ip6_output.c revision 1.91 1 /* $NetBSD: ip6_output.c,v 1.91 2005/08/18 00:30:59 yamt Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.91 2005/08/18 00:30:59 yamt Exp $");
66
67 #include "opt_inet.h"
68 #include "opt_ipsec.h"
69 #include "opt_pfil_hooks.h"
70
71 #include <sys/param.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/errno.h>
75 #include <sys/protosw.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80
81 #include <net/if.h>
82 #include <net/route.h>
83 #ifdef PFIL_HOOKS
84 #include <net/pfil.h>
85 #endif
86
87 #include <netinet/in.h>
88 #include <netinet/in_var.h>
89 #include <netinet/ip6.h>
90 #include <netinet/icmp6.h>
91 #include <netinet/in_offload.h>
92 #include <netinet6/ip6_var.h>
93 #include <netinet6/in6_pcb.h>
94 #include <netinet6/nd6.h>
95 #include <netinet6/ip6protosw.h>
96
97 #ifdef IPSEC
98 #include <netinet6/ipsec.h>
99 #include <netkey/key.h>
100 #endif /* IPSEC */
101
102 #include <net/net_osdep.h>
103
104 #ifdef PFIL_HOOKS
105 extern struct pfil_head inet6_pfil_hook; /* XXX */
106 #endif
107
108 struct ip6_exthdrs {
109 struct mbuf *ip6e_ip6;
110 struct mbuf *ip6e_hbh;
111 struct mbuf *ip6e_dest1;
112 struct mbuf *ip6e_rthdr;
113 struct mbuf *ip6e_dest2;
114 };
115
116 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
117 struct socket *));
118 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
119 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
120 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
121 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
122 struct ip6_frag **));
123 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
124 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
125 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
126 struct ifnet *, struct in6_addr *, u_long *, int *));
127
128 #define IN6_NEED_CHECKSUM(ifp, csum_flags) \
129 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
130 (((csum_flags) & M_CSUM_UDPv6) != 0 && udp_do_loopback_cksum) || \
131 (((csum_flags) & M_CSUM_TCPv6) != 0 && tcp_do_loopback_cksum)))
132
133 /*
134 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
135 * header (with pri, len, nxt, hlim, src, dst).
136 * This function may modify ver and hlim only.
137 * The mbuf chain containing the packet will be freed.
138 * The mbuf opt, if present, will not be freed.
139 *
140 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
141 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
142 * which is rt_rmx.rmx_mtu.
143 */
144 int
145 ip6_output(m0, opt, ro, flags, im6o, so, ifpp)
146 struct mbuf *m0;
147 struct ip6_pktopts *opt;
148 struct route_in6 *ro;
149 int flags;
150 struct ip6_moptions *im6o;
151 struct socket *so;
152 struct ifnet **ifpp; /* XXX: just for statistics */
153 {
154 struct ip6_hdr *ip6, *mhip6;
155 struct ifnet *ifp, *origifp;
156 struct mbuf *m = m0;
157 int hlen, tlen, len, off;
158 struct route_in6 ip6route;
159 struct sockaddr_in6 *dst;
160 int error = 0;
161 u_long mtu;
162 int alwaysfrag, dontfrag;
163 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
164 struct ip6_exthdrs exthdrs;
165 struct in6_addr finaldst;
166 struct route_in6 *ro_pmtu = NULL;
167 int hdrsplit = 0;
168 int needipsec = 0;
169 #ifdef IPSEC
170 int needipsectun = 0;
171 struct secpolicy *sp = NULL;
172
173 ip6 = mtod(m, struct ip6_hdr *);
174 #endif /* IPSEC */
175
176 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
177
178 #define MAKE_EXTHDR(hp, mp) \
179 do { \
180 if (hp) { \
181 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
182 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
183 ((eh)->ip6e_len + 1) << 3); \
184 if (error) \
185 goto freehdrs; \
186 } \
187 } while (/*CONSTCOND*/ 0)
188
189 bzero(&exthdrs, sizeof(exthdrs));
190 if (opt) {
191 /* Hop-by-Hop options header */
192 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
193 /* Destination options header(1st part) */
194 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
195 /* Routing header */
196 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
197 /* Destination options header(2nd part) */
198 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
199 }
200
201 #ifdef IPSEC
202 if ((flags & IPV6_FORWARDING) != 0) {
203 needipsec = 0;
204 goto skippolicycheck;
205 }
206
207 /* get a security policy for this packet */
208 if (so == NULL)
209 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
210 else {
211 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
212 IPSEC_DIR_OUTBOUND)) {
213 needipsec = 0;
214 goto skippolicycheck;
215 }
216 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
217 }
218
219 if (sp == NULL) {
220 ipsec6stat.out_inval++;
221 goto freehdrs;
222 }
223
224 error = 0;
225
226 /* check policy */
227 switch (sp->policy) {
228 case IPSEC_POLICY_DISCARD:
229 /*
230 * This packet is just discarded.
231 */
232 ipsec6stat.out_polvio++;
233 goto freehdrs;
234
235 case IPSEC_POLICY_BYPASS:
236 case IPSEC_POLICY_NONE:
237 /* no need to do IPsec. */
238 needipsec = 0;
239 break;
240
241 case IPSEC_POLICY_IPSEC:
242 if (sp->req == NULL) {
243 /* XXX should be panic ? */
244 printf("ip6_output: No IPsec request specified.\n");
245 error = EINVAL;
246 goto freehdrs;
247 }
248 needipsec = 1;
249 break;
250
251 case IPSEC_POLICY_ENTRUST:
252 default:
253 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
254 }
255
256 skippolicycheck:;
257 #endif /* IPSEC */
258
259 if (needipsec &&
260 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
261 in6_delayed_cksum(m);
262 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
263 }
264
265 /*
266 * Calculate the total length of the extension header chain.
267 * Keep the length of the unfragmentable part for fragmentation.
268 */
269 optlen = 0;
270 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
271 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
272 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
273 unfragpartlen = optlen + sizeof(struct ip6_hdr);
274 /* NOTE: we don't add AH/ESP length here. do that later. */
275 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
276
277 /*
278 * If we need IPsec, or there is at least one extension header,
279 * separate IP6 header from the payload.
280 */
281 if ((needipsec || optlen) && !hdrsplit) {
282 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
283 m = NULL;
284 goto freehdrs;
285 }
286 m = exthdrs.ip6e_ip6;
287 hdrsplit++;
288 }
289
290 /* adjust pointer */
291 ip6 = mtod(m, struct ip6_hdr *);
292
293 /* adjust mbuf packet header length */
294 m->m_pkthdr.len += optlen;
295 plen = m->m_pkthdr.len - sizeof(*ip6);
296
297 /* If this is a jumbo payload, insert a jumbo payload option. */
298 if (plen > IPV6_MAXPACKET) {
299 if (!hdrsplit) {
300 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
301 m = NULL;
302 goto freehdrs;
303 }
304 m = exthdrs.ip6e_ip6;
305 hdrsplit++;
306 }
307 /* adjust pointer */
308 ip6 = mtod(m, struct ip6_hdr *);
309 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
310 goto freehdrs;
311 optlen += 8; /* XXX JUMBOOPTLEN */
312 ip6->ip6_plen = 0;
313 } else
314 ip6->ip6_plen = htons(plen);
315
316 /*
317 * Concatenate headers and fill in next header fields.
318 * Here we have, on "m"
319 * IPv6 payload
320 * and we insert headers accordingly. Finally, we should be getting:
321 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
322 *
323 * during the header composing process, "m" points to IPv6 header.
324 * "mprev" points to an extension header prior to esp.
325 */
326 {
327 u_char *nexthdrp = &ip6->ip6_nxt;
328 struct mbuf *mprev = m;
329
330 /*
331 * we treat dest2 specially. this makes IPsec processing
332 * much easier. the goal here is to make mprev point the
333 * mbuf prior to dest2.
334 *
335 * result: IPv6 dest2 payload
336 * m and mprev will point to IPv6 header.
337 */
338 if (exthdrs.ip6e_dest2) {
339 if (!hdrsplit)
340 panic("assumption failed: hdr not split");
341 exthdrs.ip6e_dest2->m_next = m->m_next;
342 m->m_next = exthdrs.ip6e_dest2;
343 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
344 ip6->ip6_nxt = IPPROTO_DSTOPTS;
345 }
346
347 #define MAKE_CHAIN(m, mp, p, i)\
348 do {\
349 if (m) {\
350 if (!hdrsplit) \
351 panic("assumption failed: hdr not split"); \
352 *mtod((m), u_char *) = *(p);\
353 *(p) = (i);\
354 p = mtod((m), u_char *);\
355 (m)->m_next = (mp)->m_next;\
356 (mp)->m_next = (m);\
357 (mp) = (m);\
358 }\
359 } while (/*CONSTCOND*/ 0)
360 /*
361 * result: IPv6 hbh dest1 rthdr dest2 payload
362 * m will point to IPv6 header. mprev will point to the
363 * extension header prior to dest2 (rthdr in the above case).
364 */
365 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
366 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
367 IPPROTO_DSTOPTS);
368 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
369 IPPROTO_ROUTING);
370
371 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
372 sizeof(struct ip6_hdr) + optlen);
373
374 #ifdef IPSEC
375 if (!needipsec)
376 goto skip_ipsec2;
377
378 /*
379 * pointers after IPsec headers are not valid any more.
