Home | History | Annotate | Line # | Download | only in netinet6
ip6_output.c revision 1.94.6.2
      1 /*	$NetBSD: ip6_output.c,v 1.94.6.2 2006/05/24 10:59:09 yamt Exp $	*/
      2 /*	$KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1982, 1986, 1988, 1990, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * Redistribution and use in source and binary forms, with or without
     38  * modification, are permitted provided that the following conditions
     39  * are met:
     40  * 1. Redistributions of source code must retain the above copyright
     41  *    notice, this list of conditions and the following disclaimer.
     42  * 2. Redistributions in binary form must reproduce the above copyright
     43  *    notice, this list of conditions and the following disclaimer in the
     44  *    documentation and/or other materials provided with the distribution.
     45  * 3. Neither the name of the University nor the names of its contributors
     46  *    may be used to endorse or promote products derived from this software
     47  *    without specific prior written permission.
     48  *
     49  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     50  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     51  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     52  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     53  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     54  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     55  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     56  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     57  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     58  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     59  * SUCH DAMAGE.
     60  *
     61  *	@(#)ip_output.c	8.3 (Berkeley) 1/21/94
     62  */
     63 
     64 #include <sys/cdefs.h>
     65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.94.6.2 2006/05/24 10:59:09 yamt Exp $");
     66 
     67 #include "opt_inet.h"
     68 #include "opt_inet6.h"
     69 #include "opt_ipsec.h"
     70 #include "opt_pfil_hooks.h"
     71 
     72 #include <sys/param.h>
     73 #include <sys/malloc.h>
     74 #include <sys/mbuf.h>
     75 #include <sys/errno.h>
     76 #include <sys/protosw.h>
     77 #include <sys/socket.h>
     78 #include <sys/socketvar.h>
     79 #include <sys/systm.h>
     80 #include <sys/proc.h>
     81 #include <sys/kauth.h>
     82 
     83 #include <net/if.h>
     84 #include <net/route.h>
     85 #ifdef PFIL_HOOKS
     86 #include <net/pfil.h>
     87 #endif
     88 
     89 #include <netinet/in.h>
     90 #include <netinet/in_var.h>
     91 #include <netinet/ip6.h>
     92 #include <netinet/icmp6.h>
     93 #include <netinet/in_offload.h>
     94 #include <netinet6/ip6_var.h>
     95 #include <netinet6/in6_pcb.h>
     96 #include <netinet6/nd6.h>
     97 #include <netinet6/ip6protosw.h>
     98 #include <netinet6/scope6_var.h>
     99 
    100 #ifdef IPSEC
    101 #include <netinet6/ipsec.h>
    102 #include <netkey/key.h>
    103 #endif /* IPSEC */
    104 
    105 #include <net/net_osdep.h>
    106 
    107 #ifdef PFIL_HOOKS
    108 extern struct pfil_head inet6_pfil_hook;	/* XXX */
    109 #endif
    110 
    111 struct ip6_exthdrs {
    112 	struct mbuf *ip6e_ip6;
    113 	struct mbuf *ip6e_hbh;
    114 	struct mbuf *ip6e_dest1;
    115 	struct mbuf *ip6e_rthdr;
    116 	struct mbuf *ip6e_dest2;
    117 };
    118 
    119 static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **,
    120 	int, int));
    121 static int ip6_getpcbopt __P((struct ip6_pktopts *, int, struct mbuf **));
    122 static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *, int,
    123 	int, int, int));
    124 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
    125 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
    126 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
    127 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
    128 	struct ip6_frag **));
    129 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
    130 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
    131 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
    132 	struct ifnet *, struct in6_addr *, u_long *, int *));
    133 static int copypktopts __P((struct ip6_pktopts *, struct ip6_pktopts *, int));
    134 
    135 #ifdef RFC2292
    136 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
    137 	struct socket *));
    138 #endif
    139 
    140 #define	IN6_NEED_CHECKSUM(ifp, csum_flags) \
    141 	(__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
    142 	(((csum_flags) & M_CSUM_UDPv6) != 0 && udp_do_loopback_cksum) || \
    143 	(((csum_flags) & M_CSUM_TCPv6) != 0 && tcp_do_loopback_cksum)))
    144 
    145 /*
    146  * IP6 output. The packet in mbuf chain m contains a skeletal IP6
    147  * header (with pri, len, nxt, hlim, src, dst).
