ip6_output.c revision 1.81 1 /* $NetBSD: ip6_output.c,v 1.81 2004/03/02 02:28:28 thorpej Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.81 2004/03/02 02:28:28 thorpej Exp $");
66
67 #include "opt_inet.h"
68 #include "opt_ipsec.h"
69 #include "opt_pfil_hooks.h"
70
71 #include <sys/param.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/errno.h>
75 #include <sys/protosw.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80
81 #include <net/if.h>
82 #include <net/route.h>
83 #ifdef PFIL_HOOKS
84 #include <net/pfil.h>
85 #endif
86
87 #include <netinet/in.h>
88 #include <netinet/in_var.h>
89 #include <netinet/ip6.h>
90 #include <netinet/icmp6.h>
91 #include <netinet6/ip6_var.h>
92 #include <netinet6/in6_pcb.h>
93 #include <netinet6/nd6.h>
94 #include <netinet6/ip6protosw.h>
95
96 #ifdef IPSEC
97 #include <netinet6/ipsec.h>
98 #include <netkey/key.h>
99 #endif /* IPSEC */
100
101 #include "loop.h"
102
103 #include <net/net_osdep.h>
104
105 #ifdef PFIL_HOOKS
106 extern struct pfil_head inet6_pfil_hook; /* XXX */
107 #endif
108
109 struct ip6_exthdrs {
110 struct mbuf *ip6e_ip6;
111 struct mbuf *ip6e_hbh;
112 struct mbuf *ip6e_dest1;
113 struct mbuf *ip6e_rthdr;
114 struct mbuf *ip6e_dest2;
115 };
116
117 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
118 struct socket *));
119 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
120 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
121 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
122 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
123 struct ip6_frag **));
124 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
125 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
126 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
127 struct ifnet *, struct in6_addr *, u_long *, int *));
128
129 extern struct ifnet loif[NLOOP];
130
131 /*
132 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
133 * header (with pri, len, nxt, hlim, src, dst).
134 * This function may modify ver and hlim only.
135 * The mbuf chain containing the packet will be freed.
136 * The mbuf opt, if present, will not be freed.
137 *
138 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
139 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
140 * which is rt_rmx.rmx_mtu.
141 */
142 int
143 ip6_output(m0, opt, ro, flags, im6o, so, ifpp)
144 struct mbuf *m0;
145 struct ip6_pktopts *opt;
146 struct route_in6 *ro;
147 int flags;
148 struct ip6_moptions *im6o;
149 struct socket *so;
150 struct ifnet **ifpp; /* XXX: just for statistics */
151 {
152 struct ip6_hdr *ip6, *mhip6;
153 struct ifnet *ifp, *origifp;
154 struct mbuf *m = m0;
155 int hlen, tlen, len, off;
156 struct route_in6 ip6route;
157 struct sockaddr_in6 *dst;
158 int error = 0;
159 u_long mtu;
160 int alwaysfrag, dontfrag;
161 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
162 struct ip6_exthdrs exthdrs;
163 struct in6_addr finaldst;
164 struct route_in6 *ro_pmtu = NULL;
165 int hdrsplit = 0;
166 int needipsec = 0;
167 #ifdef IPSEC
168 int needipsectun = 0;
169 struct secpolicy *sp = NULL;
170
171 ip6 = mtod(m, struct ip6_hdr *);
172 #endif /* IPSEC */
173
174 #define MAKE_EXTHDR(hp, mp) \
175 do { \
176 if (hp) { \
177 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
178 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
179 ((eh)->ip6e_len + 1) << 3); \
180 if (error) \
181 goto freehdrs; \
182 } \
183 } while (/*CONSTCOND*/ 0)
184
185 bzero(&exthdrs, sizeof(exthdrs));
186 if (opt) {
187 /* Hop-by-Hop options header */
188 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
189 /* Destination options header(1st part) */
190 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
191 /* Routing header */
192 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
193 /* Destination options header(2nd part) */
194 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
195 }
196
197 #ifdef IPSEC
198 if ((flags & IPV6_FORWARDING) != 0) {
199 needipsec = 0;
200 goto skippolicycheck;
201 }
202
203 /* get a security policy for this packet */
204 if (so == NULL)
205 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
206 else {
207 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
208 IPSEC_DIR_OUTBOUND)) {
209 needipsec = 0;
210 goto skippolicycheck;
211 }
212 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
213 }
214
215 if (sp == NULL) {
216 ipsec6stat.out_inval++;
217 goto freehdrs;
218 }
219
220 error = 0;
221
222 /* check policy */
223 switch (sp->policy) {
224 case IPSEC_POLICY_DISCARD:
225 /*
226 * This packet is just discarded.
227 */
228 ipsec6stat.out_polvio++;
229 goto freehdrs;
230
231 case IPSEC_POLICY_BYPASS:
232 case IPSEC_POLICY_NONE:
233 /* no need to do IPsec. */
234 needipsec = 0;
235 break;
236
237 case IPSEC_POLICY_IPSEC:
238 if (sp->req == NULL) {
239 /* XXX should be panic ? */
240 printf("ip6_output: No IPsec request specified.\n");
241 error = EINVAL;
242 goto freehdrs;
243 }
244 needipsec = 1;
245 break;
246
247 case IPSEC_POLICY_ENTRUST:
248 default:
249 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
250 }
251
252 skippolicycheck:;
253 #endif /* IPSEC */
254
255 /*
256 * Calculate the total length of the extension header chain.
257 * Keep the length of the unfragmentable part for fragmentation.
258 */
259 optlen = 0;
260 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
261 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
262 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
263 unfragpartlen = optlen + sizeof(struct ip6_hdr);
264 /* NOTE: we don't add AH/ESP length here. do that later. */
265 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
266
267 /*
268 * If we need IPsec, or there is at least one extension header,
269 * separate IP6 header from the payload.
270 */
271 if ((needipsec || optlen) && !hdrsplit) {
272 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
273 m = NULL;
274 goto freehdrs;
275 }
276 m = exthdrs.ip6e_ip6;
277 hdrsplit++;
278 }
279
280 /* adjust pointer */
281 ip6 = mtod(m, struct ip6_hdr *);
282
283 /* adjust mbuf packet header length */
284 m->m_pkthdr.len += optlen;
285 plen = m->m_pkthdr.len - sizeof(*ip6);
286
287 /* If this is a jumbo payload, insert a jumbo payload option. */
288 if (plen > IPV6_MAXPACKET) {
289 if (!hdrsplit) {
290 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
291 m = NULL;
292 goto freehdrs;
293 }
294 m = exthdrs.ip6e_ip6;
295 hdrsplit++;
296 }
297 /* adjust pointer */
298 ip6 = mtod(m, struct ip6_hdr *);
299 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
300 goto freehdrs;
301 ip6->ip6_plen = 0;
302 } else
303 ip6->ip6_plen = htons(plen);
304
305 /*
306 * Concatenate headers and fill in next header fields.
307 * Here we have, on "m"
308 * IPv6 payload
309 * and we insert headers accordingly. Finally, we should be getting:
310 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
311 *
312 * during the header composing process, "m" points to IPv6 header.
313 * "mprev" points to an extension header prior to esp.
314 */
315 {
316 u_char *nexthdrp = &ip6->ip6_nxt;
317 struct mbuf *mprev = m;
318
319 /*
320 * we treat dest2 specially. this makes IPsec processing
321 * much easier. the goal here is to make mprev point the
322 * mbuf prior to dest2.
323 *
324 * result: IPv6 dest2 payload
325 * m and mprev will point to IPv6 header.
326 */
327 if (exthdrs.ip6e_dest2) {
328 if (!hdrsplit)
329 panic("assumption failed: hdr not split");
330 exthdrs.ip6e_dest2->m_next = m->m_next;
331 m->m_next = exthdrs.ip6e_dest2;
332 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
333 ip6->ip6_nxt = IPPROTO_DSTOPTS;
334 }
335
336 #define MAKE_CHAIN(m, mp, p, i)\
337 do {\
338 if (m) {\
339 if (!hdrsplit) \
340 panic("assumption failed: hdr not split"); \
341 *mtod((m), u_char *) = *(p);\
342 *(p) = (i);\
343 p = mtod((m), u_char *);\
344 (m)->m_next = (mp)->m_next;\
345 (mp)->m_next = (m);\
346 (mp) = (m);\
347 }\
348 } while (/*CONSTCOND*/ 0)
349 /*
350 * result: IPv6 hbh dest1 rthdr dest2 payload
351 * m will point to IPv6 header. mprev will point to the
352 * extension header prior to dest2 (rthdr in the above case).
353 */
354 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
355 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
356 IPPROTO_DSTOPTS);
357 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
358 IPPROTO_ROUTING);
359
360 #ifdef IPSEC
361 if (!needipsec)
362 goto skip_ipsec2;
363
364 /*
365 * pointers after IPsec headers are not valid any more.