380 * other pointers need a great care too.
381 * (IPsec routines should not mangle mbufs prior to AH/ESP)
382 */
383 exthdrs.ip6e_dest2 = NULL;
384
385 {
386 struct ip6_rthdr *rh = NULL;
387 int segleft_org = 0;
388 struct ipsec_output_state state;
389
390 if (exthdrs.ip6e_rthdr) {
391 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
392 segleft_org = rh->ip6r_segleft;
393 rh->ip6r_segleft = 0;
394 }
395
396 bzero(&state, sizeof(state));
397 state.m = m;
398 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
399 &needipsectun);
400 m = state.m;
401 if (error) {
402 /* mbuf is already reclaimed in ipsec6_output_trans. */
403 m = NULL;
404 switch (error) {
405 case EHOSTUNREACH:
406 case ENETUNREACH:
407 case EMSGSIZE:
408 case ENOBUFS:
409 case ENOMEM:
410 break;
411 default:
412 printf("ip6_output (ipsec): error code %d\n", error);
413 /* FALLTHROUGH */
414 case ENOENT:
415 /* don't show these error codes to the user */
416 error = 0;
417 break;
418 }
419 goto bad;
420 }
421 if (exthdrs.ip6e_rthdr) {
422 /* ah6_output doesn't modify mbuf chain */
423 rh->ip6r_segleft = segleft_org;
424 }
425 }
426 skip_ipsec2:;
427 #endif
428 }
429
430 /*
431 * If there is a routing header, replace destination address field
432 * with the first hop of the routing header.
433 */
434 if (exthdrs.ip6e_rthdr) {
435 struct ip6_rthdr *rh;
436 struct ip6_rthdr0 *rh0;
437 struct in6_addr *addr;
438
439 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
440 struct ip6_rthdr *));
441 finaldst = ip6->ip6_dst;
442 switch (rh->ip6r_type) {
443 case IPV6_RTHDR_TYPE_0:
444 rh0 = (struct ip6_rthdr0 *)rh;
445 addr = (struct in6_addr *)(rh0 + 1);
446 ip6->ip6_dst = addr[0];
447 bcopy(&addr[1], &addr[0],
448 sizeof(struct in6_addr) * (rh0->ip6r0_segleft - 1));
449 addr[rh0->ip6r0_segleft - 1] = finaldst;
450 break;
451 default: /* is it possible? */
452 error = EINVAL;
453 goto bad;
454 }
455 }
456
457 /* Source address validation */
458 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
459 (flags & IPV6_UNSPECSRC) == 0) {
460 error = EOPNOTSUPP;
461 ip6stat.ip6s_badscope++;
462 goto bad;
463 }
464 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
465 error = EOPNOTSUPP;
466 ip6stat.ip6s_badscope++;
467 goto bad;
468 }
469
470 ip6stat.ip6s_localout++;
471
472 /*
473 * Route packet.
474 */
475 /* initialize cached route */
476 if (ro == 0) {
477 ro = &ip6route;
478 bzero((caddr_t)ro, sizeof(*ro));
479 }
480 ro_pmtu = ro;
481 if (opt && opt->ip6po_rthdr)
482 ro = &opt->ip6po_route;
483 dst = (struct sockaddr_in6 *)&ro->ro_dst;
484 /*
485 * If there is a cached route,
486 * check that it is to the same destination
487 * and is still up. If not, free it and try again.
488 */
489 if (ro->ro_rt && ((ro->ro_rt->rt_flags & RTF_UP) == 0 ||
490 dst->sin6_family != AF_INET6 ||
491 !IN6_ARE_ADDR_EQUAL(&dst->sin6_addr, &ip6->ip6_dst))) {
492 RTFREE(ro->ro_rt);
493 ro->ro_rt = (struct rtentry *)0;
494 }
495 if (ro->ro_rt == 0) {
496 bzero(dst, sizeof(*dst));
497 dst->sin6_family = AF_INET6;
498 dst->sin6_len = sizeof(struct sockaddr_in6);
499 dst->sin6_addr = ip6->ip6_dst;
500 }
501 #ifdef IPSEC
502 if (needipsec && needipsectun) {
503 struct ipsec_output_state state;
504
505 /*
506 * All the extension headers will become inaccessible
507 * (since they can be encrypted).
508 * Don't panic, we need no more updates to extension headers
509 * on inner IPv6 packet (since they are now encapsulated).
510 *
511 * IPv6 [ESP|AH] IPv6 [extension headers] payload
512 */
513 bzero(&exthdrs, sizeof(exthdrs));
514 exthdrs.ip6e_ip6 = m;
515
516 bzero(&state, sizeof(state));
517 state.m = m;
518 state.ro = (struct route *)ro;
519 state.dst = (struct sockaddr *)dst;
520
521 error = ipsec6_output_tunnel(&state, sp, flags);
522
523 m = state.m;
524 ro_pmtu = ro = (struct route_in6 *)state.ro;
525 dst = (struct sockaddr_in6 *)state.dst;
526 if (error) {
527 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
528 m0 = m = NULL;
529 m = NULL;
530 switch (error) {
531 case EHOSTUNREACH:
532 case ENETUNREACH:
533 case EMSGSIZE:
534 case ENOBUFS:
535 case ENOMEM:
536 break;
537 default:
538 printf("ip6_output (ipsec): error code %d\n", error);
539 /* FALLTHROUGH */
540 case ENOENT:
541 /* don't show these error codes to the user */
542 error = 0;
543 break;
544 }
545 goto bad;
546 }
547
548 exthdrs.ip6e_ip6 = m;
549 }
550 #endif /* IPSEC */
551
552 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
553 /* Unicast */
554
555 #define ifatoia6(ifa) ((struct in6_ifaddr *)(ifa))
556 #define sin6tosa(sin6) ((struct sockaddr *)(sin6))
557 /* xxx
558 * interface selection comes here
559 * if an interface is specified from an upper layer,
560 * ifp must point it.
561 */
562 if (ro->ro_rt == 0) {
563 /*
564 * non-bsdi always clone routes, if parent is
565 * PRF_CLONING.
566 */
567 rtalloc((struct route *)ro);
568 }
569 if (ro->ro_rt == 0) {
570 ip6stat.ip6s_noroute++;
571 error = EHOSTUNREACH;
572 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard); */
573 goto bad;
574 }
575 ifp = ro->ro_rt->rt_ifp;
576 ro->ro_rt->rt_use++;
577 if (ro->ro_rt->rt_flags & RTF_GATEWAY)
578 dst = (struct sockaddr_in6 *)ro->ro_rt->rt_gateway;
579 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
580
581 in6_ifstat_inc(ifp, ifs6_out_request);
582
583 /*
584 * Check if the outgoing interface conflicts with
585 * the interface specified by ifi6_ifindex (if specified).
586 * Note that loopback interface is always okay.
587 * (this may happen when we are sending a packet to one of
588 * our own addresses.)
589 */
590 if (opt && opt->ip6po_pktinfo &&
591 opt->ip6po_pktinfo->ipi6_ifindex) {
592 if (!(ifp->if_flags & IFF_LOOPBACK) &&
593 ifp->if_index != opt->ip6po_pktinfo->ipi6_ifindex) {
594 ip6stat.ip6s_noroute++;
595 in6_ifstat_inc(ifp, ifs6_out_discard);
596 error = EHOSTUNREACH;
597 goto bad;
598 }
599 }
600
601 if (opt && opt->ip6po_hlim != -1)
602 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
603 } else {
604 /* Multicast */
605 struct in6_multi *in6m;
606
607 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
608
609 /*
610 * See if the caller provided any multicast options
611 */
612 ifp = NULL;
613 if (im6o != NULL) {
614 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
615 if (im6o->im6o_multicast_ifp != NULL)
616 ifp = im6o->im6o_multicast_ifp;
617 } else
618 ip6->ip6_hlim = ip6_defmcasthlim;
619
620 /*
621 * See if the caller provided the outgoing interface
622 * as an ancillary data.
623 * Boundary check for ifindex is assumed to be already done.
624 */
625 if (opt && opt->ip6po_pktinfo && opt->ip6po_pktinfo->ipi6_ifindex)
626 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
627
628 /*
629 * If the destination is a node-local scope multicast,
630 * the packet should be loop-backed only.
631 */
632 if (IN6_IS_ADDR_MC_NODELOCAL(&ip6->ip6_dst)) {
633 /*
634 * If the outgoing interface is already specified,
635 * it should be a loopback interface.
636 */
637 if (ifp && (ifp->if_flags & IFF_LOOPBACK) == 0) {
638 ip6stat.ip6s_badscope++;
639 error = ENETUNREACH; /* XXX: better error? */
640 /* XXX correct ifp? */
641 in6_ifstat_inc(ifp, ifs6_out_discard);
642 goto bad;
643 } else
644 ifp = lo0ifp;
645 }
646
647 if (opt && opt->ip6po_hlim != -1)
648 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
649
650 /*
651 * If caller did not provide an interface lookup a
652 * default in the routing table. This is either a
653 * default for the speicfied group (i.e. a host
654 * route), or a multicast default (a route for the
655 * ``net'' ff00::/8).
