Home | History | Annotate | Line # | Download | only in netinet6
ip6_output.c revision 1.94.6.1
      1 /*	$NetBSD: ip6_output.c,v 1.94.6.1 2006/03/13 09:07:39 yamt Exp $	*/
      2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.94.6.1 2006/03/13 09:07:39 yamt Exp $");
     66 
     67 #include "opt_inet.h"
     68 #include "opt_ipsec.h"
     69 #include "opt_pfil_hooks.h"
     70 
     71 #include <sys/param.h>
     72 #include <sys/malloc.h>
     73 #include <sys/mbuf.h>
     74 #include <sys/errno.h>
     75 #include <sys/protosw.h>
     76 #include <sys/socket.h>
     77 #include <sys/socketvar.h>
     78 #include <sys/systm.h>
     79 #include <sys/proc.h>
     80 
     81 #include <net/if.h>
     82 #include <net/route.h>
     83 #ifdef PFIL_HOOKS
     84 #include <net/pfil.h>
     85 #endif
     86 
     87 #include <netinet/in.h>
     88 #include <netinet/in_var.h>
     89 #include <netinet/ip6.h>
     90 #include <netinet/icmp6.h>
     91 #include <netinet/in_offload.h>
     92 #include <netinet6/ip6_var.h>
     93 #include <netinet6/in6_pcb.h>
     94 #include <netinet6/nd6.h>
     95 #include <netinet6/ip6protosw.h>
     96 #include <netinet6/scope6_var.h>
     97 
     98 #ifdef IPSEC
     99 #include <netinet6/ipsec.h>
    100 #include <netkey/key.h>
    101 #endif /* IPSEC */
    102 
    103 #include <net/net_osdep.h>
    104 
    105 #ifdef PFIL_HOOKS
    106 extern struct pfil_head inet6_pfil_hook;	/* XXX */
    107 #endif
    108 
    109 struct ip6_exthdrs {
    110 	struct mbuf *ip6e_ip6;
    111 	struct mbuf *ip6e_hbh;
    112 	struct mbuf *ip6e_dest1;
    113 	struct mbuf *ip6e_rthdr;
    114 	struct mbuf *ip6e_dest2;
    115 };
    116 
    117 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
    118 	struct socket *));
    119 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
    120 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
    121 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
    122 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
    123 	struct ip6_frag **));
    124 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
    125 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
    126 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
    127 	struct ifnet *, struct in6_addr *, u_long *, int *));
    128 
    129 #define	IN6_NEED_CHECKSUM(ifp, csum_flags) \
    130 	(__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
    131 	(((csum_flags) & M_CSUM_UDPv6) != 0 && udp_do_loopback_cksum) || \
    132 	(((csum_flags) & M_CSUM_TCPv6) != 0 && tcp_do_loopback_cksum)))
    133 
    134 /*
    135  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
    136  * header (with pri, len, nxt, hlim, src, dst).
    137  * This function may modify ver and hlim only.
    138  * The mbuf chain containing the packet will be freed.
    139  * The mbuf opt, if present, will not be freed.
    140  *
    141  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
    142  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
    143  * which is rt_rmx.rmx_mtu.
    144  */
    145 int
    146 ip6_output(m0, opt, ro, flags, im6o, so, ifpp)
    147 	struct mbuf *m0;
    148 	struct ip6_pktopts *opt;
    149 	struct route_in6 *ro;
    150 	int flags;
    151 	struct ip6_moptions *im6o;
    152 	struct socket *so;
    153 	struct ifnet **ifpp;		/* XXX: just for statistics */
    154 {
    155 	struct ip6_hdr *ip6, *mhip6;
    156 	struct ifnet *ifp, *origifp;
    157 	struct mbuf *m = m0;
    158 	int hlen, tlen, len, off;
    159 	struct route_in6 ip6route;
    160 	struct rtentry *rt = NULL;
    161 	struct sockaddr_in6 *dst, src_sa, dst_sa;
    162 	int error = 0;
    163 	struct in6_ifaddr *ia = NULL;
    164 	u_long mtu;
    165 	int alwaysfrag, dontfrag;
    166 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
    167 	struct ip6_exthdrs exthdrs;
    168 	struct in6_addr finaldst, src0, dst0;
    169 	u_int32_t zone;
    170 	struct route_in6 *ro_pmtu = NULL;
    171 	int hdrsplit = 0;
    172 	int needipsec = 0;
    173 #ifdef IPSEC
    174 	int needipsectun = 0;
    175 	struct secpolicy *sp = NULL;
    176 
    177 	ip6 = mtod(m, struct ip6_hdr *);
    178 #endif /* IPSEC */
    179 
    180 	M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
    181 
    182 #define MAKE_EXTHDR(hp, mp)						\
    183     do {								\
    184 	if (hp) {							\
    185 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
    186 		error = ip6_copyexthdr((mp), (caddr_t)(hp), 		\
    187 		    ((eh)->ip6e_len + 1) << 3);				\
    188 		if (error)						\
    189 			goto freehdrs;					\
    190 	}								\
    191     } while (/*CONSTCOND*/ 0)
    192 
    193 	bzero(&exthdrs, sizeof(exthdrs));
    194 	if (opt) {
    195 		/* Hop-by-Hop options header */
    196 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
    197 		/* Destination options header(1st part) */
    198 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
    199 		/* Routing header */
    200 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
    201 		/* Destination options header(2nd part) */
    202 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
    203 	}
    204 
    205 #ifdef IPSEC
    206 	if ((flags & IPV6_FORWARDING) != 0) {
    207 		needipsec = 0;
    208 		goto skippolicycheck;
    209 	}
    210 
    211 	/* get a security policy for this packet */
    212 	if (so == NULL)
    213 		sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
    214 	else {
    215 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
    216 					 IPSEC_DIR_OUTBOUND)) {
    217 			needipsec = 0;
    218 			goto skippolicycheck;
    219 		}
    220 		sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
    221 	}
    222 
    223 	if (sp == NULL) {
    224 		ipsec6stat.out_inval++;
    225 		goto freehdrs;
    226 	}
    227 
    228 	error = 0;
    229 
    230 	/* check policy */
    231 	switch (sp->policy) {
    232 	case IPSEC_POLICY_DISCARD:
    233 		/*
    234 		 * This packet is just discarded.
    235 		 */
    236 		ipsec6stat.out_polvio++;
    237 		goto freehdrs;
    238 
    239 	case IPSEC_POLICY_BYPASS:
    240 	case IPSEC_POLICY_NONE:
    241 		/* no need to do IPsec. */
    242 		needipsec = 0;
    243 		break;
    244 
    245 	case IPSEC_POLICY_IPSEC:
    246 		if (sp->req == NULL) {
    247 			/* XXX should be panic ? */
    248 			printf("ip6_output: No IPsec request specified.\n");
    249 			error = EINVAL;
    250 			goto freehdrs;
    251 		}
    252 		needipsec = 1;
    253 		break;
    254 
    255 	case IPSEC_POLICY_ENTRUST:
    256 	default:
    257 		printf("ip6_output: Invalid policy found. %d\n", sp->policy);
    258 	}
    259 
    260   skippolicycheck:;
    261 #endif /* IPSEC */
    262 
    263 	if (needipsec &&
    264 	    (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    265 		in6_delayed_cksum(m);
    266 		m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    267 	}
    268 
    269 	/*
    270 	 * Calculate the total length of the extension header chain.
    271 	 * Keep the length of the unfragmentable part for fragmentation.
    272 	 */
    273 	optlen = 0;
    274 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
    275 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
    276 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
    277 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
    278 	/* NOTE: we don't add AH/ESP length here. do that later. */
    279 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
    280 
    281 	/*
    282 	 * If we need IPsec, or there is at least one extension header,
    283 	 * separate IP6 header from the payload.
    284 	 */
    285 	if ((needipsec || optlen) && !hdrsplit) {
    286 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    287 			m = NULL;
    288 			goto freehdrs;
    289 		}
    290 		m = exthdrs.ip6e_ip6;
    291 		hdrsplit++;
    292 	}
    293 
    294 	/* adjust pointer */
    295 	ip6 = mtod(m, struct ip6_hdr *);
    296 
    297 	/* adjust mbuf packet header length */
    298 	m->m_pkthdr.len += optlen;
    299 	plen = m->m_pkthdr.len - sizeof(*ip6);
    300 
    301 	/* If this is a jumbo payload, insert a jumbo payload option. */
    302 	if (plen > IPV6_MAXPACKET) {
    303 		if (!hdrsplit) {
    304 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    305 				m = NULL;
    306 				goto freehdrs;
    307 			}
    308 			m = exthdrs.ip6e_ip6;
    309 			hdrsplit++;
    310 		}
    311 		/* adjust pointer */
    312 		ip6 = mtod(m, struct ip6_hdr *);
    313 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
    314 			goto freehdrs;
    315 		optlen += 8; /* XXX JUMBOOPTLEN */
    316 		ip6->ip6_plen = 0;
    317 	} else
    318 		ip6->ip6_plen = htons(plen);
    319 
    320 	/*
    321 	 * Concatenate headers and fill in next header fields.
    322 	 * Here we have, on "m"
    323 	 *	IPv6 payload
    324 	 * and we insert headers accordingly.  Finally, we should be getting:
    325 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
    326 	 *
    327 	 * during the header composing process, "m" points to IPv6 header.
    328 	 * "mprev" points to an extension header prior to esp.
    329 	 */
    330 	{
    331 		u_char *nexthdrp = &ip6->ip6_nxt;
    332 		struct mbuf *mprev = m;
    333 
    334 		/*
    335 		 * we treat dest2 specially.  this makes IPsec processing
    336 		 * much easier.  the goal here is to make mprev point the
    337 		 * mbuf prior to dest2.
    338 		 *
    339 		 * result: IPv6 dest2 payload
    340 		 * m and mprev will point to IPv6 header.
    341 		 */
    342 		if (exthdrs.ip6e_dest2) {
    343 			if (!hdrsplit)
    344 				panic("assumption failed: hdr not split");
    345 			exthdrs.ip6e_dest2->m_next = m->m_next;
    346 			m->m_next = exthdrs.ip6e_dest2;
    347 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
    348 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
    349 		}
    350 
    351 #define MAKE_CHAIN(m, mp, p, i)\
    352     do {\
    353 	if (m) {\
    354 		if (!hdrsplit) \
    355 			panic("assumption failed: hdr not split"); \
    356 		*mtod((m), u_char *) = *(p);\
    357 		*(p) = (i);\
    358 		p = mtod((m), u_char *);\
    359 		(m)->m_next = (mp)->m_next;\
    360 		(mp)->m_next = (m);\
    361 		(mp) = (m);\
    362 	}\
    363     } while (/*CONSTCOND*/ 0)
    364 		/*
    365 		 * result: IPv6 hbh dest1 rthdr dest2 payload
    366 		 * m will point to IPv6 header.  mprev will point to the
    367 		 * extension header prior to dest2 (rthdr in the above case).
