ip6_output.c revision 1.89 1 /* $NetBSD: ip6_output.c,v 1.89 2005/08/10 12:58:37 yamt Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.89 2005/08/10 12:58:37 yamt Exp $");
66
67 #include "opt_inet.h"
68 #include "opt_ipsec.h"
69 #include "opt_pfil_hooks.h"
70
71 #include <sys/param.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/errno.h>
75 #include <sys/protosw.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80
81 #include <net/if.h>
82 #include <net/route.h>
83 #ifdef PFIL_HOOKS
84 #include <net/pfil.h>
85 #endif
86
87 #include <netinet/in.h>
88 #include <netinet/in_var.h>
89 #include <netinet/ip6.h>
90 #include <netinet/icmp6.h>
91 #include <netinet6/ip6_var.h>
92 #include <netinet6/in6_pcb.h>
93 #include <netinet6/nd6.h>
94 #include <netinet6/ip6protosw.h>
95
96 #ifdef IPSEC
97 #include <netinet6/ipsec.h>
98 #include <netkey/key.h>
99 #endif /* IPSEC */
100
101 #include <net/net_osdep.h>
102
103 #ifdef PFIL_HOOKS
104 extern struct pfil_head inet6_pfil_hook; /* XXX */
105 #endif
106
107 struct ip6_exthdrs {
108 struct mbuf *ip6e_ip6;
109 struct mbuf *ip6e_hbh;
110 struct mbuf *ip6e_dest1;
111 struct mbuf *ip6e_rthdr;
112 struct mbuf *ip6e_dest2;
113 };
114
115 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
116 struct socket *));
117 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
118 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
119 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
120 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
121 struct ip6_frag **));
122 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
123 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
124 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
125 struct ifnet *, struct in6_addr *, u_long *, int *));
126
127 /*
128 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
129 * header (with pri, len, nxt, hlim, src, dst).
130 * This function may modify ver and hlim only.
131 * The mbuf chain containing the packet will be freed.
132 * The mbuf opt, if present, will not be freed.
133 *
134 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
135 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
136 * which is rt_rmx.rmx_mtu.
137 */
138 int
139 ip6_output(m0, opt, ro, flags, im6o, so, ifpp)
140 struct mbuf *m0;
141 struct ip6_pktopts *opt;
142 struct route_in6 *ro;
143 int flags;
144 struct ip6_moptions *im6o;
145 struct socket *so;
146 struct ifnet **ifpp; /* XXX: just for statistics */
147 {
148 struct ip6_hdr *ip6, *mhip6;
149 struct ifnet *ifp, *origifp;
150 struct mbuf *m = m0;
151 int hlen, tlen, len, off;
152 struct route_in6 ip6route;
153 struct sockaddr_in6 *dst;
154 int error = 0;
155 u_long mtu;
156 int alwaysfrag, dontfrag;
157 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
158 struct ip6_exthdrs exthdrs;
159 struct in6_addr finaldst;
160 struct route_in6 *ro_pmtu = NULL;
161 int hdrsplit = 0;
162 int needipsec = 0;
163 #ifdef IPSEC
164 int needipsectun = 0;
165 struct secpolicy *sp = NULL;
166
167 ip6 = mtod(m, struct ip6_hdr *);
168 #endif /* IPSEC */
169
170 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
171
172 #define MAKE_EXTHDR(hp, mp) \
173 do { \
174 if (hp) { \
175 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
176 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
177 ((eh)->ip6e_len + 1) << 3); \
178 if (error) \
179 goto freehdrs; \
180 } \
181 } while (/*CONSTCOND*/ 0)
182
183 bzero(&exthdrs, sizeof(exthdrs));
184 if (opt) {
185 /* Hop-by-Hop options header */
186 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
187 /* Destination options header(1st part) */
188 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
189 /* Routing header */
190 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
191 /* Destination options header(2nd part) */
192 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
193 }
194
195 #ifdef IPSEC
196 if ((flags & IPV6_FORWARDING) != 0) {
197 needipsec = 0;
198 goto skippolicycheck;
199 }
200
201 /* get a security policy for this packet */
202 if (so == NULL)
203 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
204 else {
205 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
206 IPSEC_DIR_OUTBOUND)) {
207 needipsec = 0;
208 goto skippolicycheck;
209 }
210 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
211 }
212
213 if (sp == NULL) {
214 ipsec6stat.out_inval++;
215 goto freehdrs;
216 }
217
218 error = 0;
219
220 /* check policy */
221 switch (sp->policy) {
222 case IPSEC_POLICY_DISCARD:
223 /*
224 * This packet is just discarded.
225 */
226 ipsec6stat.out_polvio++;
227 goto freehdrs;
228
229 case IPSEC_POLICY_BYPASS:
230 case IPSEC_POLICY_NONE:
231 /* no need to do IPsec. */
232 needipsec = 0;
233 break;
234
235 case IPSEC_POLICY_IPSEC:
236 if (sp->req == NULL) {
237 /* XXX should be panic ? */
238 printf("ip6_output: No IPsec request specified.\n");
239 error = EINVAL;
240 goto freehdrs;
241 }
242 needipsec = 1;
243 break;
244
245 case IPSEC_POLICY_ENTRUST:
246 default:
247 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
248 }
249
250 skippolicycheck:;
251 #endif /* IPSEC */
252
253 if (needipsec &&
254 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
255 in6_delayed_cksum(m);
256 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
257 }
258
259 /*
260 * Calculate the total length of the extension header chain.
261 * Keep the length of the unfragmentable part for fragmentation.
262 */
263 optlen = 0;
264 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
265 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
266 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
267 unfragpartlen = optlen + sizeof(struct ip6_hdr);
268 /* NOTE: we don't add AH/ESP length here. do that later. */
269 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
270
271 /*
272 * If we need IPsec, or there is at least one extension header,
273 * separate IP6 header from the payload.
274 */
275 if ((needipsec || optlen) && !hdrsplit) {
276 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
277 m = NULL;
278 goto freehdrs;
279 }
280 m = exthdrs.ip6e_ip6;
281 hdrsplit++;
282 }
283
284 /* adjust pointer */
285 ip6 = mtod(m, struct ip6_hdr *);
286
287 /* adjust mbuf packet header length */
288 m->m_pkthdr.len += optlen;
289 plen = m->m_pkthdr.len - sizeof(*ip6);
290
291 /* If this is a jumbo payload, insert a jumbo payload option. */
292 if (plen > IPV6_MAXPACKET) {
293 if (!hdrsplit) {
294 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
295 m = NULL;
296 goto freehdrs;
297 }
298 m = exthdrs.ip6e_ip6;
299 hdrsplit++;
300 }
301 /* adjust pointer */
302 ip6 = mtod(m, struct ip6_hdr *);
303 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
304 goto freehdrs;
305 optlen += 8; /* XXX JUMBOOPTLEN */
306 ip6->ip6_plen = 0;
307 } else
308 ip6->ip6_plen = htons(plen);
309
310 /*
311 * Concatenate headers and fill in next header fields.
312 * Here we have, on "m"
313 * IPv6 payload
314 * and we insert headers accordingly. Finally, we should be getting:
315 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
316 *
317 * during the header composing process, "m" points to IPv6 header.
318 * "mprev" points to an extension header prior to esp.
319 */
320 {
321 u_char *nexthdrp = &ip6->ip6_nxt;
322 struct mbuf *mprev = m;
323
324 /*
325 * we treat dest2 specially. this makes IPsec processing
326 * much easier. the goal here is to make mprev point the
327 * mbuf prior to dest2.
328 *
329 * result: IPv6 dest2 payload
330 * m and mprev will point to IPv6 header.
331 */
332 if (exthdrs.ip6e_dest2) {
333 if (!hdrsplit)
334 panic("assumption failed: hdr not split");
335 exthdrs.ip6e_dest2->m_next = m->m_next;
336 m->m_next = exthdrs.ip6e_dest2;
337 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
338 ip6->ip6_nxt = IPPROTO_DSTOPTS;
339 }
340
341 #define MAKE_CHAIN(m, mp, p, i)\
342 do {\
343 if (m) {\
344 if (!hdrsplit) \
345 panic("assumption failed: hdr not split"); \
346 *mtod((m), u_char *) = *(p);\
347 *(p) = (i);\
348 p = mtod((m), u_char *);\
349 (m)->m_next = (mp)->m_next;\
350 (mp)->m_next = (m);\
351 (mp) = (m);\
352 }\
353 } while (/*CONSTCOND*/ 0)
354 /*
355 * result: IPv6 hbh dest1 rthdr dest2 payload
356 * m will point to IPv6 header. mprev will point to the
357 * extension header prior to dest2 (rthdr in the above case).
358 */
359 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
360 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
361 IPPROTO_DSTOPTS);
362 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
363 IPPROTO_ROUTING);
364
365 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
366 sizeof(struct ip6_hdr) + optlen);
367
368 #ifdef IPSEC
369 if (!needipsec)
370 goto skip_ipsec2;
371
372 /*
373 * pointers after IPsec headers are not valid any more.
374 * other pointers need a great care too.