656 */
657 if (ifp == NULL) {
658 if (ro->ro_rt == 0) {
659 ro->ro_rt = rtalloc1((struct sockaddr *)
660 &ro->ro_dst, 0);
661 }
662 if (ro->ro_rt == 0) {
663 ip6stat.ip6s_noroute++;
664 error = EHOSTUNREACH;
665 /* XXX in6_ifstat_inc(ifp, ifs6_out_discard) */
666 goto bad;
667 }
668 ifp = ro->ro_rt->rt_ifp;
669 ro->ro_rt->rt_use++;
670 }
671
672 if ((flags & IPV6_FORWARDING) == 0)
673 in6_ifstat_inc(ifp, ifs6_out_request);
674 in6_ifstat_inc(ifp, ifs6_out_mcast);
675
676 /*
677 * Confirm that the outgoing interface supports multicast.
678 */
679 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
680 ip6stat.ip6s_noroute++;
681 in6_ifstat_inc(ifp, ifs6_out_discard);
682 error = ENETUNREACH;
683 goto bad;
684 }
685 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
686 if (in6m != NULL &&
687 (im6o == NULL || im6o->im6o_multicast_loop)) {
688 /*
689 * If we belong to the destination multicast group
690 * on the outgoing interface, and the caller did not
691 * forbid loopback, loop back a copy.
692 */
693 ip6_mloopback(ifp, m, dst);
694 } else {
695 /*
696 * If we are acting as a multicast router, perform
697 * multicast forwarding as if the packet had just
698 * arrived on the interface to which we are about
699 * to send. The multicast forwarding function
700 * recursively calls this function, using the
701 * IPV6_FORWARDING flag to prevent infinite recursion.
702 *
703 * Multicasts that are looped back by ip6_mloopback(),
704 * above, will be forwarded by the ip6_input() routine,
705 * if necessary.
706 */
707 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
708 if (ip6_mforward(ip6, ifp, m) != 0) {
709 m_freem(m);
710 goto done;
711 }
712 }
713 }
714 /*
715 * Multicasts with a hoplimit of zero may be looped back,
716 * above, but must not be transmitted on a network.
717 * Also, multicasts addressed to the loopback interface
718 * are not sent -- the above call to ip6_mloopback() will
719 * loop back a copy if this host actually belongs to the
720 * destination group on the loopback interface.
721 */
722 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK)) {
723 m_freem(m);
724 goto done;
725 }
726 }
727
728 /*
729 * Fill the outgoing inteface to tell the upper layer
730 * to increment per-interface statistics.
731 */
732 if (ifpp)
733 *ifpp = ifp;
734
735 /* Determine path MTU. */
736 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
737 &alwaysfrag)) != 0)
738 goto bad;
739 #ifdef IPSEC
740 if (needipsectun)
741 mtu = IPV6_MMTU;
742 #endif
743
744 /*
745 * The caller of this function may specify to use the minimum MTU
746 * in some cases.
747 */
748 if (mtu > IPV6_MMTU) {
749 if ((flags & IPV6_MINMTU))
750 mtu = IPV6_MMTU;
751 }
752
753 /* Fake scoped addresses */
754 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
755 /*
756 * If source or destination address is a scoped address, and
757 * the packet is going to be sent to a loopback interface,
758 * we should keep the original interface.
759 */
760
761 /*
762 * XXX: this is a very experimental and temporary solution.
763 * We eventually have sockaddr_in6 and use the sin6_scope_id
764 * field of the structure here.
765 * We rely on the consistency between two scope zone ids
766 * of source add destination, which should already be assured
767 * Larger scopes than link will be supported in the near
768 * future.
769 */
770 origifp = NULL;
771 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
772 origifp = ifindex2ifnet[ntohs(ip6->ip6_src.s6_addr16[1])];
773 else if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
774 origifp = ifindex2ifnet[ntohs(ip6->ip6_dst.s6_addr16[1])];
775 /*
776 * XXX: origifp can be NULL even in those two cases above.
777 * For example, if we remove the (only) link-local address
778 * from the loopback interface, and try to send a link-local
779 * address without link-id information. Then the source
780 * address is ::1, and the destination address is the
781 * link-local address with its s6_addr16[1] being zero.
782 * What is worse, if the packet goes to the loopback interface
783 * by a default rejected route, the null pointer would be
784 * passed to looutput, and the kernel would hang.
785 * The following last resort would prevent such disaster.
786 */
787 if (origifp == NULL)
788 origifp = ifp;
789 } else
790 origifp = ifp;
791 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
792 ip6->ip6_src.s6_addr16[1] = 0;
793 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
794 ip6->ip6_dst.s6_addr16[1] = 0;
795
796 /*
797 * If the outgoing packet contains a hop-by-hop options header,
798 * it must be examined and processed even by the source node.
799 * (RFC 2460, section 4.)
800 */
801 if (exthdrs.ip6e_hbh) {
802 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
803 u_int32_t dummy1; /* XXX unused */
804 u_int32_t dummy2; /* XXX unused */
805
806 /*
807 * XXX: if we have to send an ICMPv6 error to the sender,
808 * we need the M_LOOP flag since icmp6_error() expects
809 * the IPv6 and the hop-by-hop options header are
810 * continuous unless the flag is set.
811 */
812 m->m_flags |= M_LOOP;
813 m->m_pkthdr.rcvif = ifp;
814 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
815 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
816 &dummy1, &dummy2) < 0) {
817 /* m was already freed at this point */
818 error = EINVAL;/* better error? */
819 goto done;
820 }
821 m->m_flags &= ~M_LOOP; /* XXX */
822 m->m_pkthdr.rcvif = NULL;
823 }
824
825 #ifdef PFIL_HOOKS
826 /*
827 * Run through list of hooks for output packets.
828 */
829 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
830 goto done;
831 if (m == NULL)
832 goto done;
833 ip6 = mtod(m, struct ip6_hdr *);
834 #endif /* PFIL_HOOKS */
835 /*
836 * Send the packet to the outgoing interface.
837 * If necessary, do IPv6 fragmentation before sending.
838 *
839 * the logic here is rather complex:
840 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
841 * 1-a: send as is if tlen <= path mtu
842 * 1-b: fragment if tlen > path mtu
843 *
844 * 2: if user asks us not to fragment (dontfrag == 1)
845 * 2-a: send as is if tlen <= interface mtu
846 * 2-b: error if tlen > interface mtu
847 *
848 * 3: if we always need to attach fragment header (alwaysfrag == 1)
849 * always fragment
850 *
851 * 4: if dontfrag == 1 && alwaysfrag == 1
852 * error, as we cannot handle this conflicting request
853 */
854 tlen = m->m_pkthdr.len;
855
856 dontfrag = 0;
857 if (dontfrag && alwaysfrag) { /* case 4 */
858 /* conflicting request - can't transmit */
859 error = EMSGSIZE;
860 goto bad;
861 }
862 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */
863 /*
864 * Even if the DONTFRAG option is specified, we cannot send the
865 * packet when the data length is larger than the MTU of the
866 * outgoing interface.
867 * Notify the error by sending IPV6_PATHMTU ancillary data as
868 * well as returning an error code (the latter is not described
869 * in the API spec.)
870 */
871 u_int32_t mtu32;
872 struct ip6ctlparam ip6cp;
873
874 mtu32 = (u_int32_t)mtu;
875 bzero(&ip6cp, sizeof(ip6cp));
876 ip6cp.ip6c_cmdarg = (void *)&mtu32;
877 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
878 (void *)&ip6cp);
879
880 error = EMSGSIZE;
881 goto bad;
882 }
883
884 /*
885 * transmit packet without fragmentation
886 */
887 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */
888 struct in6_ifaddr *ia6;
889 int sw_csum;
890
891 ip6 = mtod(m, struct ip6_hdr *);
892 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
893 if (ia6) {
894 /* Record statistics for this interface address. */
895 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
896 }
897 #ifdef IPSEC
898 /* clean ipsec history once it goes out of the node */
899 ipsec_delaux(m);
900 #endif
901
902 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
903 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
904 if (IN6_NEED_CHECKSUM(ifp,
905 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
906 in6_delayed_cksum(m);
907 }
908 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
909 }
910
911 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
912 goto done;
913 }
914
915 /*
916 * try to fragment the packet. case 1-b and 3
917 */
918 if (mtu < IPV6_MMTU) {
919 /* path MTU cannot be less than IPV6_MMTU */
920 error = EMSGSIZE;
921 in6_ifstat_inc(ifp, ifs6_out_fragfail);
922 goto bad;
923 } else if (ip6->ip6_plen == 0) {
924 /* jumbo payload cannot be fragmented */
925 error = EMSGSIZE;
926 in6_ifstat_inc(ifp, ifs6_out_fragfail);
927 goto bad;
928 } else {
929 struct mbuf **mnext, *m_frgpart;
930 struct ip6_frag *ip6f;
931 u_int32_t id = htonl(ip6_randomid());
932 u_char nextproto;
933 struct ip6ctlparam ip6cp;
934 u_int32_t mtu32;
935
936 /*
937 * Too large for the destination or interface;
938 * fragment if possible.
939 * Must be able to put at least 8 bytes per fragment.