    368 		 */
    369 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
    370 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
    371 		    IPPROTO_DSTOPTS);
    372 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
    373 		    IPPROTO_ROUTING);
    374 
    375 		M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
    376 		    sizeof(struct ip6_hdr) + optlen);
    377 
    378 #ifdef IPSEC
    379 		if (!needipsec)
    380 			goto skip_ipsec2;
    381 
    382 		/*
    383 		 * pointers after IPsec headers are not valid any more.
    384 		 * other pointers need a great care too.
    385 		 * (IPsec routines should not mangle mbufs prior to AH/ESP)
    386 		 */
    387 		exthdrs.ip6e_dest2 = NULL;
    388 
    389 	    {
    390 		struct ip6_rthdr *rh = NULL;
    391 		int segleft_org = 0;
    392 		struct ipsec_output_state state;
    393 
    394 		if (exthdrs.ip6e_rthdr) {
    395 			rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
    396 			segleft_org = rh->ip6r_segleft;
    397 			rh->ip6r_segleft = 0;
    398 		}
    399 
    400 		bzero(&state, sizeof(state));
    401 		state.m = m;
    402 		error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
    403 		    &needipsectun);
    404 		m = state.m;
    405 		if (error) {
    406 			/* mbuf is already reclaimed in ipsec6_output_trans. */
    407 			m = NULL;
    408 			switch (error) {
    409 			case EHOSTUNREACH:
    410 			case ENETUNREACH:
    411 			case EMSGSIZE:
    412 			case ENOBUFS:
    413 			case ENOMEM:
    414 				break;
    415 			default:
    416 				printf("ip6_output (ipsec): error code %d\n", error);
    417 				/* FALLTHROUGH */
    418 			case ENOENT:
    419 				/* don't show these error codes to the user */
    420 				error = 0;
    421 				break;
    422 			}
    423 			goto bad;
    424 		}
    425 		if (exthdrs.ip6e_rthdr) {
    426 			/* ah6_output doesn't modify mbuf chain */
    427 			rh->ip6r_segleft = segleft_org;
    428 		}
    429 	    }
    430 skip_ipsec2:;
    431 #endif
    432 	}
    433 
    434 	/*
    435 	 * If there is a routing header, replace destination address field
    436 	 * with the first hop of the routing header.
    437 	 */
    438 	if (exthdrs.ip6e_rthdr) {
    439 		struct ip6_rthdr *rh;
    440 		struct ip6_rthdr0 *rh0;
    441 		struct in6_addr *addr;
    442 		struct sockaddr_in6 sa;
    443 
    444 		rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
    445 		    struct ip6_rthdr *));
    446 		finaldst = ip6->ip6_dst;
    447 		switch (rh->ip6r_type) {
    448 		case IPV6_RTHDR_TYPE_0:
    449 			 rh0 = (struct ip6_rthdr0 *)rh;
    450 			 addr = (struct in6_addr *)(rh0 + 1);
    451 
    452 			 /*
    453 			  * construct a sockaddr_in6 form of
    454 			  * the first hop.
    455 			  *
    456 			  * XXX: we may not have enough
    457 			  * information about its scope zone;
    458 			  * there is no standard API to pass
    459 			  * the information from the
    460 			  * application.
    461 			  */
    462 			 bzero(&sa, sizeof(sa));
    463 			 sa.sin6_family = AF_INET6;
    464 			 sa.sin6_len = sizeof(sa);
    465 			 sa.sin6_addr = addr[0];
    466 			 if ((error = sa6_embedscope(&sa,
    467 			     ip6_use_defzone)) != 0) {
    468 				 goto bad;
    469 			 }
    470 			 ip6->ip6_dst = sa.sin6_addr;
    471 			 (void)memmove(&addr[0], &addr[1],
    472 			     sizeof(struct in6_addr) *
    473 			     (rh0->ip6r0_segleft - 1));
    474 			 addr[rh0->ip6r0_segleft - 1] = finaldst;
    475 			 /* XXX */
    476 			 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
    477 			 break;
    478 		default:	/* is it possible? */
    479 			 error = EINVAL;
    480 			 goto bad;
    481 		}
    482 	}
    483 
    484 	/* Source address validation */
    485 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
    486 	    (flags & IPV6_UNSPECSRC) == 0) {
    487 		error = EOPNOTSUPP;
    488 		ip6stat.ip6s_badscope++;
    489 		goto bad;
    490 	}
    491 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
    492 		error = EOPNOTSUPP;
    493 		ip6stat.ip6s_badscope++;
    494 		goto bad;
    495 	}
    496 
    497 	ip6stat.ip6s_localout++;
    498 
    499 	/*
    500 	 * Route packet.
    501 	 */
    502 	/* initialize cached route */
    503 	if (ro == 0) {
    504 		ro = &ip6route;
    505 		bzero((caddr_t)ro, sizeof(*ro));
    506 	}
    507 	ro_pmtu = ro;
    508 	if (opt && opt->ip6po_rthdr)
    509 		ro = &opt->ip6po_route;
    510 	dst = (struct sockaddr_in6 *)&ro->ro_dst;
    511 
    512 #ifdef notyet	     /* this will be available with the RFC3542 support */
    513  	/*
    514 	 * if specified, try to fill in the traffic class field.
    515 	 * do not override if a non-zero value is already set.
    516 	 * we check the diffserv field and the ecn field separately.
    517 	 */
    518 	if (opt && opt->ip6po_tclass >= 0) {
    519 		int mask = 0;
    520 
    521 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
    522 			mask |= 0xfc;
    523 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
    524 			mask |= 0x03;
    525 		if (mask != 0)
    526 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
    527 	}
    528 #endif
    529 
    530 	/* fill in or override the hop limit field, if necessary. */
    531 	if (opt && opt->ip6po_hlim != -1)
    532 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    533 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    534 		if (im6o != NULL)
    535 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
    536 		else
    537 			ip6->ip6_hlim = ip6_defmcasthlim;
    538 	}
    539 
    540 #ifdef IPSEC
    541 	if (needipsec && needipsectun) {
    542 		struct ipsec_output_state state;
    543 
    544 		/*
    545 		 * All the extension headers will become inaccessible
    546 		 * (since they can be encrypted).
    547 		 * Don't panic, we need no more updates to extension headers
    548 		 * on inner IPv6 packet (since they are now encapsulated).
    549 		 *
    550 		 * IPv6 [ESP|AH] IPv6 [extension headers] payload
    551 		 */
    552 		bzero(&exthdrs, sizeof(exthdrs));
    553 		exthdrs.ip6e_ip6 = m;
    554 
    555 		bzero(&state, sizeof(state));
    556 		state.m = m;
    557 		state.ro = (struct route *)ro;
    558 		state.dst = (struct sockaddr *)dst;
    559 
    560 		error = ipsec6_output_tunnel(&state, sp, flags);
    561 
    562 		m = state.m;
    563 		ro_pmtu = ro = (struct route_in6 *)state.ro;
    564 		dst = (struct sockaddr_in6 *)state.dst;
    565 		if (error) {
    566 			/* mbuf is already reclaimed in ipsec6_output_tunnel. */
    567 			m0 = m = NULL;
    568 			m = NULL;
    569 			switch (error) {
    570 			case EHOSTUNREACH:
    571 			case ENETUNREACH:
    572 			case EMSGSIZE:
    573 			case ENOBUFS:
    574 			case ENOMEM:
    575 				break;
    576 			default:
    577 				printf("ip6_output (ipsec): error code %d\n", error);
    578 				/* FALLTHROUGH */
    579 			case ENOENT:
    580 				/* don't show these error codes to the user */
    581 				error = 0;
    582 				break;
    583 			}
    584 			goto bad;
    585 		}
    586 
    587 		exthdrs.ip6e_ip6 = m;
    588 	}
    589 #endif /* IPSEC */
    590 
    591 	/* adjust pointer */
    592 	ip6 = mtod(m, struct ip6_hdr *);
    593 
    594 	bzero(&dst_sa, sizeof(dst_sa));
    595 	dst_sa.sin6_family = AF_INET6;
    596 	dst_sa.sin6_len = sizeof(dst_sa);
    597 	dst_sa.sin6_addr = ip6->ip6_dst;
    598 	if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, &rt, 0))
    599 	    != 0) {
    600 		switch (error) {
    601 		case EHOSTUNREACH:
    602 			ip6stat.ip6s_noroute++;
    603 			break;
    604 		case EADDRNOTAVAIL:
    605 		default:
    606 			break; /* XXX statistics? */
    607 		}
    608 		if (ifp != NULL)
    609 			in6_ifstat_inc(ifp, ifs6_out_discard);
    610 		goto bad;
    611 	}
    612 	if (rt == NULL) {
    613 		/*
    614 		 * If in6_selectroute() does not return a route entry,
    615 		 * dst may not have been updated.
    616 		 */
    617 		*dst = dst_sa;	/* XXX */
    618 	}
    619 
    620 	/*
    621 	 * then rt (for unicast) and ifp must be non-NULL valid values.
    622 	 */
    623 	if ((flags & IPV6_FORWARDING) == 0) {
    624 		/* XXX: the FORWARDING flag can be set for mrouting. */
    625 		in6_ifstat_inc(ifp, ifs6_out_request);
    626 	}
    627 	if (rt != NULL) {
    628 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
    629 		rt->rt_use++;
    630 	}
    631 
    632 	/*
    633 	 * The outgoing interface must be in the zone of source and
    634 	 * destination addresses.  We should use ia_ifp to support the
    635 	 * case of sending packets to an address of our own.
    636 	 */
    637 	if (ia != NULL && ia->ia_ifp)
    638 		origifp = ia->ia_ifp;
    639 	else
    640 		origifp = ifp;
    641 
    642 	src0 = ip6->ip6_src;
    643 	if (in6_setscope(&src0, origifp, &zone))
    644 		goto badscope;
    645 	bzero(&src_sa, sizeof(src_sa));
    646 	src_sa.sin6_family = AF_INET6;
    647 	src_sa.sin6_len = sizeof(src_sa);
    648 	src_sa.sin6_addr = ip6->ip6_src;
    649 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
    650 		goto badscope;
    651 
    652 	dst0 = ip6->ip6_dst;
    653 	if (in6_setscope(&dst0, origifp, &zone))
    654 		goto badscope;
    655 	/* re-initialize to be sure */
    656 	bzero(&dst_sa, sizeof(dst_sa));
    657 	dst_sa.sin6_family = AF_INET6;
    658 	dst_sa.sin6_len = sizeof(dst_sa);
    659 	dst_sa.sin6_addr = ip6->ip6_dst;
    660 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
    661 		goto badscope;
    662 
    663 	/* scope check is done. */
    664 	goto routefound;
    665 
    666   badscope:
    667 	ip6stat.ip6s_badscope++;
    668 	in6_ifstat_inc(origifp, ifs6_out_discard);
    669 	if (error == 0)
    670 		error = EHOSTUNREACH; /* XXX */
    671 	goto bad;
    672 
    673   routefound:
    674 	if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    675 #ifdef notyet	     /* this will be available with the RFC3542 support */
    676 		if (opt && opt->ip6po_nextroute.ro_rt) {
    677 			/*
    678 			 * The nexthop is explicitly specified by the
    679 			 * application.  We assume the next hop is an IPv6
    680 			 * address.
