = imm->i6mm_chain.le_next)
1770 if (imm->i6mm_maddr->in6m_ifp == ifp &&
1771 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1772 &mreq->ipv6mr_multiaddr))
1773 break;
1774 if (imm != NULL) {
1775 error = EADDRINUSE;
1776 break;
1777 }
1778 /*
1779 * Everything looks good; add a new record to the multicast
1780 * address list for the given interface.
1781 */
1782 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
1783 if (imm == NULL) {
1784 error = ENOBUFS;
1785 break;
1786 }
1787 if ((imm->i6mm_maddr =
1788 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
1789 free(imm, M_IPMADDR);
1790 break;
1791 }
1792 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
1793 break;
1794
1795 case IPV6_LEAVE_GROUP:
1796 /*
1797 * Drop a multicast group membership.
1798 * Group must be a valid IP6 multicast address.
1799 */
1800 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1801 error = EINVAL;
1802 break;
1803 }
1804 mreq = mtod(m, struct ipv6_mreq *);
1805 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1806 if (suser(p->p_ucred, &p->p_acflag)) {
1807 error = EACCES;
1808 break;
1809 }
1810 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1811 error = EINVAL;
1812 break;
1813 }
1814 /*
1815 * If an interface address was specified, get a pointer
1816 * to its ifnet structure.
1817 */
1818 if (mreq->ipv6mr_interface < 0
1819 || if_index < mreq->ipv6mr_interface) {
1820 error = ENXIO; /* XXX EINVAL? */
1821 break;
1822 }
1823 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1824 /*
1825 * Put interface index into the multicast address,
1826 * if the address has link-local scope.
1827 */
1828 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1829 mreq->ipv6mr_multiaddr.s6_addr16[1]
1830 = htons(mreq->ipv6mr_interface);
1831 }
1832 /*
1833 * Find the membership in the membership list.
1834 */
1835 for (imm = im6o->im6o_memberships.lh_first;
1836 imm != NULL; imm = imm->i6mm_chain.le_next) {
1837 if ((ifp == NULL ||
1838 imm->i6mm_maddr->in6m_ifp == ifp) &&
1839 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1840 &mreq->ipv6mr_multiaddr))
1841 break;
1842 }
1843 if (imm == NULL) {
1844 /* Unable to resolve interface */
1845 error = EADDRNOTAVAIL;
1846 break;
1847 }
1848 /*
1849 * Give up the multicast address record to which the
1850 * membership points.
1851 */
1852 LIST_REMOVE(imm, i6mm_chain);
1853 in6_delmulti(imm->i6mm_maddr);
1854 free(imm, M_IPMADDR);
1855 break;
1856
1857 default:
1858 error = EOPNOTSUPP;
1859 break;
1860 }
1861
1862 /*
1863 * If all options have default values, no need to keep the mbuf.
1864 */
1865 if (im6o->im6o_multicast_ifp == NULL &&
1866 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
1867 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
1868 im6o->im6o_memberships.lh_first == NULL) {
1869 free(*im6op, M_IPMOPTS);
1870 *im6op = NULL;
1871 }
1872
1873 return(error);
1874 }
1875
1876 /*
1877 * Return the IP6 multicast options in response to user getsockopt().
1878 */
1879 static int
1880 ip6_getmoptions(optname, im6o, mp)
1881 int optname;
1882 register struct ip6_moptions *im6o;
1883 register struct mbuf **mp;
1884 {
1885 u_int *hlim, *loop, *ifindex;
1886
1887 *mp = m_get(M_WAIT, MT_SOOPTS);
1888
1889 switch (optname) {
1890
1891 case IPV6_MULTICAST_IF:
1892 ifindex = mtod(*mp, u_int *);
1893 (*mp)->m_len = sizeof(u_int);
1894 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
1895 *ifindex = 0;
1896 else
1897 *ifindex = im6o->im6o_multicast_ifp->if_index;
1898 return(0);
1899
1900 case IPV6_MULTICAST_HOPS:
1901 hlim = mtod(*mp, u_int *);
1902 (*mp)->m_len = sizeof(u_int);
1903 if (im6o == NULL)
1904 *hlim = ip6_defmcasthlim;
1905 else
1906 *hlim = im6o->im6o_multicast_hlim;
1907 return(0);
1908
1909 case IPV6_MULTICAST_LOOP:
1910 loop = mtod(*mp, u_int *);
1911 (*mp)->m_len = sizeof(u_int);
1912 if (im6o == NULL)
1913 *loop = ip6_defmcasthlim;
1914 else
1915 *loop = im6o->im6o_multicast_loop;
1916 return(0);
1917
1918 default:
1919 return(EOPNOTSUPP);
1920 }
1921 }
1922
1923 /*
1924 * Discard the IP6 multicast options.