940 */
941 hlen = unfragpartlen;
942 if (mtu > IPV6_MAXPACKET)
943 mtu = IPV6_MAXPACKET;
944
945 /* Notify a proper path MTU to applications. */
946 mtu32 = (u_int32_t)mtu;
947 bzero(&ip6cp, sizeof(ip6cp));
948 ip6cp.ip6c_cmdarg = (void *)&mtu32;
949 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
950 (void *)&ip6cp);
951
952 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
953 if (len < 8) {
954 error = EMSGSIZE;
955 in6_ifstat_inc(ifp, ifs6_out_fragfail);
956 goto bad;
957 }
958
959 mnext = &m->m_nextpkt;
960
961 /*
962 * Change the next header field of the last header in the
963 * unfragmentable part.
964 */
965 if (exthdrs.ip6e_rthdr) {
966 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
967 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
968 } else if (exthdrs.ip6e_dest1) {
969 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
970 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
971 } else if (exthdrs.ip6e_hbh) {
972 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
973 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
974 } else {
975 nextproto = ip6->ip6_nxt;
976 ip6->ip6_nxt = IPPROTO_FRAGMENT;
977 }
978
979 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
980 != 0) {
981 if (IN6_NEED_CHECKSUM(ifp,
982 m->m_pkthdr.csum_flags &
983 (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
984 in6_delayed_cksum(m);
985 }
986 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
987 }
988
989 /*
990 * Loop through length of segment after first fragment,
991 * make new header and copy data of each part and link onto
992 * chain.
993 */
994 m0 = m;
995 for (off = hlen; off < tlen; off += len) {
996 struct mbuf *mlast;
997
998 MGETHDR(m, M_DONTWAIT, MT_HEADER);
999 if (!m) {
1000 error = ENOBUFS;
1001 ip6stat.ip6s_odropped++;
1002 goto sendorfree;
1003 }
1004 m->m_pkthdr.rcvif = NULL;
1005 m->m_flags = m0->m_flags & M_COPYFLAGS;
1006 *mnext = m;
1007 mnext = &m->m_nextpkt;
1008 m->m_data += max_linkhdr;
1009 mhip6 = mtod(m, struct ip6_hdr *);
1010 *mhip6 = *ip6;
1011 m->m_len = sizeof(*mhip6);
1012 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1013 if (error) {
1014 ip6stat.ip6s_odropped++;
1015 goto sendorfree;
1016 }
1017 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
1018 if (off + len >= tlen)
1019 len = tlen - off;
1020 else
1021 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1022 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
1023 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1024 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1025 error = ENOBUFS;
1026 ip6stat.ip6s_odropped++;
1027 goto sendorfree;
1028 }
1029 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
1030 ;
1031 mlast->m_next = m_frgpart;
1032 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1033 m->m_pkthdr.rcvif = (struct ifnet *)0;
1034 ip6f->ip6f_reserved = 0;
1035 ip6f->ip6f_ident = id;
1036 ip6f->ip6f_nxt = nextproto;
1037 ip6stat.ip6s_ofragments++;
1038 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1039 }
1040
1041 in6_ifstat_inc(ifp, ifs6_out_fragok);
1042 }
1043
1044 /*
1045 * Remove leading garbages.
1046 */
1047 sendorfree:
1048 m = m0->m_nextpkt;
1049 m0->m_nextpkt = 0;
1050 m_freem(m0);
1051 for (m0 = m; m; m = m0) {
1052 m0 = m->m_nextpkt;
1053 m->m_nextpkt = 0;
1054 if (error == 0) {
1055 struct in6_ifaddr *ia6;
1056 ip6 = mtod(m, struct ip6_hdr *);
1057 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1058 if (ia6) {
1059 /*
1060 * Record statistics for this interface
1061 * address.
1062 */
1063 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1064 m->m_pkthdr.len;
1065 }
1066 #ifdef IPSEC
1067 /* clean ipsec history once it goes out of the node */
1068 ipsec_delaux(m);
1069 #endif
1070 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1071 } else
1072 m_freem(m);
1073 }
1074
1075 if (error == 0)
1076 ip6stat.ip6s_fragmented++;
1077
1078 done:
1079 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1080 RTFREE(ro->ro_rt);
1081 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1082 RTFREE(ro_pmtu->ro_rt);
1083 }
1084
1085 #ifdef IPSEC
1086 if (sp != NULL)
1087 key_freesp(sp);
1088 #endif /* IPSEC */
1089
1090 return (error);
1091
1092 freehdrs:
1093 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1094 m_freem(exthdrs.ip6e_dest1);
1095 m_freem(exthdrs.ip6e_rthdr);
1096 m_freem(exthdrs.ip6e_dest2);
1097 /* FALLTHROUGH */
1098 bad:
1099 m_freem(m);
1100 goto done;
1101 }
1102
1103 static int
1104 ip6_copyexthdr(mp, hdr, hlen)
1105 struct mbuf **mp;
1106 caddr_t hdr;
1107 int hlen;
1108 {
1109 struct mbuf *m;
1110
1111 if (hlen > MCLBYTES)
1112 return (ENOBUFS); /* XXX */
1113
1114 MGET(m, M_DONTWAIT, MT_DATA);
1115 if (!m)
1116 return (ENOBUFS);
1117
1118 if (hlen > MLEN) {
1119 MCLGET(m, M_DONTWAIT);
1120 if ((m->m_flags & M_EXT) == 0) {
1121 m_free(m);
1122 return (ENOBUFS);
1123 }
1124 }
1125 m->m_len = hlen;
1126 if (hdr)
1127 bcopy(hdr, mtod(m, caddr_t), hlen);
1128
1129 *mp = m;
1130 return (0);
1131 }
1132
1133 /*
1134 * Process a delayed payload checksum calculation.
1135 */
1136 void
1137 in6_delayed_cksum(struct mbuf *m)
1138 {
1139 uint16_t csum, offset;
1140
1141 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1142 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1143 KASSERT((m->m_pkthdr.csum_flags
1144 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
1145
1146 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1147 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1148 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
1149 csum = 0xffff;
1150 }
1151
1152 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
1153 if ((offset + sizeof(csum)) > m->m_len) {
1154 m_copyback(m, offset, sizeof(csum), &csum);
1155 } else {
1156 *(uint16_t *)(mtod(m, caddr_t) + offset) = csum;
1157 }
1158 }
1159
1160 /*
1161 * Insert jumbo payload option.
1162 */
1163 static int
1164 ip6_insert_jumboopt(exthdrs, plen)
1165 struct ip6_exthdrs *exthdrs;
1166 u_int32_t plen;
1167 {
1168 struct mbuf *mopt;
1169 u_int8_t *optbuf;
1170 u_int32_t v;
1171
1172 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1173
1174 /*
1175 * If there is no hop-by-hop options header, allocate new one.
1176 * If there is one but it doesn't have enough space to store the
1177 * jumbo payload option, allocate a cluster to store the whole options.
1178 * Otherwise, use it to store the options.
1179 */
1180 if (exthdrs->ip6e_hbh == 0) {
1181 MGET(mopt, M_DONTWAIT, MT_DATA);
1182 if (mopt == 0)
1183 return (ENOBUFS);
1184 mopt->m_len = JUMBOOPTLEN;
1185 optbuf = mtod(mopt, u_int8_t *);
1186 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1187 exthdrs->ip6e_hbh = mopt;
1188 } else {
1189 struct ip6_hbh *hbh;
1190
1191 mopt = exthdrs->ip6e_hbh;
1192 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1193 /*
1194 * XXX assumption:
1195 * - exthdrs->ip6e_hbh is not referenced from places
1196 * other than exthdrs.
1197 * - exthdrs->ip6e_hbh is not an mbuf chain.
1198 */
1199 int oldoptlen = mopt->m_len;
1200 struct mbuf *n;
1201
1202 /*
1203 * XXX: give up if the whole (new) hbh header does
1204 * not fit even in an mbuf cluster.
1205 */
1206 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1207 return (ENOBUFS);
1208
1209 /*
1210 * As a consequence, we must always prepare a cluster
1211 * at this point.
1212 */
1213 MGET(n, M_DONTWAIT, MT_DATA);
1214 if (n) {
1215 MCLGET(n, M_DONTWAIT);
1216 if ((n->m_flags & M_EXT) == 0) {
1217 m_freem(n);
1218 n = NULL;
1219 }
1220 }
1221 if (!n)
1222 return (ENOBUFS);
1223 n->m_len = oldoptlen + JUMBOOPTLEN;
1224 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1225 oldoptlen);
1226 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1227 m_freem(mopt);
1228 mopt = exthdrs->ip6e_hbh = n;
1229 } else {
1230 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1231 mopt->m_len += JUMBOOPTLEN;
1232 }
1233 optbuf[0] = IP6OPT_PADN;
1234 optbuf[1] = 0;
1235
1236 /*
1237 * Adjust the header length according to the pad and
1238 * the jumbo payload option.
1239 */
1240 hbh = mtod(mopt, struct ip6_hbh *);
1241 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1242 }
1243
1244 /* fill in the option. */
1245 optbuf[2] = IP6OPT_JUMBO;
1246 optbuf[3] = 4;
1247 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1248 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1249
1250 /* finally, adjust the packet header length */
1251 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1252
1253 return (0);
1254 #undef JUMBOOPTLEN
1255 }
1256
1257 /*
1258 * Insert fragment header and copy unfragmentable header portions.
