ip6_output.c revision 1.8.2.3 1 /* $NetBSD: ip6_output.c,v 1.8.2.3 2001/02/11 19:17:26 bouyer Exp $ */
2 /* $KAME: ip6_output.c,v 1.152 2001/02/02 15:36:33 jinmei Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. All advertising materials mentioning features or use of this software
46 * must display the following acknowledgement:
47 * This product includes software developed by the University of
48 * California, Berkeley and its contributors.
49 * 4. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
66 */
67
68 #include "opt_inet.h"
69 #include "opt_ipsec.h"
70 #include "opt_pfil_hooks.h"
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/errno.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81
82 #include <net/if.h>
83 #include <net/route.h>
84 #ifdef PFIL_HOOKS
85 #include <net/pfil.h>
86 #endif
87
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip6.h>
91 #include <netinet/icmp6.h>
92 #include <netinet6/ip6_var.h>
93 #include <netinet6/in6_pcb.h>
94 #include <netinet6/nd6.h>
95
96 #ifdef IPSEC
97 #include <netinet6/ipsec.h>
98 #include <netkey/key.h>
99 #endif /* IPSEC */
100
101 #include "loop.h"
102
103 #include <net/net_osdep.h>
104
105 #ifdef IPV6FIREWALL
106 #include <netinet6/ip6_fw.h>
107 #endif
108
109 #ifdef PFIL_HOOKS
110 extern struct pfil_head inet6_pfil_hook; /* XXX */
111 #endif
112
113 struct ip6_exthdrs {
114 struct mbuf *ip6e_ip6;
115 struct mbuf *ip6e_hbh;
116 struct mbuf *ip6e_dest1;
117 struct mbuf *ip6e_rthdr;
118 struct mbuf *ip6e_dest2;
119 };
120
121 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
122 struct socket *));
123 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
124 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
125 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
126 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
127 struct ip6_frag **));
128 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
129 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
130
131 extern struct ifnet loif[NLOOP];
132
133 /*
134 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
135 * header (with pri, len, nxt, hlim, src, dst).
136 * This function may modify ver and hlim only.
137 * The mbuf chain containing the packet will be freed.
138 * The mbuf opt, if present, will not be freed.
139 */
140 int
141 ip6_output(m0, opt, ro, flags, im6o, ifpp)
142 struct mbuf *m0;
143 struct ip6_pktopts *opt;
144 struct route_in6 *ro;
145 int flags;
146 struct ip6_moptions *im6o;
147 struct ifnet **ifpp; /* XXX: just for statistics */
148 {
149 struct ip6_hdr *ip6, *mhip6;
150 struct ifnet *ifp, *origifp;
151 struct mbuf *m = m0;
152 int hlen, tlen, len, off;
153 struct route_in6 ip6route;
154 struct sockaddr_in6 *dst;
155 int error = 0;
156 struct in6_ifaddr *ia;
157 u_long mtu;
158 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
159 struct ip6_exthdrs exthdrs;
160 struct in6_addr finaldst;
161 struct route_in6 *ro_pmtu = NULL;
162 int hdrsplit = 0;
163 int needipsec = 0;
164 #ifdef IPSEC
165 int needipsectun = 0;
166 struct socket *so;
167 struct secpolicy *sp = NULL;
168
169 /* for AH processing. stupid to have "socket" variable in IP layer... */
170 so = ipsec_getsocket(m);
171 (void)ipsec_setsocket(m, NULL);
172 ip6 = mtod(m, struct ip6_hdr *);
173 #endif /* IPSEC */
174
175 #define MAKE_EXTHDR(hp, mp) \
176 do { \
177 if (hp) { \
178 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
179 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
180 ((eh)->ip6e_len + 1) << 3); \
181 if (error) \
182 goto freehdrs; \
183 } \
184 } while (0)
185
186 bzero(&exthdrs, sizeof(exthdrs));
187 if (opt) {
188 /* Hop-by-Hop options header */
189 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
190 /* Destination options header(1st part) */
191 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
192 /* Routing header */
193 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
194 /* Destination options header(2nd part) */
195 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
196 }
197
198 #ifdef IPSEC
199 /* get a security policy for this packet */
200 if (so == NULL)
201 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
202 else
203 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
204
205 if (sp == NULL) {
206 ipsec6stat.out_inval++;
207 goto freehdrs;
208 }
209
210 error = 0;
211
212 /* check policy */
213 switch (sp->policy) {
214 case IPSEC_POLICY_DISCARD:
215 /*
216 * This packet is just discarded.
217 */
218 ipsec6stat.out_polvio++;
219 goto freehdrs;
220
221 case IPSEC_POLICY_BYPASS:
222 case IPSEC_POLICY_NONE:
223 /* no need to do IPsec. */
224 needipsec = 0;
225 break;
226
227 case IPSEC_POLICY_IPSEC:
228 if (sp->req == NULL) {
229 /* XXX should be panic ? */
230 printf("ip6_output: No IPsec request specified.\n");
231 error = EINVAL;
232 goto freehdrs;
233 }
234 needipsec = 1;
235 break;
236
237 case IPSEC_POLICY_ENTRUST:
238 default:
239 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
240 }
241 #endif /* IPSEC */
242
243 /*
244 * Calculate the total length of the extension header chain.
245 * Keep the length of the unfragmentable part for fragmentation.
246 */
247 optlen = 0;
248 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
249 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
250 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
251 unfragpartlen = optlen + sizeof(struct ip6_hdr);
252 /* NOTE: we don't add AH/ESP length here. do that later. */
253 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
254
255 /*
256 * If we need IPsec, or there is at least one extension header,
257 * separate IP6 header from the payload.
258 */
259 if ((needipsec || optlen) && !hdrsplit) {
260 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
261 m = NULL;
262 goto freehdrs;
263 }
264 m = exthdrs.ip6e_ip6;
265 hdrsplit++;
266 }
267
268 /* adjust pointer */
269 ip6 = mtod(m, struct ip6_hdr *);
270
271 /* adjust mbuf packet header length */
272 m->m_pkthdr.len += optlen;
273 plen = m->m_pkthdr.len - sizeof(*ip6);
274
275 /* If this is a jumbo payload, insert a jumbo payload option. */
276 if (plen > IPV6_MAXPACKET) {
277 if (!hdrsplit) {
278 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
279 m = NULL;
280 goto freehdrs;
281 }
282 m = exthdrs.ip6e_ip6;
283 hdrsplit++;
284 }
285 /* adjust pointer */
286 ip6 = mtod(m, struct ip6_hdr *);
287 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
288 goto freehdrs;
289 ip6->ip6_plen = 0;
290 } else
291 ip6->ip6_plen = htons(plen);
292
293 /*
294 * Concatenate headers and fill in next header fields.
295 * Here we have, on "m"
296 * IPv6 payload
297 * and we insert headers accordingly. Finally, we should be getting:
298 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
299 *
300 * during the header composing process, "m" points to IPv6 header.
301 * "mprev" points to an extension header prior to esp.
302 */
303 {
304 u_char *nexthdrp = &ip6->ip6_nxt;
305 struct mbuf *mprev = m;
306
307 /*
308 * we treat dest2 specially. this makes IPsec processing
309 * much easier.
310 *
311 * result: IPv6 dest2 payload
312 * m and mprev will point to IPv6 header.
313 */
314 if (exthdrs.ip6e_dest2) {
315 if (!hdrsplit)
316 panic("assumption failed: hdr not split");
317 exthdrs.ip6e_dest2->m_next = m->m_next;
318 m->m_next = exthdrs.ip6e_dest2;
319 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
320 ip6->ip6_nxt = IPPROTO_DSTOPTS;
321 }
322
323 #define MAKE_CHAIN(m, mp, p, i)\
324 do {\
325 if (m) {\
326 if (!hdrsplit) \
327 panic("assumption failed: hdr not split"); \
328 *mtod((m), u_char *) = *(p);\
329 *(p) = (i);\
330 p = mtod((m), u_char *);\
331 (m)->m_next = (mp)->m_next;\
332 (mp)->m_next = (m);\
333 (mp) = (m);\
334 }\
335 } while (0)
336 /*
337 * result: IPv6 hbh dest1 rthdr dest2 payload
338 * m will point to IPv6 header. mprev will point to the
339 * extension header prior to dest2 (rthdr in the above case).