1925 */
1926 void
1927 ip6_freemoptions(im6o)
1928 register struct ip6_moptions *im6o;
1929 {
1930 struct in6_multi_mship *imm;
1931
1932 if (im6o == NULL)
1933 return;
1934
1935 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
1936 LIST_REMOVE(imm, i6mm_chain);
1937 if (imm->i6mm_maddr)
1938 in6_delmulti(imm->i6mm_maddr);
1939 free(imm, M_IPMADDR);
1940 }
1941 free(im6o, M_IPMOPTS);
1942 }
1943
1944 /*
1945 * Set IPv6 outgoing packet options based on advanced API.
1946 */
1947 int
1948 ip6_setpktoptions(control, opt, priv)
1949 struct mbuf *control;
1950 struct ip6_pktopts *opt;
1951 int priv;
1952 {
1953 register struct cmsghdr *cm = 0;
1954
1955 if (control == 0 || opt == 0)
1956 return(EINVAL);
1957
1958 bzero(opt, sizeof(*opt));
1959 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
1960
1961 /*
1962 * XXX: Currently, we assume all the optional information is stored
1963 * in a single mbuf.
1964 */
1965 if (control->m_next)
1966 return(EINVAL);
1967
1968 opt->ip6po_m = control;
1969
1970 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
1971 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1972 cm = mtod(control, struct cmsghdr *);
1973 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
1974 return(EINVAL);
1975 if (cm->cmsg_level != IPPROTO_IPV6)
1976 continue;
1977
1978 switch(cm->cmsg_type) {
1979 case IPV6_PKTINFO:
1980 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
1981 return(EINVAL);
1982 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
1983 if (opt->ip6po_pktinfo->ipi6_ifindex &&
1984 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
1985 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
1986 htons(opt->ip6po_pktinfo->ipi6_ifindex);
1987
1988 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index
1989 || opt->ip6po_pktinfo->ipi6_ifindex < 0) {
1990 return(ENXIO);
1991 }
1992
1993 /*
1994 * Check if the requested source address is indeed a
1995 * unicast address assigned to the node.
1996 */
1997 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
1998 struct ifaddr *ia;
1999 struct sockaddr_in6 sin6;
2000
2001 bzero(&sin6, sizeof(sin6));
2002 sin6.sin6_len = sizeof(sin6);
2003 sin6.sin6_family = AF_INET6;
2004 sin6.sin6_addr =
2005 opt->ip6po_pktinfo->ipi6_addr;
2006 ia = ifa_ifwithaddr(sin6tosa(&sin6));
2007 if (ia == NULL ||
2008 (opt->ip6po_pktinfo->ipi6_ifindex &&
2009 (ia->ifa_ifp->if_index !=
2010 opt->ip6po_pktinfo->ipi6_ifindex))) {
2011 return(EADDRNOTAVAIL);
2012 }
2013 /*
2014 * Check if the requested source address is
2015 * indeed a unicast address assigned to the
2016 * node.
2017 */
2018 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
2019 return(EADDRNOTAVAIL);
2020 }
2021 break;
2022
2023 case IPV6_HOPLIMIT:
2024 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2025 return(EINVAL);
2026
2027 bcopy(CMSG_DATA(cm), &opt->ip6po_hlim,
2028 sizeof(opt->ip6po_hlim));
2029 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255)
2030 return(EINVAL);
2031 break;
2032
2033 case IPV6_NEXTHOP:
2034 if (!priv)
2035 return(EPERM);
2036
2037 if (cm->cmsg_len < sizeof(u_char) ||
2038 /* check if cmsg_len is large enough for sa_len */
2039 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2040 return(EINVAL);
2041
2042 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2043
2044 break;
2045
2046 case IPV6_HOPOPTS:
2047 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2048 return(EINVAL);
2049 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm);
2050 if (cm->cmsg_len !=
2051 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3))
2052 return(EINVAL);
2053 break;
2054
2055 case IPV6_DSTOPTS:
2056 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2057 return(EINVAL);
2058
2059 /*
2060 * If there is no routing header yet, the destination
2061 * options header should be put on the 1st part.
2062 * Otherwise, the header should be on the 2nd part.