1259 */
1260 static int
1261 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1262 struct mbuf *m0, *m;
1263 int hlen;
1264 struct ip6_frag **frghdrp;
1265 {
1266 struct mbuf *n, *mlast;
1267
1268 if (hlen > sizeof(struct ip6_hdr)) {
1269 n = m_copym(m0, sizeof(struct ip6_hdr),
1270 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1271 if (n == 0)
1272 return (ENOBUFS);
1273 m->m_next = n;
1274 } else
1275 n = m;
1276
1277 /* Search for the last mbuf of unfragmentable part. */
1278 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1279 ;
1280
1281 if ((mlast->m_flags & M_EXT) == 0 &&
1282 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1283 /* use the trailing space of the last mbuf for the fragment hdr */
1284 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1285 mlast->m_len);
1286 mlast->m_len += sizeof(struct ip6_frag);
1287 m->m_pkthdr.len += sizeof(struct ip6_frag);
1288 } else {
1289 /* allocate a new mbuf for the fragment header */
1290 struct mbuf *mfrg;
1291
1292 MGET(mfrg, M_DONTWAIT, MT_DATA);
1293 if (mfrg == 0)
1294 return (ENOBUFS);
1295 mfrg->m_len = sizeof(struct ip6_frag);
1296 *frghdrp = mtod(mfrg, struct ip6_frag *);
1297 mlast->m_next = mfrg;
1298 }
1299
1300 return (0);
1301 }
1302
1303 static int
1304 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup, alwaysfragp)
1305 struct route_in6 *ro_pmtu, *ro;
1306 struct ifnet *ifp;
1307 struct in6_addr *dst;
1308 u_long *mtup;
1309 int *alwaysfragp;
1310 {
1311 u_int32_t mtu = 0;
1312 int alwaysfrag = 0;
1313 int error = 0;
1314
1315 if (ro_pmtu != ro) {
1316 /* The first hop and the final destination may differ. */
1317 struct sockaddr_in6 *sa6_dst =
1318 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1319 if (ro_pmtu->ro_rt &&
1320 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1321 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1322 RTFREE(ro_pmtu->ro_rt);
1323 ro_pmtu->ro_rt = (struct rtentry *)NULL;
1324 }
1325 if (ro_pmtu->ro_rt == NULL) {
1326 bzero(sa6_dst, sizeof(*sa6_dst)); /* for safety */
1327 sa6_dst->sin6_family = AF_INET6;
1328 sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1329 sa6_dst->sin6_addr = *dst;
1330
1331 rtalloc((struct route *)ro_pmtu);
1332 }
1333 }
1334 if (ro_pmtu->ro_rt) {
1335 u_int32_t ifmtu;
1336
1337 if (ifp == NULL)
1338 ifp = ro_pmtu->ro_rt->rt_ifp;
1339 ifmtu = IN6_LINKMTU(ifp);
1340 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1341 if (mtu == 0)
1342 mtu = ifmtu;
1343 else if (mtu < IPV6_MMTU) {
1344 /*
1345 * RFC2460 section 5, last paragraph:
1346 * if we record ICMPv6 too big message with
1347 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1348 * or smaller, with fragment header attached.
1349 * (fragment header is needed regardless from the
1350 * packet size, for translators to identify packets)
1351 */
1352 alwaysfrag = 1;
1353 mtu = IPV6_MMTU;
1354 } else if (mtu > ifmtu) {
1355 /*
1356 * The MTU on the route is larger than the MTU on
1357 * the interface! This shouldn't happen, unless the
1358 * MTU of the interface has been changed after the
1359 * interface was brought up. Change the MTU in the
1360 * route to match the interface MTU (as long as the
1361 * field isn't locked).
1362 */
1363 mtu = ifmtu;
1364 if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU))
1365 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1366 }
1367 } else if (ifp) {
1368 mtu = IN6_LINKMTU(ifp);
1369 } else
1370 error = EHOSTUNREACH; /* XXX */
1371
1372 *mtup = mtu;
1373 if (alwaysfragp)
1374 *alwaysfragp = alwaysfrag;
1375 return (error);
1376 }
1377
1378 /*
1379 * IP6 socket option processing.
1380 */
1381 int
1382 ip6_ctloutput(op, so, level, optname, mp)
1383 int op;
1384 struct socket *so;
1385 int level, optname;
1386 struct mbuf **mp;
1387 {
1388 struct in6pcb *in6p = sotoin6pcb(so);
1389 struct mbuf *m = *mp;
1390 int optval = 0;
1391 int error = 0;
1392 struct proc *p = curproc; /* XXX */
1393
1394 if (level == IPPROTO_IPV6) {
1395 switch (op) {
1396 case PRCO_SETOPT:
1397 switch (optname) {
1398 case IPV6_PKTOPTIONS:
1399 /* m is freed in ip6_pcbopts */
1400 return (ip6_pcbopts(&in6p->in6p_outputopts,
1401 m, so));
1402 case IPV6_HOPOPTS:
1403 case IPV6_DSTOPTS:
1404 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1405 error = EPERM;
1406 break;
1407 }
1408 /* FALLTHROUGH */
1409 case IPV6_UNICAST_HOPS:
1410 case IPV6_RECVOPTS:
1411 case IPV6_RECVRETOPTS:
1412 case IPV6_RECVDSTADDR:
1413 case IPV6_PKTINFO:
1414 case IPV6_HOPLIMIT:
1415 case IPV6_RTHDR:
1416 case IPV6_FAITH:
1417 case IPV6_V6ONLY:
1418 case IPV6_USE_MIN_MTU:
1419 if (!m || m->m_len != sizeof(int)) {
1420 error = EINVAL;
1421 break;
1422 }
1423 optval = *mtod(m, int *);
1424 switch (optname) {
1425
1426 case IPV6_UNICAST_HOPS:
1427 if (optval < -1 || optval >= 256)
1428 error = EINVAL;
1429 else {
1430 /* -1 = kernel default */
1431 in6p->in6p_hops = optval;
1432 }
1433 break;
1434 #define OPTSET(bit) \
1435 do { \
1436 if (optval) \
1437 in6p->in6p_flags |= (bit); \
1438 else \
1439 in6p->in6p_flags &= ~(bit); \
1440 } while (/*CONSTCOND*/ 0)
1441
1442 case IPV6_RECVOPTS:
1443 OPTSET(IN6P_RECVOPTS);
1444 break;
1445
1446 case IPV6_RECVRETOPTS:
1447 OPTSET(IN6P_RECVRETOPTS);
1448 break;
1449
1450 case IPV6_RECVDSTADDR:
1451 OPTSET(IN6P_RECVDSTADDR);
1452 break;
1453
1454 case IPV6_PKTINFO:
1455 OPTSET(IN6P_PKTINFO);
1456 break;
1457
1458 case IPV6_HOPLIMIT:
1459 OPTSET(IN6P_HOPLIMIT);
1460 break;
1461
1462 case IPV6_HOPOPTS:
1463 OPTSET(IN6P_HOPOPTS);
1464 break;
1465
1466 case IPV6_DSTOPTS:
1467 OPTSET(IN6P_DSTOPTS);
1468 break;
1469
1470 case IPV6_RTHDR:
1471 OPTSET(IN6P_RTHDR);
1472 break;
1473
1474 case IPV6_FAITH:
1475 OPTSET(IN6P_FAITH);
1476 break;
1477
1478 case IPV6_USE_MIN_MTU:
1479 OPTSET(IN6P_MINMTU);
1480 break;
1481
1482 case IPV6_V6ONLY:
1483 /*
1484 * make setsockopt(IPV6_V6ONLY)
1485 * available only prior to bind(2).
1486 * see ipng mailing list, Jun 22 2001.