375 * (IPsec routines should not mangle mbufs prior to AH/ESP)
376 */
377 exthdrs.ip6e_dest2 = NULL;
378
379 {
380 struct ip6_rthdr *rh = NULL;
381 int segleft_org = 0;
382 struct ipsec_output_state state;
383
384 if (exthdrs.ip6e_rthdr) {
385 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
386 segleft_org = rh->ip6r_segleft;
387 rh->ip6r_segleft = 0;
388 }
389
390 bzero(&state, sizeof(state));
391 state.m = m;
392 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
393 &needipsectun);
394 m = state.m;
395 if (error) {
396 /* mbuf is already reclaimed in ipsec6_output_trans. */
397 m = NULL;
398 switch (error) {
399 case EHOSTUNREACH:
400 case ENETUNREACH:
401 case EMSGSIZE:
402 case ENOBUFS:
403 case ENOMEM:
404 break;
405 default:
406 printf("ip6_output (ipsec): error code %d\n", error);
407 /* FALLTHROUGH */
408 case ENOENT:
409 /* don't show these error codes to the user */
410 error = 0;
411 break;
412 }
413 goto bad;
414 }
415 if (exthdrs.ip6e_rthdr) {
416 /* ah6_output doesn't modify mbuf chain */
417 rh->ip6r_segleft = segleft_org;
418 }
419 }
420 skip_ipsec2:;
421 #endif
422 }
423
424 /*
425 * If there is a routing header, replace destination address field
426 * with the first hop of the routing header.
427 */
428 if (exthdrs.ip6e_rthdr) {
429 struct ip6_rthdr *rh;
430 struct ip6_rthdr0 *rh0;
431 struct in6_addr *addr;
432
433 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
434 struct ip6_rthdr *));
435 finaldst = ip6->ip6_dst;
436 switch (rh->ip6r_type) {
437 case IPV6_RTHDR_TYPE_0:
438 rh0 = (struct ip6_rthdr0 *)rh;
439 addr = (struct in6_addr *)(rh0 + 1);
440 ip6->ip6_dst = addr[0];
441 bcopy(&addr[1], &addr[0],
442 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1));
443 addr[rh0->ip6r0_segleft - 1] = finaldst;
444 break;
445 default: /* is it possible? */
446 error = EINVAL;
447 goto bad;
448 }
449 }
450
451 /* Source address validation */
452 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
453 (flags & IPV6_UNSPECSRC) == 0) {
454 error = EOPNOTSUPP;
455 ip6stat.ip6s_badscope++;
456 goto bad;
457 }
458 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
459 error = EOPNOTSUPP;
460 ip6stat.ip6s_badscope++;
461 goto bad;
462 }
463
464 ip6stat.ip6s_localout++;
465
466 /*
467 * Route packet.
468 */
469 /* initialize cached route */
470 if (ro == 0) {
471 ro = &ip6route;
472 bzero((caddr_t)ro, sizeof(*ro));
473 }
474 ro_pmtu = ro;
475 if (opt && opt->ip6po_rthdr)
476 ro = &opt->ip6po_route;
477 dst = (struct sockaddr_in6 *)&ro->ro_dst;
478 /*
479 * If there is a cached route,
480 * check that it is to the same destination
481 * and is still up. If not, free it and try again.
482 */
483 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
484 dst->sin6_family != AF_INET6 ||
485 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
486 RTFREE(ro->ro_rt);
487 ro->ro_rt = (struct rtentry *)0;
488 }
489 if (ro->ro_rt == 0) {
490 bzero(dst, sizeof(*dst));
491 dst->sin6_family = AF_INET6;
492 dst->sin6_len = sizeof(struct sockaddr_in6);
493 dst->sin6_addr = ip6->ip6_dst;
494 }
495 #ifdef IPSEC
496 if (needipsec && needipsectun) {
497 struct ipsec_output_state state;
498
499 /*
500 * All the extension headers will become inaccessible
501 * (since they can be encrypted).
502 * Don't panic, we need no more updates to extension headers
503 * on inner IPv6 packet (since they are now encapsulated).
504 *
505 * IPv6 [ESP|AH] IPv6 [extension headers] payload
506 */
507 bzero(&exthdrs, sizeof(exthdrs));
508 exthdrs.ip6e_ip6 = m;
509
510 bzero(&state, sizeof(state));
511 state.m = m;
512 state.ro = (struct route *)ro;
513 state.dst = (struct sockaddr *)dst;
514
515 error = ipsec6_output_tunnel(&state, sp, flags);
516
517 m = state.m;
518 ro_pmtu = ro = (struct route_in6 *)state.ro;
519 dst = (struct sockaddr_in6 *)state.dst;
520 if (error) {
521 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
522 m0 = m = NULL;
523 m = NULL;
524 switch (error) {
525 case EHOSTUNREACH:
526 case ENETUNREACH:
527 case EMSGSIZE:
528 case ENOBUFS:
529 case ENOMEM:
530 break;
531 default:
532 printf("ip6_output (ipsec): error code %d\n", error);
533 /* FALLTHROUGH */
534 case ENOENT:
535 /* don't show these error codes to the user */
536 error = 0;
537 break;
538 }
539 goto bad;
540 }
541
542 exthdrs.ip6e_ip6 = m;
543 }
544 #endif /* IPSEC */
545
546 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
547 /* Unicast */
548
549 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
550 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
551 /* xxx
552 * interface selection comes here
553 * if an interface is specified from an upper layer,
554 * ifp must point it.
555 */
556 if (ro->ro_rt == 0) {
557 /*
558 * non-bsdi always clone routes, if parent is
559 * PRF_CLONING.
560 */
561 rtalloc((struct route *)ro);
562 }
563 if (ro->ro_rt == 0) {
564 ip6stat.ip6s_noroute++;
565 error = EHOSTUNREACH;
566 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
567 goto bad;
568 }
569 ifp = ro->ro_rt->rt_ifp;
570 ro->ro_rt->rt_use++;
571 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
572 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
573 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
574
575 in6_ifstat_inc(ifp, ifs6_out_request);
576
577 /*
578 * Check if the outgoing interface conflicts with
579 * the interface specified by ifi6_ifindex (if specified).
580 * Note that loopback interface is always okay.
581 * (this may happen when we are sending a packet to one of
582 * our own addresses.)
583 */
584 if (opt && opt->ip6po_pktinfo &&
585 opt->ip6po_pktinfo->ipi6_ifindex) {
586 if (!(ifp->if_flags & IFF_LOOPBACK) &&
587 ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
588 ip6stat.ip6s_noroute++;
589 in6_ifstat_inc(ifp, ifs6_out_discard);
590 error = EHOSTUNREACH;
591 goto bad;
592 }
593 }
594
595 if (opt && opt->ip6po_hlim != -1)
596 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
597 } else {
598 /* Multicast */
599 struct in6_multi *in6m;
600
601 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
602
603 /*
604 * See if the caller provided any multicast options
605 */
606 ifp = NULL;
607 if (im6o != NULL) {
608 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
609 if (im6o->im6o_multicast_ifp != NULL)
610 ifp = im6o->im6o_multicast_ifp;
611 } else
612 ip6->ip6_hlim = ip6_defmcasthlim;
613
614 /*
615 * See if the caller provided the outgoing interface
616 * as an ancillary data.
617 * Boundary check for ifindex is assumed to be already done.
618 */
619 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
620 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
621
622 /*
623 * If the destination is a node-local scope multicast,
624 * the packet should be loop-backed only.
625 */
626 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
627 /*
628 * If the outgoing interface is already specified,
629 * it should be a loopback interface.
630 */
631 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
632 ip6stat.ip6s_badscope++;
633 error = ENETUNREACH; /* XXX: better error? */
634 /* XXX correct ifp? */
635 in6_ifstat_inc(ifp, ifs6_out_discard);
636 goto bad;
637 } else
638 ifp = lo0ifp;
639 }
640
641 if (opt && opt->ip6po_hlim != -1)
642 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
643
644 /*
645 * If caller did not provide an interface lookup a
646 * default in the routing table. This is either a
647 * default for the speicfied group (i.e. a host
648 * route), or a multicast default (a route for the
649 * ``net'' ff00::/8).
650 */
651 if (ifp == NULL) {
652 if (ro->ro_rt == 0) {
653 ro->ro_rt = rtalloc1((struct sockaddr *)
654 &ro->ro_dst, 0);
655 }
656 if (ro->ro_rt == 0) {
657 ip6stat.ip6s_noroute++;
658 error = EHOSTUNREACH;
659 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
660 goto bad;
661 }
662 ifp = ro->ro_rt->rt_ifp;
663 ro->ro_rt->rt_use++;
664 }
665
666 if ((flags & IPV6_FORWARDING) == 0)
667 in6_ifstat_inc(ifp, ifs6_out_request);
668 in6_ifstat_inc(ifp, ifs6_out_mcast);
669
670 /*
671 * Confirm that the outgoing interface supports multicast.
