Home | History | Annotate | Line # | Download | only in netinet6
ip6_output.c revision 1.94.4.1
      1 /*	$NetBSD: ip6_output.c,v 1.94.4.1 2006/04/22 11:40:12 simonb Exp $	*/
      2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.94.4.1 2006/04/22 11:40:12 simonb Exp $");
     66 
     67 #include "opt_inet.h"
     68 #include "opt_ipsec.h"
     69 #include "opt_pfil_hooks.h"
     70 
     71 #include <sys/param.h>
     72 #include <sys/malloc.h>
     73 #include <sys/mbuf.h>
     74 #include <sys/errno.h>
     75 #include <sys/protosw.h>
     76 #include <sys/socket.h>
     77 #include <sys/socketvar.h>
     78 #include <sys/systm.h>
     79 #include <sys/proc.h>
     80 
     81 #include <net/if.h>
     82 #include <net/route.h>
     83 #ifdef PFIL_HOOKS
     84 #include <net/pfil.h>
     85 #endif
     86 
     87 #include <netinet/in.h>
     88 #include <netinet/in_var.h>
     89 #include <netinet/ip6.h>
     90 #include <netinet/icmp6.h>
     91 #include <netinet/in_offload.h>
     92 #include <netinet6/ip6_var.h>
     93 #include <netinet6/in6_pcb.h>
     94 #include <netinet6/nd6.h>
     95 #include <netinet6/ip6protosw.h>
     96 #include <netinet6/scope6_var.h>
     97 
     98 #ifdef IPSEC
     99 #include <netinet6/ipsec.h>
    100 #include <netkey/key.h>
    101 #endif /* IPSEC */
    102 
    103 #include <net/net_osdep.h>
    104 
    105 #ifdef PFIL_HOOKS
    106 extern struct pfil_head inet6_pfil_hook;	/* XXX */
    107 #endif
    108 
    109 struct ip6_exthdrs {
    110 	struct mbuf *ip6e_ip6;
    111 	struct mbuf *ip6e_hbh;
    112 	struct mbuf *ip6e_dest1;
    113 	struct mbuf *ip6e_rthdr;
    114 	struct mbuf *ip6e_dest2;
    115 };
    116 
    117 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
    118 	struct socket *));
    119 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
    120 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
    121 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
    122 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
    123 	struct ip6_frag **));
    124 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
    125 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
    126 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
    127 	struct ifnet *, struct in6_addr *, u_long *, int *));
    128 
    129 #define	IN6_NEED_CHECKSUM(ifp, csum_flags) \
    130 	(__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
    131 	(((csum_flags) & M_CSUM_UDPv6) != 0 && udp_do_loopback_cksum) || \
    132 	(((csum_flags) & M_CSUM_TCPv6) != 0 && tcp_do_loopback_cksum)))
    133 
    134 /*
    135  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
    136  * header (with pri, len, nxt, hlim, src, dst).
    137  * This function may modify ver and hlim only.
    138  * The mbuf chain containing the packet will be freed.
    139  * The mbuf opt, if present, will not be freed.
    140  *
    141  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
    142  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
    143  * which is rt_rmx.rmx_mtu.
    144  */
    145 int
    146 ip6_output(m0, opt, ro, flags, im6o, so, ifpp)
    147 	struct mbuf *m0;
    148 	struct ip6_pktopts *opt;
    149 	struct route_in6 *ro;
    150 	int flags;
    151 	struct ip6_moptions *im6o;
    152 	struct socket *so;
    153 	struct ifnet **ifpp;		/* XXX: just for statistics */
    154 {
    155 	struct ip6_hdr *ip6, *mhip6;
    156 	struct ifnet *ifp, *origifp;
    157 	struct mbuf *m = m0;
    158 	int hlen, tlen, len, off;
    159 	struct route_in6 ip6route;
    160 	struct rtentry *rt = NULL;
    161 	struct sockaddr_in6 *dst, src_sa, dst_sa;
    162 	int error = 0;
    163 	struct in6_ifaddr *ia = NULL;
    164 	u_long mtu;
    165 	int alwaysfrag, dontfrag;
    166 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
    167 	struct ip6_exthdrs exthdrs;
    168 	struct in6_addr finaldst, src0, dst0;
    169 	u_int32_t zone;
    170 	struct route_in6 *ro_pmtu = NULL;
    171 	int hdrsplit = 0;
    172 	int needipsec = 0;
    173 #ifdef IPSEC
    174 	int needipsectun = 0;
    175 	struct secpolicy *sp = NULL;
    176 
    177 	ip6 = mtod(m, struct ip6_hdr *);
    178 #endif /* IPSEC */
    179 
    180 	M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
    181 
    182 #define MAKE_EXTHDR(hp, mp)						\
    183     do {								\
    184 	if (hp) {							\
    185 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
    186 		error = ip6_copyexthdr((mp), (caddr_t)(hp), 		\
    187 		    ((eh)->ip6e_len + 1) << 3);				\
    188 		if (error)						\
    189 			goto freehdrs;					\
    190 	}								\
    191     } while (/*CONSTCOND*/ 0)
    192 
    193 	bzero(&exthdrs, sizeof(exthdrs));
    194 	if (opt) {
    195 		/* Hop-by-Hop options header */
    196 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
    197 		/* Destination options header(1st part) */
    198 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
    199 		/* Routing header */
    200 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
    201 		/* Destination options header(2nd part) */
    202 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
    203 	}
    204 
    205 #ifdef IPSEC
    206 	if ((flags & IPV6_FORWARDING) != 0) {
    207 		needipsec = 0;
    208 		goto skippolicycheck;
    209 	}
    210 
    211 	/* get a security policy for this packet */
    212 	if (so == NULL)
    213 		sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
    214 	else {
    215 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
    216 					 IPSEC_DIR_OUTBOUND)) {
    217 			needipsec = 0;
    218 			goto skippolicycheck;
    219 		}
    220 		sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
    221 	}
    222 
    223 	if (sp == NULL) {
    224 		ipsec6stat.out_inval++;
    225 		goto freehdrs;
    226 	}
    227 
    228 	error = 0;
    229 
    230 	/* check policy */
    231 	switch (sp->policy) {
    232 	case IPSEC_POLICY_DISCARD:
    233 		/*
    234 		 * This packet is just discarded.
    235 		 */
    236 		ipsec6stat.out_polvio++;
    237 		goto freehdrs;
    238 
    239 	case IPSEC_POLICY_BYPASS:
    240 	case IPSEC_POLICY_NONE:
    241 		/* no need to do IPsec. */
    242 		needipsec = 0;
    243 		break;
    244 
    245 	case IPSEC_POLICY_IPSEC:
    246 		if (sp->req == NULL) {
    247 			/* XXX should be panic ? */
    248 			printf("ip6_output: No IPsec request specified.\n");
    249 			error = EINVAL;
    250 			goto freehdrs;
    251 		}
    252 		needipsec = 1;
    253 		break;
    254 
    255 	case IPSEC_POLICY_ENTRUST:
    256 	default:
    257 		printf("ip6_output: Invalid policy found. %d\n", sp->policy);
    258 	}
    259 
    260   skippolicycheck:;
    261 #endif /* IPSEC */
    262 
    263 	if (needipsec &&
    264 	    (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    265 		in6_delayed_cksum(m);
    266 		m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    267 	}
    268 
    269 	/*
    270 	 * Calculate the total length of the extension header chain.
    271 	 * Keep the length of the unfragmentable part for fragmentation.
    272 	 */
    273 	optlen = 0;
    274 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
    275 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
    276 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
    277 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
    278 	/* NOTE: we don't add AH/ESP length here. do that later. */
    279 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
    280 
    281 	/*
    282 	 * If we need IPsec, or there is at least one extension header,
    283 	 * separate IP6 header from the payload.
    284 	 */
    285 	if ((needipsec || optlen) && !hdrsplit) {
    286 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    287 			m = NULL;
    288 			goto freehdrs;
    289 		}
    290 		m = exthdrs.ip6e_ip6;
    291 		hdrsplit++;
    292 	}
    293 
    294 	/* adjust pointer */
    295 	ip6 = mtod(m, struct ip6_hdr *);
    296 
    297 	/* adjust mbuf packet header length */
    298 	m->m_pkthdr.len += optlen;
    299 	plen = m->m_pkthdr.len - sizeof(*ip6);
    300 
    301 	/* If this is a jumbo payload, insert a jumbo payload option. */
    302 	if (plen > IPV6_MAXPACKET) {
    303 		if (!hdrsplit) {
    304 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    305 				m = NULL;
    306 				goto freehdrs;
    307 			}
    308 			m = exthdrs.ip6e_ip6;
    309 			hdrsplit++;
    310 		}
    311 		/* adjust pointer */
    312 		ip6 = mtod(m, struct ip6_hdr *);
    313 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
    314 			goto freehdrs;
    315 		optlen += 8; /* XXX JUMBOOPTLEN */
    316 		ip6->ip6_plen = 0;
    317 	} else
    318 		ip6->ip6_plen = htons(plen);
    319 
    320 	/*
    321 	 * Concatenate headers and fill in next header fields.
    322 	 * Here we have, on "m"
    323 	 *	IPv6 payload
    324 	 * and we insert headers accordingly.  Finally, we should be getting:
    325 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
    326 	 *
    327 	 * during the header composing process, "m" points to IPv6 header.
    328 	 * "mprev" points to an extension header prior to esp.
    329 	 */
    330 	{
    331 		u_char *nexthdrp = &ip6->ip6_nxt;
    332 		struct mbuf *mprev = m;
    333 
    334 		/*
    335 		 * we treat dest2 specially.  this makes IPsec processing
    336 		 * much easier.  the goal here is to make mprev point the
    337 		 * mbuf prior to dest2.
    338 		 *
    339 		 * result: IPv6 dest2 payload
    340 		 * m and mprev will point to IPv6 header.
    341 		 */
    342 		if (exthdrs.ip6e_dest2) {
    343 			if (!hdrsplit)
    344 				panic("assumption failed: hdr not split");
    345 			exthdrs.ip6e_dest2->m_next = m->m_next;
    346 			m->m_next = exthdrs.ip6e_dest2;
    347 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
    348 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
    349 		}
    350 
    351 #define MAKE_CHAIN(m, mp, p, i)\
    352     do {\
    353 	if (m) {\
    354 		if (!hdrsplit) \
    355 			panic("assumption failed: hdr not split"); \
    356 		*mtod((m), u_char *) = *(p);\
    357 		*(p) = (i);\
    358 		p = mtod((m), u_char *);\
    359 		(m)->m_next = (mp)->m_next;\
    360 		(mp)->m_next = (m);\
    361 		(mp) = (m);\
    362 	}\
    363     } while (/*CONSTCOND*/ 0)
    364 		/*
    365 		 * result: IPv6 hbh dest1 rthdr dest2 payload
    366 		 * m will point to IPv6 header.  mprev will point to the
    367 		 * extension header prior to dest2 (rthdr in the above case).