2063 * (See RFC 2460, section 4.1)
2064 */
2065 if (opt->ip6po_rthdr == NULL) {
2066 opt->ip6po_dest1 =
2067 (struct ip6_dest *)CMSG_DATA(cm);
2068 if (cm->cmsg_len !=
2069 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1)
2070 << 3))
2071 return(EINVAL);
2072 }
2073 else {
2074 opt->ip6po_dest2 =
2075 (struct ip6_dest *)CMSG_DATA(cm);
2076 if (cm->cmsg_len !=
2077 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1)
2078 << 3))
2079 return(EINVAL);
2080 }
2081 break;
2082
2083 case IPV6_RTHDR:
2084 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2085 return(EINVAL);
2086 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm);
2087 if (cm->cmsg_len !=
2088 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3))
2089 return(EINVAL);
2090 switch(opt->ip6po_rthdr->ip6r_type) {
2091 case IPV6_RTHDR_TYPE_0:
2092 if (opt->ip6po_rthdr->ip6r_segleft == 0)
2093 return(EINVAL);
2094 break;
2095 default:
2096 return(EINVAL);
2097 }
2098 break;
2099
2100 default:
2101 return(ENOPROTOOPT);
2102 }
2103 }
2104
2105 return(0);
2106 }
2107
2108 /*
2109 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2110 * packet to the input queue of a specified interface. Note that this
2111 * calls the output routine of the loopback "driver", but with an interface
2112 * pointer that might NOT be &loif -- easier than replicating that code here.
2113 */
2114 void
2115 ip6_mloopback(ifp, m, dst)
2116 struct ifnet *ifp;
2117 register struct mbuf *m;
2118 register struct sockaddr_in6 *dst;
2119 {
2120 struct mbuf *copym;
2121 struct ip6_hdr *ip6;
2122
2123 copym = m_copy(m, 0, M_COPYALL);
2124 if (copym == NULL)
2125 return;
2126
2127 /*
2128 * Make sure to deep-copy IPv6 header portion in case the data
2129 * is in an mbuf cluster, so that we can safely override the IPv6
2130 * header portion later.
2131 */
2132 if ((copym->m_flags & M_EXT) != 0 ||
2133 copym->m_len < sizeof(struct ip6_hdr)) {
2134 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2135 if (copym == NULL)
2136 return;
2137 }
2138
2139 #ifdef DIAGNOSTIC
2140 if (copym->m_len < sizeof(*ip6)) {
2141 m_freem(copym);
2142 return;
2143 }
2144 #endif
2145
2146 #ifndef FAKE_LOOPBACK_IF
2147 if ((ifp->if_flags & IFF_LOOPBACK) == 0)
2148 #else
2149 if (1)
2150 #endif
2151 {
2152 ip6 = mtod(copym, struct ip6_hdr *);
2153 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
2154 ip6->ip6_src.s6_addr16[1] = 0;
2155 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
2156 ip6->ip6_dst.s6_addr16[1] = 0;
2157 }
2158
2159 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2160 }
2161
2162 /*
2163 * Chop IPv6 header off from the payload.
2164 */
2165 static int
2166 ip6_splithdr(m, exthdrs)
2167 struct mbuf *m;
2168 struct ip6_exthdrs *exthdrs;
2169 {
2170 struct mbuf *mh;
2171 struct ip6_hdr *ip6;
2172
2173 ip6 = mtod(m, struct ip6_hdr *);
2174 if (m->m_len > sizeof(*ip6)) {
2175 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2176 if (mh == 0) {
2177 m_freem(m);
2178 return ENOBUFS;
2179 }
2180 M_COPY_PKTHDR(mh, m);
2181 MH_ALIGN(mh, sizeof(*ip6));
2182 m->m_flags &= ~M_PKTHDR;
2183 m->m_len -= sizeof(*ip6);
2184 m->m_data += sizeof(*ip6);
2185 mh->m_next = m;
2186 m = mh;
2187 m->m_len = sizeof(*ip6);
2188 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2189 }
2190 exthdrs->ip6e_ip6 = m;
2191 return 0;
2192 }
2193
2194 /*
2195 * Compute IPv6 extension header length.
2196 */
2197 int
2198 ip6_optlen(in6p)
2199 struct in6pcb *in6p;
2200 {
2201 int len;
2202
2203 if (!in6p->in6p_outputopts)
2204 return 0;
2205
2206 len = 0;
2207 #define elen(x) \
2208 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2209
2210 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2211 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2212 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2213 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2214 return len;
2215 #undef elen
2216 }
2217