340 */
341 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev,
342 nexthdrp, IPPROTO_HOPOPTS);
343 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev,
344 nexthdrp, IPPROTO_DSTOPTS);
345 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev,
346 nexthdrp, IPPROTO_ROUTING);
347
348 #ifdef IPSEC
349 if (!needipsec)
350 goto skip_ipsec2;
351
352 /*
353 * pointers after IPsec headers are not valid any more.
354 * other pointers need a great care too.
355 * (IPsec routines should not mangle mbufs prior to AH/ESP)
356 */
357 exthdrs.ip6e_dest2 = NULL;
358
359 {
360 struct ip6_rthdr *rh = NULL;
361 int segleft_org = 0;
362 struct ipsec_output_state state;
363
364 if (exthdrs.ip6e_rthdr) {
365 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
366 segleft_org = rh->ip6r_segleft;
367 rh->ip6r_segleft = 0;
368 }
369
370 bzero(&state, sizeof(state));
371 state.m = m;
372 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
373 &needipsectun);
374 m = state.m;
375 if (error) {
376 /* mbuf is already reclaimed in ipsec6_output_trans. */
377 m = NULL;
378 switch (error) {
379 case EHOSTUNREACH:
380 case ENETUNREACH:
381 case EMSGSIZE:
382 case ENOBUFS:
383 case ENOMEM:
384 break;
385 default:
386 printf("ip6_output (ipsec): error code %d\n", error);
387 /*fall through*/
388 case ENOENT:
389 /* don't show these error codes to the user */
390 error = 0;
391 break;
392 }
393 goto bad;
394 }
395 if (exthdrs.ip6e_rthdr) {
396 /* ah6_output doesn't modify mbuf chain */
397 rh->ip6r_segleft = segleft_org;
398 }
399 }
400 skip_ipsec2:;
401 #endif
402 }
403
404 /*
405 * If there is a routing header, replace destination address field
406 * with the first hop of the routing header.
407 */
408 if (exthdrs.ip6e_rthdr) {
409 struct ip6_rthdr *rh =
410 (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
411 struct ip6_rthdr *));
412 struct ip6_rthdr0 *rh0;
413
414 finaldst = ip6->ip6_dst;
415 switch (rh->ip6r_type) {
416 case IPV6_RTHDR_TYPE_0:
417 rh0 = (struct ip6_rthdr0 *)rh;
418 ip6->ip6_dst = rh0->ip6r0_addr[0];
419 bcopy((caddr_t)&rh0->ip6r0_addr[1],
420 (caddr_t)&rh0->ip6r0_addr[0],
421 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1)
422 );
423 rh0->ip6r0_addr[rh0->ip6r0_segleft - 1] = finaldst;
424 break;
425 default: /* is it possible? */
426 error = EINVAL;
427 goto bad;
428 }
429 }
430
431 /* Source address validation */
432 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
433 (flags & IPV6_DADOUTPUT) == 0) {
434 error = EOPNOTSUPP;
435 ip6stat.ip6s_badscope++;
436 goto bad;
437 }
438 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
439 error = EOPNOTSUPP;
440 ip6stat.ip6s_badscope++;
441 goto bad;
442 }
443
444 ip6stat.ip6s_localout++;
445
446 /*
447 * Route packet.
448 */
449 if (ro == 0) {
450 ro = &ip6route;
451 bzero((caddr_t)ro, sizeof(*ro));
452 }
453 ro_pmtu = ro;
454 if (opt && opt->ip6po_rthdr)
455 ro = &opt->ip6po_route;
456 dst = (struct sockaddr_in6 *)&ro->ro_dst;
457 /*
458 * If there is a cached route,
459 * check that it is to the same destination
460 * and is still up. If not, free it and try again.
461 */
462 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
463 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
464 RTFREE(ro->ro_rt);
465 ro->ro_rt = (struct rtentry *)0;
466 }
467 if (ro->ro_rt == 0) {
468 bzero(dst, sizeof(*dst));
469 dst->sin6_family = AF_INET6;
470 dst->sin6_len = sizeof(struct sockaddr_in6);
471 dst->sin6_addr = ip6->ip6_dst;
472 }
473 #ifdef IPSEC
474 if (needipsec && needipsectun) {
475 struct ipsec_output_state state;
476
477 /*
478 * All the extension headers will become inaccessible
479 * (since they can be encrypted).
480 * Don't panic, we need no more updates to extension headers
481 * on inner IPv6 packet (since they are now encapsulated).
482 *
483 * IPv6 [ESP|AH] IPv6 [extension headers] payload
484 */
485 bzero(&exthdrs, sizeof(exthdrs));
486 exthdrs.ip6e_ip6 = m;
487
488 bzero(&state, sizeof(state));
489 state.m = m;
490 state.ro = (struct route *)ro;
491 state.dst = (struct sockaddr *)dst;
492
493 error = ipsec6_output_tunnel(&state, sp, flags);
494
495 m = state.m;
496 ro = (struct route_in6 *)state.ro;
497 dst = (struct sockaddr_in6 *)state.dst;
498 if (error) {
499 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
500 m0 = m = NULL;
501 m = NULL;
502 switch (error) {
503 case EHOSTUNREACH:
504 case ENETUNREACH:
505 case EMSGSIZE:
506 case ENOBUFS:
507 case ENOMEM:
508 break;
509 default:
510 printf("ip6_output (ipsec): error code %d\n", error);
511 /*fall through*/
512 case ENOENT:
513 /* don't show these error codes to the user */
514 error = 0;
515 break;
516 }
517 goto bad;
518 }
519
520 exthdrs.ip6e_ip6 = m;
521 }
522 #endif /*IPSEC*/
523
524 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
525 /* Unicast */
526
527 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
528 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
529 /* xxx
530 * interface selection comes here
531 * if an interface is specified from an upper layer,
532 * ifp must point it.
533 */
534 if (ro->ro_rt == 0) {
535 /*
536 * non-bsdi always clone routes, if parent is
537 * PRF_CLONING.
538 */
539 rtalloc((struct route *)ro);
540 }
541 if (ro->ro_rt == 0) {
542 ip6stat.ip6s_noroute++;
543 error = EHOSTUNREACH;
544 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
545 goto bad;
546 }
547 ia = ifatoia6(ro->ro_rt->rt_ifa);
548 ifp = ro->ro_rt->rt_ifp;
549 ro->ro_rt->rt_use++;
550 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
551 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
552 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
553
554 in6_ifstat_inc(ifp, ifs6_out_request);
555
556 /*
557 * Check if the outgoing interface conflicts with
558 * the interface specified by ifi6_ifindex (if specified).
559 * Note that loopback interface is always okay.
560 * (this may happen when we are sending a packet to one of
561 * our own addresses.)
562 */
563 if (opt && opt->ip6po_pktinfo
564 && opt->ip6po_pktinfo->ipi6_ifindex) {
565 if (!(ifp->if_flags & IFF_LOOPBACK)
566 && ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
567 ip6stat.ip6s_noroute++;
568 in6_ifstat_inc(ifp, ifs6_out_discard);
569 error = EHOSTUNREACH;
570 goto bad;
571 }
572 }
573
574 if (opt && opt->ip6po_hlim != -1)
575 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
576 } else {
577 /* Multicast */
578 struct in6_multi *in6m;
579
580 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
581
582 /*
583 * See if the caller provided any multicast options
584 */
585 ifp = NULL;
586 if (im6o != NULL) {
587 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
588 if (im6o->im6o_multicast_ifp != NULL)
589 ifp = im6o->im6o_multicast_ifp;
590 } else
591 ip6->ip6_hlim = ip6_defmcasthlim;
592
593 /*
594 * See if the caller provided the outgoing interface
595 * as an ancillary data.
596 * Boundary check for ifindex is assumed to be already done.
597 */
598 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
599 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
600
601 /*
602 * If the destination is a node-local scope multicast,
603 * the packet should be loop-backed only.
604 */
605 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
606 /*
607 * If the outgoing interface is already specified,
608 * it should be a loopback interface.
609 */
610 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
611 ip6stat.ip6s_badscope++;
612 error = ENETUNREACH; /* XXX: better error? */
613 /* XXX correct ifp? */
614 in6_ifstat_inc(ifp, ifs6_out_discard);
615 goto bad;
616 } else {
617 ifp = &loif[0];
618 }
619 }
620
621 if (opt && opt->ip6po_hlim != -1)
622 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
623
624 /*
625 * If caller did not provide an interface lookup a
626 * default in the routing table. This is either a
627 * default for the speicfied group (i.e. a host
628 * route), or a multicast default (a route for the
629 * ``net'' ff00::/8).