    368 		 */
    369 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
    370 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
    371 		    IPPROTO_DSTOPTS);
    372 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
    373 		    IPPROTO_ROUTING);
    374 
    375 		M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
    376 		    sizeof(struct ip6_hdr) + optlen);
    377 
    378 #ifdef IPSEC
    379 		if (!needipsec)
    380 			goto skip_ipsec2;
    381 
    382 		/*
    383 		 * pointers after IPsec headers are not valid any more.
    384 		 * other pointers need a great care too.
    385 		 * (IPsec routines should not mangle mbufs prior to AH/ESP)
    386 		 */
    387 		exthdrs.ip6e_dest2 = NULL;
    388 
    389 	    {
    390 		struct ip6_rthdr *rh = NULL;
    391 		int segleft_org = 0;
    392 		struct ipsec_output_state state;
    393 
    394 		if (exthdrs.ip6e_rthdr) {
    395 			rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
    396 			segleft_org = rh->ip6r_segleft;
    397 			rh->ip6r_segleft = 0;
    398 		}
    399 
    400 		bzero(&state, sizeof(state));
    401 		state.m = m;
    402 		error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
    403 		    &needipsectun);
    404 		m = state.m;
    405 		if (error) {
    406 			/* mbuf is already reclaimed in ipsec6_output_trans. */
    407 			m = NULL;
    408 			switch (error) {
    409 			case EHOSTUNREACH:
    410 			case ENETUNREACH:
    411 			case EMSGSIZE:
    412 			case ENOBUFS:
    413 			case ENOMEM:
    414 				break;
    415 			default:
    416 				printf("ip6_output (ipsec): error code %d\n", error);
    417 				/* FALLTHROUGH */
    418 			case ENOENT:
    419 				/* don't show these error codes to the user */
    420 				error = 0;
    421 				break;
    422 			}
    423 			goto bad;
    424 		}
    425 		if (exthdrs.ip6e_rthdr) {
    426 			/* ah6_output doesn't modify mbuf chain */
    427 			rh->ip6r_segleft = segleft_org;
    428 		}
    429 	    }
    430 skip_ipsec2:;
    431 #endif
    432 	}
    433 
    434 	/*
    435 	 * If there is a routing header, replace destination address field
    436 	 * with the first hop of the routing header.
    437 	 */
    438 	if (exthdrs.ip6e_rthdr) {
    439 		struct ip6_rthdr *rh;
    440 		struct ip6_rthdr0 *rh0;
    441 		struct in6_addr *addr;
    442 		struct sockaddr_in6 sa;
    443 
    444 		rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
    445 		    struct ip6_rthdr *));
    446 		finaldst = ip6->ip6_dst;
    447 		switch (rh->ip6r_type) {
    448 		case IPV6_RTHDR_TYPE_0:
    449 			 rh0 = (struct ip6_rthdr0 *)rh;
    450 			 addr = (struct in6_addr *)(rh0 + 1);
    451 
    452 			 /*
    453 			  * construct a sockaddr_in6 form of
    454 			  * the first hop.
    455 			  *
    456 			  * XXX: we may not have enough
    457 			  * information about its scope zone;
    458 			  * there is no standard API to pass
    459 			  * the information from the
    460 			  * application.
    461 			  */
    462 			 bzero(&sa, sizeof(sa));
    463 			 sa.sin6_family = AF_INET6;
    464 			 sa.sin6_len = sizeof(sa);
    465 			 sa.sin6_addr = addr[0];
    466 			 if ((error = sa6_embedscope(&sa,
    467 			     ip6_use_defzone)) != 0) {
    468 				 goto bad;
    469 			 }
    470 			 ip6->ip6_dst = sa.sin6_addr;
    471 			 (void)memmove(&addr[0], &addr[1],
    472 			     sizeof(struct in6_addr) *
    473 			     (rh0->ip6r0_segleft - 1));
    474 			 addr[rh0->ip6r0_segleft - 1] = finaldst;
    475 			 /* XXX */
    476 			 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
    477 			 break;
    478 		default:	/* is it possible? */
    479 			 error = EINVAL;
    480 			 goto bad;
    481 		}
    482 	}
    483 
    484 	/* Source address validation */
    485 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
    486 	    (flags & IPV6_UNSPECSRC) == 0) {
    487 		error = EOPNOTSUPP;
    488 		ip6stat.ip6s_badscope++;
    489 		goto bad;
    490 	}
    491 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
    492 		error = EOPNOTSUPP;
    493 		ip6stat.ip6s_badscope++;
    494 		goto bad;
    495 	}
    496 
    497 	ip6stat.ip6s_localout++;
    498 
    499 	/*
    500 	 * Route packet.
    501 	 */
    502 	/* initialize cached route */
    503 	if (ro == 0) {
    504 		ro = &ip6route;
    505 		bzero((caddr_t)ro, sizeof(*ro));
    506 	}
    507 	ro_pmtu = ro;
    508 	if (opt && opt->ip6po_rthdr)
    509 		ro = &opt->ip6po_route;
    510 	dst = (struct sockaddr_in6 *)&ro->ro_dst;
    511 
    512 #ifdef notyet	     /* this will be available with the RFC3542 support */
    513  	/*
    514 	 * if specified, try to fill in the traffic class field.
    515 	 * do not override if a non-zero value is already set.
    516 	 * we check the diffserv field and the ecn field separately.
    517 	 */
    518 	if (opt && opt->ip6po_tclass >= 0) {
    519 		int mask = 0;
    520 
    521 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
    522 			mask |= 0xfc;
    523 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
    524 			mask |= 0x03;
    525 		if (mask != 0)
    526 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
    527 	}
    528 #endif
    529 
    530 	/* fill in or override the hop limit field, if necessary. */
    531 	if (opt && opt->ip6po_hlim != -1)
    532 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    533 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    534 		if (im6o != NULL)
    535 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
    536 		else
    537 			ip6->ip6_hlim = ip6_defmcasthlim;
    538 	}
    539 
    540 #ifdef IPSEC
    541 	if (needipsec && needipsectun) {
    542 		struct ipsec_output_state state;
    543 
    544 		/*
    545 		 * All the extension headers will become inaccessible
    546 		 * (since they can be encrypted).
    547 		 * Don't panic, we need no more updates to extension headers
    548 		 * on inner IPv6 packet (since they are now encapsulated).
    549 		 *
    550 		 * IPv6 [ESP|AH] IPv6 [extension headers] payload
    551 		 */
    552 		bzero(&exthdrs, sizeof(exthdrs));
    553 		exthdrs.ip6e_ip6 = m;
    554 
    555 		bzero(&state, sizeof(state));
    556 		state.m = m;
    557 		state.ro = (struct route *)ro;
    558 		state.dst = (struct sockaddr *)dst;
    559 
    560 		error = ipsec6_output_tunnel(&state, sp, flags);
    561 
    562 		m = state.m;
    563 		ro_pmtu = ro = (struct route_in6 *)state.ro;
    564 		dst = (struct sockaddr_in6 *)state.dst;
    565 		if (error) {
    566 			/* mbuf is already reclaimed in ipsec6_output_tunnel. */
    567 			m0 = m = NULL;
    568 			m = NULL;
    569 			switch (error) {
    570 			case EHOSTUNREACH:
    571 			case ENETUNREACH:
    572 			case EMSGSIZE:
    573 			case ENOBUFS:
    574 			case ENOMEM:
    575 				break;
    576 			default:
    577 				printf("ip6_output (ipsec): error code %d\n", error);
    578 				/* FALLTHROUGH */
    579 			case ENOENT:
    580 				/* don't show these error codes to the user */
    581 				error = 0;
    582 				break;
    583 			}
    584 			goto bad;
    585 		}
    586 
    587 		exthdrs.ip6e_ip6 = m;
    588 	}
    589 #endif /* IPSEC */
    590 
    591 	/* adjust pointer */
    592 	ip6 = mtod(m, struct ip6_hdr *);
    593 
    594 	bzero(&dst_sa, sizeof(dst_sa));
    595 	dst_sa.sin6_family = AF_INET6;
    596 	dst_sa.sin6_len = sizeof(dst_sa);
    597 	dst_sa.sin6_addr = ip6->ip6_dst;
    598 	if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, &rt, 0))
    599 	    != 0) {
    600 		switch (error) {
    601 		case EHOSTUNREACH:
    602 			ip6stat.ip6s_noroute++;
    603 			break;
    604 		case EADDRNOTAVAIL:
    605 		default:
    606 			break; /* XXX statistics? */
    607 		}
    608 		if (ifp != NULL)
    609 			in6_ifstat_inc(ifp, ifs6_out_discard);
    610 		goto bad;
    611 	}
    612 	if (rt == NULL) {
    613 		/*
    614 		 * If in6_selectroute() does not return a route entry,
    615 		 * dst may not have been updated.
    616 		 */
    617 		*dst = dst_sa;	/* XXX */
    618 	}
    619 
    620 	/*
    621 	 * then rt (for unicast) and ifp must be non-NULL valid values.
    622 	 */
    623 	if ((flags & IPV6_FORWARDING) == 0) {
    624 		/* XXX: the FORWARDING flag can be set for mrouting. */
    625 		in6_ifstat_inc(ifp, ifs6_out_request);
    626 	}
    627 	if (rt != NULL) {
    628 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
    629 		rt->rt_use++;
    630 	}
    631 
    632 	/*
    633 	 * The outgoing interface must be in the zone of source and
    634 	 * destination addresses.  We should use ia_ifp to support the
    635 	 * case of sending packets to an address of our own.
    636 	 */
    637 	if (ia != NULL && ia->ia_ifp)
    638 		origifp = ia->ia_ifp;
    639 	else
    640 		origifp = ifp;
    641 
    642 	src0 = ip6->ip6_src;
    643 	if (in6_setscope(&src0, origifp, &zone))
    644 		goto badscope;
    645 	bzero(&src_sa, sizeof(src_sa));
    646 	src_sa.sin6_family = AF_INET6;
    647 	src_sa.sin6_len = sizeof(src_sa);
    648 	src_sa.sin6_addr = ip6->ip6_src;
    649 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
    650 		goto badscope;
    651 
    652 	dst0 = ip6->ip6_dst;
    653 	if (in6_setscope(&dst0, origifp, &zone))
    654 		goto badscope;
    655 	/* re-initialize to be sure */
    656 	bzero(&dst_sa, sizeof(dst_sa));
    657 	dst_sa.sin6_family = AF_INET6;
    658 	dst_sa.sin6_len = sizeof(dst_sa);
    659 	dst_sa.sin6_addr = ip6->ip6_dst;
    660 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
    661 		goto badscope;
    662 
    663 	/* scope check is done. */
    664 	goto routefound;
    665 
    666   badscope:
    667 	ip6stat.ip6s_badscope++;
    668 	in6_ifstat_inc(origifp, ifs6_out_discard);
    669 	if (error == 0)
    670 		error = EHOSTUNREACH; /* XXX */
    671 	goto bad;
    672 
    673   routefound:
    674 	if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    675 #ifdef notyet	     /* this will be available with the RFC3542 support */
    676 		if (opt && opt->ip6po_nextroute.ro_rt) {
    677 			/*
    678 			 * The nexthop is explicitly specified by the
    679 			 * application.  We assume the next hop is an IPv6
    680 			 * address.