    681 			 */
    682 			dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
    683 		} else
    684 #endif
    685 			if ((rt->rt_flags & RTF_GATEWAY))
    686 				dst = (struct sockaddr_in6 *)rt->rt_gateway;
    687 	}
    688 
    689 	/*
    690 	 * XXXXXX: original code follows:
    691 	 */
    692 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    693 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
    694 	else {
    695 		struct	in6_multi *in6m;
    696 
    697 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
    698 
    699 		in6_ifstat_inc(ifp, ifs6_out_mcast);
    700 
    701 		/*
    702 		 * Confirm that the outgoing interface supports multicast.
    703 		 */
    704 		if (!(ifp->if_flags & IFF_MULTICAST)) {
    705 			ip6stat.ip6s_noroute++;
    706 			in6_ifstat_inc(ifp, ifs6_out_discard);
    707 			error = ENETUNREACH;
    708 			goto bad;
    709 		}
    710 
    711 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
    712 		if (in6m != NULL &&
    713 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
    714 			/*
    715 			 * If we belong to the destination multicast group
    716 			 * on the outgoing interface, and the caller did not
    717 			 * forbid loopback, loop back a copy.
    718 			 */
    719 			ip6_mloopback(ifp, m, dst);
    720 		} else {
    721 			/*
    722 			 * If we are acting as a multicast router, perform
    723 			 * multicast forwarding as if the packet had just
    724 			 * arrived on the interface to which we are about
    725 			 * to send.  The multicast forwarding function
    726 			 * recursively calls this function, using the
    727 			 * IPV6_FORWARDING flag to prevent infinite recursion.
    728 			 *
    729 			 * Multicasts that are looped back by ip6_mloopback(),
    730 			 * above, will be forwarded by the ip6_input() routine,
    731 			 * if necessary.
    732 			 */
    733 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
    734 				if (ip6_mforward(ip6, ifp, m) != 0) {
    735 					m_freem(m);
    736 					goto done;
    737 				}
    738 			}
    739 		}
    740 		/*
    741 		 * Multicasts with a hoplimit of zero may be looped back,
    742 		 * above, but must not be transmitted on a network.
    743 		 * Also, multicasts addressed to the loopback interface
    744 		 * are not sent -- the above call to ip6_mloopback() will
    745 		 * loop back a copy if this host actually belongs to the
    746 		 * destination group on the loopback interface.
    747 		 */
    748 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
    749 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
    750 			m_freem(m);
    751 			goto done;
    752 		}
    753 	}
    754 
    755 	/*
    756 	 * Fill the outgoing inteface to tell the upper layer
    757 	 * to increment per-interface statistics.
    758 	 */
    759 	if (ifpp)
    760 		*ifpp = ifp;
    761 
    762 	/* Determine path MTU. */
    763 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
    764 	    &alwaysfrag)) != 0)
    765 		goto bad;
    766 #ifdef IPSEC
    767 	if (needipsectun)
    768 		mtu = IPV6_MMTU;
    769 #endif
    770 
    771 	/*
    772 	 * The caller of this function may specify to use the minimum MTU
    773 	 * in some cases.
    774 	 */
    775 	if (mtu > IPV6_MMTU) {
    776 		if ((flags & IPV6_MINMTU))
    777 			mtu = IPV6_MMTU;
    778 	}
    779 
    780 	/*
    781 	 * clear embedded scope identifiers if necessary.
    782 	 * in6_clearscope will touch the addresses only when necessary.
    783 	 */
    784 	in6_clearscope(&ip6->ip6_src);
    785 	in6_clearscope(&ip6->ip6_dst);
    786 
    787 	/*
    788 	 * If the outgoing packet contains a hop-by-hop options header,
    789 	 * it must be examined and processed even by the source node.
    790 	 * (RFC 2460, section 4.)
    791 	 */
    792 	if (exthdrs.ip6e_hbh) {
    793 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
    794 		u_int32_t dummy1; /* XXX unused */
    795 		u_int32_t dummy2; /* XXX unused */
    796 
    797 		/*
    798 		 *  XXX: if we have to send an ICMPv6 error to the sender,
    799 		 *       we need the M_LOOP flag since icmp6_error() expects
    800 		 *       the IPv6 and the hop-by-hop options header are
    801 		 *       continuous unless the flag is set.
    802 		 */
    803 		m->m_flags |= M_LOOP;
    804 		m->m_pkthdr.rcvif = ifp;
    805 		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
    806 		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
    807 		    &dummy1, &dummy2) < 0) {
    808 			/* m was already freed at this point */
    809 			error = EINVAL;/* better error? */
    810 			goto done;
    811 		}
    812 		m->m_flags &= ~M_LOOP; /* XXX */
    813 		m->m_pkthdr.rcvif = NULL;
    814 	}
    815 
    816 #ifdef PFIL_HOOKS
    817 	/*
    818 	 * Run through list of hooks for output packets.
    819 	 */
    820 	if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    821 		goto done;
    822 	if (m == NULL)
    823 		goto done;
    824 	ip6 = mtod(m, struct ip6_hdr *);
    825 #endif /* PFIL_HOOKS */
    826 	/*
    827 	 * Send the packet to the outgoing interface.
    828 	 * If necessary, do IPv6 fragmentation before sending.
    829 	 *
    830 	 * the logic here is rather complex:
    831 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
    832 	 * 1-a:	send as is if tlen <= path mtu
    833 	 * 1-b:	fragment if tlen > path mtu
    834 	 *
    835 	 * 2: if user asks us not to fragment (dontfrag == 1)
    836 	 * 2-a:	send as is if tlen <= interface mtu
    837 	 * 2-b:	error if tlen > interface mtu
    838 	 *
    839 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
    840 	 *	always fragment
    841 	 *
    842 	 * 4: if dontfrag == 1 && alwaysfrag == 1
    843 	 *	error, as we cannot handle this conflicting request
    844 	 */
    845 	tlen = m->m_pkthdr.len;
    846 
    847 	dontfrag = 0;
    848 	if (dontfrag && alwaysfrag) {	/* case 4 */
    849 		/* conflicting request - can't transmit */
    850 		error = EMSGSIZE;
    851 		goto bad;
    852 	}
    853 	if (dontfrag && tlen > IN6_LINKMTU(ifp)) {	/* case 2-b */
    854 		/*
    855 		 * Even if the DONTFRAG option is specified, we cannot send the
    856 		 * packet when the data length is larger than the MTU of the
    857 		 * outgoing interface.
    858 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
    859 		 * well as returning an error code (the latter is not described
    860 		 * in the API spec.)
    861 		 */
    862 		u_int32_t mtu32;
    863 		struct ip6ctlparam ip6cp;
    864 
    865 		mtu32 = (u_int32_t)mtu;
    866 		bzero(&ip6cp, sizeof(ip6cp));
    867 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    868 		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
    869 		    (void *)&ip6cp);
    870 
    871 		error = EMSGSIZE;
    872 		goto bad;
    873 	}
    874 
    875 	/*
    876 	 * transmit packet without fragmentation
    877 	 */
    878 	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
    879 		struct in6_ifaddr *ia6;
    880 		int sw_csum;
    881 
    882 		ip6 = mtod(m, struct ip6_hdr *);
    883 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    884 		if (ia6) {
    885 			/* Record statistics for this interface address. */
    886 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
    887 		}
    888 #ifdef IPSEC
    889 		/* clean ipsec history once it goes out of the node */
    890 		ipsec_delaux(m);
    891 #endif
    892 
    893 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    894 		if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    895 			if (IN6_NEED_CHECKSUM(ifp,
    896 			    sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    897 				in6_delayed_cksum(m);
    898 			}
    899 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    900 		}
    901 
    902 		error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
    903 		goto done;
    904 	}
    905 
    906 	/*
    907 	 * try to fragment the packet.  case 1-b and 3
    908 	 */
    909 	if (mtu < IPV6_MMTU) {
    910 		/* path MTU cannot be less than IPV6_MMTU */
    911 		error = EMSGSIZE;
    912 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    913 		goto bad;
    914 	} else if (ip6->ip6_plen == 0) {
    915 		/* jumbo payload cannot be fragmented */
    916 		error = EMSGSIZE;
    917 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    918 		goto bad;
    919 	} else {
    920 		struct mbuf **mnext, *m_frgpart;
    921 		struct ip6_frag *ip6f;
    922 		u_int32_t id = htonl(ip6_randomid());
    923 		u_char nextproto;
    924 		struct ip6ctlparam ip6cp;
    925 		u_int32_t mtu32;
    926 
    927 		/*
    928 		 * Too large for the destination or interface;
    929 		 * fragment if possible.
    930 		 * Must be able to put at least 8 bytes per fragment.
    931 		 */
    932 		hlen = unfragpartlen;
    933 		if (mtu > IPV6_MAXPACKET)
    934 			mtu = IPV6_MAXPACKET;
    935 
    936 		/* Notify a proper path MTU to applications. */
    937 		mtu32 = (u_int32_t)mtu;
    938 		bzero(&ip6cp, sizeof(ip6cp));
    939 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    940 		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
    941 		    (void *)&ip6cp);
    942 
    943 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
    944 		if (len < 8) {
    945 			error = EMSGSIZE;
    946 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
    947 			goto bad;
    948 		}
    949 
    950 		mnext = &m->m_nextpkt;
    951 
    952 		/*
    953 		 * Change the next header field of the last header in the
    954 		 * unfragmentable part.
    955 		 */
    956 		if (exthdrs.ip6e_rthdr) {
    957 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
    958 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
    959 		} else if (exthdrs.ip6e_dest1) {
    960 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
    961 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
    962 		} else if (exthdrs.ip6e_hbh) {
    963 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
    964 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
    965 		} else {
    966 			nextproto = ip6->ip6_nxt;
    967 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
    968 		}
    969 
    970 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
    971 		    != 0) {
    972 			if (IN6_NEED_CHECKSUM(ifp,
    973 			    m->m_pkthdr.csum_flags &
    974 			    (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    975 				in6_delayed_cksum(m);
    976 			}
    977 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    978 		}
    979 
    980 		/*
    981 		 * Loop through length of segment after first fragment,
    982 		 * make new header and copy data of each part and link onto
    983 		 * chain.