672 */
673 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
674 ip6stat.ip6s_noroute++;
675 in6_ifstat_inc(ifp, ifs6_out_discard);
676 error = ENETUNREACH;
677 goto bad;
678 }
679 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
680 if (in6m != NULL &&
681 (im6o == NULL || im6o->im6o_multicast_loop)) {
682 /*
683 * If we belong to the destination multicast group
684 * on the outgoing interface, and the caller did not
685 * forbid loopback, loop back a copy.
686 */
687 ip6_mloopback(ifp, m, dst);
688 } else {
689 /*
690 * If we are acting as a multicast router, perform
691 * multicast forwarding as if the packet had just
692 * arrived on the interface to which we are about
693 * to send. The multicast forwarding function
694 * recursively calls this function, using the
695 * IPV6_FORWARDING flag to prevent infinite recursion.
696 *
697 * Multicasts that are looped back by ip6_mloopback(),
698 * above, will be forwarded by the ip6_input() routine,
699 * if necessary.
700 */
701 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
702 if (ip6_mforward(ip6, ifp, m) != 0) {
703 m_freem(m);
704 goto done;
705 }
706 }
707 }
708 /*
709 * Multicasts with a hoplimit of zero may be looped back,
710 * above, but must not be transmitted on a network.
711 * Also, multicasts addressed to the loopback interface
712 * are not sent -- the above call to ip6_mloopback() will
713 * loop back a copy if this host actually belongs to the
714 * destination group on the loopback interface.
715 */
716 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
717 m_freem(m);
718 goto done;
719 }
720 }
721
722 /*
723 * Fill the outgoing inteface to tell the upper layer
724 * to increment per-interface statistics.
725 */
726 if (ifpp)
727 *ifpp = ifp;
728
729 /* Determine path MTU. */
730 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
731 &alwaysfrag)) != 0)
732 goto bad;
733 #ifdef IPSEC
734 if (needipsectun)
735 mtu = IPV6_MMTU;
736 #endif
737
738 /*
739 * The caller of this function may specify to use the minimum MTU
740 * in some cases.
741 */
742 if (mtu > IPV6_MMTU) {
743 if ((flags & IPV6_MINMTU))
744 mtu = IPV6_MMTU;
745 }
746
747 /* Fake scoped addresses */
748 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
749 /*
750 * If source or destination address is a scoped address, and
751 * the packet is going to be sent to a loopback interface,
752 * we should keep the original interface.
753 */
754
755 /*
756 * XXX: this is a very experimental and temporary solution.
757 * We eventually have sockaddr_in6 and use the sin6_scope_id
758 * field of the structure here.
759 * We rely on the consistency between two scope zone ids
760 * of source add destination, which should already be assured
761 * Larger scopes than link will be supported in the near
762 * future.
763 */
764 origifp = NULL;
765 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
766 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
767 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
768 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
769 /*
770 * XXX: origifp can be NULL even in those two cases above.
771 * For example, if we remove the (only) link-local address
772 * from the loopback interface, and try to send a link-local
773 * address without link-id information. Then the source
774 * address is ::1, and the destination address is the
775 * link-local address with its s6_addr16[1] being zero.
776 * What is worse, if the packet goes to the loopback interface
777 * by a default rejected route, the null pointer would be
778 * passed to looutput, and the kernel would hang.
779 * The following last resort would prevent such disaster.
780 */
781 if (origifp == NULL)
782 origifp = ifp;
783 } else
784 origifp = ifp;
785 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
786 ip6->ip6_src.s6_addr16[1] = 0;
787 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
788 ip6->ip6_dst.s6_addr16[1] = 0;
789
790 /*
791 * If the outgoing packet contains a hop-by-hop options header,
792 * it must be examined and processed even by the source node.
793 * (RFC 2460, section 4.)
794 */
795 if (exthdrs.ip6e_hbh) {
796 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
797 u_int32_t dummy1; /* XXX unused */
798 u_int32_t dummy2; /* XXX unused */
799
800 /*
801 * XXX: if we have to send an ICMPv6 error to the sender,
802 * we need the M_LOOP flag since icmp6_error() expects
803 * the IPv6 and the hop-by-hop options header are
804 * continuous unless the flag is set.
805 */
806 m->m_flags |= M_LOOP;
807 m->m_pkthdr.rcvif = ifp;
808 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
809 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
810 &dummy1, &dummy2) < 0) {
811 /* m was already freed at this point */
812 error = EINVAL;/* better error? */
813 goto done;
814 }
815 m->m_flags &= ~M_LOOP; /* XXX */
816 m->m_pkthdr.rcvif = NULL;
817 }
818
819 #ifdef PFIL_HOOKS
820 /*
821 * Run through list of hooks for output packets.
822 */
823 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
824 goto done;
825 if (m == NULL)
826 goto done;
827 ip6 = mtod(m, struct ip6_hdr *);
828 #endif /* PFIL_HOOKS */
829 /*
830 * Send the packet to the outgoing interface.
831 * If necessary, do IPv6 fragmentation before sending.
832 *
833 * the logic here is rather complex:
834 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
835 * 1-a: send as is if tlen <= path mtu
836 * 1-b: fragment if tlen > path mtu
837 *
838 * 2: if user asks us not to fragment (dontfrag == 1)
839 * 2-a: send as is if tlen <= interface mtu
840 * 2-b: error if tlen > interface mtu
841 *
842 * 3: if we always need to attach fragment header (alwaysfrag == 1)
843 * always fragment
844 *
845 * 4: if dontfrag == 1 && alwaysfrag == 1
846 * error, as we cannot handle this conflicting request
847 */
848 tlen = m->m_pkthdr.len;
849
850 dontfrag = 0;
851 if (dontfrag && alwaysfrag) { /* case 4 */
852 /* conflicting request - can't transmit */
853 error = EMSGSIZE;
854 goto bad;
855 }
856 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */
857 /*
858 * Even if the DONTFRAG option is specified, we cannot send the
859 * packet when the data length is larger than the MTU of the
860 * outgoing interface.
861 * Notify the error by sending IPV6_PATHMTU ancillary data as
862 * well as returning an error code (the latter is not described
863 * in the API spec.)
864 */
865 u_int32_t mtu32;
866 struct ip6ctlparam ip6cp;
867
868 mtu32 = (u_int32_t)mtu;
869 bzero(&ip6cp, sizeof(ip6cp));
870 ip6cp.ip6c_cmdarg = (void *)&mtu32;
871 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
872 (void *)&ip6cp);
873
874 error = EMSGSIZE;
875 goto bad;
876 }
877
878 /*
879 * transmit packet without fragmentation
880 */
881 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */
882 struct in6_ifaddr *ia6;
883 int sw_csum;
884
885 ip6 = mtod(m, struct ip6_hdr *);
886 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
887 if (ia6) {
888 /* Record statistics for this interface address. */
889 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
890 }
891 #ifdef IPSEC
892 /* clean ipsec history once it goes out of the node */
893 ipsec_delaux(m);
894 #endif
895
896 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
897 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
898 in6_delayed_cksum(m);
899 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
900 }
901
902 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
903 goto done;
904 }
905
906 /*
907 * try to fragment the packet. case 1-b and 3
908 */
909 if (mtu < IPV6_MMTU) {
910 /* path MTU cannot be less than IPV6_MMTU */
911 error = EMSGSIZE;
912 in6_ifstat_inc(ifp, ifs6_out_fragfail);
913 goto bad;
914 } else if (ip6->ip6_plen == 0) {
915 /* jumbo payload cannot be fragmented */
916 error = EMSGSIZE;
917 in6_ifstat_inc(ifp, ifs6_out_fragfail);
918 goto bad;
919 } else {
920 struct mbuf **mnext, *m_frgpart;
921 struct ip6_frag *ip6f;
922 u_int32_t id = htonl(ip6_randomid());
923 u_char nextproto;
924 struct ip6ctlparam ip6cp;
925 u_int32_t mtu32;
926
927 /*
928 * Too large for the destination or interface;
929 * fragment if possible.
930 * Must be able to put at least 8 bytes per fragment.
931 */
932 hlen = unfragpartlen;
933 if (mtu > IPV6_MAXPACKET)
934 mtu = IPV6_MAXPACKET;
935
936 /* Notify a proper path MTU to applications. */
937 mtu32 = (u_int32_t)mtu;
938 bzero(&ip6cp, sizeof(ip6cp));
939 ip6cp.ip6c_cmdarg = (void *)&mtu32;
940 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
941 (void *)&ip6cp);
942
943 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
944 if (len < 8) {
945 error = EMSGSIZE;
946 in6_ifstat_inc(ifp, ifs6_out_fragfail);
947 goto bad;
948 }
949
950 mnext = &m->m_nextpkt;
951
952 /*
953 * Change the next header field of the last header in the
954 * unfragmentable part.
955 */
956 if (exthdrs.ip6e_rthdr) {
957 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
958 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
959 } else if (exthdrs.ip6e_dest1) {
960 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
961 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
962 } else if (exthdrs.ip6e_hbh) {
963 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
964 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
965 } else {
966 nextproto = ip6->ip6_nxt;
967 ip6->ip6_nxt = IPPROTO_FRAGMENT;
968 }
969
970 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
971 != 0) {
972 in6_delayed_cksum(m);
973 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
974 }
975
976 /*
977 * Loop through length of segment after first fragment,
978 * make new header and copy data of each part and link onto
979 * chain.