    681 			 */
    682 			dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
    683 		} else
    684 #endif
    685 			if ((rt->rt_flags & RTF_GATEWAY))
    686 				dst = (struct sockaddr_in6 *)rt->rt_gateway;
    687 	}
    688 
    689 	/*
    690 	 * XXXXXX: original code follows:
    691 	 */
    692 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    693 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
    694 	else {
    695 		struct	in6_multi *in6m;
    696 
    697 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
    698 
    699 		in6_ifstat_inc(ifp, ifs6_out_mcast);
    700 
    701 		/*
    702 		 * Confirm that the outgoing interface supports multicast.
    703 		 */
    704 		if (!(ifp->if_flags & IFF_MULTICAST)) {
    705 			ip6stat.ip6s_noroute++;
    706 			in6_ifstat_inc(ifp, ifs6_out_discard);
    707 			error = ENETUNREACH;
    708 			goto bad;
    709 		}
    710 
    711 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
    712 		if (in6m != NULL &&
    713 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
    714 			/*
    715 			 * If we belong to the destination multicast group
    716 			 * on the outgoing interface, and the caller did not
    717 			 * forbid loopback, loop back a copy.
    718 			 */
    719 			ip6_mloopback(ifp, m, dst);
    720 		} else {
    721 			/*
    722 			 * If we are acting as a multicast router, perform
    723 			 * multicast forwarding as if the packet had just
    724 			 * arrived on the interface to which we are about
    725 			 * to send.  The multicast forwarding function
    726 			 * recursively calls this function, using the
    727 			 * IPV6_FORWARDING flag to prevent infinite recursion.
    728 			 *
    729 			 * Multicasts that are looped back by ip6_mloopback(),
    730 			 * above, will be forwarded by the ip6_input() routine,
    731 			 * if necessary.
    732 			 */
    733 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
    734 				if (ip6_mforward(ip6, ifp, m) != 0) {
    735 					m_freem(m);
    736 					goto done;
    737 				}
    738 			}
    739 		}
    740 		/*
    741 		 * Multicasts with a hoplimit of zero may be looped back,
    742 		 * above, but must not be transmitted on a network.
    743 		 * Also, multicasts addressed to the loopback interface
    744 		 * are not sent -- the above call to ip6_mloopback() will
    745 		 * loop back a copy if this host actually belongs to the
    746 		 * destination group on the loopback interface.
    747 		 */
    748 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
    749 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
    750 			m_freem(m);
    751 			goto done;
    752 		}
    753 	}
    754 
    755 	/*
    756 	 * Fill the outgoing inteface to tell the upper layer
    757 	 * to increment per-interface statistics.
    758 	 */
    759 	if (ifpp)
    760 		*ifpp = ifp;
    761 
    762 	/* Determine path MTU. */
    763 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
    764 	    &alwaysfrag)) != 0)
    765 		goto bad;
    766 #ifdef IPSEC
    767 	if (needipsectun)
    768 		mtu = IPV6_MMTU;
    769 #endif
    770 
    771 	/*
    772 	 * The caller of this function may specify to use the minimum MTU
    773 	 * in some cases.
    774 	 */
    775 	if (mtu > IPV6_MMTU) {
    776 		if ((flags & IPV6_MINMTU))
    777 			mtu = IPV6_MMTU;
    778 	}
    779 
    780 	/*
    781 	 * clear embedded scope identifiers if necessary.
    782 	 * in6_clearscope will touch the addresses only when necessary.
    783 	 */
    784 	in6_clearscope(&ip6->ip6_src);
    785 	in6_clearscope(&ip6->ip6_dst);
    786 
    787 	/*
    788 	 * If the outgoing packet contains a hop-by-hop options header,
    789 	 * it must be examined and processed even by the source node.
    790 	 * (RFC 2460, section 4.)
    791 	 */
    792 	if (exthdrs.ip6e_hbh) {
    793 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
    794 		u_int32_t dummy1; /* XXX unused */
    795 		u_int32_t dummy2; /* XXX unused */
    796 
    797 		/*
    798 		 *  XXX: if we have to send an ICMPv6 error to the sender,
    799 		 *       we need the M_LOOP flag since icmp6_error() expects
    800 		 *       the IPv6 and the hop-by-hop options header are
    801 		 *       continuous unless the flag is set.
    802 		 */
    803 		m->m_flags |= M_LOOP;
    804 		m->m_pkthdr.rcvif = ifp;
    805 		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
    806 		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
    807 		    &dummy1, &dummy2) < 0) {
    808 			/* m was already freed at this point */
    809 			error = EINVAL;/* better error? */
    810 			goto done;
    811 		}
    812 		m->m_flags &= ~M_LOOP; /* XXX */
    813 		m->m_pkthdr.rcvif = NULL;
    814 	}
    815 
    816 #ifdef PFIL_HOOKS
    817 	/*
    818 	 * Run through list of hooks for output packets.
    819 	 */
    820 	if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    821 		goto done;
    822 	if (m == NULL)
    823 		goto done;
    824 	ip6 = mtod(m, struct ip6_hdr *);
    825 #endif /* PFIL_HOOKS */
    826 	/*
    827 	 * Send the packet to the outgoing interface.
    828 	 * If necessary, do IPv6 fragmentation before sending.
    829 	 *
    830 	 * the logic here is rather complex:
    831 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
    832 	 * 1-a:	send as is if tlen <= path mtu
    833 	 * 1-b:	fragment if tlen > path mtu
    834 	 *
    835 	 * 2: if user asks us not to fragment (dontfrag == 1)
    836 	 * 2-a:	send as is if tlen <= interface mtu
    837 	 * 2-b:	error if tlen > interface mtu
    838 	 *
    839 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
    840 	 *	always fragment
    841 	 *
    842 	 * 4: if dontfrag == 1 && alwaysfrag == 1
    843 	 *	error, as we cannot handle this conflicting request
    844 	 */
    845 	tlen = m->m_pkthdr.len;
    846 
    847 	dontfrag = 0;
    848 #ifdef notdef
    849 	if (dontfrag && alwaysfrag) {	/* case 4 */
    850 		/* conflicting request - can't transmit */
    851 		error = EMSGSIZE;
    852 		goto bad;
    853 	}
    854 	if (dontfrag && tlen > IN6_LINKMTU(ifp)) {	/* case 2-b */
    855 		/*
    856 		 * Even if the DONTFRAG option is specified, we cannot send the
    857 		 * packet when the data length is larger than the MTU of the
    858 		 * outgoing interface.
    859 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
    860 		 * well as returning an error code (the latter is not described
    861 		 * in the API spec.)
    862 		 */
    863 		u_int32_t mtu32;
    864 		struct ip6ctlparam ip6cp;
    865 
    866 		mtu32 = (u_int32_t)mtu;
    867 		bzero(&ip6cp, sizeof(ip6cp));
    868 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    869 		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
    870 		    (void *)&ip6cp);
    871 
    872 		error = EMSGSIZE;
    873 		goto bad;
    874 	}
    875 #endif
    876 	/*
    877 	 * transmit packet without fragmentation
    878 	 */
    879 	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
    880 		struct in6_ifaddr *ia6;
    881 		int sw_csum;
    882 
    883 		ip6 = mtod(m, struct ip6_hdr *);
    884 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    885 		if (ia6) {
    886 			/* Record statistics for this interface address. */
    887 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
    888 		}
    889 #ifdef IPSEC
    890 		/* clean ipsec history once it goes out of the node */
    891 		ipsec_delaux(m);
    892 #endif
    893 
    894 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    895 		if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    896 			if (IN6_NEED_CHECKSUM(ifp,
    897 			    sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    898 				in6_delayed_cksum(m);
    899 			}
    900 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    901 		}
    902 
    903 		error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
    904 		goto done;
    905 	}
    906 
    907 	/*
    908 	 * try to fragment the packet.  case 1-b and 3
    909 	 */
    910 	if (mtu < IPV6_MMTU) {
    911 		/* path MTU cannot be less than IPV6_MMTU */
    912 		error = EMSGSIZE;
    913 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    914 		goto bad;
    915 	} else if (ip6->ip6_plen == 0) {
    916 		/* jumbo payload cannot be fragmented */
    917 		error = EMSGSIZE;
    918 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    919 		goto bad;
    920 	} else {
    921 		struct mbuf **mnext, *m_frgpart;
    922 		struct ip6_frag *ip6f;
    923 		u_int32_t id = htonl(ip6_randomid());
    924 		u_char nextproto;
    925 		struct ip6ctlparam ip6cp;
    926 		u_int32_t mtu32;
    927 
    928 		/*
    929 		 * Too large for the destination or interface;
    930 		 * fragment if possible.
    931 		 * Must be able to put at least 8 bytes per fragment.
    932 		 */
    933 		hlen = unfragpartlen;
    934 		if (mtu > IPV6_MAXPACKET)
    935 			mtu = IPV6_MAXPACKET;
    936 
    937 		/* Notify a proper path MTU to applications. */
    938 		mtu32 = (u_int32_t)mtu;
    939 		bzero(&ip6cp, sizeof(ip6cp));
    940 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    941 		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
    942 		    (void *)&ip6cp);
    943 
    944 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
    945 		if (len < 8) {
    946 			error = EMSGSIZE;
    947 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
    948 			goto bad;
    949 		}
    950 
    951 		mnext = &m->m_nextpkt;
    952 
    953 		/*
    954 		 * Change the next header field of the last header in the
    955 		 * unfragmentable part.
    956 		 */
    957 		if (exthdrs.ip6e_rthdr) {
    958 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
    959 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
    960 		} else if (exthdrs.ip6e_dest1) {
    961 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
    962 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
    963 		} else if (exthdrs.ip6e_hbh) {
    964 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
    965 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
    966 		} else {
    967 			nextproto = ip6->ip6_nxt;
    968 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
    969 		}
    970 
    971 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
    972 		    != 0) {
    973 			if (IN6_NEED_CHECKSUM(ifp,
    974 			    m->m_pkthdr.csum_flags &
    975 			    (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    976 				in6_delayed_cksum(m);
    977 			}
    978 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    979 		}
    980 
    981 		/*
    982 		 * Loop through length of segment after first fragment,
    983 		 * make new header and copy data of each part and link onto
    984 		 * chain.