630 */
631 if (ifp == NULL) {
632 if (ro->ro_rt == 0) {
633 ro->ro_rt = rtalloc1((struct sockaddr *)
634 &ro->ro_dst, 0
635 );
636 }
637 if (ro->ro_rt == 0) {
638 ip6stat.ip6s_noroute++;
639 error = EHOSTUNREACH;
640 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
641 goto bad;
642 }
643 ia = ifatoia6(ro->ro_rt->rt_ifa);
644 ifp = ro->ro_rt->rt_ifp;
645 ro->ro_rt->rt_use++;
646 }
647
648 if ((flags & IPV6_FORWARDING) == 0)
649 in6_ifstat_inc(ifp, ifs6_out_request);
650 in6_ifstat_inc(ifp, ifs6_out_mcast);
651
652 /*
653 * Confirm that the outgoing interface supports multicast.
654 */
655 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
656 ip6stat.ip6s_noroute++;
657 in6_ifstat_inc(ifp, ifs6_out_discard);
658 error = ENETUNREACH;
659 goto bad;
660 }
661 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
662 if (in6m != NULL &&
663 (im6o == NULL || im6o->im6o_multicast_loop)) {
664 /*
665 * If we belong to the destination multicast group
666 * on the outgoing interface, and the caller did not
667 * forbid loopback, loop back a copy.
668 */
669 ip6_mloopback(ifp, m, dst);
670 } else {
671 /*
672 * If we are acting as a multicast router, perform
673 * multicast forwarding as if the packet had just
674 * arrived on the interface to which we are about
675 * to send. The multicast forwarding function
676 * recursively calls this function, using the
677 * IPV6_FORWARDING flag to prevent infinite recursion.
678 *
679 * Multicasts that are looped back by ip6_mloopback(),
680 * above, will be forwarded by the ip6_input() routine,
681 * if necessary.
682 */
683 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
684 if (ip6_mforward(ip6, ifp, m) != 0) {
685 m_freem(m);
686 goto done;
687 }
688 }
689 }
690 /*
691 * Multicasts with a hoplimit of zero may be looped back,
692 * above, but must not be transmitted on a network.
693 * Also, multicasts addressed to the loopback interface
694 * are not sent -- the above call to ip6_mloopback() will
695 * loop back a copy if this host actually belongs to the
696 * destination group on the loopback interface.
697 */
698 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
699 m_freem(m);
700 goto done;
701 }
702 }
703
704 /*
705 * Fill the outgoing inteface to tell the upper layer
706 * to increment per-interface statistics.
707 */
708 if (ifpp)
709 *ifpp = ifp;
710
711 /*
712 * Determine path MTU.
713 */
714 if (ro_pmtu != ro) {
715 /* The first hop and the final destination may differ. */
716 struct sockaddr_in6 *sin6_fin =
717 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
718 if (ro_pmtu->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
719 !IN6_ARE_ADDR_EQUAL(&sin6_fin->sin6_addr,
720 &finaldst))) {
721 RTFREE(ro_pmtu->ro_rt);
722 ro_pmtu->ro_rt = (struct rtentry *)0;
723 }
724 if (ro_pmtu->ro_rt == 0) {
725 bzero(sin6_fin, sizeof(*sin6_fin));
726 sin6_fin->sin6_family = AF_INET6;
727 sin6_fin->sin6_len = sizeof(struct sockaddr_in6);
728 sin6_fin->sin6_addr = finaldst;
729
730 rtalloc((struct route *)ro_pmtu);
731 }
732 }
733 if (ro_pmtu->ro_rt != NULL) {
734 u_int32_t ifmtu = nd_ifinfo[ifp->if_index].linkmtu;
735
736 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
737 if (mtu > ifmtu) {
738 /*
739 * The MTU on the route is larger than the MTU on
740 * the interface! This shouldn't happen, unless the
741 * MTU of the interface has been changed after the
742 * interface was brought up. Change the MTU in the
743 * route to match the interface MTU (as long as the
744 * field isn't locked).
745 */
746 mtu = ifmtu;
747 if ((ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU) == 0)
748 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu; /* XXX */
749 }
750 } else {
751 mtu = nd_ifinfo[ifp->if_index].linkmtu;
752 }
753
754 /* Fake scoped addresses */
755 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
756 /*
757 * If source or destination address is a scoped address, and
758 * the packet is going to be sent to a loopback interface,
759 * we should keep the original interface.
760 */
761
762 /*
763 * XXX: this is a very experimental and temporary solution.
764 * We eventually have sockaddr_in6 and use the sin6_scope_id
765 * field of the structure here.
766 * We rely on the consistency between two scope zone ids
767 * of source add destination, which should already be assured
768 * Larger scopes than link will be supported in the near
769 * future.
770 */
771 origifp = NULL;
772 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
773 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
774 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
775 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
776 /*
777 * XXX: origifp can be NULL even in those two cases above.
778 * For example, if we remove the (only) link-local address
779 * from the loopback interface, and try to send a link-local
780 * address without link-id information. Then the source
781 * address is ::1, and the destination address is the
782 * link-local address with its s6_addr16[1] being zero.
783 * What is worse, if the packet goes to the loopback interface
784 * by a default rejected route, the null pointer would be
785 * passed to looutput, and the kernel would hang.
786 * The following last resort would prevent such disaster.
787 */
788 if (origifp == NULL)
789 origifp = ifp;
790 }
791 else
792 origifp = ifp;
793 #ifndef FAKE_LOOPBACK_IF
794 if ((ifp->if_flags & IFF_LOOPBACK) == 0)
795 #else
796 if (1)
797 #endif
798 {
799 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
800 ip6->ip6_src.s6_addr16[1] = 0;
801 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
802 ip6->ip6_dst.s6_addr16[1] = 0;
803 }
804
805 /*
806 * If the outgoing packet contains a hop-by-hop options header,
807 * it must be examined and processed even by the source node.
808 * (RFC 2460, section 4.)
809 */
810 if (exthdrs.ip6e_hbh) {
811 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
812 u_int32_t dummy1; /* XXX unused */
813 u_int32_t dummy2; /* XXX unused */
814
815 /*
816 * XXX: if we have to send an ICMPv6 error to the sender,
817 * we need the M_LOOP flag since icmp6_error() expects
818 * the IPv6 and the hop-by-hop options header are
819 * continuous unless the flag is set.
820 */
821 m->m_flags |= M_LOOP;
822 m->m_pkthdr.rcvif = ifp;
823 if (ip6_process_hopopts(m,
824 (u_int8_t *)(hbh + 1),
825 ((hbh->ip6h_len + 1) << 3) -
826 sizeof(struct ip6_hbh),
827 &dummy1, &dummy2) < 0) {
828 /* m was already freed at this point */
829 error = EINVAL;/* better error? */
830 goto done;
831 }
832 m->m_flags &= ~M_LOOP; /* XXX */
833 m->m_pkthdr.rcvif = NULL;
834 }
835
836 #ifdef PFIL_HOOKS
837 /*
838 * Run through list of hooks for output packets.
839 */
840 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp,
841 PFIL_OUT)) != 0)
842 goto done;
843 if (m == NULL)
844 goto done;
845 ip6 = mtod(m, struct ip6_hdr *);
846 #endif /* PFIL_HOOKS */
847 /*
848 * Send the packet to the outgoing interface.
849 * If necessary, do IPv6 fragmentation before sending.
850 */
851 tlen = m->m_pkthdr.len;
852 if (tlen <= mtu
853 #ifdef notyet
854 /*
855 * On any link that cannot convey a 1280-octet packet in one piece,
856 * link-specific fragmentation and reassembly must be provided at
857 * a layer below IPv6. [RFC 2460, sec.5]
858 * Thus if the interface has ability of link-level fragmentation,
859 * we can just send the packet even if the packet size is
860 * larger than the link's MTU.
861 * XXX: IFF_FRAGMENTABLE (or such) flag has not been defined yet...