366 * other pointers need a great care too.
367 * (IPsec routines should not mangle mbufs prior to AH/ESP)
368 */
369 exthdrs.ip6e_dest2 = NULL;
370
371 {
372 struct ip6_rthdr *rh = NULL;
373 int segleft_org = 0;
374 struct ipsec_output_state state;
375
376 if (exthdrs.ip6e_rthdr) {
377 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
378 segleft_org = rh->ip6r_segleft;
379 rh->ip6r_segleft = 0;
380 }
381
382 bzero(&state, sizeof(state));
383 state.m = m;
384 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
385 &needipsectun);
386 m = state.m;
387 if (error) {
388 /* mbuf is already reclaimed in ipsec6_output_trans. */
389 m = NULL;
390 switch (error) {
391 case EHOSTUNREACH:
392 case ENETUNREACH:
393 case EMSGSIZE:
394 case ENOBUFS:
395 case ENOMEM:
396 break;
397 default:
398 printf("ip6_output (ipsec): error code %d\n", error);
399 /* FALLTHROUGH */
400 case ENOENT:
401 /* don't show these error codes to the user */
402 error = 0;
403 break;
404 }
405 goto bad;
406 }
407 if (exthdrs.ip6e_rthdr) {
408 /* ah6_output doesn't modify mbuf chain */
409 rh->ip6r_segleft = segleft_org;
410 }
411 }
412 skip_ipsec2:;
413 #endif
414 }
415
416 /*
417 * If there is a routing header, replace destination address field
418 * with the first hop of the routing header.
419 */
420 if (exthdrs.ip6e_rthdr) {
421 struct ip6_rthdr *rh;
422 struct ip6_rthdr0 *rh0;
423 struct in6_addr *addr;
424
425 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
426 struct ip6_rthdr *));
427 finaldst = ip6->ip6_dst;
428 switch (rh->ip6r_type) {
429 case IPV6_RTHDR_TYPE_0:
430 rh0 = (struct ip6_rthdr0 *)rh;
431 addr = (struct in6_addr *)(rh0 + 1);
432 ip6->ip6_dst = addr[0];
433 bcopy(&addr[1], &addr[0],
434 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1));
435 addr[rh0->ip6r0_segleft - 1] = finaldst;
436 break;
437 default: /* is it possible? */
438 error = EINVAL;
439 goto bad;
440 }
441 }
442
443 /* Source address validation */
444 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
445 (flags & IPV6_UNSPECSRC) == 0) {
446 error = EOPNOTSUPP;
447 ip6stat.ip6s_badscope++;
448 goto bad;
449 }
450 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
451 error = EOPNOTSUPP;
452 ip6stat.ip6s_badscope++;
453 goto bad;
454 }
455
456 ip6stat.ip6s_localout++;
457
458 /*
459 * Route packet.
460 */
461 /* initialize cached route */
462 if (ro == 0) {
463 ro = &ip6route;
464 bzero((caddr_t)ro, sizeof(*ro));
465 }
466 ro_pmtu = ro;
467 if (opt && opt->ip6po_rthdr)
468 ro = &opt->ip6po_route;
469 dst = (struct sockaddr_in6 *)&ro->ro_dst;
470 /*
471 * If there is a cached route,
472 * check that it is to the same destination
473 * and is still up. If not, free it and try again.
474 */
475 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
476 dst->sin6_family != AF_INET6 ||
477 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
478 RTFREE(ro->ro_rt);
479 ro->ro_rt = (struct rtentry *)0;
480 }
481 if (ro->ro_rt == 0) {
482 bzero(dst, sizeof(*dst));
483 dst->sin6_family = AF_INET6;
484 dst->sin6_len = sizeof(struct sockaddr_in6);
485 dst->sin6_addr = ip6->ip6_dst;
486 }
487 #ifdef IPSEC
488 if (needipsec && needipsectun) {
489 struct ipsec_output_state state;
490
491 /*
492 * All the extension headers will become inaccessible
493 * (since they can be encrypted).
494 * Don't panic, we need no more updates to extension headers
495 * on inner IPv6 packet (since they are now encapsulated).
496 *
497 * IPv6 [ESP|AH] IPv6 [extension headers] payload
498 */
499 bzero(&exthdrs, sizeof(exthdrs));
500 exthdrs.ip6e_ip6 = m;
501
502 bzero(&state, sizeof(state));
503 state.m = m;
504 state.ro = (struct route *)ro;
505 state.dst = (struct sockaddr *)dst;
506
507 error = ipsec6_output_tunnel(&state, sp, flags);
508
509 m = state.m;
510 ro = (struct route_in6 *)state.ro;
511 dst = (struct sockaddr_in6 *)state.dst;
512 if (error) {
513 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
514 m0 = m = NULL;
515 m = NULL;
516 switch (error) {
517 case EHOSTUNREACH:
518 case ENETUNREACH:
519 case EMSGSIZE:
520 case ENOBUFS:
521 case ENOMEM:
522 break;
523 default:
524 printf("ip6_output (ipsec): error code %d\n", error);
525 /* FALLTHROUGH */
526 case ENOENT:
527 /* don't show these error codes to the user */
528 error = 0;
529 break;
530 }
531 goto bad;
532 }
533
534 exthdrs.ip6e_ip6 = m;
535 }
536 #endif /* IPSEC */
537
538 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
539 /* Unicast */
540
541 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
542 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
543 /* xxx
544 * interface selection comes here
545 * if an interface is specified from an upper layer,
546 * ifp must point it.
547 */
548 if (ro->ro_rt == 0) {
549 /*
550 * non-bsdi always clone routes, if parent is
551 * PRF_CLONING.
552 */
553 rtalloc((struct route *)ro);
554 }
555 if (ro->ro_rt == 0) {
556 ip6stat.ip6s_noroute++;
557 error = EHOSTUNREACH;
558 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
559 goto bad;
560 }
561 ifp = ro->ro_rt->rt_ifp;
562 ro->ro_rt->rt_use++;
563 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
564 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
565 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
566
567 in6_ifstat_inc(ifp, ifs6_out_request);
568
569 /*
570 * Check if the outgoing interface conflicts with
571 * the interface specified by ifi6_ifindex (if specified).
572 * Note that loopback interface is always okay.
573 * (this may happen when we are sending a packet to one of
574 * our own addresses.)
575 */
576 if (opt && opt->ip6po_pktinfo &&
577 opt->ip6po_pktinfo->ipi6_ifindex) {
578 if (!(ifp->if_flags & IFF_LOOPBACK) &&
579 ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
580 ip6stat.ip6s_noroute++;
581 in6_ifstat_inc(ifp, ifs6_out_discard);
582 error = EHOSTUNREACH;
583 goto bad;
584 }
585 }
586
587 if (opt && opt->ip6po_hlim != -1)
588 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
589 } else {
590 /* Multicast */
591 struct in6_multi *in6m;
592
593 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
594
595 /*
596 * See if the caller provided any multicast options
597 */
598 ifp = NULL;
599 if (im6o != NULL) {
600 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
601 if (im6o->im6o_multicast_ifp != NULL)
602 ifp = im6o->im6o_multicast_ifp;
603 } else
604 ip6->ip6_hlim = ip6_defmcasthlim;
605
606 /*
607 * See if the caller provided the outgoing interface
608 * as an ancillary data.
609 * Boundary check for ifindex is assumed to be already done.
610 */
611 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
612 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
613
614 /*
615 * If the destination is a node-local scope multicast,
616 * the packet should be loop-backed only.
617 */
618 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
619 /*
620 * If the outgoing interface is already specified,
621 * it should be a loopback interface.
622 */
623 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
624 ip6stat.ip6s_badscope++;
625 error = ENETUNREACH; /* XXX: better error? */
626 /* XXX correct ifp? */
627 in6_ifstat_inc(ifp, ifs6_out_discard);
628 goto bad;
629 } else {
630 ifp = &loif[0];
631 }
632 }
633
634 if (opt && opt->ip6po_hlim != -1)
635 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
636
637 /*
638 * If caller did not provide an interface lookup a
639 * default in the routing table. This is either a
640 * default for the speicfied group (i.e. a host
641 * route), or a multicast default (a route for the
642 * ``net'' ff00::/8).
643 */
644 if (ifp == NULL) {
645 if (ro->ro_rt == 0) {
646 ro->ro_rt = rtalloc1((struct sockaddr *)
647 &ro->ro_dst, 0);
648 }
649 if (ro->ro_rt == 0) {
650 ip6stat.ip6s_noroute++;
651 error = EHOSTUNREACH;
652 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
653 goto bad;
654 }
655 ifp = ro->ro_rt->rt_ifp;
656 ro->ro_rt->rt_use++;
657 }
658
659 if ((flags & IPV6_FORWARDING) == 0)
660 in6_ifstat_inc(ifp, ifs6_out_request);
661 in6_ifstat_inc(ifp, ifs6_out_mcast);
662
663 /*
664 * Confirm that the outgoing interface supports multicast.