    985 		 */
    986 		m0 = m;
    987 		for (off = hlen; off < tlen; off += len) {
    988 			struct mbuf *mlast;
    989 
    990 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
    991 			if (!m) {
    992 				error = ENOBUFS;
    993 				ip6stat.ip6s_odropped++;
    994 				goto sendorfree;
    995 			}
    996 			m->m_pkthdr.rcvif = NULL;
    997 			m->m_flags = m0->m_flags & M_COPYFLAGS;
    998 			*mnext = m;
    999 			mnext = &m->m_nextpkt;
   1000 			m->m_data += max_linkhdr;
   1001 			mhip6 = mtod(m, struct ip6_hdr *);
   1002 			*mhip6 = *ip6;
   1003 			m->m_len = sizeof(*mhip6);
   1004 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
   1005 			if (error) {
   1006 				ip6stat.ip6s_odropped++;
   1007 				goto sendorfree;
   1008 			}
   1009 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
   1010 			if (off + len >= tlen)
   1011 				len = tlen - off;
   1012 			else
   1013 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
   1014 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
   1015 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
   1016 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
   1017 				error = ENOBUFS;
   1018 				ip6stat.ip6s_odropped++;
   1019 				goto sendorfree;
   1020 			}
   1021 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
   1022 				;
   1023 			mlast->m_next = m_frgpart;
   1024 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
   1025 			m->m_pkthdr.rcvif = (struct ifnet *)0;
   1026 			ip6f->ip6f_reserved = 0;
   1027 			ip6f->ip6f_ident = id;
   1028 			ip6f->ip6f_nxt = nextproto;
   1029 			ip6stat.ip6s_ofragments++;
   1030 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
   1031 		}
   1032 
   1033 		in6_ifstat_inc(ifp, ifs6_out_fragok);
   1034 	}
   1035 
   1036 	/*
   1037 	 * Remove leading garbages.
   1038 	 */
   1039 sendorfree:
   1040 	m = m0->m_nextpkt;
   1041 	m0->m_nextpkt = 0;
   1042 	m_freem(m0);
   1043 	for (m0 = m; m; m = m0) {
   1044 		m0 = m->m_nextpkt;
   1045 		m->m_nextpkt = 0;
   1046 		if (error == 0) {
   1047 			struct in6_ifaddr *ia6;
   1048 			ip6 = mtod(m, struct ip6_hdr *);
   1049 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
   1050 			if (ia6) {
   1051 				/*
   1052 				 * Record statistics for this interface
   1053 				 * address.
   1054 				 */
   1055 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
   1056 				    m->m_pkthdr.len;
   1057 			}
   1058 #ifdef IPSEC
   1059 			/* clean ipsec history once it goes out of the node */
   1060 			ipsec_delaux(m);
   1061 #endif
   1062 			error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
   1063 		} else
   1064 			m_freem(m);
   1065 	}
   1066 
   1067 	if (error == 0)
   1068 		ip6stat.ip6s_fragmented++;
   1069 
   1070 done:
   1071 	if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
   1072 		RTFREE(ro->ro_rt);
   1073 	} else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
   1074 		RTFREE(ro_pmtu->ro_rt);
   1075 	}
   1076 
   1077 #ifdef IPSEC
   1078 	if (sp != NULL)
   1079 		key_freesp(sp);
   1080 #endif /* IPSEC */
   1081 
   1082 	return (error);
   1083 
   1084 freehdrs:
   1085 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
   1086 	m_freem(exthdrs.ip6e_dest1);
   1087 	m_freem(exthdrs.ip6e_rthdr);
   1088 	m_freem(exthdrs.ip6e_dest2);
   1089 	/* FALLTHROUGH */
   1090 bad:
   1091 	m_freem(m);
   1092 	goto done;
   1093 }
   1094 
   1095 static int
   1096 ip6_copyexthdr(mp, hdr, hlen)
   1097 	struct mbuf **mp;
   1098 	caddr_t hdr;
   1099 	int hlen;
   1100 {
   1101 	struct mbuf *m;
   1102 
   1103 	if (hlen > MCLBYTES)
   1104 		return (ENOBUFS); /* XXX */
   1105 
   1106 	MGET(m, M_DONTWAIT, MT_DATA);
   1107 	if (!m)
   1108 		return (ENOBUFS);
   1109 
   1110 	if (hlen > MLEN) {
   1111 		MCLGET(m, M_DONTWAIT);
   1112 		if ((m->m_flags & M_EXT) == 0) {
   1113 			m_free(m);
   1114 			return (ENOBUFS);
   1115 		}
   1116 	}
   1117 	m->m_len = hlen;
   1118 	if (hdr)
   1119 		bcopy(hdr, mtod(m, caddr_t), hlen);
   1120 
   1121 	*mp = m;
   1122 	return (0);
   1123 }
   1124 
   1125 /*
   1126  * Process a delayed payload checksum calculation.
   1127  */
   1128 void
   1129 in6_delayed_cksum(struct mbuf *m)
   1130 {
   1131 	uint16_t csum, offset;
   1132 
   1133 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1134 	KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1135 	KASSERT((m->m_pkthdr.csum_flags
   1136 	    & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
   1137 
   1138 	offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
   1139 	csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
   1140 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
   1141 		csum = 0xffff;
   1142 	}
   1143 
   1144 	offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
   1145 	if ((offset + sizeof(csum)) > m->m_len) {
   1146 		m_copyback(m, offset, sizeof(csum), &csum);
   1147 	} else {
   1148 		*(uint16_t *)(mtod(m, caddr_t) + offset) = csum;
   1149 	}
   1150 }
   1151 
   1152 /*
   1153  * Insert jumbo payload option.
   1154  */
   1155 static int
   1156 ip6_insert_jumboopt(exthdrs, plen)
   1157 	struct ip6_exthdrs *exthdrs;
   1158 	u_int32_t plen;
   1159 {
   1160 	struct mbuf *mopt;
   1161 	u_int8_t *optbuf;
   1162 	u_int32_t v;
   1163 
   1164 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
   1165 
   1166 	/*
   1167 	 * If there is no hop-by-hop options header, allocate new one.
   1168 	 * If there is one but it doesn't have enough space to store the
   1169 	 * jumbo payload option, allocate a cluster to store the whole options.
   1170 	 * Otherwise, use it to store the options.
   1171 	 */
   1172 	if (exthdrs->ip6e_hbh == 0) {
   1173 		MGET(mopt, M_DONTWAIT, MT_DATA);
   1174 		if (mopt == 0)
   1175 			return (ENOBUFS);
   1176 		mopt->m_len = JUMBOOPTLEN;
   1177 		optbuf = mtod(mopt, u_int8_t *);
   1178 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
   1179 		exthdrs->ip6e_hbh = mopt;
   1180 	} else {
   1181 		struct ip6_hbh *hbh;
   1182 
   1183 		mopt = exthdrs->ip6e_hbh;
   1184 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
   1185 			/*
   1186 			 * XXX assumption:
   1187 			 * - exthdrs->ip6e_hbh is not referenced from places
   1188 			 *   other than exthdrs.
   1189 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
   1190 			 */
   1191 			int oldoptlen = mopt->m_len;
   1192 			struct mbuf *n;
   1193 
   1194 			/*
   1195 			 * XXX: give up if the whole (new) hbh header does
   1196 			 * not fit even in an mbuf cluster.
   1197 			 */
   1198 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
   1199 				return (ENOBUFS);
   1200 
   1201 			/*
   1202 			 * As a consequence, we must always prepare a cluster
   1203 			 * at this point.
   1204 			 */
   1205 			MGET(n, M_DONTWAIT, MT_DATA);
   1206 			if (n) {
   1207 				MCLGET(n, M_DONTWAIT);
   1208 				if ((n->m_flags & M_EXT) == 0) {
   1209 					m_freem(n);
   1210 					n = NULL;
   1211 				}
   1212 			}
   1213 			if (!n)
   1214 				return (ENOBUFS);
   1215 			n->m_len = oldoptlen + JUMBOOPTLEN;
   1216 			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
   1217 			    oldoptlen);
   1218 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
   1219 			m_freem(mopt);
   1220 			mopt = exthdrs->ip6e_hbh = n;
   1221 		} else {
   1222 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
   1223 			mopt->m_len += JUMBOOPTLEN;
   1224 		}
   1225 		optbuf[0] = IP6OPT_PADN;
   1226 		optbuf[1] = 0;
   1227 
   1228 		/*
   1229 		 * Adjust the header length according to the pad and
   1230 		 * the jumbo payload option.
   1231 		 */
   1232 		hbh = mtod(mopt, struct ip6_hbh *);
   1233 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
   1234 	}
   1235 
   1236 	/* fill in the option. */
   1237 	optbuf[2] = IP6OPT_JUMBO;
   1238 	optbuf[3] = 4;
   1239 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
   1240 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
   1241 
   1242 	/* finally, adjust the packet header length */
   1243 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
   1244 
   1245 	return (0);
   1246 #undef JUMBOOPTLEN
   1247 }
   1248 
   1249 /*
   1250  * Insert fragment header and copy unfragmentable header portions.