    984 		 */
    985 		m0 = m;
    986 		for (off = hlen; off < tlen; off += len) {
    987 			struct mbuf *mlast;
    988 
    989 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
    990 			if (!m) {
    991 				error = ENOBUFS;
    992 				ip6stat.ip6s_odropped++;
    993 				goto sendorfree;
    994 			}
    995 			m->m_pkthdr.rcvif = NULL;
    996 			m->m_flags = m0->m_flags & M_COPYFLAGS;
    997 			*mnext = m;
    998 			mnext = &m->m_nextpkt;
    999 			m->m_data += max_linkhdr;
   1000 			mhip6 = mtod(m, struct ip6_hdr *);
   1001 			*mhip6 = *ip6;
   1002 			m->m_len = sizeof(*mhip6);
   1003 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
   1004 			if (error) {
   1005 				ip6stat.ip6s_odropped++;
   1006 				goto sendorfree;
   1007 			}
   1008 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
   1009 			if (off + len >= tlen)
   1010 				len = tlen - off;
   1011 			else
   1012 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
   1013 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
   1014 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
   1015 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
   1016 				error = ENOBUFS;
   1017 				ip6stat.ip6s_odropped++;
   1018 				goto sendorfree;
   1019 			}
   1020 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
   1021 				;
   1022 			mlast->m_next = m_frgpart;
   1023 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
   1024 			m->m_pkthdr.rcvif = (struct ifnet *)0;
   1025 			ip6f->ip6f_reserved = 0;
   1026 			ip6f->ip6f_ident = id;
   1027 			ip6f->ip6f_nxt = nextproto;
   1028 			ip6stat.ip6s_ofragments++;
   1029 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
   1030 		}
   1031 
   1032 		in6_ifstat_inc(ifp, ifs6_out_fragok);
   1033 	}
   1034 
   1035 	/*
   1036 	 * Remove leading garbages.
   1037 	 */
   1038 sendorfree:
   1039 	m = m0->m_nextpkt;
   1040 	m0->m_nextpkt = 0;
   1041 	m_freem(m0);
   1042 	for (m0 = m; m; m = m0) {
   1043 		m0 = m->m_nextpkt;
   1044 		m->m_nextpkt = 0;
   1045 		if (error == 0) {
   1046 			struct in6_ifaddr *ia6;
   1047 			ip6 = mtod(m, struct ip6_hdr *);
   1048 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
   1049 			if (ia6) {
   1050 				/*
   1051 				 * Record statistics for this interface
   1052 				 * address.
   1053 				 */
   1054 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
   1055 				    m->m_pkthdr.len;
   1056 			}
   1057 #ifdef IPSEC
   1058 			/* clean ipsec history once it goes out of the node */
   1059 			ipsec_delaux(m);
   1060 #endif
   1061 			error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
   1062 		} else
   1063 			m_freem(m);
   1064 	}
   1065 
   1066 	if (error == 0)
   1067 		ip6stat.ip6s_fragmented++;
   1068 
   1069 done:
   1070 	if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
   1071 		RTFREE(ro->ro_rt);
   1072 	} else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
   1073 		RTFREE(ro_pmtu->ro_rt);
   1074 	}
   1075 
   1076 #ifdef IPSEC
   1077 	if (sp != NULL)
   1078 		key_freesp(sp);
   1079 #endif /* IPSEC */
   1080 
   1081 	return (error);
   1082 
   1083 freehdrs:
   1084 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
   1085 	m_freem(exthdrs.ip6e_dest1);
   1086 	m_freem(exthdrs.ip6e_rthdr);
   1087 	m_freem(exthdrs.ip6e_dest2);
   1088 	/* FALLTHROUGH */
   1089 bad:
   1090 	m_freem(m);
   1091 	goto done;
   1092 }
   1093 
   1094 static int
   1095 ip6_copyexthdr(mp, hdr, hlen)
   1096 	struct mbuf **mp;
   1097 	caddr_t hdr;
   1098 	int hlen;
   1099 {
   1100 	struct mbuf *m;
   1101 
   1102 	if (hlen > MCLBYTES)
   1103 		return (ENOBUFS); /* XXX */
   1104 
   1105 	MGET(m, M_DONTWAIT, MT_DATA);
   1106 	if (!m)
   1107 		return (ENOBUFS);
   1108 
   1109 	if (hlen > MLEN) {
   1110 		MCLGET(m, M_DONTWAIT);
   1111 		if ((m->m_flags & M_EXT) == 0) {
   1112 			m_free(m);
   1113 			return (ENOBUFS);
   1114 		}
   1115 	}
   1116 	m->m_len = hlen;
   1117 	if (hdr)
   1118 		bcopy(hdr, mtod(m, caddr_t), hlen);
   1119 
   1120 	*mp = m;
   1121 	return (0);
   1122 }
   1123 
   1124 /*
   1125  * Process a delayed payload checksum calculation.
   1126  */
   1127 void
   1128 in6_delayed_cksum(struct mbuf *m)
   1129 {
   1130 	uint16_t csum, offset;
   1131 
   1132 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1133 	KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1134 	KASSERT((m->m_pkthdr.csum_flags
   1135 	    & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
   1136 
   1137 	offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
   1138 	csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
   1139 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
   1140 		csum = 0xffff;
   1141 	}
   1142 
   1143 	offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
   1144 	if ((offset + sizeof(csum)) > m->m_len) {
   1145 		m_copyback(m, offset, sizeof(csum), &csum);
   1146 	} else {
   1147 		*(uint16_t *)(mtod(m, caddr_t) + offset) = csum;
   1148 	}
   1149 }
   1150 
   1151 /*
   1152  * Insert jumbo payload option.
   1153  */
   1154 static int
   1155 ip6_insert_jumboopt(exthdrs, plen)
   1156 	struct ip6_exthdrs *exthdrs;
   1157 	u_int32_t plen;
   1158 {
   1159 	struct mbuf *mopt;
   1160 	u_int8_t *optbuf;
   1161 	u_int32_t v;
   1162 
   1163 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
   1164 
   1165 	/*
   1166 	 * If there is no hop-by-hop options header, allocate new one.
   1167 	 * If there is one but it doesn't have enough space to store the
   1168 	 * jumbo payload option, allocate a cluster to store the whole options.
   1169 	 * Otherwise, use it to store the options.
   1170 	 */
   1171 	if (exthdrs->ip6e_hbh == 0) {
   1172 		MGET(mopt, M_DONTWAIT, MT_DATA);
   1173 		if (mopt == 0)
   1174 			return (ENOBUFS);
   1175 		mopt->m_len = JUMBOOPTLEN;
   1176 		optbuf = mtod(mopt, u_int8_t *);
   1177 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
   1178 		exthdrs->ip6e_hbh = mopt;
   1179 	} else {
   1180 		struct ip6_hbh *hbh;
   1181 
   1182 		mopt = exthdrs->ip6e_hbh;
   1183 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
   1184 			/*
   1185 			 * XXX assumption:
   1186 			 * - exthdrs->ip6e_hbh is not referenced from places
   1187 			 *   other than exthdrs.
   1188 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
   1189 			 */
   1190 			int oldoptlen = mopt->m_len;
   1191 			struct mbuf *n;
   1192 
   1193 			/*
   1194 			 * XXX: give up if the whole (new) hbh header does
   1195 			 * not fit even in an mbuf cluster.
   1196 			 */
   1197 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
   1198 				return (ENOBUFS);
   1199 
   1200 			/*
   1201 			 * As a consequence, we must always prepare a cluster
   1202 			 * at this point.
   1203 			 */
   1204 			MGET(n, M_DONTWAIT, MT_DATA);
   1205 			if (n) {
   1206 				MCLGET(n, M_DONTWAIT);
   1207 				if ((n->m_flags & M_EXT) == 0) {
   1208 					m_freem(n);
   1209 					n = NULL;
   1210 				}
   1211 			}
   1212 			if (!n)
   1213 				return (ENOBUFS);
   1214 			n->m_len = oldoptlen + JUMBOOPTLEN;
   1215 			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
   1216 			    oldoptlen);
   1217 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
   1218 			m_freem(mopt);
   1219 			mopt = exthdrs->ip6e_hbh = n;
   1220 		} else {
   1221 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
   1222 			mopt->m_len += JUMBOOPTLEN;
   1223 		}
   1224 		optbuf[0] = IP6OPT_PADN;
   1225 		optbuf[1] = 0;
   1226 
   1227 		/*
   1228 		 * Adjust the header length according to the pad and
   1229 		 * the jumbo payload option.
   1230 		 */
   1231 		hbh = mtod(mopt, struct ip6_hbh *);
   1232 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
   1233 	}
   1234 
   1235 	/* fill in the option. */
   1236 	optbuf[2] = IP6OPT_JUMBO;
   1237 	optbuf[3] = 4;
   1238 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
   1239 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
   1240 
   1241 	/* finally, adjust the packet header length */
   1242 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
   1243 
   1244 	return (0);
   1245 #undef JUMBOOPTLEN
   1246 }
   1247 
   1248 /*
   1249  * Insert fragment header and copy unfragmentable header portions.