1487 */
1488 if (in6p->in6p_lport ||
1489 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1490 error = EINVAL;
1491 break;
1492 }
1493 #ifdef INET6_BINDV6ONLY
1494 if (!optval)
1495 error = EINVAL;
1496 #else
1497 OPTSET(IN6P_IPV6_V6ONLY);
1498 #endif
1499 break;
1500 }
1501 break;
1502 #undef OPTSET
1503
1504 case IPV6_MULTICAST_IF:
1505 case IPV6_MULTICAST_HOPS:
1506 case IPV6_MULTICAST_LOOP:
1507 case IPV6_JOIN_GROUP:
1508 case IPV6_LEAVE_GROUP:
1509 error = ip6_setmoptions(optname,
1510 &in6p->in6p_moptions, m);
1511 break;
1512
1513 case IPV6_PORTRANGE:
1514 optval = *mtod(m, int *);
1515
1516 switch (optval) {
1517 case IPV6_PORTRANGE_DEFAULT:
1518 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1519 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1520 break;
1521
1522 case IPV6_PORTRANGE_HIGH:
1523 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1524 in6p->in6p_flags |= IN6P_HIGHPORT;
1525 break;
1526
1527 case IPV6_PORTRANGE_LOW:
1528 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1529 in6p->in6p_flags |= IN6P_LOWPORT;
1530 break;
1531
1532 default:
1533 error = EINVAL;
1534 break;
1535 }
1536 break;
1537
1538 #ifdef IPSEC
1539 case IPV6_IPSEC_POLICY:
1540 {
1541 caddr_t req = NULL;
1542 size_t len = 0;
1543
1544 int priv = 0;
1545 if (p == 0 || suser(p->p_ucred, &p->p_acflag))
1546 priv = 0;
1547 else
1548 priv = 1;
1549 if (m) {
1550 req = mtod(m, caddr_t);
1551 len = m->m_len;
1552 }
1553 error = ipsec6_set_policy(in6p,
1554 optname, req, len, priv);
1555 }
1556 break;
1557 #endif /* IPSEC */
1558
1559 default:
1560 error = ENOPROTOOPT;
1561 break;
1562 }
1563 if (m)
1564 (void)m_free(m);
1565 break;
1566
1567 case PRCO_GETOPT:
1568 switch (optname) {
1569
1570 case IPV6_OPTIONS:
1571 case IPV6_RETOPTS:
1572 error = ENOPROTOOPT;
1573 break;
1574
1575 case IPV6_PKTOPTIONS:
1576 if (in6p->in6p_options) {
1577 *mp = m_copym(in6p->in6p_options, 0,
1578 M_COPYALL, M_WAIT);
1579 } else {
1580 *mp = m_get(M_WAIT, MT_SOOPTS);
1581 (*mp)->m_len = 0;
1582 }
1583 break;
1584
1585 case IPV6_HOPOPTS:
1586 case IPV6_DSTOPTS:
1587 if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
1588 error = EPERM;
1589 break;
1590 }
1591 /* FALLTHROUGH */
1592 case IPV6_UNICAST_HOPS:
1593 case IPV6_RECVOPTS:
1594 case IPV6_RECVRETOPTS:
1595 case IPV6_RECVDSTADDR:
1596 case IPV6_PORTRANGE:
1597 case IPV6_PKTINFO:
1598 case IPV6_HOPLIMIT:
1599 case IPV6_RTHDR:
1600 case IPV6_FAITH:
1601 case IPV6_V6ONLY:
1602 case IPV6_USE_MIN_MTU:
1603 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1604 m->m_len = sizeof(int);
1605 switch (optname) {
1606
1607 case IPV6_UNICAST_HOPS:
1608 optval = in6p->in6p_hops;
1609 break;
1610
1611 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1612
1613 case IPV6_RECVOPTS:
1614 optval = OPTBIT(IN6P_RECVOPTS);
1615 break;
1616
1617 case IPV6_RECVRETOPTS:
1618 optval = OPTBIT(IN6P_RECVRETOPTS);
1619 break;
1620
1621 case IPV6_RECVDSTADDR:
1622 optval = OPTBIT(IN6P_RECVDSTADDR);
1623 break;
1624
1625 case IPV6_PORTRANGE:
1626 {
1627 int flags;
1628 flags = in6p->in6p_flags;
1629 if (flags & IN6P_HIGHPORT)
1630 optval = IPV6_PORTRANGE_HIGH;
1631 else if (flags & IN6P_LOWPORT)
1632 optval = IPV6_PORTRANGE_LOW;
1633 else
1634 optval = 0;
1635 break;
1636 }
1637
1638 case IPV6_PKTINFO:
1639 optval = OPTBIT(IN6P_PKTINFO);
1640 break;
1641
1642 case IPV6_HOPLIMIT:
1643 optval = OPTBIT(IN6P_HOPLIMIT);
1644 break;
1645
1646 case IPV6_HOPOPTS:
1647 optval = OPTBIT(IN6P_HOPOPTS);
1648 break;
1649
1650 case IPV6_DSTOPTS:
1651 optval = OPTBIT(IN6P_DSTOPTS);
1652 break;
1653
1654 case IPV6_RTHDR:
1655 optval = OPTBIT(IN6P_RTHDR);
1656 break;
1657
1658 case IPV6_FAITH:
1659 optval = OPTBIT(IN6P_FAITH);
1660 break;
1661
1662 case IPV6_V6ONLY:
1663 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1664 break;
1665
1666 case IPV6_USE_MIN_MTU:
1667 optval = OPTBIT(IN6P_MINMTU);
1668 break;
1669 }
1670 *mtod(m, int *) = optval;
1671 break;
1672
1673 case IPV6_MULTICAST_IF:
1674 case IPV6_MULTICAST_HOPS:
1675 case IPV6_MULTICAST_LOOP:
1676 case IPV6_JOIN_GROUP:
1677 case IPV6_LEAVE_GROUP:
1678 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1679 break;
1680
1681 #if 0 /* defined(IPSEC) */
1682 /* XXX: code broken */
1683 case IPV6_IPSEC_POLICY:
1684 {
1685 caddr_t req = NULL;
1686 size_t len = 0;
1687
1688 if (m) {
1689 req = mtod(m, caddr_t);
1690 len = m->m_len;
1691 }
1692 error = ipsec6_get_policy(in6p, req, len, mp);
1693 break;
1694 }
1695 #endif /* IPSEC */
1696
1697 default:
1698 error = ENOPROTOOPT;
1699 break;
1700 }
1701 break;
1702 }
1703 } else {
1704 error = EINVAL;
1705 if (op == PRCO_SETOPT && *mp)
1706 (void)m_free(*mp);
1707 }
1708 return (error);
1709 }
1710
1711 int
1712 ip6_raw_ctloutput(op, so, level, optname, mp)
1713 int op;
1714 struct socket *so;
1715 int level, optname;
1716 struct mbuf **mp;
1717 {
1718 int error = 0, optval, optlen;
1719 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1720 struct in6pcb *in6p = sotoin6pcb(so);
1721 struct mbuf *m = *mp;
1722
1723 optlen = m ? m->m_len : 0;
1724
1725 if (level != IPPROTO_IPV6) {
1726 if (op == PRCO_SETOPT && *mp)
1727 (void)m_free(*mp);
1728 return (EINVAL);
1729 }
1730
1731 switch (optname) {
1732 case IPV6_CHECKSUM:
1733 /*
1734 * For ICMPv6 sockets, no modification allowed for checksum
1735 * offset, permit "no change" values to help existing apps.
1736 *
1737 * XXX 2292bis says: "An attempt to set IPV6_CHECKSUM
1738 * for an ICMPv6 socket will fail."
1739 * The current behavior does not meet 2292bis.
1740 */
1741 switch (op) {
1742 case PRCO_SETOPT:
1743 if (optlen != sizeof(int)) {
1744 error = EINVAL;
1745 break;
1746 }
1747 optval = *mtod(m, int *);
1748 if ((optval % 2) != 0) {
1749 /* the API assumes even offset values */
1750 error = EINVAL;
1751 } else if (so->so_proto->pr_protocol ==
1752 IPPROTO_ICMPV6) {
1753 if (optval != icmp6off)
1754 error = EINVAL;
1755 } else
1756 in6p->in6p_cksum = optval;
1757 break;
1758
1759 case PRCO_GETOPT:
1760 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
1761 optval = icmp6off;
1762 else
1763 optval = in6p->in6p_cksum;
1764
1765 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1766 m->m_len = sizeof(int);
1767 *mtod(m, int *) = optval;
1768 break;
1769
1770 default:
1771 error = EINVAL;
1772 break;
1773 }
1774 break;
1775
1776 default:
1777 error = ENOPROTOOPT;
1778 break;
1779 }
1780
1781 if (op == PRCO_SETOPT && m)
1782 (void)m_free(m);
1783
1784 return (error);
1785 }
1786
1787 /*
1788 * Set up IP6 options in pcb for insertion in output packets.
1789 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1790 * with destination address if source routed.
1791 */
1792 static int
1793 ip6_pcbopts(pktopt, m, so)
1794 struct ip6_pktopts **pktopt;
1795 struct mbuf *m;
1796 struct socket *so;
1797 {
1798 struct ip6_pktopts *opt = *pktopt;
1799 int error = 0;
1800 struct proc *p = curproc; /* XXX */
1801 int priv = 0;
1802
1803 /* turn off any old options. */
1804 if (opt) {
1805 if (opt->ip6po_m)
1806 (void)m_free(opt->ip6po_m);
1807 } else
1808 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1809 *pktopt = 0;
1810
1811 if (!m || m->m_len == 0) {
1812 /*
1813 * Only turning off any previous options.
1814 */
1815 free(opt, M_IP6OPT);
1816 if (m)
1817 (void)m_free(m);
1818 return (0);
1819 }
1820
1821 /* set options specified by user. */
1822 if (p && !suser(p->p_ucred, &p->p_acflag))
1823 priv = 1;
1824 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1825 (void)m_free(m);
1826 free(opt, M_IP6OPT);
1827 return (error);
1828 }
1829 *pktopt = opt;
1830 return (0);
1831 }
1832
1833 /*
1834 * Set the IP6 multicast options in response to user setsockopt().
1835 */
1836 static int
1837 ip6_setmoptions(optname, im6op, m)
1838 int optname;
1839 struct ip6_moptions **im6op;
1840 struct mbuf *m;
1841 {
1842 int error = 0;
1843 u_int loop, ifindex;
1844 struct ipv6_mreq *mreq;
1845 struct ifnet *ifp;
1846 struct ip6_moptions *im6o = *im6op;
1847 struct route_in6 ro;
1848 struct sockaddr_in6 *dst;
1849 struct in6_multi_mship *imm;
1850 struct proc *p = curproc; /* XXX */
1851
1852 if (im6o == NULL) {
1853 /*
1854 * No multicast option buffer attached to the pcb;
1855 * allocate one and initialize to default values.