    148  * This function may modify ver and hlim only.
    149  * The mbuf chain containing the packet will be freed.
    150  * The mbuf opt, if present, will not be freed.
    151  *
    152  * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
    153  * nd_ifinfo.linkmtu is u_int32_t.  so we use u_long to hold largest one,
    154  * which is rt_rmx.rmx_mtu.
    155  */
    156 int
    157 ip6_output(m0, opt, ro, flags, im6o, so, ifpp)
    158 	struct mbuf *m0;
    159 	struct ip6_pktopts *opt;
    160 	struct route_in6 *ro;
    161 	int flags;
    162 	struct ip6_moptions *im6o;
    163 	struct socket *so;
    164 	struct ifnet **ifpp;		/* XXX: just for statistics */
    165 {
    166 	struct ip6_hdr *ip6, *mhip6;
    167 	struct ifnet *ifp, *origifp;
    168 	struct mbuf *m = m0;
    169 	int hlen, tlen, len, off;
    170 	struct route_in6 ip6route;
    171 	struct rtentry *rt = NULL;
    172 	struct sockaddr_in6 *dst, src_sa, dst_sa;
    173 	int error = 0;
    174 	struct in6_ifaddr *ia = NULL;
    175 	u_long mtu;
    176 	int alwaysfrag, dontfrag;
    177 	u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
    178 	struct ip6_exthdrs exthdrs;
    179 	struct in6_addr finaldst, src0, dst0;
    180 	u_int32_t zone;
    181 	struct route_in6 *ro_pmtu = NULL;
    182 	int hdrsplit = 0;
    183 	int needipsec = 0;
    184 #ifdef IPSEC
    185 	int needipsectun = 0;
    186 	struct secpolicy *sp = NULL;
    187 
    188 	ip6 = mtod(m, struct ip6_hdr *);
    189 #endif /* IPSEC */
    190 
    191 	M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
    192 
    193 #define MAKE_EXTHDR(hp, mp)						\
    194     do {								\
    195 	if (hp) {							\
    196 		struct ip6_ext *eh = (struct ip6_ext *)(hp);		\
    197 		error = ip6_copyexthdr((mp), (caddr_t)(hp), 		\
    198 		    ((eh)->ip6e_len + 1) << 3);				\
    199 		if (error)						\
    200 			goto freehdrs;					\
    201 	}								\
    202     } while (/*CONSTCOND*/ 0)
    203 
    204 	bzero(&exthdrs, sizeof(exthdrs));
    205 	if (opt) {
    206 		/* Hop-by-Hop options header */
    207 		MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
    208 		/* Destination options header(1st part) */
    209 		MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
    210 		/* Routing header */
    211 		MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
    212 		/* Destination options header(2nd part) */
    213 		MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
    214 	}
    215 
    216 #ifdef IPSEC
    217 	if ((flags & IPV6_FORWARDING) != 0) {
    218 		needipsec = 0;
    219 		goto skippolicycheck;
    220 	}
    221 
    222 	/* get a security policy for this packet */
    223 	if (so == NULL)
    224 		sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
    225 	else {
    226 		if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
    227 					 IPSEC_DIR_OUTBOUND)) {
    228 			needipsec = 0;
    229 			goto skippolicycheck;
    230 		}
    231 		sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
    232 	}
    233 
    234 	if (sp == NULL) {
    235 		ipsec6stat.out_inval++;
    236 		goto freehdrs;
    237 	}
    238 
    239 	error = 0;
    240 
    241 	/* check policy */
    242 	switch (sp->policy) {
    243 	case IPSEC_POLICY_DISCARD:
    244 		/*
    245 		 * This packet is just discarded.