   1250  */
   1251 static int
   1252 ip6_insertfraghdr(m0, m, hlen, frghdrp)
   1253 	struct mbuf *m0, *m;
   1254 	int hlen;
   1255 	struct ip6_frag **frghdrp;
   1256 {
   1257 	struct mbuf *n, *mlast;
   1258 
   1259 	if (hlen > sizeof(struct ip6_hdr)) {
   1260 		n = m_copym(m0, sizeof(struct ip6_hdr),
   1261 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
   1262 		if (n == 0)
   1263 			return (ENOBUFS);
   1264 		m->m_next = n;
   1265 	} else
   1266 		n = m;
   1267 
   1268 	/* Search for the last mbuf of unfragmentable part. */
   1269 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
   1270 		;
   1271 
   1272 	if ((mlast->m_flags & M_EXT) == 0 &&
   1273 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
   1274 		/* use the trailing space of the last mbuf for the fragment hdr */
   1275 		*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
   1276 		    mlast->m_len);
   1277 		mlast->m_len += sizeof(struct ip6_frag);
   1278 		m->m_pkthdr.len += sizeof(struct ip6_frag);
   1279 	} else {
   1280 		/* allocate a new mbuf for the fragment header */
   1281 		struct mbuf *mfrg;
   1282 
   1283 		MGET(mfrg, M_DONTWAIT, MT_DATA);
   1284 		if (mfrg == 0)
   1285 			return (ENOBUFS);
   1286 		mfrg->m_len = sizeof(struct ip6_frag);
   1287 		*frghdrp = mtod(mfrg, struct ip6_frag *);
   1288 		mlast->m_next = mfrg;
   1289 	}
   1290 
   1291 	return (0);
   1292 }
   1293 
   1294 static int
   1295 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup, alwaysfragp)
   1296 	struct route_in6 *ro_pmtu, *ro;
   1297 	struct ifnet *ifp;
   1298 	struct in6_addr *dst;
   1299 	u_long *mtup;
   1300 	int *alwaysfragp;
   1301 {
   1302 	u_int32_t mtu = 0;
   1303 	int alwaysfrag = 0;
   1304 	int error = 0;
   1305 
   1306 	if (ro_pmtu != ro) {
   1307 		/* The first hop and the final destination may differ. */
   1308 		struct sockaddr_in6 *sa6_dst =
   1309 		    (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
   1310 		if (ro_pmtu->ro_rt &&
   1311 		    ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
   1312 		      !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
   1313 			RTFREE(ro_pmtu->ro_rt);
   1314 			ro_pmtu->ro_rt = (struct rtentry *)NULL;
   1315 		}
   1316 		if (ro_pmtu->ro_rt == NULL) {
   1317 			bzero(sa6_dst, sizeof(*sa6_dst)); /* for safety */
   1318 			sa6_dst->sin6_family = AF_INET6;
   1319 			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
   1320 			sa6_dst->sin6_addr = *dst;
   1321 
   1322 			rtalloc((struct route *)ro_pmtu);
   1323 		}
   1324 	}
   1325 	if (ro_pmtu->ro_rt) {
   1326 		u_int32_t ifmtu;
   1327 
   1328 		if (ifp == NULL)
   1329 			ifp = ro_pmtu->ro_rt->rt_ifp;
   1330 		ifmtu = IN6_LINKMTU(ifp);
   1331 		mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
   1332 		if (mtu == 0)
   1333 			mtu = ifmtu;
   1334 		else if (mtu < IPV6_MMTU) {
   1335 			/*
   1336 			 * RFC2460 section 5, last paragraph:
   1337 			 * if we record ICMPv6 too big message with
   1338 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
   1339 			 * or smaller, with fragment header attached.
   1340 			 * (fragment header is needed regardless from the
   1341 			 * packet size, for translators to identify packets)
   1342 			 */
   1343 			alwaysfrag = 1;
   1344 			mtu = IPV6_MMTU;
   1345 		} else if (mtu > ifmtu) {
   1346 			/*
   1347 			 * The MTU on the route is larger than the MTU on
   1348 			 * the interface!  This shouldn't happen, unless the
   1349 			 * MTU of the interface has been changed after the
   1350 			 * interface was brought up.  Change the MTU in the
   1351 			 * route to match the interface MTU (as long as the
   1352 			 * field isn't locked).
   1353 			 */
   1354 			mtu = ifmtu;
   1355 			if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU))
   1356 				ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
   1357 		}
   1358 	} else if (ifp) {
   1359 		mtu = IN6_LINKMTU(ifp);
   1360 	} else
   1361 		error = EHOSTUNREACH; /* XXX */
   1362 
   1363 	*mtup = mtu;
   1364 	if (alwaysfragp)
   1365 		*alwaysfragp = alwaysfrag;
   1366 	return (error);
   1367 }
   1368 
   1369 /*
   1370  * IP6 socket option processing.
   1371  */
   1372 int
   1373 ip6_ctloutput(op, so, level, optname, mp)
   1374 	int op;
   1375 	struct socket *so;
   1376 	int level, optname;
   1377 	struct mbuf **mp;
   1378 {
   1379 	struct in6pcb *in6p = sotoin6pcb(so);
   1380 	struct mbuf *m = *mp;
   1381 	int optval = 0;
   1382 	int error = 0;
   1383 	struct proc *p = curproc;	/* XXX */
   1384 
   1385 	if (level == IPPROTO_IPV6) {
   1386 		switch (op) {
   1387 		case PRCO_SETOPT:
   1388 			switch (optname) {
   1389 			case IPV6_PKTOPTIONS:
   1390 				/* m is freed in ip6_pcbopts */
   1391 				return (ip6_pcbopts(&in6p->in6p_outputopts,
   1392 				    m, so));
   1393 			case IPV6_HOPOPTS:
   1394 			case IPV6_DSTOPTS:
   1395 				if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
   1396 					error = EPERM;
   1397 					break;
   1398 				}
   1399 				/* FALLTHROUGH */
   1400 			case IPV6_UNICAST_HOPS:
   1401 			case IPV6_RECVOPTS:
   1402 			case IPV6_RECVRETOPTS:
   1403 			case IPV6_RECVDSTADDR:
   1404 			case IPV6_PKTINFO:
   1405 			case IPV6_HOPLIMIT:
   1406 			case IPV6_RTHDR:
   1407 			case IPV6_FAITH:
   1408 			case IPV6_V6ONLY:
   1409 			case IPV6_USE_MIN_MTU:
   1410 				if (!m || m->m_len != sizeof(int)) {
   1411 					error = EINVAL;
   1412 					break;
   1413 				}
   1414 				optval = *mtod(m, int *);
   1415 				switch (optname) {
   1416 
   1417 				case IPV6_UNICAST_HOPS:
   1418 					if (optval < -1 || optval >= 256)
   1419 						error = EINVAL;
   1420 					else {
   1421 						/* -1 = kernel default */
   1422 						in6p->in6p_hops = optval;
   1423 					}
   1424 					break;
   1425 #define OPTSET(bit) \
   1426 do { \
   1427 	if (optval) \
   1428 		in6p->in6p_flags |= (bit); \
   1429 	else \
   1430 		in6p->in6p_flags &= ~(bit); \
   1431 } while (/*CONSTCOND*/ 0)
   1432 
   1433 				case IPV6_RECVOPTS:
   1434 					OPTSET(IN6P_RECVOPTS);
   1435 					break;
   1436 
   1437 				case IPV6_RECVRETOPTS:
   1438 					OPTSET(IN6P_RECVRETOPTS);
   1439 					break;
   1440 
   1441 				case IPV6_RECVDSTADDR:
   1442 					OPTSET(IN6P_RECVDSTADDR);
   1443 					break;
   1444 
   1445 				case IPV6_PKTINFO:
   1446 					OPTSET(IN6P_PKTINFO);
   1447 					break;
   1448 
   1449 				case IPV6_HOPLIMIT:
   1450 					OPTSET(IN6P_HOPLIMIT);
   1451 					break;
   1452 
   1453 				case IPV6_HOPOPTS:
   1454 					OPTSET(IN6P_HOPOPTS);
   1455 					break;
   1456 
   1457 				case IPV6_DSTOPTS:
   1458 					OPTSET(IN6P_DSTOPTS);
   1459 					break;
   1460 
   1461 				case IPV6_RTHDR:
   1462 					OPTSET(IN6P_RTHDR);
   1463 					break;
   1464 
   1465 				case IPV6_FAITH:
   1466 					OPTSET(IN6P_FAITH);
   1467 					break;
   1468 
   1469 				case IPV6_USE_MIN_MTU:
   1470 					OPTSET(IN6P_MINMTU);
   1471 					break;
   1472 
   1473 				case IPV6_V6ONLY:
   1474 					/*
   1475 					 * make setsockopt(IPV6_V6ONLY)
   1476 					 * available only prior to bind(2).
   1477 					 * see ipng mailing list, Jun 22 2001.
   1478 					 */
   1479 					if (in6p->in6p_lport ||
   1480 					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
   1481 						error = EINVAL;
   1482 						break;
   1483 					}
   1484 #ifdef INET6_BINDV6ONLY
   1485 					if (!optval)
   1486 						error = EINVAL;
   1487 #else
   1488 					OPTSET(IN6P_IPV6_V6ONLY);
   1489 #endif
   1490 					break;
   1491 				}
   1492 				break;
   1493 #undef OPTSET
   1494 
   1495 			case IPV6_MULTICAST_IF:
   1496 			case IPV6_MULTICAST_HOPS:
   1497 			case IPV6_MULTICAST_LOOP:
   1498 			case IPV6_JOIN_GROUP:
   1499 			case IPV6_LEAVE_GROUP:
   1500 				error =	ip6_setmoptions(optname,
   1501 				    &in6p->in6p_moptions, m);
   1502 				break;
   1503 
   1504 			case IPV6_PORTRANGE:
   1505 				optval = *mtod(m, int *);
   1506 
   1507 				switch (optval) {
   1508 				case IPV6_PORTRANGE_DEFAULT:
   1509 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1510 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1511 					break;
   1512 
   1513 				case IPV6_PORTRANGE_HIGH:
   1514 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1515 					in6p->in6p_flags |= IN6P_HIGHPORT;
   1516 					break;
   1517 
   1518 				case IPV6_PORTRANGE_LOW:
   1519 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1520 					in6p->in6p_flags |= IN6P_LOWPORT;
   1521 					break;
   1522 
   1523 				default:
   1524 					error = EINVAL;
   1525 					break;
   1526 				}
   1527 				break;
   1528 
   1529 #ifdef IPSEC
   1530 			case IPV6_IPSEC_POLICY:
   1531 			    {
   1532 				caddr_t req = NULL;
   1533 				size_t len = 0;
   1534 
   1535 				int priv = 0;
   1536 				if (p == 0 || suser(p->p_ucred, &p->p_acflag))
   1537 					priv = 0;
   1538 				else
   1539 					priv = 1;
   1540 				if (m) {
   1541 					req = mtod(m, caddr_t);
   1542 					len = m->m_len;
   1543 				}
   1544 				error = ipsec6_set_policy(in6p,
   1545 				                   optname, req, len, priv);
   1546 			    }
   1547 				break;
   1548 #endif /* IPSEC */
   1549 
   1550 			default:
   1551 				error = ENOPROTOOPT;
   1552 				break;
   1553 			}
   1554 			if (m)
   1555 				(void)m_free(m);
   1556 			break;
   1557 
   1558 		case PRCO_GETOPT:
   1559 			switch (optname) {