980 */
981 m0 = m;
982 for (off = hlen; off < tlen; off += len) {
983 struct mbuf *mlast;
984
985 MGETHDR(m, M_DONTWAIT, MT_HEADER);
986 if (!m) {
987 error = ENOBUFS;
988 ip6stat.ip6s_odropped++;
989 goto sendorfree;
990 }
991 m->m_pkthdr.rcvif = NULL;
992 m->m_flags = m0->m_flags & M_COPYFLAGS;
993 *mnext = m;
994 mnext = &m->m_nextpkt;
995 m->m_data += max_linkhdr;
996 mhip6 = mtod(m, struct ip6_hdr *);
997 *mhip6 = *ip6;
998 m->m_len = sizeof(*mhip6);
999 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1000 if (error) {
1001 ip6stat.ip6s_odropped++;
1002 goto sendorfree;
1003 }
1004 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
1005 if (off + len >= tlen)
1006 len = tlen - off;
1007 else
1008 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1009 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
1010 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1011 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1012 error = ENOBUFS;
1013 ip6stat.ip6s_odropped++;
1014 goto sendorfree;
1015 }
1016 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
1017 ;
1018 mlast->m_next = m_frgpart;
1019 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1020 m->m_pkthdr.rcvif = (struct ifnet *)0;
1021 ip6f->ip6f_reserved = 0;
1022 ip6f->ip6f_ident = id;
1023 ip6f->ip6f_nxt = nextproto;
1024 ip6stat.ip6s_ofragments++;
1025 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1026 }
1027
1028 in6_ifstat_inc(ifp, ifs6_out_fragok);
1029 }
1030
1031 /*
1032 * Remove leading garbages.
1033 */
1034 sendorfree:
1035 m = m0->m_nextpkt;
1036 m0->m_nextpkt = 0;
1037 m_freem(m0);
1038 for (m0 = m; m; m = m0) {
1039 m0 = m->m_nextpkt;
1040 m->m_nextpkt = 0;
1041 if (error == 0) {
1042 struct in6_ifaddr *ia6;
1043 ip6 = mtod(m, struct ip6_hdr *);
1044 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1045 if (ia6) {
1046 /*
1047 * Record statistics for this interface
1048 * address.
1049 */
1050 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1051 m->m_pkthdr.len;
1052 }
1053 #ifdef IPSEC
1054 /* clean ipsec history once it goes out of the node */
1055 ipsec_delaux(m);
1056 #endif
1057 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1058 } else
1059 m_freem(m);
1060 }
1061
1062 if (error == 0)
1063 ip6stat.ip6s_fragmented++;
1064
1065 done:
1066 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1067 RTFREE(ro->ro_rt);
1068 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1069 RTFREE(ro_pmtu->ro_rt);
1070 }
1071
1072 #ifdef IPSEC
1073 if (sp != NULL)
1074 key_freesp(sp);
1075 #endif /* IPSEC */
1076
1077 return (error);
1078
1079 freehdrs:
1080 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1081 m_freem(exthdrs.ip6e_dest1);
1082 m_freem(exthdrs.ip6e_rthdr);
1083 m_freem(exthdrs.ip6e_dest2);
1084 /* FALLTHROUGH */
1085 bad:
1086 m_freem(m);
1087 goto done;
1088 }
1089
1090 static int
1091 ip6_copyexthdr(mp, hdr, hlen)
1092 struct mbuf **mp;
1093 caddr_t hdr;
1094 int hlen;
1095 {
1096 struct mbuf *m;
1097
1098 if (hlen > MCLBYTES)
1099 return (ENOBUFS); /* XXX */
1100
1101 MGET(m, M_DONTWAIT, MT_DATA);
1102 if (!m)
1103 return (ENOBUFS);
1104
1105 if (hlen > MLEN) {
1106 MCLGET(m, M_DONTWAIT);
1107 if ((m->m_flags & M_EXT) == 0) {
1108 m_free(m);
1109 return (ENOBUFS);
1110 }
1111 }
1112 m->m_len = hlen;
1113 if (hdr)
1114 bcopy(hdr, mtod(m, caddr_t), hlen);
1115
1116 *mp = m;
1117 return (0);
1118 }
1119
1120 /*
1121 * Process a delayed payload checksum calculation.
1122 */
1123 void
1124 in6_delayed_cksum(struct mbuf *m)
1125 {
1126 uint16_t csum, offset;
1127
1128 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1129 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1130 KASSERT((m->m_pkthdr.csum_flags
1131 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
1132
1133 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1134 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1135 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
1136 csum = 0xffff;
1137 }
1138
1139 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
1140 if ((offset + sizeof(csum)) > m->m_len) {
1141 m_copyback(m, offset, sizeof(csum), &csum);
1142 } else {
1143 *(uint16_t *)(mtod(m, caddr_t) + offset) = csum;
1144 }
1145 }
1146
1147 /*
1148 * Insert jumbo payload option.
1149 */
1150 static int
1151 ip6_insert_jumboopt(exthdrs, plen)
1152 struct ip6_exthdrs *exthdrs;
1153 u_int32_t plen;
1154 {
1155 struct mbuf *mopt;
1156 u_int8_t *optbuf;
1157 u_int32_t v;
1158
1159 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1160
1161 /*
1162 * If there is no hop-by-hop options header, allocate new one.
1163 * If there is one but it doesn't have enough space to store the
1164 * jumbo payload option, allocate a cluster to store the whole options.
1165 * Otherwise, use it to store the options.
1166 */
1167 if (exthdrs->ip6e_hbh == 0) {
1168 MGET(mopt, M_DONTWAIT, MT_DATA);
1169 if (mopt == 0)
1170 return (ENOBUFS);
1171 mopt->m_len = JUMBOOPTLEN;
1172 optbuf = mtod(mopt, u_int8_t *);
1173 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1174 exthdrs->ip6e_hbh = mopt;
1175 } else {
1176 struct ip6_hbh *hbh;
1177
1178 mopt = exthdrs->ip6e_hbh;
1179 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1180 /*
1181 * XXX assumption:
1182 * - exthdrs->ip6e_hbh is not referenced from places
1183 * other than exthdrs.
1184 * - exthdrs->ip6e_hbh is not an mbuf chain.
1185 */
1186 int oldoptlen = mopt->m_len;
1187 struct mbuf *n;
1188
1189 /*
1190 * XXX: give up if the whole (new) hbh header does
1191 * not fit even in an mbuf cluster.
1192 */
1193 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1194 return (ENOBUFS);
1195
1196 /*
1197 * As a consequence, we must always prepare a cluster
1198 * at this point.
1199 */
1200 MGET(n, M_DONTWAIT, MT_DATA);
1201 if (n) {
1202 MCLGET(n, M_DONTWAIT);
1203 if ((n->m_flags & M_EXT) == 0) {
1204 m_freem(n);
1205 n = NULL;
1206 }
1207 }
1208 if (!n)
1209 return (ENOBUFS);
1210 n->m_len = oldoptlen + JUMBOOPTLEN;
1211 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1212 oldoptlen);
1213 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1214 m_freem(mopt);
1215 mopt = exthdrs->ip6e_hbh = n;
1216 } else {
1217 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1218 mopt->m_len += JUMBOOPTLEN;
1219 }
1220 optbuf[0] = IP6OPT_PADN;
1221 optbuf[1] = 0;
1222
1223 /*
1224 * Adjust the header length according to the pad and
1225 * the jumbo payload option.
1226 */
1227 hbh = mtod(mopt, struct ip6_hbh *);
1228 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1229 }
1230
1231 /* fill in the option. */
1232 optbuf[2] = IP6OPT_JUMBO;
1233 optbuf[3] = 4;
1234 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1235 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1236
1237 /* finally, adjust the packet header length */
1238 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1239
1240 return (0);
1241 #undef JUMBOOPTLEN
1242 }
1243
1244 /*
1245 * Insert fragment header and copy unfragmentable header portions.