    246 		 */
    247 		ipsec6stat.out_polvio++;
    248 		goto freehdrs;
    249 
    250 	case IPSEC_POLICY_BYPASS:
    251 	case IPSEC_POLICY_NONE:
    252 		/* no need to do IPsec. */
    253 		needipsec = 0;
    254 		break;
    255 
    256 	case IPSEC_POLICY_IPSEC:
    257 		if (sp->req == NULL) {
    258 			/* XXX should be panic ? */
    259 			printf("ip6_output: No IPsec request specified.\n");
    260 			error = EINVAL;
    261 			goto freehdrs;
    262 		}
    263 		needipsec = 1;
    264 		break;
    265 
    266 	case IPSEC_POLICY_ENTRUST:
    267 	default:
    268 		printf("ip6_output: Invalid policy found. %d\n", sp->policy);
    269 	}
    270 
    271   skippolicycheck:;
    272 #endif /* IPSEC */
    273 
    274 	if (needipsec &&
    275 	    (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    276 		in6_delayed_cksum(m);
    277 		m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    278 	}
    279 
    280 	/*
    281 	 * Calculate the total length of the extension header chain.
    282 	 * Keep the length of the unfragmentable part for fragmentation.
    283 	 */
    284 	optlen = 0;
    285 	if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
    286 	if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
    287 	if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
    288 	unfragpartlen = optlen + sizeof(struct ip6_hdr);
    289 	/* NOTE: we don't add AH/ESP length here. do that later. */
    290 	if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
    291 
    292 	/*
    293 	 * If we need IPsec, or there is at least one extension header,
    294 	 * separate IP6 header from the payload.
    295 	 */
    296 	if ((needipsec || optlen) && !hdrsplit) {
    297 		if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    298 			m = NULL;
    299 			goto freehdrs;
    300 		}
    301 		m = exthdrs.ip6e_ip6;
    302 		hdrsplit++;
    303 	}
    304 
    305 	/* adjust pointer */
    306 	ip6 = mtod(m, struct ip6_hdr *);
    307 
    308 	/* adjust mbuf packet header length */
    309 	m->m_pkthdr.len += optlen;
    310 	plen = m->m_pkthdr.len - sizeof(*ip6);
    311 
    312 	/* If this is a jumbo payload, insert a jumbo payload option. */
    313 	if (plen > IPV6_MAXPACKET) {
    314 		if (!hdrsplit) {
    315 			if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
    316 				m = NULL;
    317 				goto freehdrs;
    318 			}
    319 			m = exthdrs.ip6e_ip6;
    320 			hdrsplit++;
    321 		}
    322 		/* adjust pointer */
    323 		ip6 = mtod(m, struct ip6_hdr *);
    324 		if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
    325 			goto freehdrs;
    326 		optlen += 8; /* XXX JUMBOOPTLEN */
    327 		ip6->ip6_plen = 0;
    328 	} else
    329 		ip6->ip6_plen = htons(plen);
    330 
    331 	/*
    332 	 * Concatenate headers and fill in next header fields.
    333 	 * Here we have, on "m"
    334 	 *	IPv6 payload
    335 	 * and we insert headers accordingly.  Finally, we should be getting:
    336 	 *	IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
    337 	 *
    338 	 * during the header composing process, "m" points to IPv6 header.
    339 	 * "mprev" points to an extension header prior to esp.
    340 	 */
    341 	{
    342 		u_char *nexthdrp = &ip6->ip6_nxt;
    343 		struct mbuf *mprev = m;
    344 
    345 		/*
    346 		 * we treat dest2 specially.  this makes IPsec processing
    347 		 * much easier.  the goal here is to make mprev point the
    348 		 * mbuf prior to dest2.
    349 		 *
    350 		 * result: IPv6 dest2 payload
    351 		 * m and mprev will point to IPv6 header.
    352 		 */
    353 		if (exthdrs.ip6e_dest2) {
    354 			if (!hdrsplit)
    355 				panic("assumption failed: hdr not split");
    356 			exthdrs.ip6e_dest2->m_next = m->m_next;
    357 			m->m_next = exthdrs.ip6e_dest2;
    358 			*mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
    359 			ip6->ip6_nxt = IPPROTO_DSTOPTS;
    360 		}
    361 
    362 #define MAKE_CHAIN(m, mp, p, i)\
    363     do {\
    364 	if (m) {\
    365 		if (!hdrsplit) \
    366 			panic("assumption failed: hdr not split"); \
    367 		*mtod((m), u_char *) = *(p);\
    368 		*(p) = (i);\
    369 		p = mtod((m), u_char *);\
    370 		(m)->m_next = (mp)->m_next;\
    371 		(mp)->m_next = (m);\
    372 		(mp) = (m);\
    373 	}\
    374     } while (/*CONSTCOND*/ 0)
    375 		/*
    376 		 * result: IPv6 hbh dest1 rthdr dest2 payload
    377 		 * m will point to IPv6 header.  mprev will point to the
    378 		 * extension header prior to dest2 (rthdr in the above case).