   1560 
   1561 			case IPV6_OPTIONS:
   1562 			case IPV6_RETOPTS:
   1563 				error = ENOPROTOOPT;
   1564 				break;
   1565 
   1566 			case IPV6_PKTOPTIONS:
   1567 				if (in6p->in6p_options) {
   1568 					*mp = m_copym(in6p->in6p_options, 0,
   1569 					    M_COPYALL, M_WAIT);
   1570 				} else {
   1571 					*mp = m_get(M_WAIT, MT_SOOPTS);
   1572 					(*mp)->m_len = 0;
   1573 				}
   1574 				break;
   1575 
   1576 			case IPV6_HOPOPTS:
   1577 			case IPV6_DSTOPTS:
   1578 				if (p == 0 || suser(p->p_ucred, &p->p_acflag)) {
   1579 					error = EPERM;
   1580 					break;
   1581 				}
   1582 				/* FALLTHROUGH */
   1583 			case IPV6_UNICAST_HOPS:
   1584 			case IPV6_RECVOPTS:
   1585 			case IPV6_RECVRETOPTS:
   1586 			case IPV6_RECVDSTADDR:
   1587 			case IPV6_PORTRANGE:
   1588 			case IPV6_PKTINFO:
   1589 			case IPV6_HOPLIMIT:
   1590 			case IPV6_RTHDR:
   1591 			case IPV6_FAITH:
   1592 			case IPV6_V6ONLY:
   1593 			case IPV6_USE_MIN_MTU:
   1594 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1595 				m->m_len = sizeof(int);
   1596 				switch (optname) {
   1597 
   1598 				case IPV6_UNICAST_HOPS:
   1599 					optval = in6p->in6p_hops;
   1600 					break;
   1601 
   1602 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
   1603 
   1604 				case IPV6_RECVOPTS:
   1605 					optval = OPTBIT(IN6P_RECVOPTS);
   1606 					break;
   1607 
   1608 				case IPV6_RECVRETOPTS:
   1609 					optval = OPTBIT(IN6P_RECVRETOPTS);
   1610 					break;
   1611 
   1612 				case IPV6_RECVDSTADDR:
   1613 					optval = OPTBIT(IN6P_RECVDSTADDR);
   1614 					break;
   1615 
   1616 				case IPV6_PORTRANGE:
   1617 				    {
   1618 					int flags;
   1619 					flags = in6p->in6p_flags;
   1620 					if (flags & IN6P_HIGHPORT)
   1621 						optval = IPV6_PORTRANGE_HIGH;
   1622 					else if (flags & IN6P_LOWPORT)
   1623 						optval = IPV6_PORTRANGE_LOW;
   1624 					else
   1625 						optval = 0;
   1626 					break;
   1627 				    }
   1628 
   1629 				case IPV6_PKTINFO:
   1630 					optval = OPTBIT(IN6P_PKTINFO);
   1631 					break;
   1632 
   1633 				case IPV6_HOPLIMIT:
   1634 					optval = OPTBIT(IN6P_HOPLIMIT);
   1635 					break;
   1636 
   1637 				case IPV6_HOPOPTS:
   1638 					optval = OPTBIT(IN6P_HOPOPTS);
   1639 					break;
   1640 
   1641 				case IPV6_DSTOPTS:
   1642 					optval = OPTBIT(IN6P_DSTOPTS);
   1643 					break;
   1644 
   1645 				case IPV6_RTHDR:
   1646 					optval = OPTBIT(IN6P_RTHDR);
   1647 					break;
   1648 
   1649 				case IPV6_FAITH:
   1650 					optval = OPTBIT(IN6P_FAITH);
   1651 					break;
   1652 
   1653 				case IPV6_V6ONLY:
   1654 					optval = OPTBIT(IN6P_IPV6_V6ONLY);
   1655 					break;
   1656 
   1657 				case IPV6_USE_MIN_MTU:
   1658 					optval = OPTBIT(IN6P_MINMTU);
   1659 					break;
   1660 				}
   1661 				*mtod(m, int *) = optval;
   1662 				break;
   1663 
   1664 			case IPV6_MULTICAST_IF:
   1665 			case IPV6_MULTICAST_HOPS:
   1666 			case IPV6_MULTICAST_LOOP:
   1667 			case IPV6_JOIN_GROUP:
   1668 			case IPV6_LEAVE_GROUP:
   1669 				error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
   1670 				break;
   1671 
   1672 #if 0	/* defined(IPSEC) */
   1673 			/* XXX: code broken */
   1674 			case IPV6_IPSEC_POLICY:
   1675 			{
   1676 				caddr_t req = NULL;
   1677 				size_t len = 0;
   1678 
   1679 				if (m) {
   1680 					req = mtod(m, caddr_t);
   1681 					len = m->m_len;
   1682 				}
   1683 				error = ipsec6_get_policy(in6p, req, len, mp);
   1684 				break;
   1685 			}
   1686 #endif /* IPSEC */
   1687 
   1688 			default:
   1689 				error = ENOPROTOOPT;
   1690 				break;
   1691 			}
   1692 			break;
   1693 		}
   1694 	} else {
   1695 		error = EINVAL;
   1696 		if (op == PRCO_SETOPT && *mp)
   1697 			(void)m_free(*mp);
   1698 	}
   1699 	return (error);
   1700 }
   1701 
   1702 int
   1703 ip6_raw_ctloutput(op, so, level, optname, mp)
   1704 	int op;
   1705 	struct socket *so;
   1706 	int level, optname;
   1707 	struct mbuf **mp;
   1708 {
   1709 	int error = 0, optval, optlen;
   1710 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
   1711 	struct in6pcb *in6p = sotoin6pcb(so);
   1712 	struct mbuf *m = *mp;
   1713 
   1714 	optlen = m ? m->m_len : 0;
   1715 
   1716 	if (level != IPPROTO_IPV6) {
   1717 		if (op == PRCO_SETOPT && *mp)
   1718 			(void)m_free(*mp);
   1719 		return (EINVAL);
   1720 	}
   1721 
   1722 	switch (optname) {
   1723 	case IPV6_CHECKSUM:
   1724 		/*
   1725 		 * For ICMPv6 sockets, no modification allowed for checksum
   1726 		 * offset, permit "no change" values to help existing apps.
   1727 		 *
   1728 		 * XXX 2292bis says: "An attempt to set IPV6_CHECKSUM
   1729 		 * for an ICMPv6 socket will fail."
   1730 		 * The current behavior does not meet 2292bis.
   1731 		 */
   1732 		switch (op) {
   1733 		case PRCO_SETOPT:
   1734 			if (optlen != sizeof(int)) {
   1735 				error = EINVAL;
   1736 				break;
   1737 			}
   1738 			optval = *mtod(m, int *);
   1739 			if ((optval % 2) != 0) {
   1740 				/* the API assumes even offset values */
   1741 				error = EINVAL;
   1742 			} else if (so->so_proto->pr_protocol ==
   1743 			    IPPROTO_ICMPV6) {
   1744 				if (optval != icmp6off)
   1745 					error = EINVAL;
   1746 			} else
   1747 				in6p->in6p_cksum = optval;
   1748 			break;
   1749 
   1750 		case PRCO_GETOPT:
   1751 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
   1752 				optval = icmp6off;
   1753 			else
   1754 				optval = in6p->in6p_cksum;
   1755 
   1756 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1757 			m->m_len = sizeof(int);
   1758 			*mtod(m, int *) = optval;
   1759 			break;
   1760 
   1761 		default:
   1762 			error = EINVAL;
   1763 			break;
   1764 		}
   1765 		break;
   1766 
   1767 	default:
   1768 		error = ENOPROTOOPT;
   1769 		break;
   1770 	}
   1771 
   1772 	if (op == PRCO_SETOPT && m)
   1773 		(void)m_free(m);
   1774 
   1775 	return (error);
   1776 }
   1777 
   1778 /*
   1779  * Set up IP6 options in pcb for insertion in output packets.
   1780  * Store in mbuf with pointer in pcbopt, adding pseudo-option
   1781  * with destination address if source routed.
   1782  */
   1783 static int
   1784 ip6_pcbopts(pktopt, m, so)
   1785 	struct ip6_pktopts **pktopt;
   1786 	struct mbuf *m;
   1787 	struct socket *so;
   1788 {
   1789 	struct ip6_pktopts *opt = *pktopt;
   1790 	int error = 0;
   1791 	struct proc *p = curproc;	/* XXX */
   1792 	int priv = 0;
   1793 
   1794 	/* turn off any old options. */
   1795 	if (opt) {
   1796 		if (opt->ip6po_m)
   1797 			(void)m_free(opt->ip6po_m);
   1798 	} else
   1799 		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
   1800 	*pktopt = 0;
   1801 
   1802 	if (!m || m->m_len == 0) {
   1803 		/*
   1804 		 * Only turning off any previous options.
   1805 		 */
   1806 		free(opt, M_IP6OPT);
   1807 		if (m)
   1808 			(void)m_free(m);
   1809 		return (0);
   1810 	}
   1811 
   1812 	/*  set options specified by user. */
   1813 	if (p && !suser(p->p_ucred, &p->p_acflag))
   1814 		priv = 1;
   1815 	if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
   1816 		(void)m_free(m);
   1817 		free(opt, M_IP6OPT);
   1818 		return (error);
   1819 	}
   1820 	*pktopt = opt;
   1821 	return (0);
   1822 }
   1823 
   1824 /*
   1825  * Set the IP6 multicast options in response to user setsockopt().
   1826  */
   1827 static int
   1828 ip6_setmoptions(optname, im6op, m)
   1829 	int optname;
   1830 	struct ip6_moptions **im6op;
   1831 	struct mbuf *m;
   1832 {
   1833 	int error = 0;
   1834 	u_int loop, ifindex;
   1835 	struct ipv6_mreq *mreq;
   1836 	struct ifnet *ifp;
   1837 	struct ip6_moptions *im6o = *im6op;
   1838 	struct route_in6 ro;
   1839 	struct in6_multi_mship *imm;
   1840 	struct proc *p = curproc;	/* XXX */
   1841 
   1842 	if (im6o == NULL) {
   1843 		/*
   1844 		 * No multicast option buffer attached to the pcb;
   1845 		 * allocate one and initialize to default values.
   1846 		 */
   1847 		im6o = (struct ip6_moptions *)
   1848 			malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
   1849 
   1850 		if (im6o == NULL)
   1851 			return (ENOBUFS);
   1852 		*im6op = im6o;
   1853 		im6o->im6o_multicast_ifp = NULL;
   1854 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   1855 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
   1856 		LIST_INIT(&im6o->im6o_memberships);
   1857 	}
   1858 
   1859 	switch (optname) {
   1860 
   1861 	case IPV6_MULTICAST_IF:
   1862 		/*
   1863 		 * Select the interface for outgoing multicast packets.
   1864 		 */
   1865 		if (m == NULL || m->m_len != sizeof(u_int)) {
   1866 			error = EINVAL;
   1867 			break;
   1868 		}
   1869 		bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
   1870 		if (ifindex != 0) {
   1871 			if (ifindex < 0 || if_indexlim <= ifindex ||
   1872 			    !ifindex2ifnet[ifindex]) {
   1873 				error = ENXIO;	/* XXX EINVAL? */
   1874 				break;
   1875 			}
   1876 			ifp = ifindex2ifnet[ifindex];
   1877 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
   1878 				error = EADDRNOTAVAIL;
   1879 				break;
   1880 			}
   1881 		} else
   1882 			ifp = NULL;
   1883 		im6o->im6o_multicast_ifp = ifp;
   1884 		break;
   1885 
   1886 	case IPV6_MULTICAST_HOPS:
   1887 	    {
   1888 		/*
   1889 		 * Set the IP6 hoplimit for outgoing multicast packets.