   1251  */
   1252 static int
   1253 ip6_insertfraghdr(m0, m, hlen, frghdrp)
   1254 	struct mbuf *m0, *m;
   1255 	int hlen;
   1256 	struct ip6_frag **frghdrp;
   1257 {
   1258 	struct mbuf *n, *mlast;
   1259 
   1260 	if (hlen > sizeof(struct ip6_hdr)) {
   1261 		n = m_copym(m0, sizeof(struct ip6_hdr),
   1262 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
   1263 		if (n == 0)
   1264 			return (ENOBUFS);
   1265 		m->m_next = n;
   1266 	} else
   1267 		n = m;
   1268 
   1269 	/* Search for the last mbuf of unfragmentable part. */
   1270 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
   1271 		;
   1272 
   1273 	if ((mlast->m_flags & M_EXT) == 0 &&
   1274 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
   1275 		/* use the trailing space of the last mbuf for the fragment hdr */
   1276 		*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
   1277 		    mlast->m_len);
   1278 		mlast->m_len += sizeof(struct ip6_frag);
   1279 		m->m_pkthdr.len += sizeof(struct ip6_frag);
   1280 	} else {
   1281 		/* allocate a new mbuf for the fragment header */
   1282 		struct mbuf *mfrg;
   1283 
   1284 		MGET(mfrg, M_DONTWAIT, MT_DATA);
   1285 		if (mfrg == 0)
   1286 			return (ENOBUFS);
   1287 		mfrg->m_len = sizeof(struct ip6_frag);
   1288 		*frghdrp = mtod(mfrg, struct ip6_frag *);
   1289 		mlast->m_next = mfrg;
   1290 	}
   1291 
   1292 	return (0);
   1293 }
   1294 
   1295 static int
   1296 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup, alwaysfragp)
   1297 	struct route_in6 *ro_pmtu, *ro;
   1298 	struct ifnet *ifp;
   1299 	struct in6_addr *dst;
   1300 	u_long *mtup;
   1301 	int *alwaysfragp;
   1302 {
   1303 	u_int32_t mtu = 0;
   1304 	int alwaysfrag = 0;
   1305 	int error = 0;
   1306 
   1307 	if (ro_pmtu != ro) {
   1308 		/* The first hop and the final destination may differ. */
   1309 		struct sockaddr_in6 *sa6_dst =
   1310 		    (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
   1311 		if (ro_pmtu->ro_rt &&
   1312 		    ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
   1313 		      !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
   1314 			RTFREE(ro_pmtu->ro_rt);
   1315 			ro_pmtu->ro_rt = (struct rtentry *)NULL;
   1316 		}
   1317 		if (ro_pmtu->ro_rt == NULL) {
   1318 			bzero(sa6_dst, sizeof(*sa6_dst)); /* for safety */
   1319 			sa6_dst->sin6_family = AF_INET6;
   1320 			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
   1321 			sa6_dst->sin6_addr = *dst;
   1322 
   1323 			rtalloc((struct route *)ro_pmtu);
   1324 		}
   1325 	}
   1326 	if (ro_pmtu->ro_rt) {
   1327 		u_int32_t ifmtu;
   1328 
   1329 		if (ifp == NULL)
   1330 			ifp = ro_pmtu->ro_rt->rt_ifp;
   1331 		ifmtu = IN6_LINKMTU(ifp);
   1332 		mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
   1333 		if (mtu == 0)
   1334 			mtu = ifmtu;
   1335 		else if (mtu < IPV6_MMTU) {
   1336 			/*
   1337 			 * RFC2460 section 5, last paragraph:
   1338 			 * if we record ICMPv6 too big message with
   1339 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
   1340 			 * or smaller, with fragment header attached.
   1341 			 * (fragment header is needed regardless from the
   1342 			 * packet size, for translators to identify packets)
   1343 			 */
   1344 			alwaysfrag = 1;
   1345 			mtu = IPV6_MMTU;
   1346 		} else if (mtu > ifmtu) {
   1347 			/*
   1348 			 * The MTU on the route is larger than the MTU on
   1349 			 * the interface!  This shouldn't happen, unless the
   1350 			 * MTU of the interface has been changed after the
   1351 			 * interface was brought up.  Change the MTU in the
   1352 			 * route to match the interface MTU (as long as the
   1353 			 * field isn't locked).
   1354 			 */
   1355 			mtu = ifmtu;
   1356 			if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU))
   1357 				ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
   1358 		}
   1359 	} else if (ifp) {
   1360 		mtu = IN6_LINKMTU(ifp);
   1361 	} else
   1362 		error = EHOSTUNREACH; /* XXX */
   1363 
   1364 	*mtup = mtu;
   1365 	if (alwaysfragp)
   1366 		*alwaysfragp = alwaysfrag;
   1367 	return (error);
   1368 }
   1369 
   1370 /*
   1371  * IP6 socket option processing.
   1372  */
   1373 int
   1374 ip6_ctloutput(op, so, level, optname, mp)
   1375 	int op;
   1376 	struct socket *so;
   1377 	int level, optname;
   1378 	struct mbuf **mp;
   1379 {
   1380 	struct in6pcb *in6p = sotoin6pcb(so);
   1381 	struct mbuf *m = *mp;
   1382 	int optval = 0;
   1383 	int error = 0;
   1384 	struct proc *p = curproc;	/* XXX */
   1385 
   1386 	if (level == IPPROTO_IPV6) {
   1387 		switch (op) {
   1388 		case PRCO_SETOPT:
   1389 			switch (optname) {
   1390 			case IPV6_PKTOPTIONS:
   1391 				/* m is freed in ip6_pcbopts */
   1392 				return (ip6_pcbopts(&in6p->in6p_outputopts,
   1393 				    m, so));
   1394 			case IPV6_HOPOPTS:
   1395 			case IPV6_DSTOPTS:
   1396 				if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
   1397 					error = EPERM;
   1398 					break;
   1399 				}
   1400 				/* FALLTHROUGH */
   1401 			case IPV6_UNICAST_HOPS:
   1402 			case IPV6_RECVOPTS:
   1403 			case IPV6_RECVRETOPTS:
   1404 			case IPV6_RECVDSTADDR:
   1405 			case IPV6_PKTINFO:
   1406 			case IPV6_HOPLIMIT:
   1407 			case IPV6_RTHDR:
   1408 			case IPV6_FAITH:
   1409 			case IPV6_V6ONLY:
   1410 			case IPV6_USE_MIN_MTU:
   1411 				if (!m || m->m_len != sizeof(int)) {
   1412 					error = EINVAL;
   1413 					break;
   1414 				}
   1415 				optval = *mtod(m, int *);
   1416 				switch (optname) {
   1417 
   1418 				case IPV6_UNICAST_HOPS:
   1419 					if (optval < -1 || optval >= 256)
   1420 						error = EINVAL;
   1421 					else {
   1422 						/* -1 = kernel default */
   1423 						in6p->in6p_hops = optval;
   1424 					}
   1425 					break;
   1426 #define OPTSET(bit) \
   1427 do { \
   1428 	if (optval) \
   1429 		in6p->in6p_flags |= (bit); \
   1430 	else \
   1431 		in6p->in6p_flags &= ~(bit); \
   1432 } while (/*CONSTCOND*/ 0)
   1433 
   1434 				case IPV6_RECVOPTS:
   1435 					OPTSET(IN6P_RECVOPTS);
   1436 					break;
   1437 
   1438 				case IPV6_RECVRETOPTS:
   1439 					OPTSET(IN6P_RECVRETOPTS);
   1440 					break;
   1441 
   1442 				case IPV6_RECVDSTADDR:
   1443 					OPTSET(IN6P_RECVDSTADDR);
   1444 					break;
   1445 
   1446 				case IPV6_PKTINFO:
   1447 					OPTSET(IN6P_PKTINFO);
   1448 					break;
   1449 
   1450 				case IPV6_HOPLIMIT:
   1451 					OPTSET(IN6P_HOPLIMIT);
   1452 					break;
   1453 
   1454 				case IPV6_HOPOPTS:
   1455 					OPTSET(IN6P_HOPOPTS);
   1456 					break;
   1457 
   1458 				case IPV6_DSTOPTS:
   1459 					OPTSET(IN6P_DSTOPTS);
   1460 					break;
   1461 
   1462 				case IPV6_RTHDR:
   1463 					OPTSET(IN6P_RTHDR);
   1464 					break;
   1465 
   1466 				case IPV6_FAITH:
   1467 					OPTSET(IN6P_FAITH);
   1468 					break;
   1469 
   1470 				case IPV6_USE_MIN_MTU:
   1471 					OPTSET(IN6P_MINMTU);
   1472 					break;
   1473 
   1474 				case IPV6_V6ONLY:
   1475 					/*
   1476 					 * make setsockopt(IPV6_V6ONLY)
   1477 					 * available only prior to bind(2).
   1478 					 * see ipng mailing list, Jun 22 2001.
   1479 					 */
   1480 					if (in6p->in6p_lport ||
   1481 					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
   1482 						error = EINVAL;
   1483 						break;
   1484 					}
   1485 #ifdef INET6_BINDV6ONLY
   1486 					if (!optval)
   1487 						error = EINVAL;
   1488 #else
   1489 					OPTSET(IN6P_IPV6_V6ONLY);
   1490 #endif
   1491 					break;
   1492 				}
   1493 				break;
   1494 #undef OPTSET
   1495 
   1496 			case IPV6_MULTICAST_IF:
   1497 			case IPV6_MULTICAST_HOPS:
   1498 			case IPV6_MULTICAST_LOOP:
   1499 			case IPV6_JOIN_GROUP:
   1500 			case IPV6_LEAVE_GROUP:
   1501 				error =	ip6_setmoptions(optname,
   1502 				    &in6p->in6p_moptions, m);
   1503 				break;
   1504 
   1505 			case IPV6_PORTRANGE:
   1506 				optval = *mtod(m, int *);
   1507 
   1508 				switch (optval) {
   1509 				case IPV6_PORTRANGE_DEFAULT:
   1510 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1511 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1512 					break;
   1513 
   1514 				case IPV6_PORTRANGE_HIGH:
   1515 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1516 					in6p->in6p_flags |= IN6P_HIGHPORT;
   1517 					break;
   1518 
   1519 				case IPV6_PORTRANGE_LOW:
   1520 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1521 					in6p->in6p_flags |= IN6P_LOWPORT;
   1522 					break;
   1523 
   1524 				default:
   1525 					error = EINVAL;
   1526 					break;
   1527 				}
   1528 				break;
   1529 
   1530 #ifdef IPSEC
   1531 			case IPV6_IPSEC_POLICY:
   1532 			    {
   1533 				caddr_t req = NULL;
   1534 				size_t len = 0;
   1535 
   1536 				int priv = 0;
   1537 				if (p == 0 || suser(p->p_ucred, &p->p_acflag))
   1538 					priv = 0;
   1539 				else
   1540 					priv = 1;
   1541 				if (m) {
   1542 					req = mtod(m, caddr_t);
   1543 					len = m->m_len;
   1544 				}
   1545 				error = ipsec6_set_policy(in6p,
   1546 				                   optname, req, len, priv);
   1547 			    }
   1548 				break;
   1549 #endif /* IPSEC */
   1550 
   1551 			default:
   1552 				error = ENOPROTOOPT;
   1553 				break;
   1554 			}
   1555 			if (m)
   1556 				(void)m_free(m);
   1557 			break;
   1558 
   1559 		case PRCO_GETOPT:
   1560 			switch (optname) {