862 */
863
864 || ifp->if_flags & IFF_FRAGMENTABLE
865 #endif
866 )
867 {
868 #ifdef IFA_STATS
869 struct in6_ifaddr *ia6;
870 ip6 = mtod(m, struct ip6_hdr *);
871 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
872 if (ia6) {
873 ia6->ia_ifa.ifa_data.ifad_outbytes +=
874 m->m_pkthdr.len;
875 }
876 #endif
877 #ifdef IPSEC
878 /* clean ipsec history once it goes out of the node */
879 ipsec_delaux(m);
880 #endif
881 #ifdef OLDIP6OUTPUT
882 error = (*ifp->if_output)(ifp, m, (struct sockaddr *)dst,
883 ro->ro_rt);
884 #else
885 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
886 #endif
887 goto done;
888 } else if (mtu < IPV6_MMTU) {
889 /*
890 * note that path MTU is never less than IPV6_MMTU
891 * (see icmp6_input).
892 */
893 error = EMSGSIZE;
894 in6_ifstat_inc(ifp, ifs6_out_fragfail);
895 goto bad;
896 } else if (ip6->ip6_plen == 0) { /* jumbo payload cannot be fragmented */
897 error = EMSGSIZE;
898 in6_ifstat_inc(ifp, ifs6_out_fragfail);
899 goto bad;
900 } else {
901 struct mbuf **mnext, *m_frgpart;
902 struct ip6_frag *ip6f;
903 u_int32_t id = htonl(ip6_id++);
904 u_char nextproto;
905
906 /*
907 * Too large for the destination or interface;
908 * fragment if possible.
909 * Must be able to put at least 8 bytes per fragment.
910 */
911 hlen = unfragpartlen;
912 if (mtu > IPV6_MAXPACKET)
913 mtu = IPV6_MAXPACKET;
914 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
915 if (len < 8) {
916 error = EMSGSIZE;
917 in6_ifstat_inc(ifp, ifs6_out_fragfail);
918 goto bad;
919 }
920
921 mnext = &m->m_nextpkt;
922
923 /*
924 * Change the next header field of the last header in the
925 * unfragmentable part.
926 */
927 if (exthdrs.ip6e_rthdr) {
928 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
929 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
930 } else if (exthdrs.ip6e_dest1) {
931 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
932 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
933 } else if (exthdrs.ip6e_hbh) {
934 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
935 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
936 } else {
937 nextproto = ip6->ip6_nxt;
938 ip6->ip6_nxt = IPPROTO_FRAGMENT;
939 }
940
941 /*
942 * Loop through length of segment after first fragment,
943 * make new header and copy data of each part and link onto chain.
944 */
945 m0 = m;
946 for (off = hlen; off < tlen; off += len) {
947 MGETHDR(m, M_DONTWAIT, MT_HEADER);
948 if (!m) {
949 error = ENOBUFS;
950 ip6stat.ip6s_odropped++;
951 goto sendorfree;
952 }
953 m->m_flags = m0->m_flags & M_COPYFLAGS;
954 *mnext = m;
955 mnext = &m->m_nextpkt;
956 m->m_data += max_linkhdr;
957 mhip6 = mtod(m, struct ip6_hdr *);
958 *mhip6 = *ip6;
959 m->m_len = sizeof(*mhip6);
960 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
961 if (error) {
962 ip6stat.ip6s_odropped++;
963 goto sendorfree;
964 }
965 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7));
966 if (off + len >= tlen)
967 len = tlen - off;
968 else
969 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
970 mhip6->ip6_plen = htons((u_short)(len + hlen +
971 sizeof(*ip6f) -
972 sizeof(struct ip6_hdr)));
973 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
974 error = ENOBUFS;
975 ip6stat.ip6s_odropped++;
976 goto sendorfree;
977 }
978 m_cat(m, m_frgpart);
979 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
980 m->m_pkthdr.rcvif = (struct ifnet *)0;
981 ip6f->ip6f_reserved = 0;
982 ip6f->ip6f_ident = id;
983 ip6f->ip6f_nxt = nextproto;
984 ip6stat.ip6s_ofragments++;
985 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
986 }
987
988 in6_ifstat_inc(ifp, ifs6_out_fragok);
989 }
990
991 /*
992 * Remove leading garbages.
993 */
994 sendorfree:
995 m = m0->m_nextpkt;
996 m0->m_nextpkt = 0;
997 m_freem(m0);
998 for (m0 = m; m; m = m0) {
999 m0 = m->m_nextpkt;
1000 m->m_nextpkt = 0;
1001 if (error == 0) {
1002 #ifdef IFA_STATS
1003 struct in6_ifaddr *ia6;
1004 ip6 = mtod(m, struct ip6_hdr *);
1005 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1006 if (ia6) {
1007 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1008 m->m_pkthdr.len;
1009 }
1010 #endif
1011 #ifdef IPSEC
1012 /* clean ipsec history once it goes out of the node */
1013 ipsec_delaux(m);
1014 #endif
1015 #ifdef OLDIP6OUTPUT
1016 error = (*ifp->if_output)(ifp, m,
1017 (struct sockaddr *)dst,
1018 ro->ro_rt);
1019 #else
1020 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1021 #endif
1022 } else
1023 m_freem(m);
1024 }
1025
1026 if (error == 0)
1027 ip6stat.ip6s_fragmented++;
1028
1029 done:
1030 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1031 RTFREE(ro->ro_rt);
1032 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1033 RTFREE(ro_pmtu->ro_rt);
1034 }
1035
1036 #ifdef IPSEC
1037 if (sp != NULL)
1038 key_freesp(sp);
1039 #endif /* IPSEC */
1040
1041 return(error);
1042
1043 freehdrs:
1044 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1045 m_freem(exthdrs.ip6e_dest1);
1046 m_freem(exthdrs.ip6e_rthdr);
1047 m_freem(exthdrs.ip6e_dest2);
1048 /* fall through */
1049 bad:
1050 m_freem(m);
1051 goto done;
1052 }
1053
1054 static int
1055 ip6_copyexthdr(mp, hdr, hlen)
1056 struct mbuf **mp;
1057 caddr_t hdr;
1058 int hlen;
1059 {
1060 struct mbuf *m;
1061
1062 if (hlen > MCLBYTES)
1063 return(ENOBUFS); /* XXX */
1064
1065 MGET(m, M_DONTWAIT, MT_DATA);
1066 if (!m)
1067 return(ENOBUFS);
1068
1069 if (hlen > MLEN) {
1070 MCLGET(m, M_DONTWAIT);
1071 if ((m->m_flags & M_EXT) == 0) {
1072 m_free(m);
1073 return(ENOBUFS);
1074 }
1075 }
1076 m->m_len = hlen;
1077 if (hdr)
1078 bcopy(hdr, mtod(m, caddr_t), hlen);
1079
1080 *mp = m;
1081 return(0);
1082 }
1083
1084 /*
1085 * Insert jumbo payload option.
1086 */
1087 static int
1088 ip6_insert_jumboopt(exthdrs, plen)
1089 struct ip6_exthdrs *exthdrs;
1090 u_int32_t plen;
1091 {
1092 struct mbuf *mopt;
1093 u_char *optbuf;
1094 u_int32_t v;
1095
1096 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1097
1098 /*
1099 * If there is no hop-by-hop options header, allocate new one.
1100 * If there is one but it doesn't have enough space to store the
1101 * jumbo payload option, allocate a cluster to store the whole options.
1102 * Otherwise, use it to store the options.
1103 */
1104 if (exthdrs->ip6e_hbh == 0) {
1105 MGET(mopt, M_DONTWAIT, MT_DATA);
1106 if (mopt == 0)
1107 return(ENOBUFS);
1108 mopt->m_len = JUMBOOPTLEN;
1109 optbuf = mtod(mopt, u_char *);
1110 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1111 exthdrs->ip6e_hbh = mopt;
1112 } else {
1113 struct ip6_hbh *hbh;
1114
1115 mopt = exthdrs->ip6e_hbh;
1116 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1117 /*
1118 * XXX assumption:
1119 * - exthdrs->ip6e_hbh is not referenced from places
1120 * other than exthdrs.
1121 * - exthdrs->ip6e_hbh is not an mbuf chain.
1122 */
1123 int oldoptlen = mopt->m_len;
1124 struct mbuf *n;
1125
1126 /*
1127 * XXX: give up if the whole (new) hbh header does
1128 * not fit even in an mbuf cluster.
1129 */
1130 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1131 return(ENOBUFS);
1132
1133 /*
1134 * As a consequence, we must always prepare a cluster
1135 * at this point.