   1890 		 */
   1891 		int optval;
   1892 		if (m == NULL || m->m_len != sizeof(int)) {
   1893 			error = EINVAL;
   1894 			break;
   1895 		}
   1896 		bcopy(mtod(m, u_int *), &optval, sizeof(optval));
   1897 		if (optval < -1 || optval >= 256)
   1898 			error = EINVAL;
   1899 		else if (optval == -1)
   1900 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   1901 		else
   1902 			im6o->im6o_multicast_hlim = optval;
   1903 		break;
   1904 	    }
   1905 
   1906 	case IPV6_MULTICAST_LOOP:
   1907 		/*
   1908 		 * Set the loopback flag for outgoing multicast packets.
   1909 		 * Must be zero or one.
   1910 		 */
   1911 		if (m == NULL || m->m_len != sizeof(u_int)) {
   1912 			error = EINVAL;
   1913 			break;
   1914 		}
   1915 		bcopy(mtod(m, u_int *), &loop, sizeof(loop));
   1916 		if (loop > 1) {
   1917 			error = EINVAL;
   1918 			break;
   1919 		}
   1920 		im6o->im6o_multicast_loop = loop;
   1921 		break;
   1922 
   1923 	case IPV6_JOIN_GROUP:
   1924 		/*
   1925 		 * Add a multicast group membership.
   1926 		 * Group must be a valid IP6 multicast address.
   1927 		 */
   1928 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
   1929 			error = EINVAL;
   1930 			break;
   1931 		}
   1932 		mreq = mtod(m, struct ipv6_mreq *);
   1933 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
   1934 			/*
   1935 			 * We use the unspecified address to specify to accept
   1936 			 * all multicast addresses. Only super user is allowed
   1937 			 * to do this.
   1938 			 */
   1939 			if (suser(p->p_ucred, &p->p_acflag))
   1940 			{
   1941 				error = EACCES;
   1942 				break;
   1943 			}
   1944 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
   1945 			error = EINVAL;
   1946 			break;
   1947 		}
   1948 
   1949 		/*
   1950 		 * If no interface was explicitly specified, choose an
   1951 		 * appropriate one according to the given multicast address.
   1952 		 */
   1953 		if (mreq->ipv6mr_interface == 0) {
   1954 			struct sockaddr_in6 *dst;
   1955 
   1956 			/*
   1957 			 * Look up the routing table for the
   1958 			 * address, and choose the outgoing interface.
   1959 			 *   XXX: is it a good approach?
   1960 			 */
   1961 			ro.ro_rt = NULL;
   1962 			dst = (struct sockaddr_in6 *)&ro.ro_dst;
   1963 			bzero(dst, sizeof(*dst));
   1964 			dst->sin6_family = AF_INET6;
   1965 			dst->sin6_len = sizeof(*dst);
   1966 			dst->sin6_addr = mreq->ipv6mr_multiaddr;
   1967 			rtalloc((struct route *)&ro);
   1968 			if (ro.ro_rt == NULL) {
   1969 				error = EADDRNOTAVAIL;
   1970 				break;
   1971 			}
   1972 			ifp = ro.ro_rt->rt_ifp;
   1973 			rtfree(ro.ro_rt);
   1974 		} else {
   1975 			/*
   1976 			 * If the interface is specified, validate it.
   1977 			 */
   1978 			if (mreq->ipv6mr_interface < 0 ||
   1979 			    if_indexlim <= mreq->ipv6mr_interface ||
   1980 			    !ifindex2ifnet[mreq->ipv6mr_interface]) {
   1981 				error = ENXIO;	/* XXX EINVAL? */
   1982 				break;
   1983 			}
   1984 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
   1985 		}
   1986 
   1987 		/*
   1988 		 * See if we found an interface, and confirm that it
   1989 		 * supports multicast
   1990 		 */
   1991 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   1992 			error = EADDRNOTAVAIL;
   1993 			break;
   1994 		}
   1995 
   1996 		if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
   1997 			error = EADDRNOTAVAIL; /* XXX: should not happen */
   1998 			break;
   1999 		}
   2000 
   2001 		/*
   2002 		 * See if the membership already exists.
   2003 		 */
   2004 		for (imm = im6o->im6o_memberships.lh_first;
   2005 		     imm != NULL; imm = imm->i6mm_chain.le_next)
   2006 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
   2007 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2008 			    &mreq->ipv6mr_multiaddr))
   2009 				break;
   2010 		if (imm != NULL) {
   2011 			error = EADDRINUSE;
   2012 			break;
   2013 		}
   2014 		/*
   2015 		 * Everything looks good; add a new record to the multicast
   2016 		 * address list for the given interface.
   2017 		 */
   2018 		imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error, 0);
   2019 		if (imm == NULL)
   2020 			break;
   2021 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
   2022 		break;
   2023 
   2024 	case IPV6_LEAVE_GROUP:
   2025 		/*
   2026 		 * Drop a multicast group membership.
   2027 		 * Group must be a valid IP6 multicast address.
   2028 		 */
   2029 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
   2030 			error = EINVAL;
   2031 			break;
   2032 		}
   2033 		mreq = mtod(m, struct ipv6_mreq *);
   2034 
   2035 		/*
   2036 		 * If an interface address was specified, get a pointer
   2037 		 * to its ifnet structure.
   2038 		 */
   2039 		if (mreq->ipv6mr_interface != 0) {
   2040 			if (mreq->ipv6mr_interface < 0 ||
   2041 			    if_indexlim <= mreq->ipv6mr_interface ||
   2042 			    !ifindex2ifnet[mreq->ipv6mr_interface]) {
   2043 				error = ENXIO;	/* XXX EINVAL? */
   2044 				break;
   2045 			}
   2046 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
   2047 		} else
   2048 			ifp = NULL;
   2049 
   2050 		/* Fill in the scope zone ID */
   2051 		if (ifp) {
   2052 			if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
   2053 				/* XXX: should not happen */
   2054 				error = EADDRNOTAVAIL;
   2055 				break;
   2056 			}
   2057 		} else if (mreq->ipv6mr_interface != 0) {
   2058 			/*
   2059 			 * XXX: This case would happens when the (positive)
   2060 			 * index is in the valid range, but the corresponding
   2061 			 * interface has been detached dynamically.  The above
   2062 			 * check probably avoids such case to happen here, but
   2063 			 * we check it explicitly for safety.
   2064 			 */
   2065 			error = EADDRNOTAVAIL;
   2066 			break;
   2067 		} else {	/* ipv6mr_interface == 0 */
   2068 			struct sockaddr_in6 sa6_mc;
   2069 
   2070 			/*
   2071 			 * The API spec says as follows:
   2072 			 *  If the interface index is specified as 0, the
   2073 			 *  system may choose a multicast group membership to
   2074 			 *  drop by matching the multicast address only.
   2075 			 * On the other hand, we cannot disambiguate the scope
   2076 			 * zone unless an interface is provided.  Thus, we
   2077 			 * check if there's ambiguity with the default scope
   2078 			 * zone as the last resort.
   2079 			 */
   2080 			bzero(&sa6_mc, sizeof(sa6_mc));
   2081 			sa6_mc.sin6_family = AF_INET6;
   2082 			sa6_mc.sin6_len = sizeof(sa6_mc);
   2083 			sa6_mc.sin6_addr = mreq->ipv6mr_multiaddr;
   2084 			error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
   2085 			if (error != 0)
   2086 				break;
   2087 			mreq->ipv6mr_multiaddr = sa6_mc.sin6_addr;
   2088 		}
   2089 
   2090 		/*
   2091 		 * Find the membership in the membership list.
   2092 		 */
   2093 		for (imm = im6o->im6o_memberships.lh_first;
   2094 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
   2095 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
   2096 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2097 			    &mreq->ipv6mr_multiaddr))
   2098 				break;
   2099 		}
   2100 		if (imm == NULL) {
   2101 			/* Unable to resolve interface */
   2102 			error = EADDRNOTAVAIL;
   2103 			break;
   2104 		}
   2105 		/*
   2106 		 * Give up the multicast address record to which the
   2107 		 * membership points.
   2108 		 */
   2109 		LIST_REMOVE(imm, i6mm_chain);
   2110 		in6_leavegroup(imm);
   2111 		break;
   2112 
   2113 	default:
   2114 		error = EOPNOTSUPP;
   2115 		break;
   2116 	}
   2117 
   2118 	/*
   2119 	 * If all options have default values, no need to keep the mbuf.
   2120 	 */
   2121 	if (im6o->im6o_multicast_ifp == NULL &&
   2122 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
   2123 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
   2124 	    im6o->im6o_memberships.lh_first == NULL) {
   2125 		free(*im6op, M_IPMOPTS);
   2126 		*im6op = NULL;
   2127 	}
   2128 
   2129 	return (error);
   2130 }
   2131 
   2132 /*
   2133  * Return the IP6 multicast options in response to user getsockopt().
   2134  */
   2135 static int
   2136 ip6_getmoptions(optname, im6o, mp)
   2137 	int optname;
   2138 	struct ip6_moptions *im6o;
   2139 	struct mbuf **mp;
   2140 {
   2141 	u_int *hlim, *loop, *ifindex;
   2142 
   2143 	*mp = m_get(M_WAIT, MT_SOOPTS);
   2144 
   2145 	switch (optname) {
   2146 
   2147 	case IPV6_MULTICAST_IF:
   2148 		ifindex = mtod(*mp, u_int *);
   2149 		(*mp)->m_len = sizeof(u_int);
   2150 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
   2151 			*ifindex = 0;
   2152 		else
   2153 			*ifindex = im6o->im6o_multicast_ifp->if_index;
   2154 		return (0);
   2155 
   2156 	case IPV6_MULTICAST_HOPS:
   2157 		hlim = mtod(*mp, u_int *);
   2158 		(*mp)->m_len = sizeof(u_int);
   2159 		if (im6o == NULL)
   2160 			*hlim = ip6_defmcasthlim;
   2161 		else
   2162 			*hlim = im6o->im6o_multicast_hlim;
   2163 		return (0);
   2164 
   2165 	case IPV6_MULTICAST_LOOP:
   2166 		loop = mtod(*mp, u_int *);
   2167 		(*mp)->m_len = sizeof(u_int);
   2168 		if (im6o == NULL)
   2169 			*loop = ip6_defmcasthlim;
   2170 		else
   2171 			*loop = im6o->im6o_multicast_loop;
   2172 		return (0);
   2173 
   2174 	default:
   2175 		return (EOPNOTSUPP);
   2176 	}
   2177 }
   2178 
   2179 /*
   2180  * Discard the IP6 multicast options.