665 */
666 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
667 ip6stat.ip6s_noroute++;
668 in6_ifstat_inc(ifp, ifs6_out_discard);
669 error = ENETUNREACH;
670 goto bad;
671 }
672 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
673 if (in6m != NULL &&
674 (im6o == NULL || im6o->im6o_multicast_loop)) {
675 /*
676 * If we belong to the destination multicast group
677 * on the outgoing interface, and the caller did not
678 * forbid loopback, loop back a copy.
679 */
680 ip6_mloopback(ifp, m, dst);
681 } else {
682 /*
683 * If we are acting as a multicast router, perform
684 * multicast forwarding as if the packet had just
685 * arrived on the interface to which we are about
686 * to send. The multicast forwarding function
687 * recursively calls this function, using the
688 * IPV6_FORWARDING flag to prevent infinite recursion.
689 *
690 * Multicasts that are looped back by ip6_mloopback(),
691 * above, will be forwarded by the ip6_input() routine,
692 * if necessary.
693 */
694 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
695 if (ip6_mforward(ip6, ifp, m) != 0) {
696 m_freem(m);
697 goto done;
698 }
699 }
700 }
701 /*
702 * Multicasts with a hoplimit of zero may be looped back,
703 * above, but must not be transmitted on a network.
704 * Also, multicasts addressed to the loopback interface
705 * are not sent -- the above call to ip6_mloopback() will
706 * loop back a copy if this host actually belongs to the
707 * destination group on the loopback interface.
708 */
709 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
710 m_freem(m);
711 goto done;
712 }
713 }
714
715 /*
716 * Fill the outgoing inteface to tell the upper layer
717 * to increment per-interface statistics.
718 */
719 if (ifpp)
720 *ifpp = ifp;
721
722 /* Determine path MTU. */
723 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
724 &alwaysfrag)) != 0)
725 goto bad;
726
727 /*
728 * The caller of this function may specify to use the minimum MTU
729 * in some cases.
730 */
731 if (mtu > IPV6_MMTU) {
732 if ((flags & IPV6_MINMTU))
733 mtu = IPV6_MMTU;
734 }
735
736 /* Fake scoped addresses */
737 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
738 /*
739 * If source or destination address is a scoped address, and
740 * the packet is going to be sent to a loopback interface,
741 * we should keep the original interface.
742 */
743
744 /*
745 * XXX: this is a very experimental and temporary solution.
746 * We eventually have sockaddr_in6 and use the sin6_scope_id
747 * field of the structure here.
748 * We rely on the consistency between two scope zone ids
749 * of source add destination, which should already be assured
750 * Larger scopes than link will be supported in the near
751 * future.
752 */
753 origifp = NULL;
754 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
755 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
756 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
757 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
758 /*
759 * XXX: origifp can be NULL even in those two cases above.
760 * For example, if we remove the (only) link-local address
761 * from the loopback interface, and try to send a link-local
762 * address without link-id information. Then the source
763 * address is ::1, and the destination address is the
764 * link-local address with its s6_addr16[1] being zero.
765 * What is worse, if the packet goes to the loopback interface
766 * by a default rejected route, the null pointer would be
767 * passed to looutput, and the kernel would hang.
768 * The following last resort would prevent such disaster.
769 */
770 if (origifp == NULL)
771 origifp = ifp;
772 } else
773 origifp = ifp;
774 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
775 ip6->ip6_src.s6_addr16[1] = 0;
776 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
777 ip6->ip6_dst.s6_addr16[1] = 0;
778
779 /*
780 * If the outgoing packet contains a hop-by-hop options header,
781 * it must be examined and processed even by the source node.
782 * (RFC 2460, section 4.)
783 */
784 if (exthdrs.ip6e_hbh) {
785 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
786 u_int32_t dummy1; /* XXX unused */
787 u_int32_t dummy2; /* XXX unused */
788
789 /*
790 * XXX: if we have to send an ICMPv6 error to the sender,
791 * we need the M_LOOP flag since icmp6_error() expects
792 * the IPv6 and the hop-by-hop options header are
793 * continuous unless the flag is set.
794 */
795 m->m_flags |= M_LOOP;
796 m->m_pkthdr.rcvif = ifp;
797 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
798 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
799 &dummy1, &dummy2) < 0) {
800 /* m was already freed at this point */
801 error = EINVAL;/* better error? */
802 goto done;
803 }
804 m->m_flags &= ~M_LOOP; /* XXX */
805 m->m_pkthdr.rcvif = NULL;
806 }
807
808 #ifdef PFIL_HOOKS
809 /*
810 * Run through list of hooks for output packets.
811 */
812 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
813 goto done;
814 if (m == NULL)
815 goto done;
816 ip6 = mtod(m, struct ip6_hdr *);
817 #endif /* PFIL_HOOKS */
818 /*
819 * Send the packet to the outgoing interface.
820 * If necessary, do IPv6 fragmentation before sending.
821 *
822 * the logic here is rather complex:
823 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
824 * 1-a: send as is if tlen <= path mtu
825 * 1-b: fragment if tlen > path mtu
826 *
827 * 2: if user asks us not to fragment (dontfrag == 1)
828 * 2-a: send as is if tlen <= interface mtu
829 * 2-b: error if tlen > interface mtu
830 *
831 * 3: if we always need to attach fragment header (alwaysfrag == 1)
832 * always fragment
833 *
834 * 4: if dontfrag == 1 && alwaysfrag == 1
835 * error, as we cannot handle this conflicting request
836 */
837 tlen = m->m_pkthdr.len;
838
839 dontfrag = 0;
840 if (dontfrag && alwaysfrag) { /* case 4 */
841 /* conflicting request - can't transmit */
842 error = EMSGSIZE;
843 goto bad;
844 }
845 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */
846 /*
847 * Even if the DONTFRAG option is specified, we cannot send the
848 * packet when the data length is larger than the MTU of the
849 * outgoing interface.
850 * Notify the error by sending IPV6_PATHMTU ancillary data as
851 * well as returning an error code (the latter is not described
852 * in the API spec.)
853 */
854 u_int32_t mtu32;
855 struct ip6ctlparam ip6cp;
856
857 mtu32 = (u_int32_t)mtu;
858 bzero(&ip6cp, sizeof(ip6cp));
859 ip6cp.ip6c_cmdarg = (void *)&mtu32;
860 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
861 (void *)&ip6cp);
862
863 error = EMSGSIZE;
864 goto bad;
865 }
866
867 /*
868 * transmit packet without fragmentation
869 */
870 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */
871 struct in6_ifaddr *ia6;
872
873 ip6 = mtod(m, struct ip6_hdr *);
874 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
875 if (ia6) {
876 /* Record statistics for this interface address. */
877 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
878 }
879 #ifdef IPSEC
880 /* clean ipsec history once it goes out of the node */
881 ipsec_delaux(m);
882 #endif
883 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
884 goto done;
885 }
886
887 /*
888 * try to fragment the packet. case 1-b and 3
889 */
890 if (mtu < IPV6_MMTU) {
891 /* path MTU cannot be less than IPV6_MMTU */
892 error = EMSGSIZE;
893 in6_ifstat_inc(ifp, ifs6_out_fragfail);
894 goto bad;
895 } else if (ip6->ip6_plen == 0) {
896 /* jumbo payload cannot be fragmented */
897 error = EMSGSIZE;
898 in6_ifstat_inc(ifp, ifs6_out_fragfail);
899 goto bad;
900 } else {
901 struct mbuf **mnext, *m_frgpart;
902 struct ip6_frag *ip6f;
903 u_int32_t id = htonl(ip6_randomid());
904 u_char nextproto;
905 struct ip6ctlparam ip6cp;
906 u_int32_t mtu32;
907
908 /*
909 * Too large for the destination or interface;
910 * fragment if possible.
911 * Must be able to put at least 8 bytes per fragment.
912 */
913 hlen = unfragpartlen;
914 if (mtu > IPV6_MAXPACKET)
915 mtu = IPV6_MAXPACKET;
916
917 /* Notify a proper path MTU to applications. */
918 mtu32 = (u_int32_t)mtu;
919 bzero(&ip6cp, sizeof(ip6cp));
920 ip6cp.ip6c_cmdarg = (void *)&mtu32;
921 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
922 (void *)&ip6cp);
923
924 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
925 if (len < 8) {
926 error = EMSGSIZE;
927 in6_ifstat_inc(ifp, ifs6_out_fragfail);
928 goto bad;
929 }
930
931 mnext = &m->m_nextpkt;
932
933 /*
934 * Change the next header field of the last header in the
935 * unfragmentable part.