1246 */
1247 static int
1248 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1249 struct mbuf *m0, *m;
1250 int hlen;
1251 struct ip6_frag **frghdrp;
1252 {
1253 struct mbuf *n, *mlast;
1254
1255 if (hlen > sizeof(struct ip6_hdr)) {
1256 n = m_copym(m0, sizeof(struct ip6_hdr),
1257 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1258 if (n == 0)
1259 return (ENOBUFS);
1260 m->m_next = n;
1261 } else
1262 n = m;
1263
1264 /* Search for the last mbuf of unfragmentable part. */
1265 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1266 ;
1267
1268 if ((mlast->m_flags & M_EXT) == 0 &&
1269 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1270 /* use the trailing space of the last mbuf for the fragment hdr */
1271 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1272 mlast->m_len);
1273 mlast->m_len += sizeof(struct ip6_frag);
1274 m->m_pkthdr.len += sizeof(struct ip6_frag);
1275 } else {
1276 /* allocate a new mbuf for the fragment header */
1277 struct mbuf *mfrg;
1278
1279 MGET(mfrg, M_DONTWAIT, MT_DATA);
1280 if (mfrg == 0)
1281 return (ENOBUFS);
1282 mfrg->m_len = sizeof(struct ip6_frag);
1283 *frghdrp = mtod(mfrg, struct ip6_frag *);
1284 mlast->m_next = mfrg;
1285 }
1286
1287 return (0);
1288 }
1289
1290 static int
1291 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup, alwaysfragp)
1292 struct route_in6 *ro_pmtu, *ro;
1293 struct ifnet *ifp;
1294 struct in6_addr *dst;
1295 u_long *mtup;
1296 int *alwaysfragp;
1297 {
1298 u_int32_t mtu = 0;
1299 int alwaysfrag = 0;
1300 int error = 0;
1301
1302 if (ro_pmtu != ro) {
1303 /* The first hop and the final destination may differ. */
1304 struct sockaddr_in6 *sa6_dst =
1305 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1306 if (ro_pmtu->ro_rt &&
1307 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1308 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1309 RTFREE(ro_pmtu->ro_rt);
1310 ro_pmtu->ro_rt = (struct rtentry *)NULL;
1311 }
1312 if (ro_pmtu->ro_rt == NULL) {
1313 bzero(sa6_dst, sizeof(*sa6_dst)); /* for safety */
1314 sa6_dst->sin6_family = AF_INET6;
1315 sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1316 sa6_dst->sin6_addr = *dst;
1317
1318 rtalloc((struct route *)ro_pmtu);
1319 }
1320 }
1321 if (ro_pmtu->ro_rt) {
1322 u_int32_t ifmtu;
1323
1324 if (ifp == NULL)
1325 ifp = ro_pmtu->ro_rt->rt_ifp;
1326 ifmtu = IN6_LINKMTU(ifp);
1327 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1328 if (mtu == 0)
1329 mtu = ifmtu;
1330 else if (mtu < IPV6_MMTU) {
1331 /*
1332 * RFC2460 section 5, last paragraph:
1333 * if we record ICMPv6 too big message with
1334 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1335 * or smaller, with fragment header attached.
1336 * (fragment header is needed regardless from the
1337 * packet size, for translators to identify packets)
1338 */
1339 alwaysfrag = 1;
1340 mtu = IPV6_MMTU;
1341 } else if (mtu > ifmtu) {
1342 /*
1343 * The MTU on the route is larger than the MTU on
1344 * the interface! This shouldn't happen, unless the
1345 * MTU of the interface has been changed after the
1346 * interface was brought up. Change the MTU in the
1347 * route to match the interface MTU (as long as the
1348 * field isn't locked).
1349 */
1350 mtu = ifmtu;
1351 if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU))
1352 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1353 }
1354 } else if (ifp) {
1355 mtu = IN6_LINKMTU(ifp);
1356 } else
1357 error = EHOSTUNREACH; /* XXX */
1358
1359 *mtup = mtu;
1360 if (alwaysfragp)
1361 *alwaysfragp = alwaysfrag;
1362 return (error);
1363 }
1364
1365 /*
1366 * IP6 socket option processing.
1367 */
1368 int
1369 ip6_ctloutput(op, so, level, optname, mp)
1370 int op;
1371 struct socket *so;
1372 int level, optname;
1373 struct mbuf **mp;
1374 {
1375 struct in6pcb *in6p = sotoin6pcb(so);
1376 struct mbuf *m = *mp;
1377 int optval = 0;
1378 int error = 0;
1379 struct proc *p = curproc; /* XXX */
1380
1381 if (level == IPPROTO_IPV6) {
1382 switch (op) {
1383 case PRCO_SETOPT:
1384 switch (optname) {
1385 case IPV6_PKTOPTIONS:
1386 /* m is freed in ip6_pcbopts */
1387 return (ip6_pcbopts(&in6p->in6p_outputopts,
1388 m, so));
1389 case IPV6_HOPOPTS:
1390 case IPV6_DSTOPTS:
1391 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1392 error = EPERM;
1393 break;
1394 }
1395 /* FALLTHROUGH */
1396 case IPV6_UNICAST_HOPS:
1397 case IPV6_RECVOPTS:
1398 case IPV6_RECVRETOPTS:
1399 case IPV6_RECVDSTADDR:
1400 case IPV6_PKTINFO:
1401 case IPV6_HOPLIMIT:
1402 case IPV6_RTHDR:
1403 case IPV6_FAITH:
1404 case IPV6_V6ONLY:
1405 case IPV6_USE_MIN_MTU:
1406 if (!m || m->m_len != sizeof(int)) {
1407 error = EINVAL;
1408 break;
1409 }
1410 optval = *mtod(m, int *);
1411 switch (optname) {
1412
1413 case IPV6_UNICAST_HOPS:
1414 if (optval < -1 || optval >= 256)
1415 error = EINVAL;
1416 else {
1417 /* -1 = kernel default */
1418 in6p->in6p_hops = optval;
1419 }
1420 break;
1421 #define OPTSET(bit) \
1422 do { \
1423 if (optval) \
1424 in6p->in6p_flags |= (bit); \
1425 else \
1426 in6p->in6p_flags &= ~(bit); \
1427 } while (/*CONSTCOND*/ 0)
1428
1429 case IPV6_RECVOPTS:
1430 OPTSET(IN6P_RECVOPTS);
1431 break;
1432
1433 case IPV6_RECVRETOPTS:
1434 OPTSET(IN6P_RECVRETOPTS);
1435 break;
1436
1437 case IPV6_RECVDSTADDR:
1438 OPTSET(IN6P_RECVDSTADDR);
1439 break;
1440
1441 case IPV6_PKTINFO:
1442 OPTSET(IN6P_PKTINFO);
1443 break;
1444
1445 case IPV6_HOPLIMIT:
1446 OPTSET(IN6P_HOPLIMIT);
1447 break;
1448
1449 case IPV6_HOPOPTS:
1450 OPTSET(IN6P_HOPOPTS);
1451 break;
1452
1453 case IPV6_DSTOPTS:
1454 OPTSET(IN6P_DSTOPTS);
1455 break;
1456
1457 case IPV6_RTHDR:
1458 OPTSET(IN6P_RTHDR);
1459 break;
1460
1461 case IPV6_FAITH:
1462 OPTSET(IN6P_FAITH);
1463 break;
1464
1465 case IPV6_USE_MIN_MTU:
1466 OPTSET(IN6P_MINMTU);
1467 break;
1468
1469 case IPV6_V6ONLY:
1470 /*
1471 * make setsockopt(IPV6_V6ONLY)
1472 * available only prior to bind(2).
1473 * see ipng mailing list, Jun 22 2001.