1856 */
1857 im6o = (struct ip6_moptions *)
1858 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1859
1860 if (im6o == NULL)
1861 return (ENOBUFS);
1862 *im6op = im6o;
1863 im6o->im6o_multicast_ifp = NULL;
1864 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1865 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1866 LIST_INIT(&im6o->im6o_memberships);
1867 }
1868
1869 switch (optname) {
1870
1871 case IPV6_MULTICAST_IF:
1872 /*
1873 * Select the interface for outgoing multicast packets.
1874 */
1875 if (m == NULL || m->m_len != sizeof(u_int)) {
1876 error = EINVAL;
1877 break;
1878 }
1879 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1880 if (ifindex != 0) {
1881 if (ifindex < 0 || if_indexlim <= ifindex ||
1882 !ifindex2ifnet[ifindex]) {
1883 error = ENXIO; /* XXX EINVAL? */
1884 break;
1885 }
1886 ifp = ifindex2ifnet[ifindex];
1887 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
1888 error = EADDRNOTAVAIL;
1889 break;
1890 }
1891 } else
1892 ifp = NULL;
1893 im6o->im6o_multicast_ifp = ifp;
1894 break;
1895
1896 case IPV6_MULTICAST_HOPS:
1897 {
1898 /*
1899 * Set the IP6 hoplimit for outgoing multicast packets.
1900 */
1901 int optval;
1902 if (m == NULL || m->m_len != sizeof(int)) {
1903 error = EINVAL;
1904 break;
1905 }
1906 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1907 if (optval < -1 || optval >= 256)
1908 error = EINVAL;
1909 else if (optval == -1)
1910 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1911 else
1912 im6o->im6o_multicast_hlim = optval;
1913 break;
1914 }
1915
1916 case IPV6_MULTICAST_LOOP:
1917 /*
1918 * Set the loopback flag for outgoing multicast packets.
1919 * Must be zero or one.
1920 */
1921 if (m == NULL || m->m_len != sizeof(u_int)) {
1922 error = EINVAL;
1923 break;
1924 }
1925 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1926 if (loop > 1) {
1927 error = EINVAL;
1928 break;
1929 }
1930 im6o->im6o_multicast_loop = loop;
1931 break;
1932
1933 case IPV6_JOIN_GROUP:
1934 /*
1935 * Add a multicast group membership.
1936 * Group must be a valid IP6 multicast address.
1937 */
1938 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1939 error = EINVAL;
1940 break;
1941 }
1942 mreq = mtod(m, struct ipv6_mreq *);
1943 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1944 /*
1945 * We use the unspecified address to specify to accept
1946 * all multicast addresses. Only super user is allowed
1947 * to do this.
1948 */
1949 if (suser(p->p_ucred, &p->p_acflag))
1950 {
1951 error = EACCES;
1952 break;
1953 }
1954 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1955 error = EINVAL;
1956 break;
1957 }
1958
1959 /*
1960 * If the interface is specified, validate it.
1961 * If no interface was explicitly specified, choose an
1962 * appropriate one according to the given multicast address.
1963 */
1964 if (mreq->ipv6mr_interface != 0) {
1965 if (mreq->ipv6mr_interface < 0 ||
1966 if_indexlim <= mreq->ipv6mr_interface ||
1967 !ifindex2ifnet[mreq->ipv6mr_interface]) {
1968 error = ENXIO; /* XXX EINVAL? */
1969 break;
1970 }
1971 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1972 } else {
1973 /*
1974 * If the multicast address is in node-local scope,
1975 * the interface should be a loopback interface.
1976 * Otherwise, look up the routing table for the
1977 * address, and choose the outgoing interface.
1978 * XXX: is it a good approach?
1979 */
1980 if (IN6_IS_ADDR_MC_NODELOCAL(&mreq->ipv6mr_multiaddr)) {
1981 ifp = lo0ifp;
1982 } else {
1983 ro.ro_rt = NULL;
1984 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1985 bzero(dst, sizeof(*dst));
1986 dst->sin6_len = sizeof(struct sockaddr_in6);
1987 dst->sin6_family = AF_INET6;
1988 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1989 rtalloc((struct route *)&ro);
1990 if (ro.ro_rt == NULL) {
1991 error = EADDRNOTAVAIL;
1992 break;
1993 }
1994 ifp = ro.ro_rt->rt_ifp;
1995 rtfree(ro.ro_rt);
1996 }
1997 }
1998
1999 /*
2000 * See if we found an interface, and confirm that it
2001 * supports multicast
2002 */
2003 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2004 error = EADDRNOTAVAIL;
2005 break;
2006 }
2007 /*
2008 * Put interface index into the multicast address,
2009 * if the address has link-local scope.
2010 */
2011 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2012 mreq->ipv6mr_multiaddr.s6_addr16[1] =
2013 htons(ifp->if_index);
2014 }
2015 /*
2016 * See if the membership already exists.
2017 */
2018 for (imm = im6o->im6o_memberships.lh_first;
2019 imm != NULL; imm = imm->i6mm_chain.le_next)
2020 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2021 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2022 &mreq->ipv6mr_multiaddr))
2023 break;
2024 if (imm != NULL) {
2025 error = EADDRINUSE;
2026 break;
2027 }
2028 /*
2029 * Everything looks good; add a new record to the multicast
2030 * address list for the given interface.
2031 */
2032 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error);
2033 if (!imm)
2034 break;
2035 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2036 break;
2037
2038 case IPV6_LEAVE_GROUP:
2039 /*
2040 * Drop a multicast group membership.
2041 * Group must be a valid IP6 multicast address.
2042 */
2043 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2044 error = EINVAL;
2045 break;
2046 }
2047 mreq = mtod(m, struct ipv6_mreq *);
2048 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2049 if (suser(p->p_ucred, &p->p_acflag))
2050 {
2051 error = EACCES;
2052 break;
2053 }
2054 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2055 error = EINVAL;
2056 break;
2057 }
2058 /*
2059 * If an interface address was specified, get a pointer
2060 * to its ifnet structure.
2061 */
2062 if (mreq->ipv6mr_interface != 0) {
2063 if (mreq->ipv6mr_interface < 0 ||
2064 if_indexlim <= mreq->ipv6mr_interface ||
2065 !ifindex2ifnet[mreq->ipv6mr_interface]) {
2066 error = ENXIO; /* XXX EINVAL? */
2067 break;
2068 }
2069 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2070 } else
2071 ifp = NULL;
2072 /*
2073 * Put interface index into the multicast address,
2074 * if the address has link-local scope.
2075 */
2076 if (IN6_IS_ADDR_MC_LINKLOCAL(&mreq->ipv6mr_multiaddr)) {
2077 mreq->ipv6mr_multiaddr.s6_addr16[1] =
2078 htons(mreq->ipv6mr_interface);
2079 }
2080 /*
2081 * Find the membership in the membership list.
2082 */
2083 for (imm = im6o->im6o_memberships.lh_first;
2084 imm != NULL; imm = imm->i6mm_chain.le_next) {
2085 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2086 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2087 &mreq->ipv6mr_multiaddr))
2088 break;
2089 }
2090 if (imm == NULL) {
2091 /* Unable to resolve interface */
2092 error = EADDRNOTAVAIL;
2093 break;
2094 }
2095 /*
2096 * Give up the multicast address record to which the
2097 * membership points.
2098 */
2099 LIST_REMOVE(imm, i6mm_chain);
2100 in6_leavegroup(imm);
2101 break;
2102
2103 default:
2104 error = EOPNOTSUPP;
2105 break;
2106 }
2107
2108 /*
2109 * If all options have default values, no need to keep the mbuf.
2110 */
2111 if (im6o->im6o_multicast_ifp == NULL &&
2112 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2113 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2114 im6o->im6o_memberships.lh_first == NULL) {
2115 free(*im6op, M_IPMOPTS);
2116 *im6op = NULL;
2117 }
2118
2119 return (error);
2120 }
2121
2122 /*
2123 * Return the IP6 multicast options in response to user getsockopt().
2124 */
2125 static int
2126 ip6_getmoptions(optname, im6o, mp)
2127 int optname;
2128 struct ip6_moptions *im6o;
2129 struct mbuf **mp;
2130 {
2131 u_int *hlim, *loop, *ifindex;
2132
2133 *mp = m_get(M_WAIT, MT_SOOPTS);
2134
2135 switch (optname) {
2136
2137 case IPV6_MULTICAST_IF:
2138 ifindex = mtod(*mp, u_int *);
2139 (*mp)->m_len = sizeof(u_int);
2140 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2141 *ifindex = 0;
2142 else
2143 *ifindex = im6o->im6o_multicast_ifp->if_index;
2144 return (0);
2145
2146 case IPV6_MULTICAST_HOPS:
2147 hlim = mtod(*mp, u_int *);
2148 (*mp)->m_len = sizeof(u_int);
2149 if (im6o == NULL)
2150 *hlim = ip6_defmcasthlim;
2151 else
2152 *hlim = im6o->im6o_multicast_hlim;
2153 return (0);
2154
2155 case IPV6_MULTICAST_LOOP:
2156 loop = mtod(*mp, u_int *);
2157 (*mp)->m_len = sizeof(u_int);
2158 if (im6o == NULL)
2159 *loop = ip6_defmcasthlim;
2160 else
2161 *loop = im6o->im6o_multicast_loop;
2162 return (0);
2163
2164 default:
2165 return (EOPNOTSUPP);
2166 }
2167 }
2168
2169 /*
2170 * Discard the IP6 multicast options.