936 */
937 if (exthdrs.ip6e_rthdr) {
938 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
939 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
940 } else if (exthdrs.ip6e_dest1) {
941 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
942 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
943 } else if (exthdrs.ip6e_hbh) {
944 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
945 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
946 } else {
947 nextproto = ip6->ip6_nxt;
948 ip6->ip6_nxt = IPPROTO_FRAGMENT;
949 }
950
951 /*
952 * Loop through length of segment after first fragment,
953 * make new header and copy data of each part and link onto
954 * chain.
955 */
956 m0 = m;
957 for (off = hlen; off < tlen; off += len) {
958 struct mbuf *mlast;
959
960 MGETHDR(m, M_DONTWAIT, MT_HEADER);
961 if (!m) {
962 error = ENOBUFS;
963 ip6stat.ip6s_odropped++;
964 goto sendorfree;
965 }
966 m->m_pkthdr.rcvif = NULL;
967 m->m_flags = m0->m_flags & M_COPYFLAGS;
968 *mnext = m;
969 mnext = &m->m_nextpkt;
970 m->m_data += max_linkhdr;
971 mhip6 = mtod(m, struct ip6_hdr *);
972 *mhip6 = *ip6;
973 m->m_len = sizeof(*mhip6);
974 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
975 if (error) {
976 ip6stat.ip6s_odropped++;
977 goto sendorfree;
978 }
979 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
980 if (off + len >= tlen)
981 len = tlen - off;
982 else
983 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
984 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
985 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
986 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
987 error = ENOBUFS;
988 ip6stat.ip6s_odropped++;
989 goto sendorfree;
990 }
991 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
992 ;
993 mlast->m_next = m_frgpart;
994 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
995 m->m_pkthdr.rcvif = (struct ifnet *)0;
996 ip6f->ip6f_reserved = 0;
997 ip6f->ip6f_ident = id;
998 ip6f->ip6f_nxt = nextproto;
999 ip6stat.ip6s_ofragments++;
1000 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1001 }
1002
1003 in6_ifstat_inc(ifp, ifs6_out_fragok);
1004 }
1005
1006 /*
1007 * Remove leading garbages.
1008 */
1009 sendorfree:
1010 m = m0->m_nextpkt;
1011 m0->m_nextpkt = 0;
1012 m_freem(m0);
1013 for (m0 = m; m; m = m0) {
1014 m0 = m->m_nextpkt;
1015 m->m_nextpkt = 0;
1016 if (error == 0) {
1017 struct in6_ifaddr *ia6;
1018 ip6 = mtod(m, struct ip6_hdr *);
1019 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1020 if (ia6) {
1021 /*
1022 * Record statistics for this interface
1023 * address.
1024 */
1025 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1026 m->m_pkthdr.len;
1027 }
1028 #ifdef IPSEC
1029 /* clean ipsec history once it goes out of the node */
1030 ipsec_delaux(m);
1031 #endif
1032 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1033 } else
1034 m_freem(m);
1035 }
1036
1037 if (error == 0)
1038 ip6stat.ip6s_fragmented++;
1039
1040 done:
1041 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1042 RTFREE(ro->ro_rt);
1043 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1044 RTFREE(ro_pmtu->ro_rt);
1045 }
1046
1047 #ifdef IPSEC
1048 if (sp != NULL)
1049 key_freesp(sp);
1050 #endif /* IPSEC */
1051
1052 return (error);
1053
1054 freehdrs:
1055 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1056 m_freem(exthdrs.ip6e_dest1);
1057 m_freem(exthdrs.ip6e_rthdr);
1058 m_freem(exthdrs.ip6e_dest2);
1059 /* FALLTHROUGH */
1060 bad:
1061 m_freem(m);
1062 goto done;
1063 }
1064
1065 static int
1066 ip6_copyexthdr(mp, hdr, hlen)
1067 struct mbuf **mp;
1068 caddr_t hdr;
1069 int hlen;
1070 {
1071 struct mbuf *m;
1072
1073 if (hlen > MCLBYTES)
1074 return (ENOBUFS); /* XXX */
1075
1076 MGET(m, M_DONTWAIT, MT_DATA);
1077 if (!m)
1078 return (ENOBUFS);
1079
1080 if (hlen > MLEN) {
1081 MCLGET(m, M_DONTWAIT);
1082 if ((m->m_flags & M_EXT) == 0) {
1083 m_free(m);
1084 return (ENOBUFS);
1085 }
1086 }
1087 m->m_len = hlen;
1088 if (hdr)
1089 bcopy(hdr, mtod(m, caddr_t), hlen);
1090
1091 *mp = m;
1092 return (0);
1093 }
1094
1095 /*
1096 * Insert jumbo payload option.
1097 */
1098 static int
1099 ip6_insert_jumboopt(exthdrs, plen)
1100 struct ip6_exthdrs *exthdrs;
1101 u_int32_t plen;
1102 {
1103 struct mbuf *mopt;
1104 u_int8_t *optbuf;
1105 u_int32_t v;
1106
1107 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1108
1109 /*
1110 * If there is no hop-by-hop options header, allocate new one.
1111 * If there is one but it doesn't have enough space to store the
1112 * jumbo payload option, allocate a cluster to store the whole options.
1113 * Otherwise, use it to store the options.
1114 */
1115 if (exthdrs->ip6e_hbh == 0) {
1116 MGET(mopt, M_DONTWAIT, MT_DATA);
1117 if (mopt == 0)
1118 return (ENOBUFS);
1119 mopt->m_len = JUMBOOPTLEN;
1120 optbuf = mtod(mopt, u_int8_t *);
1121 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1122 exthdrs->ip6e_hbh = mopt;
1123 } else {
1124 struct ip6_hbh *hbh;
1125
1126 mopt = exthdrs->ip6e_hbh;
1127 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1128 /*
1129 * XXX assumption:
1130 * - exthdrs->ip6e_hbh is not referenced from places
1131 * other than exthdrs.
1132 * - exthdrs->ip6e_hbh is not an mbuf chain.
1133 */
1134 int oldoptlen = mopt->m_len;
1135 struct mbuf *n;
1136
1137 /*
1138 * XXX: give up if the whole (new) hbh header does
1139 * not fit even in an mbuf cluster.
1140 */
1141 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1142 return (ENOBUFS);
1143
1144 /*
1145 * As a consequence, we must always prepare a cluster
1146 * at this point.
1147 */
1148 MGET(n, M_DONTWAIT, MT_DATA);
1149 if (n) {
1150 MCLGET(n, M_DONTWAIT);
1151 if ((n->m_flags & M_EXT) == 0) {
1152 m_freem(n);
1153 n = NULL;
1154 }
1155 }
1156 if (!n)
1157 return (ENOBUFS);
1158 n->m_len = oldoptlen + JUMBOOPTLEN;
1159 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1160 oldoptlen);
1161 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1162 m_freem(mopt);
1163 mopt = exthdrs->ip6e_hbh = n;
1164 } else {
1165 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1166 mopt->m_len += JUMBOOPTLEN;
1167 }
1168 optbuf[0] = IP6OPT_PADN;
1169 optbuf[1] = 0;
1170
1171 /*
1172 * Adjust the header length according to the pad and
1173 * the jumbo payload option.
1174 */
1175 hbh = mtod(mopt, struct ip6_hbh *);
1176 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1177 }
1178
1179 /* fill in the option. */
1180 optbuf[2] = IP6OPT_JUMBO;
1181 optbuf[3] = 4;
1182 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1183 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1184
1185 /* finally, adjust the packet header length */
1186 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1187
1188 return (0);
1189 #undef JUMBOOPTLEN
1190 }
1191
1192 /*
1193 * Insert fragment header and copy unfragmentable header portions.