    379 		 */
    380 		MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
    381 		MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
    382 		    IPPROTO_DSTOPTS);
    383 		MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
    384 		    IPPROTO_ROUTING);
    385 
    386 		M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
    387 		    sizeof(struct ip6_hdr) + optlen);
    388 
    389 #ifdef IPSEC
    390 		if (!needipsec)
    391 			goto skip_ipsec2;
    392 
    393 		/*
    394 		 * pointers after IPsec headers are not valid any more.
    395 		 * other pointers need a great care too.
    396 		 * (IPsec routines should not mangle mbufs prior to AH/ESP)
    397 		 */
    398 		exthdrs.ip6e_dest2 = NULL;
    399 
    400 	    {
    401 		struct ip6_rthdr *rh = NULL;
    402 		int segleft_org = 0;
    403 		struct ipsec_output_state state;
    404 
    405 		if (exthdrs.ip6e_rthdr) {
    406 			rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
    407 			segleft_org = rh->ip6r_segleft;
    408 			rh->ip6r_segleft = 0;
    409 		}
    410 
    411 		bzero(&state, sizeof(state));
    412 		state.m = m;
    413 		error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
    414 		    &needipsectun);
    415 		m = state.m;
    416 		if (error) {
    417 			/* mbuf is already reclaimed in ipsec6_output_trans. */
    418 			m = NULL;
    419 			switch (error) {
    420 			case EHOSTUNREACH:
    421 			case ENETUNREACH:
    422 			case EMSGSIZE:
    423 			case ENOBUFS:
    424 			case ENOMEM:
    425 				break;
    426 			default:
    427 				printf("ip6_output (ipsec): error code %d\n", error);
    428 				/* FALLTHROUGH */
    429 			case ENOENT:
    430 				/* don't show these error codes to the user */
    431 				error = 0;
    432 				break;
    433 			}
    434 			goto bad;
    435 		}
    436 		if (exthdrs.ip6e_rthdr) {
    437 			/* ah6_output doesn't modify mbuf chain */
    438 			rh->ip6r_segleft = segleft_org;
    439 		}
    440 	    }
    441 skip_ipsec2:;
    442 #endif
    443 	}
    444 
    445 	/*
    446 	 * If there is a routing header, replace destination address field
    447 	 * with the first hop of the routing header.
    448 	 */
    449 	if (exthdrs.ip6e_rthdr) {
    450 		struct ip6_rthdr *rh;
    451 		struct ip6_rthdr0 *rh0;
    452 		struct in6_addr *addr;
    453 		struct sockaddr_in6 sa;
    454 
    455 		rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
    456 		    struct ip6_rthdr *));
    457 		finaldst = ip6->ip6_dst;
    458 		switch (rh->ip6r_type) {
    459 		case IPV6_RTHDR_TYPE_0:
    460 			 rh0 = (struct ip6_rthdr0 *)rh;
    461 			 addr = (struct in6_addr *)(rh0 + 1);
    462 
    463 			 /*
    464 			  * construct a sockaddr_in6 form of
    465 			  * the first hop.
    466 			  *
    467 			  * XXX: we may not have enough
    468 			  * information about its scope zone;
    469 			  * there is no standard API to pass
    470 			  * the information from the
    471 			  * application.