1474 */
1475 if (in6p->in6p_lport ||
1476 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1477 error = EINVAL;
1478 break;
1479 }
1480 #ifdef INET6_BINDV6ONLY
1481 if (!optval)
1482 error = EINVAL;
1483 #else
1484 OPTSET(IN6P_IPV6_V6ONLY);
1485 #endif
1486 break;
1487 }
1488 break;
1489 #undef OPTSET
1490
1491 case IPV6_MULTICAST_IF:
1492 case IPV6_MULTICAST_HOPS:
1493 case IPV6_MULTICAST_LOOP:
1494 case IPV6_JOIN_GROUP:
1495 case IPV6_LEAVE_GROUP:
1496 error = ip6_setmoptions(optname,
1497 &in6p->in6p_moptions, m);
1498 break;
1499
1500 case IPV6_PORTRANGE:
1501 optval = *mtod(m, int *);
1502
1503 switch (optval) {
1504 case IPV6_PORTRANGE_DEFAULT:
1505 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1506 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1507 break;
1508
1509 case IPV6_PORTRANGE_HIGH:
1510 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1511 in6p->in6p_flags |= IN6P_HIGHPORT;
1512 break;
1513
1514 case IPV6_PORTRANGE_LOW:
1515 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1516 in6p->in6p_flags |= IN6P_LOWPORT;
1517 break;
1518
1519 default:
1520 error = EINVAL;
1521 break;
1522 }
1523 break;
1524
1525 #ifdef IPSEC
1526 case IPV6_IPSEC_POLICY:
1527 {
1528 caddr_t req = NULL;
1529 size_t len = 0;
1530
1531 int priv = 0;
1532 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1533 priv = 0;
1534 else
1535 priv = 1;
1536 if (m) {
1537 req = mtod(m, caddr_t);
1538 len = m->m_len;
1539 }
1540 error = ipsec6_set_policy(in6p,
1541 optname, req, len, priv);
1542 }
1543 break;
1544 #endif /* IPSEC */
1545
1546 default:
1547 error = ENOPROTOOPT;
1548 break;
1549 }
1550 if (m)
1551 (void)m_free(m);
1552 break;
1553
1554 case PRCO_GETOPT:
1555 switch (optname) {
1556
1557 case IPV6_OPTIONS:
1558 case IPV6_RETOPTS:
1559 error = ENOPROTOOPT;
1560 break;
1561
1562 case IPV6_PKTOPTIONS:
1563 if (in6p->in6p_options) {
1564 *mp = m_copym(in6p->in6p_options, 0,
1565 M_COPYALL, M_WAIT);
1566 } else {
1567 *mp = m_get(M_WAIT, MT_SOOPTS);
1568 (*mp)->m_len = 0;
1569 }
1570 break;
1571
1572 case IPV6_HOPOPTS:
1573 case IPV6_DSTOPTS:
1574 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1575 error = EPERM;
1576 break;
1577 }
1578 /* FALLTHROUGH */
1579 case IPV6_UNICAST_HOPS:
1580 case IPV6_RECVOPTS:
1581 case IPV6_RECVRETOPTS:
1582 case IPV6_RECVDSTADDR:
1583 case IPV6_PORTRANGE:
1584 case IPV6_PKTINFO:
1585 case IPV6_HOPLIMIT:
1586 case IPV6_RTHDR:
1587 case IPV6_FAITH:
1588 case IPV6_V6ONLY:
1589 case IPV6_USE_MIN_MTU:
1590 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1591 m->m_len = sizeof(int);
1592 switch (optname) {
1593
1594 case IPV6_UNICAST_HOPS:
1595 optval = in6p->in6p_hops;
1596 break;
1597
1598 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1599
1600 case IPV6_RECVOPTS:
1601 optval = OPTBIT(IN6P_RECVOPTS);
1602 break;
1603
1604 case IPV6_RECVRETOPTS:
1605 optval = OPTBIT(IN6P_RECVRETOPTS);
1606 break;
1607
1608 case IPV6_RECVDSTADDR:
1609 optval = OPTBIT(IN6P_RECVDSTADDR);
1610 break;
1611
1612 case IPV6_PORTRANGE:
1613 {
1614 int flags;
1615 flags = in6p->in6p_flags;
1616 if (flags & IN6P_HIGHPORT)
1617 optval = IPV6_PORTRANGE_HIGH;
1618 else if (flags & IN6P_LOWPORT)
1619 optval = IPV6_PORTRANGE_LOW;
1620 else
1621 optval = 0;
1622 break;
1623 }
1624
1625 case IPV6_PKTINFO:
1626 optval = OPTBIT(IN6P_PKTINFO);
1627 break;
1628
1629 case IPV6_HOPLIMIT:
1630 optval = OPTBIT(IN6P_HOPLIMIT);
1631 break;
1632
1633 case IPV6_HOPOPTS:
1634 optval = OPTBIT(IN6P_HOPOPTS);
1635 break;
1636
1637 case IPV6_DSTOPTS:
1638 optval = OPTBIT(IN6P_DSTOPTS);
1639 break;
1640
1641 case IPV6_RTHDR:
1642 optval = OPTBIT(IN6P_RTHDR);
1643 break;
1644
1645 case IPV6_FAITH:
1646 optval = OPTBIT(IN6P_FAITH);
1647 break;
1648
1649 case IPV6_V6ONLY:
1650 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1651 break;
1652
1653 case IPV6_USE_MIN_MTU:
1654 optval = OPTBIT(IN6P_MINMTU);
1655 break;
1656 }
1657 *mtod(m, int *) = optval;
1658 break;
1659
1660 case IPV6_MULTICAST_IF:
1661 case IPV6_MULTICAST_HOPS:
1662 case IPV6_MULTICAST_LOOP:
1663 case IPV6_JOIN_GROUP:
1664 case IPV6_LEAVE_GROUP:
1665 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1666 break;
1667
1668 #if 0 /* defined(IPSEC) */
1669 /* XXX: code broken */
1670 case IPV6_IPSEC_POLICY:
1671 {
1672 caddr_t req = NULL;
1673 size_t len = 0;
1674
1675 if (m) {
1676 req = mtod(m, caddr_t);
1677 len = m->m_len;
1678 }
1679 error = ipsec6_get_policy(in6p, req, len, mp);
1680 break;
1681 }
1682 #endif /* IPSEC */
1683
1684 default:
1685 error = ENOPROTOOPT;
1686 break;
1687 }
1688 break;
1689 }
1690 } else {
1691 error = EINVAL;
1692 if (op == PRCO_SETOPT && *mp)
1693 (void)m_free(*mp);
1694 }
1695 return (error);
1696 }
1697
1698 int
1699 ip6_raw_ctloutput(op, so, level, optname, mp)
1700 int op;
1701 struct socket *so;
1702 int level, optname;
1703 struct mbuf **mp;
1704 {
1705 int error = 0, optval, optlen;
1706 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1707 struct in6pcb *in6p = sotoin6pcb(so);
1708 struct mbuf *m = *mp;
1709
1710 optlen = m ? m->m_len : 0;
1711
1712 if (level != IPPROTO_IPV6) {
1713 if (op == PRCO_SETOPT && *mp)
1714 (void)m_free(*mp);
1715 return (EINVAL);
1716 }
1717
1718 switch (optname) {
1719 case IPV6_CHECKSUM:
1720 /*
1721 * For ICMPv6 sockets, no modification allowed for checksum
1722 * offset, permit "no change" values to help existing apps.
1723 *
1724 * XXX 2292bis says: "An attempt to set IPV6_CHECKSUM
1725 * for an ICMPv6 socket will fail."
1726 * The current behavior does not meet 2292bis.
1727 */
1728 switch (op) {
1729 case PRCO_SETOPT:
1730 if (optlen != sizeof(int)) {
1731 error = EINVAL;
1732 break;
1733 }
1734 optval = *mtod(m, int *);
1735 if ((optval % 2) != 0) {
1736 /* the API assumes even offset values */
1737 error = EINVAL;
1738 } else if (so->so_proto->pr_protocol ==
1739 IPPROTO_ICMPV6) {
1740 if (optval != icmp6off)
1741 error = EINVAL;
1742 } else
1743 in6p->in6p_cksum = optval;
1744 break;
1745
1746 case PRCO_GETOPT:
1747 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
1748 optval = icmp6off;
1749 else
1750 optval = in6p->in6p_cksum;
1751
1752 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1753 m->m_len = sizeof(int);
1754 *mtod(m, int *) = optval;
1755 break;
1756
1757 default:
1758 error = EINVAL;
1759 break;
1760 }
1761 break;
1762
1763 default:
1764 error = ENOPROTOOPT;
1765 break;
1766 }
1767
1768 if (op == PRCO_SETOPT && m)
1769 (void)m_free(m);
1770
1771 return (error);
1772 }
1773
1774 /*
1775 * Set up IP6 options in pcb for insertion in output packets.
1776 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1777 * with destination address if source routed.
1778 */
1779 static int
1780 ip6_pcbopts(pktopt, m, so)
1781 struct ip6_pktopts **pktopt;
1782 struct mbuf *m;
1783 struct socket *so;
1784 {
1785 struct ip6_pktopts *opt = *pktopt;
1786 int error = 0;
1787 struct proc *p = curproc; /* XXX */
1788 int priv = 0;
1789
1790 /* turn off any old options. */
1791 if (opt) {
1792 if (opt->ip6po_m)
1793 (void)m_free(opt->ip6po_m);
1794 } else
1795 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1796 *pktopt = 0;
1797
1798 if (!m || m->m_len == 0) {
1799 /*
1800 * Only turning off any previous options.
1801 */
1802 free(opt, M_IP6OPT);
1803 if (m)
1804 (void)m_free(m);
1805 return (0);
1806 }
1807
1808 /* set options specified by user. */
1809 if (p && !suser(p->p_ucred, &p->p_acflag))
1810 priv = 1;
1811 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1812 (void)m_free(m);
1813 free(opt, M_IP6OPT);
1814 return (error);
1815 }
1816 *pktopt = opt;
1817 return (0);
1818 }
1819
1820 /*
1821 * Set the IP6 multicast options in response to user setsockopt().
1822 */
1823 static int
1824 ip6_setmoptions(optname, im6op, m)
1825 int optname;
1826 struct ip6_moptions **im6op;
1827 struct mbuf *m;
1828 {
1829 int error = 0;
1830 u_int loop, ifindex;
1831 struct ipv6_mreq *mreq;
1832 struct ifnet *ifp;
1833 struct ip6_moptions *im6o = *im6op;
1834 struct route_in6 ro;
1835 struct sockaddr_in6 *dst;
1836 struct in6_multi_mship *imm;
1837 struct proc *p = curproc; /* XXX */
1838
1839 if (im6o == NULL) {
1840 /*
1841 * No multicast option buffer attached to the pcb;
1842 * allocate one and initialize to default values.
1843 */
1844 im6o = (struct ip6_moptions *)
1845 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1846
1847 if (im6o == NULL)
1848 return (ENOBUFS);
1849 *im6op = im6o;
1850 im6o->im6o_multicast_ifp = NULL;
1851 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1852 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1853 LIST_INIT(&im6o->im6o_memberships);
1854 }
1855
1856 switch (optname) {
1857
1858 case IPV6_MULTICAST_IF:
1859 /*
1860 * Select the interface for outgoing multicast packets.