1194 */
1195 static int
1196 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1197 struct mbuf *m0, *m;
1198 int hlen;
1199 struct ip6_frag **frghdrp;
1200 {
1201 struct mbuf *n, *mlast;
1202
1203 if (hlen > sizeof(struct ip6_hdr)) {
1204 n = m_copym(m0, sizeof(struct ip6_hdr),
1205 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1206 if (n == 0)
1207 return (ENOBUFS);
1208 m->m_next = n;
1209 } else
1210 n = m;
1211
1212 /* Search for the last mbuf of unfragmentable part. */
1213 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1214 ;
1215
1216 if ((mlast->m_flags & M_EXT) == 0 &&
1217 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1218 /* use the trailing space of the last mbuf for the fragment hdr */
1219 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1220 mlast->m_len);
1221 mlast->m_len += sizeof(struct ip6_frag);
1222 m->m_pkthdr.len += sizeof(struct ip6_frag);
1223 } else {
1224 /* allocate a new mbuf for the fragment header */
1225 struct mbuf *mfrg;
1226
1227 MGET(mfrg, M_DONTWAIT, MT_DATA);
1228 if (mfrg == 0)
1229 return (ENOBUFS);
1230 mfrg->m_len = sizeof(struct ip6_frag);
1231 *frghdrp = mtod(mfrg, struct ip6_frag *);
1232 mlast->m_next = mfrg;
1233 }
1234
1235 return (0);
1236 }
1237
1238 static int
1239 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup, alwaysfragp)
1240 struct route_in6 *ro_pmtu, *ro;
1241 struct ifnet *ifp;
1242 struct in6_addr *dst;
1243 u_long *mtup;
1244 int *alwaysfragp;
1245 {
1246 u_int32_t mtu = 0;
1247 int alwaysfrag = 0;
1248 int error = 0;
1249
1250 if (ro_pmtu != ro) {
1251 /* The first hop and the final destination may differ. */
1252 struct sockaddr_in6 *sa6_dst =
1253 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1254 if (ro_pmtu->ro_rt &&
1255 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1256 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1257 RTFREE(ro_pmtu->ro_rt);
1258 ro_pmtu->ro_rt = (struct rtentry *)NULL;
1259 }
1260 if (ro_pmtu->ro_rt == NULL) {
1261 bzero(sa6_dst, sizeof(*sa6_dst)); /* for safety */
1262 sa6_dst->sin6_family = AF_INET6;
1263 sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1264 sa6_dst->sin6_addr = *dst;
1265
1266 rtalloc((struct route *)ro_pmtu);
1267 }
1268 }
1269 if (ro_pmtu->ro_rt) {
1270 u_int32_t ifmtu;
1271
1272 if (ifp == NULL)
1273 ifp = ro_pmtu->ro_rt->rt_ifp;
1274 ifmtu = IN6_LINKMTU(ifp);
1275 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1276 if (mtu == 0)
1277 mtu = ifmtu;
1278 else if (mtu < IPV6_MMTU) {
1279 /*
1280 * RFC2460 section 5, last paragraph:
1281 * if we record ICMPv6 too big message with
1282 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1283 * or smaller, with fragment header attached.
1284 * (fragment header is needed regardless from the
1285 * packet size, for translators to identify packets)
1286 */
1287 alwaysfrag = 1;
1288 mtu = IPV6_MMTU;
1289 } else if (mtu > ifmtu) {
1290 /*
1291 * The MTU on the route is larger than the MTU on
1292 * the interface! This shouldn't happen, unless the
1293 * MTU of the interface has been changed after the
1294 * interface was brought up. Change the MTU in the
1295 * route to match the interface MTU (as long as the
1296 * field isn't locked).
1297 */
1298 mtu = ifmtu;
1299 if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU))
1300 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1301 }
1302 } else if (ifp) {
1303 mtu = IN6_LINKMTU(ifp);
1304 } else
1305 error = EHOSTUNREACH; /* XXX */
1306
1307 *mtup = mtu;
1308 if (alwaysfragp)
1309 *alwaysfragp = alwaysfrag;
1310 return (error);
1311 }
1312
1313 /*
1314 * IP6 socket option processing.
1315 */
1316 int
1317 ip6_ctloutput(op, so, level, optname, mp)
1318 int op;
1319 struct socket *so;
1320 int level, optname;
1321 struct mbuf **mp;
1322 {
1323 struct in6pcb *in6p = sotoin6pcb(so);
1324 struct mbuf *m = *mp;
1325 int optval = 0;
1326 int error = 0;
1327 struct proc *p = curproc; /* XXX */
1328
1329 if (level == IPPROTO_IPV6) {
1330 switch (op) {
1331 case PRCO_SETOPT:
1332 switch (optname) {
1333 case IPV6_PKTOPTIONS:
1334 /* m is freed in ip6_pcbopts */
1335 return (ip6_pcbopts(&in6p->in6p_outputopts,
1336 m, so));
1337 case IPV6_HOPOPTS:
1338 case IPV6_DSTOPTS:
1339 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1340 error = EPERM;
1341 break;
1342 }
1343 /* FALLTHROUGH */
1344 case IPV6_UNICAST_HOPS:
1345 case IPV6_RECVOPTS:
1346 case IPV6_RECVRETOPTS:
1347 case IPV6_RECVDSTADDR:
1348 case IPV6_PKTINFO:
1349 case IPV6_HOPLIMIT:
1350 case IPV6_RTHDR:
1351 case IPV6_FAITH:
1352 case IPV6_V6ONLY:
1353 if (!m || m->m_len != sizeof(int)) {
1354 error = EINVAL;
1355 break;
1356 }
1357 optval = *mtod(m, int *);
1358 switch (optname) {
1359
1360 case IPV6_UNICAST_HOPS:
1361 if (optval < -1 || optval >= 256)
1362 error = EINVAL;
1363 else {
1364 /* -1 = kernel default */
1365 in6p->in6p_hops = optval;
1366 }
1367 break;
1368 #define OPTSET(bit) \
1369 do { \
1370 if (optval) \
1371 in6p->in6p_flags |= (bit); \
1372 else \
1373 in6p->in6p_flags &= ~(bit); \
1374 } while (/*CONSTCOND*/ 0)
1375
1376 case IPV6_RECVOPTS:
1377 OPTSET(IN6P_RECVOPTS);
1378 break;
1379
1380 case IPV6_RECVRETOPTS:
1381 OPTSET(IN6P_RECVRETOPTS);
1382 break;
1383
1384 case IPV6_RECVDSTADDR:
1385 OPTSET(IN6P_RECVDSTADDR);
1386 break;
1387
1388 case IPV6_PKTINFO:
1389 OPTSET(IN6P_PKTINFO);
1390 break;
1391
1392 case IPV6_HOPLIMIT:
1393 OPTSET(IN6P_HOPLIMIT);
1394 break;
1395
1396 case IPV6_HOPOPTS:
1397 OPTSET(IN6P_HOPOPTS);
1398 break;
1399
1400 case IPV6_DSTOPTS:
1401 OPTSET(IN6P_DSTOPTS);
1402 break;
1403
1404 case IPV6_RTHDR:
1405 OPTSET(IN6P_RTHDR);
1406 break;
1407
1408 case IPV6_FAITH:
1409 OPTSET(IN6P_FAITH);
1410 break;
1411
1412 case IPV6_V6ONLY:
1413 /*
1414 * make setsockopt(IPV6_V6ONLY)
1415 * available only prior to bind(2).
1416 * see ipng mailing list, Jun 22 2001.