   2181  */
   2182 void
   2183 ip6_freemoptions(im6o)
   2184 	struct ip6_moptions *im6o;
   2185 {
   2186 	struct in6_multi_mship *imm;
   2187 
   2188 	if (im6o == NULL)
   2189 		return;
   2190 
   2191 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
   2192 		LIST_REMOVE(imm, i6mm_chain);
   2193 		in6_leavegroup(imm);
   2194 	}
   2195 	free(im6o, M_IPMOPTS);
   2196 }
   2197 
   2198 /*
   2199  * Set IPv6 outgoing packet options based on advanced API.
   2200  */
   2201 int
   2202 ip6_setpktoptions(control, opt, priv)
   2203 	struct mbuf *control;
   2204 	struct ip6_pktopts *opt;
   2205 	int priv;
   2206 {
   2207 	struct cmsghdr *cm = 0;
   2208 
   2209 	if (control == 0 || opt == 0)
   2210 		return (EINVAL);
   2211 
   2212 	bzero(opt, sizeof(*opt));
   2213 	opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
   2214 
   2215 	/*
   2216 	 * XXX: Currently, we assume all the optional information is stored
   2217 	 * in a single mbuf.
   2218 	 */
   2219 	if (control->m_next)
   2220 		return (EINVAL);
   2221 
   2222 	opt->ip6po_m = control;
   2223 
   2224 	for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
   2225 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
   2226 		cm = mtod(control, struct cmsghdr *);
   2227 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
   2228 			return (EINVAL);
   2229 		if (cm->cmsg_level != IPPROTO_IPV6)
   2230 			continue;
   2231 
   2232 		switch (cm->cmsg_type) {
   2233 		case IPV6_PKTINFO:
   2234 			if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
   2235 				return (EINVAL);
   2236 			opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
   2237 			if (opt->ip6po_pktinfo->ipi6_ifindex >= if_indexlim ||
   2238 			    opt->ip6po_pktinfo->ipi6_ifindex < 0)
   2239 				return (ENXIO);
   2240 			if (opt->ip6po_pktinfo->ipi6_ifindex > 0 &&
   2241 			    !ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex])
   2242 				return (ENXIO);
   2243 
   2244 			if (opt->ip6po_pktinfo->ipi6_ifindex) {
   2245 				struct ifnet *ifp;
   2246 				int error;
   2247 
   2248 				/* ipi6_ifindex must be valid here */
   2249 				ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
   2250 				error = in6_setscope(&opt->ip6po_pktinfo->ipi6_addr,
   2251 				    ifp, NULL);
   2252 				if (error != 0)
   2253 					return (error);
   2254 			}
   2255 
   2256 			/*
   2257 			 * Check if the requested source address is indeed a
   2258 			 * unicast address assigned to the node, and can be
   2259 			 * used as the packet's source address.
   2260 			 */
   2261 			if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
   2262 				struct ifaddr *ia;
   2263 				struct in6_ifaddr *ia6;
   2264 				struct sockaddr_in6 sin6;
   2265 
   2266 				bzero(&sin6, sizeof(sin6));
   2267 				sin6.sin6_len = sizeof(sin6);
   2268 				sin6.sin6_family = AF_INET6;
   2269 				sin6.sin6_addr =
   2270 					opt->ip6po_pktinfo->ipi6_addr;
   2271 				ia = ifa_ifwithaddr(sin6tosa(&sin6));
   2272 				if (ia == NULL ||
   2273 				    (opt->ip6po_pktinfo->ipi6_ifindex &&
   2274 				     (ia->ifa_ifp->if_index !=
   2275 				      opt->ip6po_pktinfo->ipi6_ifindex))) {
   2276 					return (EADDRNOTAVAIL);
   2277 				}
   2278 				ia6 = (struct in6_ifaddr *)ia;
   2279 				if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) {
   2280 					return (EADDRNOTAVAIL);
   2281 				}
   2282 
   2283 				/*
   2284 				 * Check if the requested source address is
   2285 				 * indeed a unicast address assigned to the
   2286 				 * node.
   2287 				 */
   2288 				if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
   2289 					return (EADDRNOTAVAIL);
   2290 			}
   2291 			break;
   2292 
   2293 		case IPV6_HOPLIMIT:
   2294 			if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
   2295 				return (EINVAL);
   2296 			else {
   2297 				int t;
   2298 
   2299 				bcopy(CMSG_DATA(cm), &t, sizeof(t));
   2300 				if (t < -1 || t > 255)
   2301 					return (EINVAL);
   2302 				opt->ip6po_hlim = t;
   2303 			}
   2304 			break;
   2305 
   2306 		case IPV6_NEXTHOP:
   2307 			if (!priv)
   2308 				return (EPERM);
   2309 
   2310 			/* check if cmsg_len is large enough for sa_len */
   2311 			if (cm->cmsg_len < sizeof(u_char) ||
   2312 			    cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
   2313 				return (EINVAL);
   2314 
   2315 			opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
   2316 
   2317 			break;
   2318 
   2319 		case IPV6_HOPOPTS:
   2320 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
   2321 				return (EINVAL);
   2322 			else {
   2323 				struct  ip6_hbh *t;
   2324 
   2325 				t = (struct ip6_hbh *)CMSG_DATA(cm);
   2326 				if (cm->cmsg_len !=
   2327 				    CMSG_LEN((t->ip6h_len + 1) << 3))
   2328 					return (EINVAL);
   2329 				opt->ip6po_hbh = t;
   2330 			}
   2331 			break;
   2332 
   2333 		case IPV6_DSTOPTS:
   2334 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
   2335 				return (EINVAL);
   2336 
   2337 			/*
   2338 			 * If there is no routing header yet, the destination
   2339 			 * options header should be put on the 1st part.
   2340 			 * Otherwise, the header should be on the 2nd part.
   2341 			 * (See RFC 2460, section 4.1)
   2342 			 */
   2343 			if (opt->ip6po_rthdr == NULL) {
   2344 				struct ip6_dest *t;
   2345 
   2346 				t = (struct ip6_dest *)CMSG_DATA(cm);
   2347 				if (cm->cmsg_len !=
   2348 				    CMSG_LEN((t->ip6d_len + 1) << 3));
   2349 					return (EINVAL);
   2350 				opt->ip6po_dest1 = t;
   2351 			}
   2352 			else {
   2353 				struct ip6_dest *t;
   2354 
   2355 				t = (struct ip6_dest *)CMSG_DATA(cm);
   2356 				if (cm->cmsg_len !=
   2357 				    CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) << 3))
   2358 					return (EINVAL);
   2359 				opt->ip6po_dest2 = t;
   2360 			}
   2361 			break;
   2362 
   2363 		case IPV6_RTHDR:
   2364 			if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
   2365 				return (EINVAL);
   2366 			else {
   2367 				struct ip6_rthdr *t;
   2368 
   2369 				t = (struct ip6_rthdr *)CMSG_DATA(cm);
   2370 				if (cm->cmsg_len !=
   2371 				    CMSG_LEN((t->ip6r_len + 1) << 3))
   2372 					return (EINVAL);
   2373 				switch (t->ip6r_type) {
   2374 				case IPV6_RTHDR_TYPE_0:
   2375 					if (t->ip6r_segleft == 0)
   2376 						return (EINVAL);
   2377 					break;
   2378 				default:
   2379 					return (EINVAL);
   2380 				}
   2381 				opt->ip6po_rthdr = t;
   2382 			}
   2383 			break;
   2384 
   2385 		default:
   2386 			return (ENOPROTOOPT);
   2387 		}
   2388 	}
   2389 
   2390 	return (0);
   2391 }
   2392 
   2393 /*
   2394  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
   2395  * packet to the input queue of a specified interface.  Note that this
   2396  * calls the output routine of the loopback "driver", but with an interface
   2397  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   2398  */
   2399 void
   2400 ip6_mloopback(ifp, m, dst)
   2401 	struct ifnet *ifp;
   2402 	struct mbuf *m;
   2403 	struct sockaddr_in6 *dst;
   2404 {
   2405 	struct mbuf *copym;
   2406 	struct ip6_hdr *ip6;
   2407 
   2408 	copym = m_copy(m, 0, M_COPYALL);
   2409 	if (copym == NULL)
   2410 		return;
   2411 
   2412 	/*
   2413 	 * Make sure to deep-copy IPv6 header portion in case the data
   2414 	 * is in an mbuf cluster, so that we can safely override the IPv6
   2415 	 * header portion later.
   2416 	 */
   2417 	if ((copym->m_flags & M_EXT) != 0 ||
   2418 	    copym->m_len < sizeof(struct ip6_hdr)) {
   2419 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
   2420 		if (copym == NULL)
   2421 			return;
   2422 	}
   2423 
   2424 #ifdef DIAGNOSTIC
   2425 	if (copym->m_len < sizeof(*ip6)) {
   2426 		m_freem(copym);
   2427 		return;
   2428 	}
   2429 #endif
   2430 
   2431 	ip6 = mtod(copym, struct ip6_hdr *);
   2432 	/*
   2433 	 * clear embedded scope identifiers if necessary.
   2434 	 * in6_clearscope will touch the addresses only when necessary.
   2435 	 */
   2436 	in6_clearscope(&ip6->ip6_src);
   2437 	in6_clearscope(&ip6->ip6_dst);
   2438 
   2439 	(void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
   2440 }
   2441 
   2442 /*
   2443  * Chop IPv6 header off from the payload.
   2444  */
   2445 static int
   2446 ip6_splithdr(m, exthdrs)
   2447 	struct mbuf *m;
   2448 	struct ip6_exthdrs *exthdrs;
   2449 {
   2450 	struct mbuf *mh;
   2451 	struct ip6_hdr *ip6;
   2452 
   2453 	ip6 = mtod(m, struct ip6_hdr *);
   2454 	if (m->m_len > sizeof(*ip6)) {
   2455 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
   2456 		if (mh == 0) {
   2457 			m_freem(m);
   2458 			return ENOBUFS;
   2459 		}
   2460 		M_MOVE_PKTHDR(mh, m);
   2461 		MH_ALIGN(mh, sizeof(*ip6));
   2462 		m->m_len -= sizeof(*ip6);
   2463 		m->m_data += sizeof(*ip6);
   2464 		mh->m_next = m;
   2465 		m = mh;
   2466 		m->m_len = sizeof(*ip6);
   2467 		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
   2468 	}
   2469 	exthdrs->ip6e_ip6 = m;
   2470 	return 0;
   2471 }
   2472 
   2473 /*
   2474  * Compute IPv6 extension header length.
   2475  */
   2476 int
   2477 ip6_optlen(in6p)
   2478 	struct in6pcb *in6p;
   2479 {
   2480 	int len;
   2481 
   2482 	if (!in6p->in6p_outputopts)
   2483 		return 0;
   2484 
   2485 	len = 0;
   2486 #define elen(x) \
   2487     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
   2488 
   2489 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
   2490 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
   2491 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
   2492 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
   2493 	return len;
   2494 #undef elen
   2495 }
   2496