1861 */
1862 if (m == NULL || m->m_len != sizeof(u_int)) {
1863 error = EINVAL;
1864 break;
1865 }
1866 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1867 if (ifindex != 0) {
1868 if (ifindex < 0 || if_indexlim <= ifindex ||
1869 !ifindex2ifnet[ifindex]) {
1870 error = ENXIO; /* XXX EINVAL? */
1871 break;
1872 }
1873 ifp = ifindex2ifnet[ifindex];
1874 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
1875 error = EADDRNOTAVAIL;
1876 break;
1877 }
1878 } else
1879 ifp = NULL;
1880 im6o->im6o_multicast_ifp = ifp;
1881 break;
1882
1883 case IPV6_MULTICAST_HOPS:
1884 {
1885 /*
1886 * Set the IP6 hoplimit for outgoing multicast packets.
1887 */
1888 int optval;
1889 if (m == NULL || m->m_len != sizeof(int)) {
1890 error = EINVAL;
1891 break;
1892 }
1893 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1894 if (optval < -1 || optval >= 256)
1895 error = EINVAL;
1896 else if (optval == -1)
1897 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1898 else
1899 im6o->im6o_multicast_hlim = optval;
1900 break;
1901 }
1902
1903 case IPV6_MULTICAST_LOOP:
1904 /*
1905 * Set the loopback flag for outgoing multicast packets.
1906 * Must be zero or one.
1907 */
1908 if (m == NULL || m->m_len != sizeof(u_int)) {
1909 error = EINVAL;
1910 break;
1911 }
1912 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1913 if (loop > 1) {
1914 error = EINVAL;
1915 break;
1916 }
1917 im6o->im6o_multicast_loop = loop;
1918 break;
1919
1920 case IPV6_JOIN_GROUP:
1921 /*
1922 * Add a multicast group membership.
1923 * Group must be a valid IP6 multicast address.
1924 */
1925 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1926 error = EINVAL;
1927 break;
1928 }
1929 mreq = mtod(m, struct ipv6_mreq *);
1930 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1931 /*
1932 * We use the unspecified address to specify to accept
1933 * all multicast addresses. Only super user is allowed
1934 * to do this.
1935 */
1936 if (suser(p->p_ucred, &p->p_acflag))
1937 {
1938 error = EACCES;
1939 break;
1940 }
1941 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1942 error = EINVAL;
1943 break;
1944 }
1945
1946 /*
1947 * If the interface is specified, validate it.
1948 * If no interface was explicitly specified, choose an
1949 * appropriate one according to the given multicast address.
1950 */
1951 if (mreq->ipv6mr_interface != 0) {
1952 if (mreq->ipv6mr_interface < 0 ||
1953 if_indexlim <= mreq->ipv6mr_interface ||
1954 !ifindex2ifnet[mreq->ipv6mr_interface]) {
1955 error = ENXIO; /* XXX EINVAL? */
1956 break;
1957 }
1958 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1959 } else {
1960 /*
1961 * If the multicast address is in node-local scope,
1962 * the interface should be a loopback interface.
1963 * Otherwise, look up the routing table for the
1964 * address, and choose the outgoing interface.
1965 * XXX: is it a good approach?
1966 */
1967 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1968 ifp = lo0ifp;
1969 } else {
1970 ro.ro_rt = NULL;
1971 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1972 bzero(dst, sizeof(*dst));
1973 dst->sin6_len = sizeof(struct sockaddr_in6);
1974 dst->sin6_family = AF_INET6;
1975 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1976 rtalloc((struct route *)&ro);
1977 if (ro.ro_rt == NULL) {
1978 error = EADDRNOTAVAIL;
1979 break;
1980 }
1981 ifp = ro.ro_rt->rt_ifp;
1982 rtfree(ro.ro_rt);
1983 }
1984 }
1985
1986 /*
1987 * See if we found an interface, and confirm that it
1988 * supports multicast
1989 */
1990 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1991 error = EADDRNOTAVAIL;
1992 break;
1993 }
1994 /*
1995 * Put interface index into the multicast address,
1996 * if the address has link-local scope.
1997 */
1998 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
1999 mreq->ipv6mr_multiaddr.s6_addr16[1] =
2000 htons(ifp->if_index);
2001 }
2002 /*
2003 * See if the membership already exists.
2004 */
2005 for (imm = im6o->im6o_memberships.lh_first;
2006 imm != NULL; imm = imm->i6mm_chain.le_next)
2007 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2008 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2009 &mreq->ipv6mr_multiaddr))
2010 break;
2011 if (imm != NULL) {
2012 error = EADDRINUSE;
2013 break;
2014 }
2015 /*
2016 * Everything looks good; add a new record to the multicast
2017 * address list for the given interface.
2018 */
2019 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error);
2020 if (!imm)
2021 break;
2022 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2023 break;
2024
2025 case IPV6_LEAVE_GROUP:
2026 /*
2027 * Drop a multicast group membership.
2028 * Group must be a valid IP6 multicast address.
2029 */
2030 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2031 error = EINVAL;
2032 break;
2033 }
2034 mreq = mtod(m, struct ipv6_mreq *);
2035 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2036 if (suser(p->p_ucred, &p->p_acflag))
2037 {
2038 error = EACCES;
2039 break;
2040 }
2041 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2042 error = EINVAL;
2043 break;
2044 }
2045 /*
2046 * If an interface address was specified, get a pointer
2047 * to its ifnet structure.
2048 */
2049 if (mreq->ipv6mr_interface != 0) {
2050 if (mreq->ipv6mr_interface < 0 ||
2051 if_indexlim <= mreq->ipv6mr_interface ||
2052 !ifindex2ifnet[mreq->ipv6mr_interface]) {
2053 error = ENXIO; /* XXX EINVAL? */
2054 break;
2055 }
2056 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2057 } else
2058 ifp = NULL;
2059 /*
2060 * Put interface index into the multicast address,
2061 * if the address has link-local scope.
2062 */
2063 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2064 mreq->ipv6mr_multiaddr.s6_addr16[1] =
2065 htons(mreq->ipv6mr_interface);
2066 }
2067 /*
2068 * Find the membership in the membership list.
2069 */
2070 for (imm = im6o->im6o_memberships.lh_first;
2071 imm != NULL; imm = imm->i6mm_chain.le_next) {
2072 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2073 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2074 &mreq->ipv6mr_multiaddr))
2075 break;
2076 }
2077 if (imm == NULL) {
2078 /* Unable to resolve interface */
2079 error = EADDRNOTAVAIL;
2080 break;
2081 }
2082 /*
2083 * Give up the multicast address record to which the
2084 * membership points.
2085 */
2086 LIST_REMOVE(imm, i6mm_chain);
2087 in6_leavegroup(imm);
2088 break;
2089
2090 default:
2091 error = EOPNOTSUPP;
2092 break;
2093 }
2094
2095 /*
2096 * If all options have default values, no need to keep the mbuf.
2097 */
2098 if (im6o->im6o_multicast_ifp == NULL &&
2099 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2100 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2101 im6o->im6o_memberships.lh_first == NULL) {
2102 free(*im6op, M_IPMOPTS);
2103 *im6op = NULL;
2104 }
2105
2106 return (error);
2107 }
2108
2109 /*
2110 * Return the IP6 multicast options in response to user getsockopt().
2111 */
2112 static int
2113 ip6_getmoptions(optname, im6o, mp)
2114 int optname;
2115 struct ip6_moptions *im6o;
2116 struct mbuf **mp;
2117 {
2118 u_int *hlim, *loop, *ifindex;
2119
2120 *mp = m_get(M_WAIT, MT_SOOPTS);
2121
2122 switch (optname) {
2123
2124 case IPV6_MULTICAST_IF:
2125 ifindex = mtod(*mp, u_int *);
2126 (*mp)->m_len = sizeof(u_int);
2127 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2128 *ifindex = 0;
2129 else
2130 *ifindex = im6o->im6o_multicast_ifp->if_index;
2131 return (0);
2132
2133 case IPV6_MULTICAST_HOPS:
2134 hlim = mtod(*mp, u_int *);
2135 (*mp)->m_len = sizeof(u_int);
2136 if (im6o == NULL)
2137 *hlim = ip6_defmcasthlim;
2138 else
2139 *hlim = im6o->im6o_multicast_hlim;
2140 return (0);
2141
2142 case IPV6_MULTICAST_LOOP:
2143 loop = mtod(*mp, u_int *);
2144 (*mp)->m_len = sizeof(u_int);
2145 if (im6o == NULL)
2146 *loop = ip6_defmcasthlim;
2147 else
2148 *loop = im6o->im6o_multicast_loop;
2149 return (0);
2150
2151 default:
2152 return (EOPNOTSUPP);
2153 }
2154 }
2155
2156 /*
2157 * Discard the IP6 multicast options.