1417 */
1418 if (in6p->in6p_lport ||
1419 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1420 error = EINVAL;
1421 break;
1422 }
1423 #ifdef INET6_BINDV6ONLY
1424 if (!optval)
1425 error = EINVAL;
1426 #else
1427 OPTSET(IN6P_IPV6_V6ONLY);
1428 #endif
1429 break;
1430 }
1431 break;
1432 #undef OPTSET
1433
1434 case IPV6_MULTICAST_IF:
1435 case IPV6_MULTICAST_HOPS:
1436 case IPV6_MULTICAST_LOOP:
1437 case IPV6_JOIN_GROUP:
1438 case IPV6_LEAVE_GROUP:
1439 error = ip6_setmoptions(optname,
1440 &in6p->in6p_moptions, m);
1441 break;
1442
1443 case IPV6_PORTRANGE:
1444 optval = *mtod(m, int *);
1445
1446 switch (optval) {
1447 case IPV6_PORTRANGE_DEFAULT:
1448 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1449 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1450 break;
1451
1452 case IPV6_PORTRANGE_HIGH:
1453 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1454 in6p->in6p_flags |= IN6P_HIGHPORT;
1455 break;
1456
1457 case IPV6_PORTRANGE_LOW:
1458 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1459 in6p->in6p_flags |= IN6P_LOWPORT;
1460 break;
1461
1462 default:
1463 error = EINVAL;
1464 break;
1465 }
1466 break;
1467
1468 #ifdef IPSEC
1469 case IPV6_IPSEC_POLICY:
1470 {
1471 caddr_t req = NULL;
1472 size_t len = 0;
1473
1474 int priv = 0;
1475 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1476 priv = 0;
1477 else
1478 priv = 1;
1479 if (m) {
1480 req = mtod(m, caddr_t);
1481 len = m->m_len;
1482 }
1483 error = ipsec6_set_policy(in6p,
1484 optname, req, len, priv);
1485 }
1486 break;
1487 #endif /* IPSEC */
1488
1489 default:
1490 error = ENOPROTOOPT;
1491 break;
1492 }
1493 if (m)
1494 (void)m_free(m);
1495 break;
1496
1497 case PRCO_GETOPT:
1498 switch (optname) {
1499
1500 case IPV6_OPTIONS:
1501 case IPV6_RETOPTS:
1502 error = ENOPROTOOPT;
1503 break;
1504
1505 case IPV6_PKTOPTIONS:
1506 if (in6p->in6p_options) {
1507 *mp = m_copym(in6p->in6p_options, 0,
1508 M_COPYALL, M_WAIT);
1509 } else {
1510 *mp = m_get(M_WAIT, MT_SOOPTS);
1511 (*mp)->m_len = 0;
1512 }
1513 break;
1514
1515 case IPV6_HOPOPTS:
1516 case IPV6_DSTOPTS:
1517 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1518 error = EPERM;
1519 break;
1520 }
1521 /* FALLTHROUGH */
1522 case IPV6_UNICAST_HOPS:
1523 case IPV6_RECVOPTS:
1524 case IPV6_RECVRETOPTS:
1525 case IPV6_RECVDSTADDR:
1526 case IPV6_PORTRANGE:
1527 case IPV6_PKTINFO:
1528 case IPV6_HOPLIMIT:
1529 case IPV6_RTHDR:
1530 case IPV6_FAITH:
1531 case IPV6_V6ONLY:
1532 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1533 m->m_len = sizeof(int);
1534 switch (optname) {
1535
1536 case IPV6_UNICAST_HOPS:
1537 optval = in6p->in6p_hops;
1538 break;
1539
1540 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1541
1542 case IPV6_RECVOPTS:
1543 optval = OPTBIT(IN6P_RECVOPTS);
1544 break;
1545
1546 case IPV6_RECVRETOPTS:
1547 optval = OPTBIT(IN6P_RECVRETOPTS);
1548 break;
1549
1550 case IPV6_RECVDSTADDR:
1551 optval = OPTBIT(IN6P_RECVDSTADDR);
1552 break;
1553
1554 case IPV6_PORTRANGE:
1555 {
1556 int flags;
1557 flags = in6p->in6p_flags;
1558 if (flags & IN6P_HIGHPORT)
1559 optval = IPV6_PORTRANGE_HIGH;
1560 else if (flags & IN6P_LOWPORT)
1561 optval = IPV6_PORTRANGE_LOW;
1562 else
1563 optval = 0;
1564 break;
1565 }
1566
1567 case IPV6_PKTINFO:
1568 optval = OPTBIT(IN6P_PKTINFO);
1569 break;
1570
1571 case IPV6_HOPLIMIT:
1572 optval = OPTBIT(IN6P_HOPLIMIT);
1573 break;
1574
1575 case IPV6_HOPOPTS:
1576 optval = OPTBIT(IN6P_HOPOPTS);
1577 break;
1578
1579 case IPV6_DSTOPTS:
1580 optval = OPTBIT(IN6P_DSTOPTS);
1581 break;
1582
1583 case IPV6_RTHDR:
1584 optval = OPTBIT(IN6P_RTHDR);
1585 break;
1586
1587 case IPV6_FAITH:
1588 optval = OPTBIT(IN6P_FAITH);
1589 break;
1590
1591 case IPV6_V6ONLY:
1592 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1593 break;
1594 }
1595 *mtod(m, int *) = optval;
1596 break;
1597
1598 case IPV6_MULTICAST_IF:
1599 case IPV6_MULTICAST_HOPS:
1600 case IPV6_MULTICAST_LOOP:
1601 case IPV6_JOIN_GROUP:
1602 case IPV6_LEAVE_GROUP:
1603 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1604 break;
1605
1606 #ifdef IPSEC
1607 case IPV6_IPSEC_POLICY:
1608 {
1609 caddr_t req = NULL;
1610 size_t len = 0;
1611
1612 if (m) {
1613 req = mtod(m, caddr_t);
1614 len = m->m_len;
1615 }
1616 error = ipsec6_get_policy(in6p, req, len, mp);
1617 break;
1618 }
1619 #endif /* IPSEC */
1620
1621 default:
1622 error = ENOPROTOOPT;
1623 break;
1624 }
1625 break;
1626 }
1627 } else {
1628 error = EINVAL;
1629 if (op == PRCO_SETOPT && *mp)
1630 (void)m_free(*mp);
1631 }
1632 return (error);
1633 }
1634
1635 int
1636 ip6_raw_ctloutput(op, so, level, optname, mp)
1637 int op;
1638 struct socket *so;
1639 int level, optname;
1640 struct mbuf **mp;
1641 {
1642 int error = 0, optval, optlen;
1643 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1644 struct in6pcb *in6p = sotoin6pcb(so);
1645 struct mbuf *m = *mp;
1646
1647 optlen = m ? m->m_len : 0;
1648
1649 if (level != IPPROTO_IPV6) {
1650 if (op == PRCO_SETOPT && *mp)
1651 (void)m_free(*mp);
1652 return (EINVAL);
1653 }
1654
1655 switch (optname) {
1656 case IPV6_CHECKSUM:
1657 /*
1658 * For ICMPv6 sockets, no modification allowed for checksum
1659 * offset, permit "no change" values to help existing apps.
1660 *
1661 * XXX 2292bis says: "An attempt to set IPV6_CHECKSUM
1662 * for an ICMPv6 socket will fail."
1663 * The current behavior does not meet 2292bis.
1664 */
1665 switch (op) {
1666 case PRCO_SETOPT:
1667 if (optlen != sizeof(int)) {
1668 error = EINVAL;
1669 break;
1670 }
1671 optval = *mtod(m, int *);
1672 if ((optval % 2) != 0) {
1673 /* the API assumes even offset values */
1674 error = EINVAL;
1675 } else if (so->so_proto->pr_protocol ==
1676 IPPROTO_ICMPV6) {
1677 if (optval != icmp6off)
1678 error = EINVAL;
1679 } else
1680 in6p->in6p_cksum = optval;
1681 break;
1682
1683 case PRCO_GETOPT:
1684 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
1685 optval = icmp6off;
1686 else
1687 optval = in6p->in6p_cksum;
1688
1689 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1690 m->m_len = sizeof(int);
1691 *mtod(m, int *) = optval;
1692 break;
1693
1694 default:
1695 error = EINVAL;
1696 break;
1697 }
1698 break;
1699
1700 default:
1701 error = ENOPROTOOPT;
1702 break;
1703 }
1704
1705 if (op == PRCO_SETOPT && m)
1706 (void)m_free(m);
1707
1708 return (error);
1709 }
1710
1711 /*
1712 * Set up IP6 options in pcb for insertion in output packets.
1713 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1714 * with destination address if source routed.
1715 */
1716 static int
1717 ip6_pcbopts(pktopt, m, so)
1718 struct ip6_pktopts **pktopt;
1719 struct mbuf *m;
1720 struct socket *so;
1721 {
1722 struct ip6_pktopts *opt = *pktopt;
1723 int error = 0;
1724 struct proc *p = curproc; /* XXX */
1725 int priv = 0;
1726
1727 /* turn off any old options. */
1728 if (opt) {
1729 if (opt->ip6po_m)
1730 (void)m_free(opt->ip6po_m);
1731 } else
1732 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1733 *pktopt = 0;
1734
1735 if (!m || m->m_len == 0) {
1736 /*
1737 * Only turning off any previous options.
1738 */
1739 free(opt, M_IP6OPT);
1740 if (m)
1741 (void)m_free(m);
1742 return (0);
1743 }
1744
1745 /* set options specified by user. */
1746 if (p && !suser(p->p_ucred, &p->p_acflag))
1747 priv = 1;
1748 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1749 (void)m_free(m);
1750 free(opt, M_IP6OPT);
1751 return (error);
1752 }
1753 *pktopt = opt;
1754 return (0);
1755 }
1756
1757 /*
1758 * Set the IP6 multicast options in response to user setsockopt().
1759 */
1760 static int
1761 ip6_setmoptions(optname, im6op, m)
1762 int optname;
1763 struct ip6_moptions **im6op;
1764 struct mbuf *m;
1765 {
1766 int error = 0;
1767 u_int loop, ifindex;
1768 struct ipv6_mreq *mreq;
1769 struct ifnet *ifp;
1770 struct ip6_moptions *im6o = *im6op;
1771 struct route_in6 ro;
1772 struct sockaddr_in6 *dst;
1773 struct in6_multi_mship *imm;
1774 struct proc *p = curproc; /* XXX */
1775
1776 if (im6o == NULL) {
1777 /*
1778 * No multicast option buffer attached to the pcb;
1779 * allocate one and initialize to default values.
1780 */
1781 im6o = (struct ip6_moptions *)
1782 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1783
1784 if (im6o == NULL)
1785 return (ENOBUFS);
1786 *im6op = im6o;
1787 im6o->im6o_multicast_ifp = NULL;
1788 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1789 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1790 LIST_INIT(&im6o->im6o_memberships);
1791 }
1792
1793 switch (optname) {
1794
1795 case IPV6_MULTICAST_IF:
1796 /*
1797 * Select the interface for outgoing multicast packets.