1136 */
1137 MGET(n, M_DONTWAIT, MT_DATA);
1138 if (n) {
1139 MCLGET(n, M_DONTWAIT);
1140 if ((n->m_flags & M_EXT) == 0) {
1141 m_freem(n);
1142 n = NULL;
1143 }
1144 }
1145 if (!n)
1146 return(ENOBUFS);
1147 n->m_len = oldoptlen + JUMBOOPTLEN;
1148 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1149 oldoptlen);
1150 optbuf = mtod(n, caddr_t) + oldoptlen;
1151 m_freem(mopt);
1152 exthdrs->ip6e_hbh = n;
1153 } else {
1154 optbuf = mtod(mopt, u_char *) + mopt->m_len;
1155 mopt->m_len += JUMBOOPTLEN;
1156 }
1157 optbuf[0] = IP6OPT_PADN;
1158 optbuf[1] = 1;
1159
1160 /*
1161 * Adjust the header length according to the pad and
1162 * the jumbo payload option.
1163 */
1164 hbh = mtod(mopt, struct ip6_hbh *);
1165 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1166 }
1167
1168 /* fill in the option. */
1169 optbuf[2] = IP6OPT_JUMBO;
1170 optbuf[3] = 4;
1171 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1172 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1173
1174 /* finally, adjust the packet header length */
1175 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1176
1177 return(0);
1178 #undef JUMBOOPTLEN
1179 }
1180
1181 /*
1182 * Insert fragment header and copy unfragmentable header portions.
1183 */
1184 static int
1185 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1186 struct mbuf *m0, *m;
1187 int hlen;
1188 struct ip6_frag **frghdrp;
1189 {
1190 struct mbuf *n, *mlast;
1191
1192 if (hlen > sizeof(struct ip6_hdr)) {
1193 n = m_copym(m0, sizeof(struct ip6_hdr),
1194 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1195 if (n == 0)
1196 return(ENOBUFS);
1197 m->m_next = n;
1198 } else
1199 n = m;
1200
1201 /* Search for the last mbuf of unfragmentable part. */
1202 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1203 ;
1204
1205 if ((mlast->m_flags & M_EXT) == 0 &&
1206 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1207 /* use the trailing space of the last mbuf for the fragment hdr */
1208 *frghdrp =
1209 (struct ip6_frag *)(mtod(mlast, caddr_t) + mlast->m_len);
1210 mlast->m_len += sizeof(struct ip6_frag);
1211 m->m_pkthdr.len += sizeof(struct ip6_frag);
1212 } else {
1213 /* allocate a new mbuf for the fragment header */
1214 struct mbuf *mfrg;
1215
1216 MGET(mfrg, M_DONTWAIT, MT_DATA);
1217 if (mfrg == 0)
1218 return(ENOBUFS);
1219 mfrg->m_len = sizeof(struct ip6_frag);
1220 *frghdrp = mtod(mfrg, struct ip6_frag *);
1221 mlast->m_next = mfrg;
1222 }
1223
1224 return(0);
1225 }
1226
1227 /*
1228 * IP6 socket option processing.
1229 */
1230 int
1231 ip6_ctloutput(op, so, level, optname, mp)
1232 int op;
1233 struct socket *so;
1234 int level, optname;
1235 struct mbuf **mp;
1236 {
1237 struct in6pcb *in6p = sotoin6pcb(so);
1238 struct mbuf *m = *mp;
1239 int optval = 0;
1240 int error = 0;
1241 struct proc *p = curproc; /* XXX */
1242
1243 if (level == IPPROTO_IPV6) {
1244 switch (op) {
1245
1246 case PRCO_SETOPT:
1247 switch (optname) {
1248 case IPV6_PKTOPTIONS:
1249 /* m is freed in ip6_pcbopts */
1250 return(ip6_pcbopts(&in6p->in6p_outputopts,
1251 m, so));
1252 case IPV6_HOPOPTS:
1253 case IPV6_DSTOPTS:
1254 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1255 error = EPERM;
1256 break;
1257 }
1258 /* fall through */
1259 case IPV6_UNICAST_HOPS:
1260 case IPV6_RECVOPTS:
1261 case IPV6_RECVRETOPTS:
1262 case IPV6_RECVDSTADDR:
1263 case IPV6_PKTINFO:
1264 case IPV6_HOPLIMIT:
1265 case IPV6_RTHDR:
1266 case IPV6_CHECKSUM:
1267 case IPV6_FAITH:
1268 #ifndef INET6_BINDV6ONLY
1269 case IPV6_BINDV6ONLY:
1270 #endif
1271 if (!m || m->m_len != sizeof(int))
1272 error = EINVAL;
1273 else {
1274 optval = *mtod(m, int *);
1275 switch (optname) {
1276
1277 case IPV6_UNICAST_HOPS:
1278 if (optval < -1 || optval >= 256)
1279 error = EINVAL;
1280 else {
1281 /* -1 = kernel default */
1282 in6p->in6p_hops = optval;
1283 }
1284 break;
1285 #define OPTSET(bit) \
1286 if (optval) \
1287 in6p->in6p_flags |= bit; \
1288 else \
1289 in6p->in6p_flags &= ~bit;
1290
1291 case IPV6_RECVOPTS:
1292 OPTSET(IN6P_RECVOPTS);
1293 break;
1294
1295 case IPV6_RECVRETOPTS:
1296 OPTSET(IN6P_RECVRETOPTS);
1297 break;
1298
1299 case IPV6_RECVDSTADDR:
1300 OPTSET(IN6P_RECVDSTADDR);
1301 break;
1302
1303 case IPV6_PKTINFO:
1304 OPTSET(IN6P_PKTINFO);
1305 break;
1306
1307 case IPV6_HOPLIMIT:
1308 OPTSET(IN6P_HOPLIMIT);
1309 break;
1310
1311 case IPV6_HOPOPTS:
1312 OPTSET(IN6P_HOPOPTS);
1313 break;
1314
1315 case IPV6_DSTOPTS:
1316 OPTSET(IN6P_DSTOPTS);
1317 break;
1318
1319 case IPV6_RTHDR:
1320 OPTSET(IN6P_RTHDR);
1321 break;
1322
1323 case IPV6_CHECKSUM:
1324 in6p->in6p_cksum = optval;
1325 break;
1326
1327 case IPV6_FAITH:
1328 OPTSET(IN6P_FAITH);
1329 break;
1330
1331 #ifndef INET6_BINDV6ONLY
1332 case IPV6_BINDV6ONLY:
1333 OPTSET(IN6P_BINDV6ONLY);
1334 break;
1335 #endif
1336 }
1337 }
1338 break;
1339 #undef OPTSET
1340
1341 case IPV6_MULTICAST_IF:
1342 case IPV6_MULTICAST_HOPS:
1343 case IPV6_MULTICAST_LOOP:
1344 case IPV6_JOIN_GROUP:
1345 case IPV6_LEAVE_GROUP:
1346 error = ip6_setmoptions(optname, &in6p->in6p_moptions, m);
1347 break;
1348
1349 case IPV6_PORTRANGE:
1350 optval = *mtod(m, int *);
1351
1352 switch (optval) {
1353 case IPV6_PORTRANGE_DEFAULT:
1354 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1355 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1356 break;
1357
1358 case IPV6_PORTRANGE_HIGH:
1359 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1360 in6p->in6p_flags |= IN6P_HIGHPORT;
1361 break;
1362
1363 case IPV6_PORTRANGE_LOW:
1364 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1365 in6p->in6p_flags |= IN6P_LOWPORT;
1366 break;
1367
1368 default:
1369 error = EINVAL;
1370 break;
1371 }
1372 break;
1373
1374 #ifdef IPSEC
1375 case IPV6_IPSEC_POLICY:
1376 {
1377 caddr_t req = NULL;
1378 size_t len = 0;
1379
1380 int priv = 0;
1381 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1382 priv = 0;
1383 else
1384 priv = 1;
1385 if (m) {
1386 req = mtod(m, caddr_t);
1387 len = m->m_len;
1388 }
1389 error = ipsec6_set_policy(in6p,
1390 optname, req, len, priv);
1391 }
1392 break;
1393 #endif /* IPSEC */
1394
1395 default:
1396 error = ENOPROTOOPT;
1397 break;
1398 }
1399 if (m)
1400 (void)m_free(m);
1401 break;
1402
1403 case PRCO_GETOPT:
1404 switch (optname) {
1405
1406 case IPV6_OPTIONS:
1407 case IPV6_RETOPTS:
1408 #if 0
1409 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1410 if (in6p->in6p_options) {
1411 m->m_len = in6p->in6p_options->m_len;