2171 */
2172 void
2173 ip6_freemoptions(im6o)
2174 struct ip6_moptions *im6o;
2175 {
2176 struct in6_multi_mship *imm;
2177
2178 if (im6o == NULL)
2179 return;
2180
2181 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2182 LIST_REMOVE(imm, i6mm_chain);
2183 in6_leavegroup(imm);
2184 }
2185 free(im6o, M_IPMOPTS);
2186 }
2187
2188 /*
2189 * Set IPv6 outgoing packet options based on advanced API.
2190 */
2191 int
2192 ip6_setpktoptions(control, opt, priv)
2193 struct mbuf *control;
2194 struct ip6_pktopts *opt;
2195 int priv;
2196 {
2197 struct cmsghdr *cm = 0;
2198
2199 if (control == 0 || opt == 0)
2200 return (EINVAL);
2201
2202 bzero(opt, sizeof(*opt));
2203 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
2204
2205 /*
2206 * XXX: Currently, we assume all the optional information is stored
2207 * in a single mbuf.
2208 */
2209 if (control->m_next)
2210 return (EINVAL);
2211
2212 opt->ip6po_m = control;
2213
2214 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2215 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2216 cm = mtod(control, struct cmsghdr *);
2217 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2218 return (EINVAL);
2219 if (cm->cmsg_level != IPPROTO_IPV6)
2220 continue;
2221
2222 switch (cm->cmsg_type) {
2223 case IPV6_PKTINFO:
2224 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
2225 return (EINVAL);
2226 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
2227 if (opt->ip6po_pktinfo->ipi6_ifindex &&
2228 IN6_IS_ADDR_LINKLOCAL(&opt->ip6po_pktinfo->ipi6_addr))
2229 opt->ip6po_pktinfo->ipi6_addr.s6_addr16[1] =
2230 htons(opt->ip6po_pktinfo->ipi6_ifindex);
2231
2232 if (opt->ip6po_pktinfo->ipi6_ifindex >= if_indexlim ||
2233 opt->ip6po_pktinfo->ipi6_ifindex < 0)
2234 return (ENXIO);
2235 if (opt->ip6po_pktinfo->ipi6_ifindex > 0 &&
2236 !ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex])
2237 return (ENXIO);
2238
2239 /*
2240 * Check if the requested source address is indeed a
2241 * unicast address assigned to the node, and can be
2242 * used as the packet's source address.
2243 */
2244 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2245 struct ifaddr *ia;
2246 struct in6_ifaddr *ia6;
2247 struct sockaddr_in6 sin6;
2248
2249 bzero(&sin6, sizeof(sin6));
2250 sin6.sin6_len = sizeof(sin6);
2251 sin6.sin6_family = AF_INET6;
2252 sin6.sin6_addr =
2253 opt->ip6po_pktinfo->ipi6_addr;
2254 ia = ifa_ifwithaddr(sin6tosa(&sin6));
2255 if (ia == NULL ||
2256 (opt->ip6po_pktinfo->ipi6_ifindex &&
2257 (ia->ifa_ifp->if_index !=
2258 opt->ip6po_pktinfo->ipi6_ifindex))) {
2259 return (EADDRNOTAVAIL);
2260 }
2261 ia6 = (struct in6_ifaddr *)ia;
2262 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) {
2263 return (EADDRNOTAVAIL);
2264 }
2265
2266 /*
2267 * Check if the requested source address is
2268 * indeed a unicast address assigned to the
2269 * node.
2270 */
2271 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
2272 return (EADDRNOTAVAIL);
2273 }
2274 break;
2275
2276 case IPV6_HOPLIMIT:
2277 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2278 return (EINVAL);
2279 else {
2280 int t;
2281
2282 bcopy(CMSG_DATA(cm), &t, sizeof(t));
2283 if (t < -1 || t > 255)
2284 return (EINVAL);
2285 opt->ip6po_hlim = t;
2286 }
2287 break;
2288
2289 case IPV6_NEXTHOP:
2290 if (!priv)
2291 return (EPERM);
2292
2293 /* check if cmsg_len is large enough for sa_len */
2294 if (cm->cmsg_len < sizeof(u_char) ||
2295 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2296 return (EINVAL);
2297
2298 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2299
2300 break;
2301
2302 case IPV6_HOPOPTS:
2303 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2304 return (EINVAL);
2305 else {
2306 struct ip6_hbh *t;
2307
2308 t = (struct ip6_hbh *)CMSG_DATA(cm);
2309 if (cm->cmsg_len !=
2310 CMSG_LEN((t->ip6h_len + 1) << 3))
2311 return (EINVAL);
2312 opt->ip6po_hbh = t;
2313 }
2314 break;
2315
2316 case IPV6_DSTOPTS:
2317 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2318 return (EINVAL);
2319
2320 /*
2321 * If there is no routing header yet, the destination
2322 * options header should be put on the 1st part.
2323 * Otherwise, the header should be on the 2nd part.
2324 * (See RFC 2460, section 4.1)
2325 */
2326 if (opt->ip6po_rthdr == NULL) {
2327 struct ip6_dest *t;
2328
2329 t = (struct ip6_dest *)CMSG_DATA(cm);
2330 if (cm->cmsg_len !=
2331 CMSG_LEN((t->ip6d_len + 1) << 3));
2332 return (EINVAL);
2333 opt->ip6po_dest1 = t;
2334 }
2335 else {
2336 struct ip6_dest *t;
2337
2338 t = (struct ip6_dest *)CMSG_DATA(cm);
2339 if (cm->cmsg_len !=
2340 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) << 3))
2341 return (EINVAL);
2342 opt->ip6po_dest2 = t;
2343 }
2344 break;
2345
2346 case IPV6_RTHDR:
2347 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2348 return (EINVAL);
2349 else {
2350 struct ip6_rthdr *t;
2351
2352 t = (struct ip6_rthdr *)CMSG_DATA(cm);
2353 if (cm->cmsg_len !=
2354 CMSG_LEN((t->ip6r_len + 1) << 3))
2355 return (EINVAL);
2356 switch (t->ip6r_type) {
2357 case IPV6_RTHDR_TYPE_0:
2358 if (t->ip6r_segleft == 0)
2359 return (EINVAL);
2360 break;
2361 default:
2362 return (EINVAL);
2363 }
2364 opt->ip6po_rthdr = t;
2365 }
2366 break;
2367
2368 default:
2369 return (ENOPROTOOPT);
2370 }
2371 }
2372
2373 return (0);
2374 }
2375
2376 /*
2377 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2378 * packet to the input queue of a specified interface. Note that this
2379 * calls the output routine of the loopback "driver", but with an interface
2380 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
2381 */
2382 void
2383 ip6_mloopback(ifp, m, dst)
2384 struct ifnet *ifp;
2385 struct mbuf *m;
2386 struct sockaddr_in6 *dst;
2387 {
2388 struct mbuf *copym;
2389 struct ip6_hdr *ip6;
2390
2391 copym = m_copy(m, 0, M_COPYALL);
2392 if (copym == NULL)
2393 return;
2394
2395 /*
2396 * Make sure to deep-copy IPv6 header portion in case the data
2397 * is in an mbuf cluster, so that we can safely override the IPv6
2398 * header portion later.
2399 */
2400 if ((copym->m_flags & M_EXT) != 0 ||
2401 copym->m_len < sizeof(struct ip6_hdr)) {
2402 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2403 if (copym == NULL)
2404 return;
2405 }
2406
2407 #ifdef DIAGNOSTIC
2408 if (copym->m_len < sizeof(*ip6)) {
2409 m_freem(copym);
2410 return;
2411 }
2412 #endif
2413
2414 ip6 = mtod(copym, struct ip6_hdr *);
2415 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src))
2416 ip6->ip6_src.s6_addr16[1] = 0;
2417 if (IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_dst))
2418 ip6->ip6_dst.s6_addr16[1] = 0;
2419
2420 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2421 }
2422
2423 /*
2424 * Chop IPv6 header off from the payload.
2425 */
2426 static int
2427 ip6_splithdr(m, exthdrs)
2428 struct mbuf *m;
2429 struct ip6_exthdrs *exthdrs;
2430 {
2431 struct mbuf *mh;
2432 struct ip6_hdr *ip6;
2433
2434 ip6 = mtod(m, struct ip6_hdr *);
2435 if (m->m_len > sizeof(*ip6)) {
2436 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2437 if (mh == 0) {
2438 m_freem(m);
2439 return ENOBUFS;
2440 }
2441 M_MOVE_PKTHDR(mh, m);
2442 MH_ALIGN(mh, sizeof(*ip6));
2443 m->m_len -= sizeof(*ip6);
2444 m->m_data += sizeof(*ip6);
2445 mh->m_next = m;
2446 m = mh;
2447 m->m_len = sizeof(*ip6);
2448 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2449 }
2450 exthdrs->ip6e_ip6 = m;
2451 return 0;
2452 }
2453
2454 /*
2455 * Compute IPv6 extension header length.
2456 */
2457 int
2458 ip6_optlen(in6p)
2459 struct in6pcb *in6p;
2460 {
2461 int len;
2462
2463 if (!in6p->in6p_outputopts)
2464 return 0;
2465
2466 len = 0;
2467 #define elen(x) \
2468 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2469
2470 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2471 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2472 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2473 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2474 return len;
2475 #undef elen
2476 }
2477