1798 */
1799 if (m == NULL || m->m_len != sizeof(u_int)) {
1800 error = EINVAL;
1801 break;
1802 }
1803 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1804 if (ifindex < 0 || if_indexlim <= ifindex ||
1805 !ifindex2ifnet[ifindex]) {
1806 error = ENXIO; /* XXX EINVAL? */
1807 break;
1808 }
1809 ifp = ifindex2ifnet[ifindex];
1810 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1811 error = EADDRNOTAVAIL;
1812 break;
1813 }
1814 im6o->im6o_multicast_ifp = ifp;
1815 break;
1816
1817 case IPV6_MULTICAST_HOPS:
1818 {
1819 /*
1820 * Set the IP6 hoplimit for outgoing multicast packets.
1821 */
1822 int optval;
1823 if (m == NULL || m->m_len != sizeof(int)) {
1824 error = EINVAL;
1825 break;
1826 }
1827 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1828 if (optval < -1 || optval >= 256)
1829 error = EINVAL;
1830 else if (optval == -1)
1831 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1832 else
1833 im6o->im6o_multicast_hlim = optval;
1834 break;
1835 }
1836
1837 case IPV6_MULTICAST_LOOP:
1838 /*
1839 * Set the loopback flag for outgoing multicast packets.
1840 * Must be zero or one.
1841 */
1842 if (m == NULL || m->m_len != sizeof(u_int)) {
1843 error = EINVAL;
1844 break;
1845 }
1846 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1847 if (loop > 1) {
1848 error = EINVAL;
1849 break;
1850 }
1851 im6o->im6o_multicast_loop = loop;
1852 break;
1853
1854 case IPV6_JOIN_GROUP:
1855 /*
1856 * Add a multicast group membership.
1857 * Group must be a valid IP6 multicast address.
1858 */
1859 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1860 error = EINVAL;
1861 break;
1862 }
1863 mreq = mtod(m, struct ipv6_mreq *);
1864 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1865 /*
1866 * We use the unspecified address to specify to accept
1867 * all multicast addresses. Only super user is allowed
1868 * to do this.
1869 */
1870 if (suser(p->p_ucred, &p->p_acflag))
1871 {
1872 error = EACCES;
1873 break;
1874 }
1875 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1876 error = EINVAL;
1877 break;
1878 }
1879
1880 /*
1881 * If the interface is specified, validate it.
1882 */
1883 if (mreq->ipv6mr_interface < 0 ||
1884 if_indexlim <= mreq->ipv6mr_interface ||
1885 !ifindex2ifnet[mreq->ipv6mr_interface]) {
1886 error = ENXIO; /* XXX EINVAL? */
1887 break;
1888 }
1889 /*
1890 * If no interface was explicitly specified, choose an
1891 * appropriate one according to the given multicast address.
1892 */
1893 if (mreq->ipv6mr_interface == 0) {
1894 /*
1895 * If the multicast address is in node-local scope,
1896 * the interface should be a loopback interface.
1897 * Otherwise, look up the routing table for the
1898 * address, and choose the outgoing interface.
1899 * XXX: is it a good approach?
1900 */
1901 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1902 ifp = &loif[0];
1903 } else {
1904 ro.ro_rt = NULL;
1905 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1906 bzero(dst, sizeof(*dst));
1907 dst->sin6_len = sizeof(struct sockaddr_in6);
1908 dst->sin6_family = AF_INET6;
1909 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1910 rtalloc((struct route *)&ro);
1911 if (ro.ro_rt == NULL) {
1912 error = EADDRNOTAVAIL;
1913 break;
1914 }
1915 ifp = ro.ro_rt->rt_ifp;
1916 rtfree(ro.ro_rt);
1917 }
1918 } else
1919 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1920
1921 /*
1922 * See if we found an interface, and confirm that it
1923 * supports multicast
1924 */
1925 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1926 error = EADDRNOTAVAIL;
1927 break;
1928 }
1929 /*
1930 * Put interface index into the multicast address,
1931 * if the address has link-local scope.
1932 */
1933 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1934 mreq->ipv6mr_multiaddr.s6_addr16[1] =
1935 htons(ifp->if_index);
1936 }
1937 /*
1938 * See if the membership already exists.
1939 */
1940 for (imm = im6o->im6o_memberships.lh_first;
1941 imm != NULL; imm = imm->i6mm_chain.le_next)
1942 if (imm->i6mm_maddr->in6m_ifp == ifp &&
1943 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
1944 &mreq->ipv6mr_multiaddr))
1945 break;
1946 if (imm != NULL) {
1947 error = EADDRINUSE;
1948 break;
1949 }
1950 /*
1951 * Everything looks good; add a new record to the multicast
1952 * address list for the given interface.
1953 */
1954 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error);
1955 if (!imm)
1956 break;
1957 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
1958 break;
1959
1960 case IPV6_LEAVE_GROUP:
1961 /*
1962 * Drop a multicast group membership.
1963 * Group must be a valid IP6 multicast address.
1964 */
1965 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1966 error = EINVAL;
1967 break;
1968 }
1969 mreq = mtod(m, struct ipv6_mreq *);
1970 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1971 if (suser(p->p_ucred, &p->p_acflag))
1972 {
1973 error = EACCES;
1974 break;
1975 }
1976 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1977 error = EINVAL;
1978 break;
1979 }
1980 /*
1981 * If an interface address was specified, get a pointer
1982 * to its ifnet structure.
1983 */
1984 if (mreq->ipv6mr_interface < 0 ||
1985 if_indexlim <= mreq->ipv6mr_interface ||
1986 !ifindex2ifnet[mreq->ipv6mr_interface]) {
1987 error = ENXIO; /* XXX EINVAL? */
1988 break;
1989 }
1990 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1991 /*
1992 * Put interface index into the multicast address,
1993 * if the address has link-local scope.
1994 */
1995 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1996 mreq->ipv6mr_multiaddr.s6_addr16[1] =
1997 htons(mreq->ipv6mr_interface);
1998 }
1999 /*
2000 * Find the membership in the membership list.
2001 */
2002 for (imm = im6o->im6o_memberships.lh_first;
2003 imm != NULL; imm = imm->i6mm_chain.le_next) {
2004 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2005 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2006 &mreq->ipv6mr_multiaddr))
2007 break;
2008 }
2009 if (imm == NULL) {
2010 /* Unable to resolve interface */
2011 error = EADDRNOTAVAIL;
2012 break;
2013 }
2014 /*
2015 * Give up the multicast address record to which the
2016 * membership points.
2017 */
2018 LIST_REMOVE(imm, i6mm_chain);
2019 in6_leavegroup(imm);
2020 break;
2021
2022 default:
2023 error = EOPNOTSUPP;
2024 break;
2025 }
2026
2027 /*
2028 * If all options have default values, no need to keep the mbuf.
2029 */
2030 if (im6o->im6o_multicast_ifp == NULL &&
2031 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2032 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2033 im6o->im6o_memberships.lh_first == NULL) {
2034 free(*im6op, M_IPMOPTS);
2035 *im6op = NULL;
2036 }
2037
2038 return (error);
2039 }
2040
2041 /*
2042 * Return the IP6 multicast options in response to user getsockopt().
2043 */
2044 static int
2045 ip6_getmoptions(optname, im6o, mp)
2046 int optname;
2047 struct ip6_moptions *im6o;
2048 struct mbuf **mp;
2049 {
2050 u_int *hlim, *loop, *ifindex;
2051
2052 *mp = m_get(M_WAIT, MT_SOOPTS);
2053
2054 switch (optname) {
2055
2056 case IPV6_MULTICAST_IF:
2057 ifindex = mtod(*mp, u_int *);
2058 (*mp)->m_len = sizeof(u_int);
2059 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2060 *ifindex = 0;
2061 else
2062 *ifindex = im6o->im6o_multicast_ifp->if_index;
2063 return (0);
2064
2065 case IPV6_MULTICAST_HOPS:
2066 hlim = mtod(*mp, u_int *);
2067 (*mp)->m_len = sizeof(u_int);
2068 if (im6o == NULL)
2069 *hlim = ip6_defmcasthlim;
2070 else
2071 *hlim = im6o->im6o_multicast_hlim;
2072 return (0);
2073
2074 case IPV6_MULTICAST_LOOP:
2075 loop = mtod(*mp, u_int *);
2076 (*mp)->m_len = sizeof(u_int);
2077 if (im6o == NULL)
2078 *loop = ip6_defmcasthlim;
2079 else
2080 *loop = im6o->im6o_multicast_loop;
2081 return (0);
2082
2083 default:
2084 return (EOPNOTSUPP);
2085 }
2086 }
2087
2088 /*
2089 * Discard the IP6 multicast options.
2090 */
2091 void
2092 ip6_freemoptions(im6o)
2093 struct ip6_moptions *im6o;
2094 {
2095 struct in6_multi_mship *imm;
2096
2097 if (im6o == NULL)
2098 return;
2099
2100 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2101 LIST_REMOVE(imm, i6mm_chain);
2102 in6_leavegroup(imm);
2103 }
2104 free(im6o, M_IPMOPTS);
2105 }
2106
2107 /*
2108 * Set IPv6 outgoing packet options based on advanced API.