   1561 
   1562 			case IPV6_OPTIONS:
   1563 			case IPV6_RETOPTS:
   1564 				error = ENOPROTOOPT;
   1565 				break;
   1566 
   1567 			case IPV6_PKTOPTIONS:
   1568 				if (in6p->in6p_options) {
   1569 					*mp = m_copym(in6p->in6p_options, 0,
   1570 					    M_COPYALL, M_WAIT);
   1571 				} else {
   1572 					*mp = m_get(M_WAIT, MT_SOOPTS);
   1573 					(*mp)->m_len = 0;
   1574 				}
   1575 				break;
   1576 
   1577 			case IPV6_HOPOPTS:
   1578 			case IPV6_DSTOPTS:
   1579 				if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
   1580 					error = EPERM;
   1581 					break;
   1582 				}
   1583 				/* FALLTHROUGH */
   1584 			case IPV6_UNICAST_HOPS:
   1585 			case IPV6_RECVOPTS:
   1586 			case IPV6_RECVRETOPTS:
   1587 			case IPV6_RECVDSTADDR:
   1588 			case IPV6_PORTRANGE:
   1589 			case IPV6_PKTINFO:
   1590 			case IPV6_HOPLIMIT:
   1591 			case IPV6_RTHDR:
   1592 			case IPV6_FAITH:
   1593 			case IPV6_V6ONLY:
   1594 			case IPV6_USE_MIN_MTU:
   1595 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1596 				m->m_len = sizeof(int);
   1597 				switch (optname) {
   1598 
   1599 				case IPV6_UNICAST_HOPS:
   1600 					optval = in6p->in6p_hops;
   1601 					break;
   1602 
   1603 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
   1604 
   1605 				case IPV6_RECVOPTS:
   1606 					optval = OPTBIT(IN6P_RECVOPTS);
   1607 					break;
   1608 
   1609 				case IPV6_RECVRETOPTS:
   1610 					optval = OPTBIT(IN6P_RECVRETOPTS);
   1611 					break;
   1612 
   1613 				case IPV6_RECVDSTADDR:
   1614 					optval = OPTBIT(IN6P_RECVDSTADDR);
   1615 					break;
   1616 
   1617 				case IPV6_PORTRANGE:
   1618 				    {
   1619 					int flags;
   1620 					flags = in6p->in6p_flags;
   1621 					if (flags & IN6P_HIGHPORT)
   1622 						optval = IPV6_PORTRANGE_HIGH;
   1623 					else if (flags & IN6P_LOWPORT)
   1624 						optval = IPV6_PORTRANGE_LOW;
   1625 					else
   1626 						optval = 0;
   1627 					break;
   1628 				    }
   1629 
   1630 				case IPV6_PKTINFO:
   1631 					optval = OPTBIT(IN6P_PKTINFO);
   1632 					break;
   1633 
   1634 				case IPV6_HOPLIMIT:
   1635 					optval = OPTBIT(IN6P_HOPLIMIT);
   1636 					break;
   1637 
   1638 				case IPV6_HOPOPTS:
   1639 					optval = OPTBIT(IN6P_HOPOPTS);
   1640 					break;
   1641 
   1642 				case IPV6_DSTOPTS:
   1643 					optval = OPTBIT(IN6P_DSTOPTS);
   1644 					break;
   1645 
   1646 				case IPV6_RTHDR:
   1647 					optval = OPTBIT(IN6P_RTHDR);
   1648 					break;
   1649 
   1650 				case IPV6_FAITH:
   1651 					optval = OPTBIT(IN6P_FAITH);
   1652 					break;
   1653 
   1654 				case IPV6_V6ONLY:
   1655 					optval = OPTBIT(IN6P_IPV6_V6ONLY);
   1656 					break;
   1657 
   1658 				case IPV6_USE_MIN_MTU:
   1659 					optval = OPTBIT(IN6P_MINMTU);
   1660 					break;
   1661 				}
   1662 				*mtod(m, int *) = optval;
   1663 				break;
   1664 
   1665 			case IPV6_MULTICAST_IF:
   1666 			case IPV6_MULTICAST_HOPS:
   1667 			case IPV6_MULTICAST_LOOP:
   1668 			case IPV6_JOIN_GROUP:
   1669 			case IPV6_LEAVE_GROUP:
   1670 				error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
   1671 				break;
   1672 
   1673 #if 0	/* defined(IPSEC) */
   1674 			/* XXX: code broken */
   1675 			case IPV6_IPSEC_POLICY:
   1676 			{
   1677 				caddr_t req = NULL;
   1678 				size_t len = 0;
   1679 
   1680 				if (m) {
   1681 					req = mtod(m, caddr_t);
   1682 					len = m->m_len;
   1683 				}
   1684 				error = ipsec6_get_policy(in6p, req, len, mp);
   1685 				break;
   1686 			}
   1687 #endif /* IPSEC */
   1688 
   1689 			default:
   1690 				error = ENOPROTOOPT;
   1691 				break;
   1692 			}
   1693 			break;
   1694 		}
   1695 	} else {
   1696 		error = EINVAL;
   1697 		if (op == PRCO_SETOPT && *mp)
   1698 			(void)m_free(*mp);
   1699 	}
   1700 	return (error);
   1701 }
   1702 
   1703 int
   1704 ip6_raw_ctloutput(op, so, level, optname, mp)
   1705 	int op;
   1706 	struct socket *so;
   1707 	int level, optname;
   1708 	struct mbuf **mp;
   1709 {
   1710 	int error = 0, optval, optlen;
   1711 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
   1712 	struct in6pcb *in6p = sotoin6pcb(so);
   1713 	struct mbuf *m = *mp;
   1714 
   1715 	optlen = m ? m->m_len : 0;
   1716 
   1717 	if (level != IPPROTO_IPV6) {
   1718 		if (op == PRCO_SETOPT && *mp)
   1719 			(void)m_free(*mp);
   1720 		return (EINVAL);
   1721 	}
   1722 
   1723 	switch (optname) {
   1724 	case IPV6_CHECKSUM:
   1725 		/*
   1726 		 * For ICMPv6 sockets, no modification allowed for checksum
   1727 		 * offset, permit "no change" values to help existing apps.
   1728 		 *
   1729 		 * XXX 2292bis says: "An attempt to set IPV6_CHECKSUM
   1730 		 * for an ICMPv6 socket will fail."
   1731 		 * The current behavior does not meet 2292bis.
   1732 		 */
   1733 		switch (op) {
   1734 		case PRCO_SETOPT:
   1735 			if (optlen != sizeof(int)) {
   1736 				error = EINVAL;
   1737 				break;
   1738 			}
   1739 			optval = *mtod(m, int *);
   1740 			if ((optval % 2) != 0) {
   1741 				/* the API assumes even offset values */
   1742 				error = EINVAL;
   1743 			} else if (so->so_proto->pr_protocol ==
   1744 			    IPPROTO_ICMPV6) {
   1745 				if (optval != icmp6off)
   1746 					error = EINVAL;
   1747 			} else
   1748 				in6p->in6p_cksum = optval;
   1749 			break;
   1750 
   1751 		case PRCO_GETOPT:
   1752 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
   1753 				optval = icmp6off;
   1754 			else
   1755 				optval = in6p->in6p_cksum;
   1756 
   1757 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1758 			m->m_len = sizeof(int);
   1759 			*mtod(m, int *) = optval;
   1760 			break;
   1761 
   1762 		default:
   1763 			error = EINVAL;
   1764 			break;
   1765 		}
   1766 		break;
   1767 
   1768 	default:
   1769 		error = ENOPROTOOPT;
   1770 		break;
   1771 	}
   1772 
   1773 	if (op == PRCO_SETOPT && m)
   1774 		(void)m_free(m);
   1775 
   1776 	return (error);
   1777 }
   1778 
   1779 /*
   1780  * Set up IP6 options in pcb for insertion in output packets.
   1781  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1782  * with destination address if source routed.
   1783  */
   1784 static int
   1785 ip6_pcbopts(pktopt, m, so)
   1786 	struct ip6_pktopts **pktopt;
   1787 	struct mbuf *m;
   1788 	struct socket *so;
   1789 {
   1790 	struct ip6_pktopts *opt = *pktopt;
   1791 	int error = 0;
   1792 	struct proc *p = curproc;	/* XXX */
   1793 	int priv = 0;
   1794 
   1795 	/* turn off any old options. */
   1796 	if (opt) {
   1797 		if (opt->ip6po_m)
   1798 			(void)m_free(opt->ip6po_m);
   1799 	} else
   1800 		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
   1801 	*pktopt = 0;
   1802 
   1803 	if (!m || m->m_len == 0) {
   1804 		/*
   1805 		 * Only turning off any previous options.
   1806 		 */
   1807 		free(opt, M_IP6OPT);
   1808 		if (m)
   1809 			(void)m_free(m);
   1810 		return (0);
   1811 	}
   1812 
   1813 	/*  set options specified by user. */
   1814 	if (p && !suser(p->p_ucred, &p->p_acflag))
   1815 		priv = 1;
   1816 	if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
   1817 		(void)m_free(m);
   1818 		free(opt, M_IP6OPT);
   1819 		return (error);
   1820 	}
   1821 	*pktopt = opt;
   1822 	return (0);
   1823 }
   1824 
   1825 /*
   1826  * Set the IP6 multicast options in response to user setsockopt().
   1827  */
   1828 static int
   1829 ip6_setmoptions(optname, im6op, m)
   1830 	int optname;
   1831 	struct ip6_moptions **im6op;
   1832 	struct mbuf *m;
   1833 {
   1834 	int error = 0;
   1835 	u_int loop, ifindex;
   1836 	struct ipv6_mreq *mreq;
   1837 	struct ifnet *ifp;
   1838 	struct ip6_moptions *im6o = *im6op;
   1839 	struct route_in6 ro;
   1840 	struct in6_multi_mship *imm;
   1841 	struct proc *p = curproc;	/* XXX */
   1842 
   1843 	if (im6o == NULL) {
   1844 		/*
   1845 		 * No multicast option buffer attached to the pcb;
   1846 		 * allocate one and initialize to default values.
   1847 		 */
   1848 		im6o = (struct ip6_moptions *)
   1849 			malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
   1850 
   1851 		if (im6o == NULL)
   1852 			return (ENOBUFS);
   1853 		*im6op = im6o;
   1854 		im6o->im6o_multicast_ifp = NULL;
   1855 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   1856 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
   1857 		LIST_INIT(&im6o->im6o_memberships);
   1858 	}
   1859 
   1860 	switch (optname) {
   1861 
   1862 	case IPV6_MULTICAST_IF:
   1863 		/*
   1864 		 * Select the interface for outgoing multicast packets.
   1865 		 */
   1866 		if (m == NULL || m->m_len != sizeof(u_int)) {
   1867 			error = EINVAL;
   1868 			break;
   1869 		}
   1870 		bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
   1871 		if (ifindex != 0) {
   1872 			if (ifindex < 0 || if_indexlim <= ifindex ||
   1873 			    !ifindex2ifnet[ifindex]) {
   1874 				error = ENXIO;	/* XXX EINVAL? */
   1875 				break;
   1876 			}
   1877 			ifp = ifindex2ifnet[ifindex];
   1878 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
   1879 				error = EADDRNOTAVAIL;
   1880 				break;
   1881 			}
   1882 		} else
   1883 			ifp = NULL;
   1884 		im6o->im6o_multicast_ifp = ifp;
   1885 		break;
   1886 
   1887 	case IPV6_MULTICAST_HOPS:
   1888 	    {
   1889 		/*
   1890 		 * Set the IP6 hoplimit for outgoing multicast packets.