2158 */
2159 void
2160 ip6_freemoptions(im6o)
2161 struct ip6_moptions *im6o;
2162 {
2163 struct in6_multi_mship *imm;
2164
2165 if (im6o == NULL)
2166 return;
2167
2168 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2169 LIST_REMOVE(imm, i6mm_chain);
2170 in6_leavegroup(imm);
2171 }
2172 free(im6o, M_IPMOPTS);
2173 }
2174
2175 /*
2176 * Set IPv6 outgoing packet options based on advanced API.
2177 */
2178 int
2179 ip6_setpktoptions(control, opt, priv)
2180 struct mbuf *control;
2181 struct ip6_pktopts *opt;
2182 int priv;
2183 {
2184 struct cmsghdr *cm = 0;
2185
2186 if (control == 0 || opt == 0)
2187 return (EINVAL);
2188
2189 bzero(opt, sizeof(*opt));
2190 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
2191
2192 /*
2193 * XXX: Currently, we assume all the optional information is stored
2194 * in a single mbuf.
2195 */
2196 if (control->m_next)
2197 return (EINVAL);
2198
2199 opt->ip6po_m = control;
2200
2201 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2202 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2203 cm = mtod(control, struct cmsghdr *);
2204 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2205 return (EINVAL);
2206 if (cm->cmsg_level != IPPROTO_IPV6)
2207 continue;
2208
2209 switch (cm->cmsg_type) {
2210 case IPV6_PKTINFO:
2211 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
2212 return (EINVAL);
2213 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
2214 if (opt->ip6po_pktinfo->ipi6_ifindex &&
2215 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
2216 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
2217 htons(opt->ip6po_pktinfo->ipi6_ifindex);
2218
2219 if (opt->ip6po_pktinfo->ipi6_ifindex >= if_indexlim ||
2220 opt->ip6po_pktinfo->ipi6_ifindex < 0)
2221 return (ENXIO);
2222 if (opt->ip6po_pktinfo->ipi6_ifindex > 0 &&
2223 !ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex])
2224 return (ENXIO);
2225
2226 /*
2227 * Check if the requested source address is indeed a
2228 * unicast address assigned to the node, and can be
2229 * used as the packet's source address.
2230 */
2231 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2232 struct ifaddr *ia;
2233 struct in6_ifaddr *ia6;
2234 struct sockaddr_in6 sin6;
2235
2236 bzero(&sin6, sizeof(sin6));
2237 sin6.sin6_len = sizeof(sin6);
2238 sin6.sin6_family = AF_INET6;
2239 sin6.sin6_addr =
2240 opt->ip6po_pktinfo->ipi6_addr;
2241 ia = ifa_ifwithaddr(sin6tosa(&sin6));
2242 if (ia == NULL ||
2243 (opt->ip6po_pktinfo->ipi6_ifindex &&
2244 (ia->ifa_ifp->if_index !=
2245 opt->ip6po_pktinfo->ipi6_ifindex))) {
2246 return (EADDRNOTAVAIL);
2247 }
2248 ia6 = (struct in6_ifaddr *)ia;
2249 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) {
2250 return (EADDRNOTAVAIL);
2251 }
2252
2253 /*
2254 * Check if the requested source address is
2255 * indeed a unicast address assigned to the
2256 * node.
2257 */
2258 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
2259 return (EADDRNOTAVAIL);
2260 }
2261 break;
2262
2263 case IPV6_HOPLIMIT:
2264 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2265 return (EINVAL);
2266 else {
2267 int t;
2268
2269 bcopy(CMSG_DATA(cm), &t, sizeof(t));
2270 if (t < -1 || t > 255)
2271 return (EINVAL);
2272 opt->ip6po_hlim = t;
2273 }
2274 break;
2275
2276 case IPV6_NEXTHOP:
2277 if (!priv)
2278 return (EPERM);
2279
2280 /* check if cmsg_len is large enough for sa_len */
2281 if (cm->cmsg_len < sizeof(u_char) ||
2282 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2283 return (EINVAL);
2284
2285 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2286
2287 break;
2288
2289 case IPV6_HOPOPTS:
2290 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2291 return (EINVAL);
2292 else {
2293 struct ip6_hbh *t;
2294
2295 t = (struct ip6_hbh *)CMSG_DATA(cm);
2296 if (cm->cmsg_len !=
2297 CMSG_LEN((t->ip6h_len + 1) << 3))
2298 return (EINVAL);
2299 opt->ip6po_hbh = t;
2300 }
2301 break;
2302
2303 case IPV6_DSTOPTS:
2304 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2305 return (EINVAL);
2306
2307 /*
2308 * If there is no routing header yet, the destination
2309 * options header should be put on the 1st part.
2310 * Otherwise, the header should be on the 2nd part.
2311 * (See RFC 2460, section 4.1)
2312 */
2313 if (opt->ip6po_rthdr == NULL) {
2314 struct ip6_dest *t;
2315
2316 t = (struct ip6_dest *)CMSG_DATA(cm);
2317 if (cm->cmsg_len !=
2318 CMSG_LEN((t->ip6d_len + 1) << 3));
2319 return (EINVAL);
2320 opt->ip6po_dest1 = t;
2321 }
2322 else {
2323 struct ip6_dest *t;
2324
2325 t = (struct ip6_dest *)CMSG_DATA(cm);
2326 if (cm->cmsg_len !=
2327 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) << 3))
2328 return (EINVAL);
2329 opt->ip6po_dest2 = t;
2330 }
2331 break;
2332
2333 case IPV6_RTHDR:
2334 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2335 return (EINVAL);
2336 else {
2337 struct ip6_rthdr *t;
2338
2339 t = (struct ip6_rthdr *)CMSG_DATA(cm);
2340 if (cm->cmsg_len !=
2341 CMSG_LEN((t->ip6r_len + 1) << 3))
2342 return (EINVAL);
2343 switch (t->ip6r_type) {
2344 case IPV6_RTHDR_TYPE_0:
2345 if (t->ip6r_segleft == 0)
2346 return (EINVAL);
2347 break;
2348 default:
2349 return (EINVAL);
2350 }
2351 opt->ip6po_rthdr = t;
2352 }
2353 break;
2354
2355 default:
2356 return (ENOPROTOOPT);
2357 }
2358 }
2359
2360 return (0);
2361 }
2362
2363 /*
2364 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2365 * packet to the input queue of a specified interface. Note that this
2366 * calls the output routine of the loopback "driver", but with an interface
2367 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
2368 */
2369 void
2370 ip6_mloopback(ifp, m, dst)
2371 struct ifnet *ifp;
2372 struct mbuf *m;
2373 struct sockaddr_in6 *dst;
2374 {
2375 struct mbuf *copym;
2376 struct ip6_hdr *ip6;
2377
2378 copym = m_copy(m, 0, M_COPYALL);
2379 if (copym == NULL)
2380 return;
2381
2382 /*
2383 * Make sure to deep-copy IPv6 header portion in case the data
2384 * is in an mbuf cluster, so that we can safely override the IPv6
2385 * header portion later.
2386 */
2387 if ((copym->m_flags & M_EXT) != 0 ||
2388 copym->m_len < sizeof(struct ip6_hdr)) {
2389 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2390 if (copym == NULL)
2391 return;
2392 }
2393
2394 #ifdef DIAGNOSTIC
2395 if (copym->m_len < sizeof(*ip6)) {
2396 m_freem(copym);
2397 return;
2398 }
2399 #endif
2400
2401 ip6 = mtod(copym, struct ip6_hdr *);
2402 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
2403 ip6->ip6_src.s6_addr16[1] = 0;
2404 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
2405 ip6->ip6_dst.s6_addr16[1] = 0;
2406
2407 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2408 }
2409
2410 /*
2411 * Chop IPv6 header off from the payload.
2412 */
2413 static int
2414 ip6_splithdr(m, exthdrs)
2415 struct mbuf *m;
2416 struct ip6_exthdrs *exthdrs;
2417 {
2418 struct mbuf *mh;
2419 struct ip6_hdr *ip6;
2420
2421 ip6 = mtod(m, struct ip6_hdr *);
2422 if (m->m_len > sizeof(*ip6)) {
2423 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2424 if (mh == 0) {
2425 m_freem(m);
2426 return ENOBUFS;
2427 }
2428 M_COPY_PKTHDR(mh, m);
2429 MH_ALIGN(mh, sizeof(*ip6));
2430 m_tag_delete_chain(m, NULL);
2431 m->m_flags &= ~M_PKTHDR;
2432 m->m_len -= sizeof(*ip6);
2433 m->m_data += sizeof(*ip6);
2434 mh->m_next = m;
2435 m = mh;
2436 m->m_len = sizeof(*ip6);
2437 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2438 }
2439 exthdrs->ip6e_ip6 = m;
2440 return 0;
2441 }
2442
2443 /*
2444 * Compute IPv6 extension header length.
2445 */
2446 int
2447 ip6_optlen(in6p)
2448 struct in6pcb *in6p;
2449 {
2450 int len;
2451
2452 if (!in6p->in6p_outputopts)
2453 return 0;
2454
2455 len = 0;
2456 #define elen(x) \
2457 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2458
2459 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2460 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2461 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2462 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2463 return len;
2464 #undef elen
2465 }
2466