2109 */
2110 int
2111 ip6_setpktoptions(control, opt, priv)
2112 struct mbuf *control;
2113 struct ip6_pktopts *opt;
2114 int priv;
2115 {
2116 struct cmsghdr *cm = 0;
2117
2118 if (control == 0 || opt == 0)
2119 return (EINVAL);
2120
2121 bzero(opt, sizeof(*opt));
2122 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
2123
2124 /*
2125 * XXX: Currently, we assume all the optional information is stored
2126 * in a single mbuf.
2127 */
2128 if (control->m_next)
2129 return (EINVAL);
2130
2131 opt->ip6po_m = control;
2132
2133 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2134 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2135 cm = mtod(control, struct cmsghdr *);
2136 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2137 return (EINVAL);
2138 if (cm->cmsg_level != IPPROTO_IPV6)
2139 continue;
2140
2141 switch (cm->cmsg_type) {
2142 case IPV6_PKTINFO:
2143 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
2144 return (EINVAL);
2145 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
2146 if (opt->ip6po_pktinfo->ipi6_ifindex &&
2147 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
2148 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
2149 htons(opt->ip6po_pktinfo->ipi6_ifindex);
2150
2151 if (opt->ip6po_pktinfo->ipi6_ifindex >= if_indexlim ||
2152 opt->ip6po_pktinfo->ipi6_ifindex < 0)
2153 return (ENXIO);
2154 if (opt->ip6po_pktinfo->ipi6_ifindex > 0 &&
2155 !ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex])
2156 return (ENXIO);
2157
2158 /*
2159 * Check if the requested source address is indeed a
2160 * unicast address assigned to the node, and can be
2161 * used as the packet's source address.
2162 */
2163 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2164 struct ifaddr *ia;
2165 struct in6_ifaddr *ia6;
2166 struct sockaddr_in6 sin6;
2167
2168 bzero(&sin6, sizeof(sin6));
2169 sin6.sin6_len = sizeof(sin6);
2170 sin6.sin6_family = AF_INET6;
2171 sin6.sin6_addr =
2172 opt->ip6po_pktinfo->ipi6_addr;
2173 ia = ifa_ifwithaddr(sin6tosa(&sin6));
2174 if (ia == NULL ||
2175 (opt->ip6po_pktinfo->ipi6_ifindex &&
2176 (ia->ifa_ifp->if_index !=
2177 opt->ip6po_pktinfo->ipi6_ifindex))) {
2178 return (EADDRNOTAVAIL);
2179 }
2180 ia6 = (struct in6_ifaddr *)ia;
2181 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) {
2182 return (EADDRNOTAVAIL);
2183 }
2184
2185 /*
2186 * Check if the requested source address is
2187 * indeed a unicast address assigned to the
2188 * node.
2189 */
2190 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
2191 return (EADDRNOTAVAIL);
2192 }
2193 break;
2194
2195 case IPV6_HOPLIMIT:
2196 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2197 return (EINVAL);
2198 else {
2199 int t;
2200
2201 bcopy(CMSG_DATA(cm), &t, sizeof(t));
2202 if (t < -1 || t > 255)
2203 return (EINVAL);
2204 opt->ip6po_hlim = t;
2205 }
2206 break;
2207
2208 case IPV6_NEXTHOP:
2209 if (!priv)
2210 return (EPERM);
2211
2212 /* check if cmsg_len is large enough for sa_len */
2213 if (cm->cmsg_len < sizeof(u_char) ||
2214 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2215 return (EINVAL);
2216
2217 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2218
2219 break;
2220
2221 case IPV6_HOPOPTS:
2222 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2223 return (EINVAL);
2224 else {
2225 struct ip6_hbh *t;
2226
2227 t = (struct ip6_hbh *)CMSG_DATA(cm);
2228 if (cm->cmsg_len !=
2229 CMSG_LEN((t->ip6h_len + 1) << 3))
2230 return (EINVAL);
2231 opt->ip6po_hbh = t;
2232 }
2233 break;
2234
2235 case IPV6_DSTOPTS:
2236 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2237 return (EINVAL);
2238
2239 /*
2240 * If there is no routing header yet, the destination
2241 * options header should be put on the 1st part.
2242 * Otherwise, the header should be on the 2nd part.
2243 * (See RFC 2460, section 4.1)
2244 */
2245 if (opt->ip6po_rthdr == NULL) {
2246 struct ip6_dest *t;
2247
2248 t = (struct ip6_dest *)CMSG_DATA(cm);
2249 if (cm->cmsg_len !=
2250 CMSG_LEN((t->ip6d_len + 1) << 3));
2251 return (EINVAL);
2252 opt->ip6po_dest1 = t;
2253 }
2254 else {
2255 struct ip6_dest *t;
2256
2257 t = (struct ip6_dest *)CMSG_DATA(cm);
2258 if (cm->cmsg_len !=
2259 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) << 3))
2260 return (EINVAL);
2261 opt->ip6po_dest2 = t;
2262 }
2263 break;
2264
2265 case IPV6_RTHDR:
2266 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2267 return (EINVAL);
2268 else {
2269 struct ip6_rthdr *t;
2270
2271 t = (struct ip6_rthdr *)CMSG_DATA(cm);
2272 if (cm->cmsg_len !=
2273 CMSG_LEN((t->ip6r_len + 1) << 3))
2274 return (EINVAL);
2275 switch (t->ip6r_type) {
2276 case IPV6_RTHDR_TYPE_0:
2277 if (t->ip6r_segleft == 0)
2278 return (EINVAL);
2279 break;
2280 default:
2281 return (EINVAL);
2282 }
2283 opt->ip6po_rthdr = t;
2284 }
2285 break;
2286
2287 default:
2288 return (ENOPROTOOPT);
2289 }
2290 }
2291
2292 return (0);
2293 }
2294
2295 /*
2296 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2297 * packet to the input queue of a specified interface. Note that this
2298 * calls the output routine of the loopback "driver", but with an interface
2299 * pointer that might NOT be &loif -- easier than replicating that code here.
2300 */
2301 void
2302 ip6_mloopback(ifp, m, dst)
2303 struct ifnet *ifp;
2304 struct mbuf *m;
2305 struct sockaddr_in6 *dst;
2306 {
2307 struct mbuf *copym;
2308 struct ip6_hdr *ip6;
2309
2310 copym = m_copy(m, 0, M_COPYALL);
2311 if (copym == NULL)
2312 return;
2313
2314 /*
2315 * Make sure to deep-copy IPv6 header portion in case the data
2316 * is in an mbuf cluster, so that we can safely override the IPv6
2317 * header portion later.
2318 */
2319 if ((copym->m_flags & M_EXT) != 0 ||
2320 copym->m_len < sizeof(struct ip6_hdr)) {
2321 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2322 if (copym == NULL)
2323 return;
2324 }
2325
2326 #ifdef DIAGNOSTIC
2327 if (copym->m_len < sizeof(*ip6)) {
2328 m_freem(copym);
2329 return;
2330 }
2331 #endif
2332
2333 ip6 = mtod(copym, struct ip6_hdr *);
2334 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
2335 ip6->ip6_src.s6_addr16[1] = 0;
2336 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
2337 ip6->ip6_dst.s6_addr16[1] = 0;
2338
2339 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2340 }
2341
2342 /*
2343 * Chop IPv6 header off from the payload.
2344 */
2345 static int
2346 ip6_splithdr(m, exthdrs)
2347 struct mbuf *m;
2348 struct ip6_exthdrs *exthdrs;
2349 {
2350 struct mbuf *mh;
2351 struct ip6_hdr *ip6;
2352
2353 ip6 = mtod(m, struct ip6_hdr *);
2354 if (m->m_len > sizeof(*ip6)) {
2355 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2356 if (mh == 0) {
2357 m_freem(m);
2358 return ENOBUFS;
2359 }
2360 M_COPY_PKTHDR(mh, m);
2361 MH_ALIGN(mh, sizeof(*ip6));
2362 m_tag_delete_chain(m, NULL);
2363 m->m_flags &= ~M_PKTHDR;
2364 m->m_len -= sizeof(*ip6);
2365 m->m_data += sizeof(*ip6);
2366 mh->m_next = m;
2367 m = mh;
2368 m->m_len = sizeof(*ip6);
2369 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2370 }
2371 exthdrs->ip6e_ip6 = m;
2372 return 0;
2373 }
2374
2375 /*
2376 * Compute IPv6 extension header length.
2377 */
2378 int
2379 ip6_optlen(in6p)
2380 struct in6pcb *in6p;
2381 {
2382 int len;
2383
2384 if (!in6p->in6p_outputopts)
2385 return 0;
2386
2387 len = 0;
2388 #define elen(x) \
2389 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2390
2391 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2392 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2393 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2394 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2395 return len;
2396 #undef elen
2397 }
2398