1412 bcopy(mtod(in6p->in6p_options, caddr_t),
1413 mtod(m, caddr_t),
1414 (unsigned)m->m_len);
1415 } else
1416 m->m_len = 0;
1417 break;
1418 #else
1419 error = ENOPROTOOPT;
1420 break;
1421 #endif
1422
1423 case IPV6_PKTOPTIONS:
1424 if (in6p->in6p_options) {
1425 *mp = m_copym(in6p->in6p_options, 0,
1426 M_COPYALL, M_WAIT);
1427 } else {
1428 *mp = m_get(M_WAIT, MT_SOOPTS);
1429 (*mp)->m_len = 0;
1430 }
1431 break;
1432
1433 case IPV6_HOPOPTS:
1434 case IPV6_DSTOPTS:
1435 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1436 error = EPERM;
1437 break;
1438 }
1439 /* fall through */
1440 case IPV6_UNICAST_HOPS:
1441 case IPV6_RECVOPTS:
1442 case IPV6_RECVRETOPTS:
1443 case IPV6_RECVDSTADDR:
1444 case IPV6_PORTRANGE:
1445 case IPV6_PKTINFO:
1446 case IPV6_HOPLIMIT:
1447 case IPV6_RTHDR:
1448 case IPV6_CHECKSUM:
1449 case IPV6_FAITH:
1450 #ifndef INET6_BINDV6ONLY
1451 case IPV6_BINDV6ONLY:
1452 #endif
1453 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1454 m->m_len = sizeof(int);
1455 switch (optname) {
1456
1457 case IPV6_UNICAST_HOPS:
1458 optval = in6p->in6p_hops;
1459 break;
1460
1461 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1462
1463 case IPV6_RECVOPTS:
1464 optval = OPTBIT(IN6P_RECVOPTS);
1465 break;
1466
1467 case IPV6_RECVRETOPTS:
1468 optval = OPTBIT(IN6P_RECVRETOPTS);
1469 break;
1470
1471 case IPV6_RECVDSTADDR:
1472 optval = OPTBIT(IN6P_RECVDSTADDR);
1473 break;
1474
1475 case IPV6_PORTRANGE:
1476 {
1477 int flags;
1478 flags = in6p->in6p_flags;
1479 if (flags & IN6P_HIGHPORT)
1480 optval = IPV6_PORTRANGE_HIGH;
1481 else if (flags & IN6P_LOWPORT)
1482 optval = IPV6_PORTRANGE_LOW;
1483 else
1484 optval = 0;
1485 break;
1486 }
1487
1488 case IPV6_PKTINFO:
1489 optval = OPTBIT(IN6P_PKTINFO);
1490 break;
1491
1492 case IPV6_HOPLIMIT:
1493 optval = OPTBIT(IN6P_HOPLIMIT);
1494 break;
1495
1496 case IPV6_HOPOPTS:
1497 optval = OPTBIT(IN6P_HOPOPTS);
1498 break;
1499
1500 case IPV6_DSTOPTS:
1501 optval = OPTBIT(IN6P_DSTOPTS);
1502 break;
1503
1504 case IPV6_RTHDR:
1505 optval = OPTBIT(IN6P_RTHDR);
1506 break;
1507
1508 case IPV6_CHECKSUM:
1509 optval = in6p->in6p_cksum;
1510 break;
1511
1512 case IPV6_FAITH:
1513 optval = OPTBIT(IN6P_FAITH);
1514 break;
1515
1516 #ifndef INET6_BINDV6ONLY
1517 case IPV6_BINDV6ONLY:
1518 optval = OPTBIT(IN6P_BINDV6ONLY);
1519 break;
1520 #endif
1521 }
1522 *mtod(m, int *) = optval;
1523 break;
1524
1525 case IPV6_MULTICAST_IF:
1526 case IPV6_MULTICAST_HOPS:
1527 case IPV6_MULTICAST_LOOP:
1528 case IPV6_JOIN_GROUP:
1529 case IPV6_LEAVE_GROUP:
1530 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1531 break;
1532
1533 #ifdef IPSEC
1534 case IPV6_IPSEC_POLICY:
1535 {
1536 caddr_t req = NULL;
1537 size_t len = 0;
1538
1539 if (m) {
1540 req = mtod(m, caddr_t);
1541 len = m->m_len;
1542 }
1543 error = ipsec6_get_policy(in6p, req, len, mp);
1544 break;
1545 }
1546 #endif /* IPSEC */
1547
1548 default:
1549 error = ENOPROTOOPT;
1550 break;
1551 }
1552 break;
1553 }
1554 } else {
1555 error = EINVAL;
1556 if (op == PRCO_SETOPT && *mp)
1557 (void)m_free(*mp);
1558 }
1559 return(error);
1560 }
1561
1562 /*
1563 * Set up IP6 options in pcb for insertion in output packets.
1564 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1565 * with destination address if source routed.
1566 */
1567 static int
1568 ip6_pcbopts(pktopt, m, so)
1569 struct ip6_pktopts **pktopt;
1570 struct mbuf *m;
1571 struct socket *so;
1572 {
1573 struct ip6_pktopts *opt = *pktopt;
1574 int error = 0;
1575 struct proc *p = curproc; /* XXX */
1576 int priv = 0;
1577
1578 /* turn off any old options. */
1579 if (opt) {
1580 if (opt->ip6po_m)
1581 (void)m_free(opt->ip6po_m);
1582 } else
1583 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1584 *pktopt = 0;
1585
1586 if (!m || m->m_len == 0) {
1587 /*
1588 * Only turning off any previous options.
1589 */
1590 if (opt)
1591 free(opt, M_IP6OPT);
1592 if (m)
1593 (void)m_free(m);
1594 return(0);
1595 }
1596
1597 /* set options specified by user. */
1598 if (p && !suser(p->p_ucred, &p->p_acflag))
1599 priv = 1;
1600 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1601 (void)m_free(m);
1602 return(error);
1603 }
1604 *pktopt = opt;
1605 return(0);
1606 }
1607
1608 /*
1609 * Set the IP6 multicast options in response to user setsockopt().
1610 */
1611 static int
1612 ip6_setmoptions(optname, im6op, m)
1613 int optname;
1614 struct ip6_moptions **im6op;
1615 struct mbuf *m;
1616 {
1617 int error = 0;
1618 u_int loop, ifindex;
1619 struct ipv6_mreq *mreq;
1620 struct ifnet *ifp;
1621 struct ip6_moptions *im6o = *im6op;
1622 struct route_in6 ro;
1623 struct sockaddr_in6 *dst;
1624 struct in6_multi_mship *imm;
1625 struct proc *p = curproc; /* XXX */
1626
1627 if (im6o == NULL) {
1628 /*
1629 * No multicast option buffer attached to the pcb;
1630 * allocate one and initialize to default values.
1631 */
1632 im6o = (struct ip6_moptions *)
1633 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1634
1635 if (im6o == NULL)
1636 return(ENOBUFS);
1637 *im6op = im6o;
1638 im6o->im6o_multicast_ifp = NULL;
1639 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1640 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1641 LIST_INIT(&im6o->im6o_memberships);
1642 }
1643
1644 switch (optname) {
1645
1646 case IPV6_MULTICAST_IF:
1647 /*
1648 * Select the interface for outgoing multicast packets.
1649 */
1650 if (m == NULL || m->m_len != sizeof(u_int)) {
1651 error = EINVAL;
1652 break;
1653 }
1654 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1655 if (ifindex < 0 || if_index < ifindex) {
1656 error = ENXIO; /* XXX EINVAL? */
1657 break;
1658 }
1659 ifp = ifindex2ifnet[ifindex];
1660 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1661 error = EADDRNOTAVAIL;
1662 break;
1663 }
1664 im6o->im6o_multicast_ifp = ifp;
1665 break;
1666
1667 case IPV6_MULTICAST_HOPS:
1668 {
1669 /*
1670 * Set the IP6 hoplimit for outgoing multicast packets.
1671 */
1672 int optval;
1673 if (m == NULL || m->m_len != sizeof(int)) {
1674 error = EINVAL;
1675 break;
1676 }
1677 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1678 if (optval < -1 || optval >= 256)
1679 error = EINVAL;
1680 else if (optval == -1)
1681 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1682 else
1683 im6o->im6o_multicast_hlim = optval;
1684 break;
1685 }
1686
1687 case IPV6_MULTICAST_LOOP:
1688 /*
1689 * Set the loopback flag for outgoing multicast packets.
1690 * Must be zero or one.