   1891 		 */
   1892 		int optval;
   1893 		if (m == NULL || m->m_len != sizeof(int)) {
   1894 			error = EINVAL;
   1895 			break;
   1896 		}
   1897 		bcopy(mtod(m, u_int *), &optval, sizeof(optval));
   1898 		if (optval < -1 || optval >= 256)
   1899 			error = EINVAL;
   1900 		else if (optval == -1)
   1901 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   1902 		else
   1903 			im6o->im6o_multicast_hlim = optval;
   1904 		break;
   1905 	    }
   1906 
   1907 	case IPV6_MULTICAST_LOOP:
   1908 		/*
   1909 		 * Set the loopback flag for outgoing multicast packets.
   1910 		 * Must be zero or one.
   1911 		 */
   1912 		if (m == NULL || m->m_len != sizeof(u_int)) {
   1913 			error = EINVAL;
   1914 			break;
   1915 		}
   1916 		bcopy(mtod(m, u_int *), &loop, sizeof(loop));
   1917 		if (loop > 1) {
   1918 			error = EINVAL;
   1919 			break;
   1920 		}
   1921 		im6o->im6o_multicast_loop = loop;
   1922 		break;
   1923 
   1924 	case IPV6_JOIN_GROUP:
   1925 		/*
   1926 		 * Add a multicast group membership.
   1927 		 * Group must be a valid IP6 multicast address.
   1928 		 */
   1929 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
   1930 			error = EINVAL;
   1931 			break;
   1932 		}
   1933 		mreq = mtod(m, struct ipv6_mreq *);
   1934 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
   1935 			/*
   1936 			 * We use the unspecified address to specify to accept
   1937 			 * all multicast addresses. Only super user is allowed
   1938 			 * to do this.
   1939 			 */
   1940 			if (suser(p->p_ucred, &p->p_acflag))
   1941 			{
   1942 				error = EACCES;
   1943 				break;
   1944 			}
   1945 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
   1946 			error = EINVAL;
   1947 			break;
   1948 		}
   1949 
   1950 		/*
   1951 		 * If no interface was explicitly specified, choose an
   1952 		 * appropriate one according to the given multicast address.
   1953 		 */
   1954 		if (mreq->ipv6mr_interface == 0) {
   1955 			struct sockaddr_in6 *dst;
   1956 
   1957 			/*
   1958 			 * Look up the routing table for the
   1959 			 * address, and choose the outgoing interface.
   1960 			 *   XXX: is it a good approach?
   1961 			 */
   1962 			ro.ro_rt = NULL;
   1963 			dst = (struct sockaddr_in6 *)&ro.ro_dst;
   1964 			bzero(dst, sizeof(*dst));
   1965 			dst->sin6_family = AF_INET6;
   1966 			dst->sin6_len = sizeof(*dst);
   1967 			dst->sin6_addr = mreq->ipv6mr_multiaddr;
   1968 			rtalloc((struct route *)&ro);
   1969 			if (ro.ro_rt == NULL) {
   1970 				error = EADDRNOTAVAIL;
   1971 				break;
   1972 			}
   1973 			ifp = ro.ro_rt->rt_ifp;
   1974 			rtfree(ro.ro_rt);
   1975 		} else {
   1976 			/*
   1977 			 * If the interface is specified, validate it.
   1978 			 */
   1979 			if (mreq->ipv6mr_interface < 0 ||
   1980 			    if_indexlim <= mreq->ipv6mr_interface ||
   1981 			    !ifindex2ifnet[mreq->ipv6mr_interface]) {
   1982 				error = ENXIO;	/* XXX EINVAL? */
   1983 				break;
   1984 			}
   1985 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
   1986 		}
   1987 
   1988 		/*
   1989 		 * See if we found an interface, and confirm that it
   1990 		 * supports multicast
   1991 		 */
   1992 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1993 			error = EADDRNOTAVAIL;
   1994 			break;
   1995 		}
   1996 
   1997 		if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
   1998 			error = EADDRNOTAVAIL; /* XXX: should not happen */
   1999 			break;
   2000 		}
   2001 
   2002 		/*
   2003 		 * See if the membership already exists.
   2004 		 */
   2005 		for (imm = im6o->im6o_memberships.lh_first;
   2006 		     imm != NULL; imm = imm->i6mm_chain.le_next)
   2007 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
   2008 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2009 			    &mreq->ipv6mr_multiaddr))
   2010 				break;
   2011 		if (imm != NULL) {
   2012 			error = EADDRINUSE;
   2013 			break;
   2014 		}
   2015 		/*
   2016 		 * Everything looks good; add a new record to the multicast
   2017 		 * address list for the given interface.
   2018 		 */
   2019 		imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error, 0);
   2020 		if (imm == NULL)
   2021 			break;
   2022 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
   2023 		break;
   2024 
   2025 	case IPV6_LEAVE_GROUP:
   2026 		/*
   2027 		 * Drop a multicast group membership.
   2028 		 * Group must be a valid IP6 multicast address.
   2029 		 */
   2030 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
   2031 			error = EINVAL;
   2032 			break;
   2033 		}
   2034 		mreq = mtod(m, struct ipv6_mreq *);
   2035 
   2036 		/*
   2037 		 * If an interface address was specified, get a pointer
   2038 		 * to its ifnet structure.
   2039 		 */
   2040 		if (mreq->ipv6mr_interface != 0) {
   2041 			if (mreq->ipv6mr_interface < 0 ||
   2042 			    if_indexlim <= mreq->ipv6mr_interface ||
   2043 			    !ifindex2ifnet[mreq->ipv6mr_interface]) {
   2044 				error = ENXIO;	/* XXX EINVAL? */
   2045 				break;
   2046 			}
   2047 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
   2048 		} else
   2049 			ifp = NULL;
   2050 
   2051 		/* Fill in the scope zone ID */
   2052 		if (ifp) {
   2053 			if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
   2054 				/* XXX: should not happen */
   2055 				error = EADDRNOTAVAIL;
   2056 				break;
   2057 			}
   2058 		} else if (mreq->ipv6mr_interface != 0) {
   2059 			/*
   2060 			 * XXX: This case would happens when the (positive)
   2061 			 * index is in the valid range, but the corresponding
   2062 			 * interface has been detached dynamically.  The above
   2063 			 * check probably avoids such case to happen here, but
   2064 			 * we check it explicitly for safety.
   2065 			 */
   2066 			error = EADDRNOTAVAIL;
   2067 			break;
   2068 		} else {	/* ipv6mr_interface == 0 */
   2069 			struct sockaddr_in6 sa6_mc;
   2070 
   2071 			/*
   2072 			 * The API spec says as follows:
   2073 			 *  If the interface index is specified as 0, the
   2074 			 *  system may choose a multicast group membership to
   2075 			 *  drop by matching the multicast address only.
   2076 			 * On the other hand, we cannot disambiguate the scope
   2077 			 * zone unless an interface is provided.  Thus, we
   2078 			 * check if there's ambiguity with the default scope
   2079 			 * zone as the last resort.
   2080 			 */
   2081 			bzero(&sa6_mc, sizeof(sa6_mc));
   2082 			sa6_mc.sin6_family = AF_INET6;
   2083 			sa6_mc.sin6_len = sizeof(sa6_mc);
   2084 			sa6_mc.sin6_addr = mreq->ipv6mr_multiaddr;
   2085 			error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
   2086 			if (error != 0)
   2087 				break;
   2088 			mreq->ipv6mr_multiaddr = sa6_mc.sin6_addr;
   2089 		}
   2090 
   2091 		/*
   2092 		 * Find the membership in the membership list.
   2093 		 */
   2094 		for (imm = im6o->im6o_memberships.lh_first;
   2095 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
   2096 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
   2097 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2098 			    &mreq->ipv6mr_multiaddr))
   2099 				break;
   2100 		}
   2101 		if (imm == NULL) {
   2102 			/* Unable to resolve interface */
   2103 			error = EADDRNOTAVAIL;
   2104 			break;
   2105 		}
   2106 		/*
   2107 		 * Give up the multicast address record to which the
   2108 		 * membership points.
   2109 		 */
   2110 		LIST_REMOVE(imm, i6mm_chain);
   2111 		in6_leavegroup(imm);
   2112 		break;
   2113 
   2114 	default:
   2115 		error = EOPNOTSUPP;
   2116 		break;
   2117 	}
   2118 
   2119 	/*
   2120 	 * If all options have default values, no need to keep the mbuf.
   2121 	 */
   2122 	if (im6o->im6o_multicast_ifp == NULL &&
   2123 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
   2124 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
   2125 	    im6o->im6o_memberships.lh_first == NULL) {
   2126 		free(*im6op, M_IPMOPTS);
   2127 		*im6op = NULL;
   2128 	}
   2129 
   2130 	return (error);
   2131 }
   2132 
   2133 /*
   2134  * Return the IP6 multicast options in response to user getsockopt().
   2135  */
   2136 static int
   2137 ip6_getmoptions(optname, im6o, mp)
   2138 	int optname;
   2139 	struct ip6_moptions *im6o;
   2140 	struct mbuf **mp;
   2141 {
   2142 	u_int *hlim, *loop, *ifindex;
   2143 
   2144 	*mp = m_get(M_WAIT, MT_SOOPTS);
   2145 
   2146 	switch (optname) {
   2147 
   2148 	case IPV6_MULTICAST_IF:
   2149 		ifindex = mtod(*mp, u_int *);
   2150 		(*mp)->m_len = sizeof(u_int);
   2151 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
   2152 			*ifindex = 0;
   2153 		else
   2154 			*ifindex = im6o->im6o_multicast_ifp->if_index;
   2155 		return (0);
   2156 
   2157 	case IPV6_MULTICAST_HOPS:
   2158 		hlim = mtod(*mp, u_int *);
   2159 		(*mp)->m_len = sizeof(u_int);
   2160 		if (im6o == NULL)
   2161 			*hlim = ip6_defmcasthlim;
   2162 		else
   2163 			*hlim = im6o->im6o_multicast_hlim;
   2164 		return (0);
   2165 
   2166 	case IPV6_MULTICAST_LOOP:
   2167 		loop = mtod(*mp, u_int *);
   2168 		(*mp)->m_len = sizeof(u_int);
   2169 		if (im6o == NULL)
   2170 			*loop = ip6_defmcasthlim;
   2171 		else
   2172 			*loop = im6o->im6o_multicast_loop;
   2173 		return (0);
   2174 
   2175 	default:
   2176 		return (EOPNOTSUPP);
   2177 	}
   2178 }
   2179 
   2180 /*
   2181  * Discard the IP6 multicast options.