1691 */
1692 if (m == NULL || m->m_len != sizeof(u_int)) {
1693 error = EINVAL;
1694 break;
1695 }
1696 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1697 if (loop > 1) {
1698 error = EINVAL;
1699 break;
1700 }
1701 im6o->im6o_multicast_loop = loop;
1702 break;
1703
1704 case IPV6_JOIN_GROUP:
1705 /*
1706 * Add a multicast group membership.
1707 * Group must be a valid IP6 multicast address.
1708 */
1709 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1710 error = EINVAL;
1711 break;
1712 }
1713 mreq = mtod(m, struct ipv6_mreq *);
1714 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1715 /*
1716 * We use the unspecified address to specify to accept
1717 * all multicast addresses. Only super user is allowed
1718 * to do this.
1719 */
1720 if (suser(p->p_ucred, &p->p_acflag))
1721 {
1722 error = EACCES;
1723 break;
1724 }
1725 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1726 error = EINVAL;
1727 break;
1728 }
1729
1730 /*
1731 * If the interface is specified, validate it.
1732 */
1733 if (mreq->ipv6mr_interface < 0
1734 || if_index < mreq->ipv6mr_interface) {
1735 error = ENXIO; /* XXX EINVAL? */
1736 break;
1737 }
1738 /*
1739 * If no interface was explicitly specified, choose an
1740 * appropriate one according to the given multicast address.
1741 */
1742 if (mreq->ipv6mr_interface == 0) {
1743 /*
1744 * If the multicast address is in node-local scope,
1745 * the interface should be a loopback interface.
1746 * Otherwise, look up the routing table for the
1747 * address, and choose the outgoing interface.
1748 * XXX: is it a good approach?
1749 */
1750 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1751 ifp = &loif[0];
1752 } else {
1753 ro.ro_rt = NULL;
1754 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1755 bzero(dst, sizeof(*dst));
1756 dst->sin6_len = sizeof(struct sockaddr_in6);
1757 dst->sin6_family = AF_INET6;
1758 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1759 rtalloc((struct route *)&ro);
1760 if (ro.ro_rt == NULL) {
1761 error = EADDRNOTAVAIL;
1762 break;
1763 }
1764 ifp = ro.ro_rt->rt_ifp;
1765 rtfree(ro.ro_rt);
1766 }
1767 } else
1768 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1769
1770 /*
1771 * See if we found an interface, and confirm that it
1772 * supports multicast
1773 */
1774 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1775 error = EADDRNOTAVAIL;
1776 break;
1777 }
1778 /*
1779 * Put interface index into the multicast address,
1780 * if the address has link-local scope.
1781 */
1782 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1783 mreq->ipv6mr_multiaddr.s6_addr16[1]
1784 = htons(mreq->ipv6mr_interface);
1785 }
1786 /*
1787 * See if the membership already exists.
1788 */
1789 for (imm = im6o->im6o_memberships.lh_first;
1790 imm != NULL; imm = imm->i6mm_chain.le_next)
1791 if (imm->i6mm_maddr->in6m_ifp == ifp &&
1792 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1793 &mreq->ipv6mr_multiaddr))
1794 break;
1795 if (imm != NULL) {
1796 error = EADDRINUSE;
1797 break;
1798 }
1799 /*
1800 * Everything looks good; add a new record to the multicast
1801 * address list for the given interface.
1802 */
1803 imm = malloc(sizeof(*imm), M_IPMADDR, M_WAITOK);
1804 if (imm == NULL) {
1805 error = ENOBUFS;
1806 break;
1807 }
1808 if ((imm->i6mm_maddr =
1809 in6_addmulti(&mreq->ipv6mr_multiaddr, ifp, &error)) == NULL) {
1810 free(imm, M_IPMADDR);
1811 break;
1812 }
1813 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
1814 break;
1815
1816 case IPV6_LEAVE_GROUP:
1817 /*
1818 * Drop a multicast group membership.
1819 * Group must be a valid IP6 multicast address.
1820 */
1821 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1822 error = EINVAL;
1823 break;
1824 }
1825 mreq = mtod(m, struct ipv6_mreq *);
1826 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1827 if (suser(p->p_ucred, &p->p_acflag))
1828 {
1829 error = EACCES;
1830 break;
1831 }
1832 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1833 error = EINVAL;
1834 break;
1835 }
1836 /*
1837 * If an interface address was specified, get a pointer
1838 * to its ifnet structure.
1839 */
1840 if (mreq->ipv6mr_interface < 0
1841 || if_index < mreq->ipv6mr_interface) {
1842 error = ENXIO; /* XXX EINVAL? */
1843 break;
1844 }
1845 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1846 /*
1847 * Put interface index into the multicast address,
1848 * if the address has link-local scope.
1849 */
1850 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1851 mreq->ipv6mr_multiaddr.s6_addr16[1]
1852 = htons(mreq->ipv6mr_interface);
1853 }
1854 /*
1855 * Find the membership in the membership list.
1856 */
1857 for (imm = im6o->im6o_memberships.lh_first;
1858 imm != NULL; imm = imm->i6mm_chain.le_next) {
1859 if ((ifp == NULL ||
1860 imm->i6mm_maddr->in6m_ifp == ifp) &&
1861 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1862 &mreq->ipv6mr_multiaddr))
1863 break;
1864 }
1865 if (imm == NULL) {
1866 /* Unable to resolve interface */
1867 error = EADDRNOTAVAIL;
1868 break;
1869 }
1870 /*
1871 * Give up the multicast address record to which the
1872 * membership points.
1873 */
1874 LIST_REMOVE(imm, i6mm_chain);
1875 in6_delmulti(imm->i6mm_maddr);
1876 free(imm, M_IPMADDR);
1877 break;
1878
1879 default:
1880 error = EOPNOTSUPP;
1881 break;
1882 }
1883
1884 /*
1885 * If all options have default values, no need to keep the mbuf.
1886 */
1887 if (im6o->im6o_multicast_ifp == NULL &&
1888 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
1889 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
1890 im6o->im6o_memberships.lh_first == NULL) {
1891 free(*im6op, M_IPMOPTS);
1892 *im6op = NULL;
1893 }
1894
1895 return(error);
1896 }
1897
1898 /*
1899 * Return the IP6 multicast options in response to user getsockopt().
1900 */
1901 static int
1902 ip6_getmoptions(optname, im6o, mp)
1903 int optname;
1904 struct ip6_moptions *im6o;
1905 struct mbuf **mp;
1906 {
1907 u_int *hlim, *loop, *ifindex;
1908
1909 *mp = m_get(M_WAIT, MT_SOOPTS);
1910
1911 switch (optname) {
1912
1913 case IPV6_MULTICAST_IF:
1914 ifindex = mtod(*mp, u_int *);
1915 (*mp)->m_len = sizeof(u_int);
1916 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
1917 *ifindex = 0;
1918 else
1919 *ifindex = im6o->im6o_multicast_ifp->if_index;
1920 return(0);
1921
1922 case IPV6_MULTICAST_HOPS:
1923 hlim = mtod(*mp, u_int *);
1924 (*mp)->m_len = sizeof(u_int);
1925 if (im6o == NULL)
1926 *hlim = ip6_defmcasthlim;
1927 else
1928 *hlim = im6o->im6o_multicast_hlim;
1929 return(0);
1930
1931 case IPV6_MULTICAST_LOOP:
1932 loop = mtod(*mp, u_int *);
1933 (*mp)->m_len = sizeof(u_int);
1934 if (im6o == NULL)
1935 *loop = ip6_defmcasthlim;
1936 else
1937 *loop = im6o->im6o_multicast_loop;
1938 return(0);
1939
1940 default:
1941 return(EOPNOTSUPP);
1942 }
1943 }
1944
1945 /*
1946 * Discard the IP6 multicast options.
1947 */
1948 void
1949 ip6_freemoptions(im6o)
1950 struct ip6_moptions *im6o;
1951 {
1952 struct in6_multi_mship *imm;
1953
1954 if (im6o == NULL)
1955 return;
1956
1957 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
1958 LIST_REMOVE(imm, i6mm_chain);
1959 if (imm->i6mm_maddr)
1960 in6_delmulti(imm->i6mm_maddr);
1961 free(imm, M_IPMADDR);
1962 }
1963 free(im6o, M_IPMOPTS);
1964 }
1965
1966 /*
1967 * Set IPv6 outgoing packet options based on advanced API.