   2182  */
   2183 void
   2184 ip6_freemoptions(im6o)
   2185 	struct ip6_moptions *im6o;
   2186 {
   2187 	struct in6_multi_mship *imm;
   2188 
   2189 	if (im6o == NULL)
   2190 		return;
   2191 
   2192 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
   2193 		LIST_REMOVE(imm, i6mm_chain);
   2194 		in6_leavegroup(imm);
   2195 	}
   2196 	free(im6o, M_IPMOPTS);
   2197 }
   2198 
   2199 /*
   2200  * Set IPv6 outgoing packet options based on advanced API.
   2201  */
   2202 int
   2203 ip6_setpktoptions(control, opt, priv)
   2204 	struct mbuf *control;
   2205 	struct ip6_pktopts *opt;
   2206 	int priv;
   2207 {
   2208 	struct cmsghdr *cm = 0;
   2209 
   2210 	if (control == 0 || opt == 0)
   2211 		return (EINVAL);
   2212 
   2213 	bzero(opt, sizeof(*opt));
   2214 	opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
   2215 
   2216 	/*
   2217 	 * XXX: Currently, we assume all the optional information is stored
   2218 	 * in a single mbuf.
   2219 	 */
   2220 	if (control->m_next)
   2221 		return (EINVAL);
   2222 
   2223 	opt->ip6po_m = control;
   2224 
   2225 	for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
   2226 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
   2227 		cm = mtod(control, struct cmsghdr *);
   2228 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
   2229 			return (EINVAL);
   2230 		if (cm->cmsg_level != IPPROTO_IPV6)
   2231 			continue;
   2232 
   2233 		switch (cm->cmsg_type) {
   2234 		case IPV6_PKTINFO:
   2235 			if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
   2236 				return (EINVAL);
   2237 			opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
   2238 			if (opt->ip6po_pktinfo->ipi6_ifindex >= if_indexlim ||
   2239 			    opt->ip6po_pktinfo->ipi6_ifindex < 0)
   2240 				return (ENXIO);
   2241 			if (opt->ip6po_pktinfo->ipi6_ifindex > 0 &&
   2242 			    !ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex])
   2243 				return (ENXIO);
   2244 
   2245 			if (opt->ip6po_pktinfo->ipi6_ifindex) {
   2246 				struct ifnet *ifp;
   2247 				int error;
   2248 
   2249 				/* ipi6_ifindex must be valid here */
   2250 				ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
   2251 				error = in6_setscope(&opt->ip6po_pktinfo->ipi6_addr,
   2252 				    ifp, NULL);
   2253 				if (error != 0)
   2254 					return (error);
   2255 			}
   2256 
   2257 			/*
   2258 			 * Check if the requested source address is indeed a
   2259 			 * unicast address assigned to the node, and can be
   2260 			 * used as the packet's source address.
   2261 			 */
   2262 			if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
   2263 				struct ifaddr *ia;
   2264 				struct in6_ifaddr *ia6;
   2265 				struct sockaddr_in6 sin6;
   2266 
   2267 				bzero(&sin6, sizeof(sin6));
   2268 				sin6.sin6_len = sizeof(sin6);
   2269 				sin6.sin6_family = AF_INET6;
   2270 				sin6.sin6_addr =
   2271 					opt->ip6po_pktinfo->ipi6_addr;
   2272 				ia = ifa_ifwithaddr(sin6tosa(&sin6));
   2273 				if (ia == NULL ||
   2274 				    (opt->ip6po_pktinfo->ipi6_ifindex &&
   2275 				     (ia->ifa_ifp->if_index !=
   2276 				      opt->ip6po_pktinfo->ipi6_ifindex))) {
   2277 					return (EADDRNOTAVAIL);
   2278 				}
   2279 				ia6 = (struct in6_ifaddr *)ia;
   2280 				if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) {
   2281 					return (EADDRNOTAVAIL);
   2282 				}
   2283 
   2284 				/*
   2285 				 * Check if the requested source address is
   2286 				 * indeed a unicast address assigned to the
   2287 				 * node.
   2288 				 */
   2289 				if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
   2290 					return (EADDRNOTAVAIL);
   2291 			}
   2292 			break;
   2293 
   2294 		case IPV6_HOPLIMIT:
   2295 			if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
   2296 				return (EINVAL);
   2297 			else {
   2298 				int t;
   2299 
   2300 				bcopy(CMSG_DATA(cm), &t, sizeof(t));
   2301 				if (t < -1 || t > 255)
   2302 					return (EINVAL);
   2303 				opt->ip6po_hlim = t;
   2304 			}
   2305 			break;
   2306 
   2307 		case IPV6_NEXTHOP:
   2308 			if (!priv)
   2309 				return (EPERM);
   2310 
   2311 			/* check if cmsg_len is large enough for sa_len */
   2312 			if (cm->cmsg_len < sizeof(u_char) ||
   2313 			    cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
   2314 				return (EINVAL);
   2315 
   2316 			opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
   2317 
   2318 			break;
   2319 
   2320 		case IPV6_HOPOPTS:
   2321 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
   2322 				return (EINVAL);
   2323 			else {
   2324 				struct  ip6_hbh *t;
   2325 
   2326 				t = (struct ip6_hbh *)CMSG_DATA(cm);
   2327 				if (cm->cmsg_len !=
   2328 				    CMSG_LEN((t->ip6h_len + 1) << 3))
   2329 					return (EINVAL);
   2330 				opt->ip6po_hbh = t;
   2331 			}
   2332 			break;
   2333 
   2334 		case IPV6_DSTOPTS:
   2335 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
   2336 				return (EINVAL);
   2337 
   2338 			/*
   2339 			 * If there is no routing header yet, the destination
   2340 			 * options header should be put on the 1st part.
   2341 			 * Otherwise, the header should be on the 2nd part.
   2342 			 * (See RFC 2460, section 4.1)
   2343 			 */
   2344 			if (opt->ip6po_rthdr == NULL) {
   2345 				struct ip6_dest *t;
   2346 
   2347 				t = (struct ip6_dest *)CMSG_DATA(cm);
   2348 				if (cm->cmsg_len !=
   2349 				    CMSG_LEN((t->ip6d_len + 1) << 3));
   2350 					return (EINVAL);
   2351 				opt->ip6po_dest1 = t;
   2352 			}
   2353 			else {
   2354 				struct ip6_dest *t;
   2355 
   2356 				t = (struct ip6_dest *)CMSG_DATA(cm);
   2357 				if (cm->cmsg_len !=
   2358 				    CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) << 3))
   2359 					return (EINVAL);
   2360 				opt->ip6po_dest2 = t;
   2361 			}
   2362 			break;
   2363 
   2364 		case IPV6_RTHDR:
   2365 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
   2366 				return (EINVAL);
   2367 			else {
   2368 				struct ip6_rthdr *t;
   2369 
   2370 				t = (struct ip6_rthdr *)CMSG_DATA(cm);
   2371 				if (cm->cmsg_len !=
   2372 				    CMSG_LEN((t->ip6r_len + 1) << 3))
   2373 					return (EINVAL);
   2374 				switch (t->ip6r_type) {
   2375 				case IPV6_RTHDR_TYPE_0:
   2376 					if (t->ip6r_segleft == 0)
   2377 						return (EINVAL);
   2378 					break;
   2379 				default:
   2380 					return (EINVAL);
   2381 				}
   2382 				opt->ip6po_rthdr = t;
   2383 			}
   2384 			break;
   2385 
   2386 		default:
   2387 			return (ENOPROTOOPT);
   2388 		}
   2389 	}
   2390 
   2391 	return (0);
   2392 }
   2393 
   2394 /*
   2395  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
   2396  * packet to the input queue of a specified interface.  Note that this
   2397  * calls the output routine of the loopback "driver", but with an interface
   2398  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   2399  */
   2400 void
   2401 ip6_mloopback(ifp, m, dst)
   2402 	struct ifnet *ifp;
   2403 	struct mbuf *m;
   2404 	struct sockaddr_in6 *dst;
   2405 {
   2406 	struct mbuf *copym;
   2407 	struct ip6_hdr *ip6;
   2408 
   2409 	copym = m_copy(m, 0, M_COPYALL);
   2410 	if (copym == NULL)
   2411 		return;
   2412 
   2413 	/*
   2414 	 * Make sure to deep-copy IPv6 header portion in case the data
   2415 	 * is in an mbuf cluster, so that we can safely override the IPv6
   2416 	 * header portion later.
   2417 	 */
   2418 	if ((copym->m_flags & M_EXT) != 0 ||
   2419 	    copym->m_len < sizeof(struct ip6_hdr)) {
   2420 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
   2421 		if (copym == NULL)
   2422 			return;
   2423 	}
   2424 
   2425 #ifdef DIAGNOSTIC
   2426 	if (copym->m_len < sizeof(*ip6)) {
   2427 		m_freem(copym);
   2428 		return;
   2429 	}
   2430 #endif
   2431 
   2432 	ip6 = mtod(copym, struct ip6_hdr *);
   2433 	/*
   2434 	 * clear embedded scope identifiers if necessary.
   2435 	 * in6_clearscope will touch the addresses only when necessary.
   2436 	 */
   2437 	in6_clearscope(&ip6->ip6_src);
   2438 	in6_clearscope(&ip6->ip6_dst);
   2439 
   2440 	(void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
   2441 }
   2442 
   2443 /*
   2444  * Chop IPv6 header off from the payload.
   2445  */
   2446 static int
   2447 ip6_splithdr(m, exthdrs)
   2448 	struct mbuf *m;
   2449 	struct ip6_exthdrs *exthdrs;
   2450 {
   2451 	struct mbuf *mh;
   2452 	struct ip6_hdr *ip6;
   2453 
   2454 	ip6 = mtod(m, struct ip6_hdr *);
   2455 	if (m->m_len > sizeof(*ip6)) {
   2456 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
   2457 		if (mh == 0) {
   2458 			m_freem(m);
   2459 			return ENOBUFS;
   2460 		}
   2461 		M_MOVE_PKTHDR(mh, m);
   2462 		MH_ALIGN(mh, sizeof(*ip6));
   2463 		m->m_len -= sizeof(*ip6);
   2464 		m->m_data += sizeof(*ip6);
   2465 		mh->m_next = m;
   2466 		m = mh;
   2467 		m->m_len = sizeof(*ip6);
   2468 		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
   2469 	}
   2470 	exthdrs->ip6e_ip6 = m;
   2471 	return 0;
   2472 }
   2473 
   2474 /*
   2475  * Compute IPv6 extension header length.
   2476  */
   2477 int
   2478 ip6_optlen(in6p)
   2479 	struct in6pcb *in6p;
   2480 {
   2481 	int len;
   2482 
   2483 	if (!in6p->in6p_outputopts)
   2484 		return 0;
   2485 
   2486 	len = 0;
   2487 #define elen(x) \
   2488     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
   2489 
   2490 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
   2491 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
   2492 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
   2493 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
   2494 	return len;
   2495 #undef elen
   2496 }
   2497