1968 */
1969 int
1970 ip6_setpktoptions(control, opt, priv)
1971 struct mbuf *control;
1972 struct ip6_pktopts *opt;
1973 int priv;
1974 {
1975 struct cmsghdr *cm = 0;
1976
1977 if (control == 0 || opt == 0)
1978 return(EINVAL);
1979
1980 bzero(opt, sizeof(*opt));
1981 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
1982
1983 /*
1984 * XXX: Currently, we assume all the optional information is stored
1985 * in a single mbuf.
1986 */
1987 if (control->m_next)
1988 return(EINVAL);
1989
1990 opt->ip6po_m = control;
1991
1992 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
1993 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
1994 cm = mtod(control, struct cmsghdr *);
1995 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
1996 return(EINVAL);
1997 if (cm->cmsg_level != IPPROTO_IPV6)
1998 continue;
1999
2000 switch (cm->cmsg_type) {
2001 case IPV6_PKTINFO:
2002 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
2003 return(EINVAL);
2004 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
2005 if (opt->ip6po_pktinfo->ipi6_ifindex &&
2006 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
2007 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
2008 htons(opt->ip6po_pktinfo->ipi6_ifindex);
2009
2010 if (opt->ip6po_pktinfo->ipi6_ifindex > if_index
2011 || opt->ip6po_pktinfo->ipi6_ifindex < 0) {
2012 return(ENXIO);
2013 }
2014
2015 /*
2016 * Check if the requested source address is indeed a
2017 * unicast address assigned to the node.
2018 */
2019 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2020 struct ifaddr *ia;
2021 struct sockaddr_in6 sin6;
2022
2023 bzero(&sin6, sizeof(sin6));
2024 sin6.sin6_len = sizeof(sin6);
2025 sin6.sin6_family = AF_INET6;
2026 sin6.sin6_addr =
2027 opt->ip6po_pktinfo->ipi6_addr;
2028 ia = ifa_ifwithaddr(sin6tosa(&sin6));
2029 if (ia == NULL ||
2030 (opt->ip6po_pktinfo->ipi6_ifindex &&
2031 (ia->ifa_ifp->if_index !=
2032 opt->ip6po_pktinfo->ipi6_ifindex))) {
2033 return(EADDRNOTAVAIL);
2034 }
2035 /*
2036 * Check if the requested source address is
2037 * indeed a unicast address assigned to the
2038 * node.
2039 */
2040 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
2041 return(EADDRNOTAVAIL);
2042 }
2043 break;
2044
2045 case IPV6_HOPLIMIT:
2046 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2047 return(EINVAL);
2048
2049 bcopy(CMSG_DATA(cm), &opt->ip6po_hlim,
2050 sizeof(opt->ip6po_hlim));
2051 if (opt->ip6po_hlim < -1 || opt->ip6po_hlim > 255)
2052 return(EINVAL);
2053 break;
2054
2055 case IPV6_NEXTHOP:
2056 if (!priv)
2057 return(EPERM);
2058
2059 if (cm->cmsg_len < sizeof(u_char) ||
2060 /* check if cmsg_len is large enough for sa_len */
2061 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2062 return(EINVAL);
2063
2064 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2065
2066 break;
2067
2068 case IPV6_HOPOPTS:
2069 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2070 return(EINVAL);
2071 opt->ip6po_hbh = (struct ip6_hbh *)CMSG_DATA(cm);
2072 if (cm->cmsg_len !=
2073 CMSG_LEN((opt->ip6po_hbh->ip6h_len + 1) << 3))
2074 return(EINVAL);
2075 break;
2076
2077 case IPV6_DSTOPTS:
2078 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2079 return(EINVAL);
2080
2081 /*
2082 * If there is no routing header yet, the destination
2083 * options header should be put on the 1st part.
2084 * Otherwise, the header should be on the 2nd part.
2085 * (See RFC 2460, section 4.1)
2086 */
2087 if (opt->ip6po_rthdr == NULL) {
2088 opt->ip6po_dest1 =
2089 (struct ip6_dest *)CMSG_DATA(cm);
2090 if (cm->cmsg_len !=
2091 CMSG_LEN((opt->ip6po_dest1->ip6d_len + 1)
2092 << 3))
2093 return(EINVAL);
2094 }
2095 else {
2096 opt->ip6po_dest2 =
2097 (struct ip6_dest *)CMSG_DATA(cm);
2098 if (cm->cmsg_len !=
2099 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1)
2100 << 3))
2101 return(EINVAL);
2102 }
2103 break;
2104
2105 case IPV6_RTHDR:
2106 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2107 return(EINVAL);
2108 opt->ip6po_rthdr = (struct ip6_rthdr *)CMSG_DATA(cm);
2109 if (cm->cmsg_len !=
2110 CMSG_LEN((opt->ip6po_rthdr->ip6r_len + 1) << 3))
2111 return(EINVAL);
2112 switch (opt->ip6po_rthdr->ip6r_type) {
2113 case IPV6_RTHDR_TYPE_0:
2114 if (opt->ip6po_rthdr->ip6r_segleft == 0)
2115 return(EINVAL);
2116 break;
2117 default:
2118 return(EINVAL);
2119 }
2120 break;
2121
2122 default:
2123 return(ENOPROTOOPT);
2124 }
2125 }
2126
2127 return(0);
2128 }
2129
2130 /*
2131 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2132 * packet to the input queue of a specified interface. Note that this
2133 * calls the output routine of the loopback "driver", but with an interface
2134 * pointer that might NOT be &loif -- easier than replicating that code here.
2135 */
2136 void
2137 ip6_mloopback(ifp, m, dst)
2138 struct ifnet *ifp;
2139 struct mbuf *m;
2140 struct sockaddr_in6 *dst;
2141 {
2142 struct mbuf *copym;
2143 struct ip6_hdr *ip6;
2144
2145 copym = m_copy(m, 0, M_COPYALL);
2146 if (copym == NULL)
2147 return;
2148
2149 /*
2150 * Make sure to deep-copy IPv6 header portion in case the data
2151 * is in an mbuf cluster, so that we can safely override the IPv6
2152 * header portion later.
2153 */
2154 if ((copym->m_flags & M_EXT) != 0 ||
2155 copym->m_len < sizeof(struct ip6_hdr)) {
2156 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2157 if (copym == NULL)
2158 return;
2159 }
2160
2161 #ifdef DIAGNOSTIC
2162 if (copym->m_len < sizeof(*ip6)) {
2163 m_freem(copym);
2164 return;
2165 }
2166 #endif
2167
2168 #ifndef FAKE_LOOPBACK_IF
2169 if ((ifp->if_flags & IFF_LOOPBACK) == 0)
2170 #else
2171 if (1)
2172 #endif
2173 {
2174 ip6 = mtod(copym, struct ip6_hdr *);
2175 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
2176 ip6->ip6_src.s6_addr16[1] = 0;
2177 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
2178 ip6->ip6_dst.s6_addr16[1] = 0;
2179 }
2180
2181 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2182 }
2183
2184 /*
2185 * Chop IPv6 header off from the payload.
2186 */
2187 static int
2188 ip6_splithdr(m, exthdrs)
2189 struct mbuf *m;
2190 struct ip6_exthdrs *exthdrs;
2191 {
2192 struct mbuf *mh;
2193 struct ip6_hdr *ip6;
2194
2195 ip6 = mtod(m, struct ip6_hdr *);
2196 if (m->m_len > sizeof(*ip6)) {
2197 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2198 if (mh == 0) {
2199 m_freem(m);
2200 return ENOBUFS;
2201 }
2202 M_COPY_PKTHDR(mh, m);
2203 MH_ALIGN(mh, sizeof(*ip6));
2204 m->m_flags &= ~M_PKTHDR;
2205 m->m_len -= sizeof(*ip6);
2206 m->m_data += sizeof(*ip6);
2207 mh->m_next = m;
2208 m = mh;
2209 m->m_len = sizeof(*ip6);
2210 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2211 }
2212 exthdrs->ip6e_ip6 = m;
2213 return 0;
2214 }
2215
2216 /*
2217 * Compute IPv6 extension header length.
2218 */
2219 int
2220 ip6_optlen(in6p)
2221 struct in6pcb *in6p;
2222 {
2223 int len;
2224
2225 if (!in6p->in6p_outputopts)
2226 return 0;
2227
2228 len = 0;
2229 #define elen(x) \
2230 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2231
2232 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2233 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2234 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2235 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2236 return len;
2237 #undef elen
2238 }
2239