    472 			  */
    473 			 bzero(&sa, sizeof(sa));
    474 			 sa.sin6_family = AF_INET6;
    475 			 sa.sin6_len = sizeof(sa);
    476 			 sa.sin6_addr = addr[0];
    477 			 if ((error = sa6_embedscope(&sa,
    478 			     ip6_use_defzone)) != 0) {
    479 				 goto bad;
    480 			 }
    481 			 ip6->ip6_dst = sa.sin6_addr;
    482 			 (void)memmove(&addr[0], &addr[1],
    483 			     sizeof(struct in6_addr) *
    484 			     (rh0->ip6r0_segleft - 1));
    485 			 addr[rh0->ip6r0_segleft - 1] = finaldst;
    486 			 /* XXX */
    487 			 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
    488 			 break;
    489 		default:	/* is it possible? */
    490 			 error = EINVAL;
    491 			 goto bad;
    492 		}
    493 	}
    494 
    495 	/* Source address validation */
    496 	if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
    497 	    (flags & IPV6_UNSPECSRC) == 0) {
    498 		error = EOPNOTSUPP;
    499 		ip6stat.ip6s_badscope++;
    500 		goto bad;
    501 	}
    502 	if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
    503 		error = EOPNOTSUPP;
    504 		ip6stat.ip6s_badscope++;
    505 		goto bad;
    506 	}
    507 
    508 	ip6stat.ip6s_localout++;
    509 
    510 	/*
    511 	 * Route packet.
    512 	 */
    513 	/* initialize cached route */
    514 	if (ro == 0) {
    515 		ro = &ip6route;
    516 		bzero((caddr_t)ro, sizeof(*ro));
    517 	}
    518 	ro_pmtu = ro;
    519 	if (opt && opt->ip6po_rthdr)
    520 		ro = &opt->ip6po_route;
    521 	dst = (struct sockaddr_in6 *)&ro->ro_dst;
    522 
    523  	/*
    524 	 * if specified, try to fill in the traffic class field.
    525 	 * do not override if a non-zero value is already set.
    526 	 * we check the diffserv field and the ecn field separately.
    527 	 */
    528 	if (opt && opt->ip6po_tclass >= 0) {
    529 		int mask = 0;
    530 
    531 		if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
    532 			mask |= 0xfc;
    533 		if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
    534 			mask |= 0x03;
    535 		if (mask != 0)
    536 			ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
    537 	}
    538 
    539 	/* fill in or override the hop limit field, if necessary. */
    540 	if (opt && opt->ip6po_hlim != -1)
    541 		ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
    542 	else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    543 		if (im6o != NULL)
    544 			ip6->ip6_hlim = im6o->im6o_multicast_hlim;
    545 		else
    546 			ip6->ip6_hlim = ip6_defmcasthlim;
    547 	}
    548 
    549 #ifdef IPSEC
    550 	if (needipsec && needipsectun) {
    551 		struct ipsec_output_state state;
    552 
    553 		/*
    554 		 * All the extension headers will become inaccessible
    555 		 * (since they can be encrypted).
    556 		 * Don't panic, we need no more updates to extension headers
    557 		 * on inner IPv6 packet (since they are now encapsulated).
    558 		 *
    559 		 * IPv6 [ESP|AH] IPv6 [extension headers] payload
    560 		 */
    561 		bzero(&exthdrs, sizeof(exthdrs));
    562 		exthdrs.ip6e_ip6 = m;
    563 
    564 		bzero(&state, sizeof(state));
    565 		state.m = m;
    566 		state.ro = (struct route *)ro;
    567 		state.dst = (struct sockaddr *)dst;
    568 
    569 		error = ipsec6_output_tunnel(&state, sp, flags);
    570 
    571 		m = state.m;
    572 		ro_pmtu = ro = (struct route_in6 *)state.ro;
    573 		dst = (struct sockaddr_in6 *)state.dst;
    574 		if (error) {
    575 			/* mbuf is already reclaimed in ipsec6_output_tunnel. */
    576 			m0 = m = NULL;
    577 			m = NULL;
    578 			switch (error) {
    579 			case EHOSTUNREACH:
    580 			case ENETUNREACH:
    581 			case EMSGSIZE:
    582 			case ENOBUFS:
    583 			case ENOMEM:
    584 				break;
    585 			default:
    586 				printf("ip6_output (ipsec): error code %d\n", error);
    587 				/* FALLTHROUGH */
    588 			case ENOENT:
    589 				/* don't show these error codes to the user */
    590 				error = 0;
    591 				break;
    592 			}
    593 			goto bad;
    594 		}
    595 
    596 		exthdrs.ip6e_ip6 = m;
    597 	}
    598 #endif /* IPSEC */
    599 
    600 	/* adjust pointer */
    601 	ip6 = mtod(m, struct ip6_hdr *);
    602 
    603 	bzero(&dst_sa, sizeof(dst_sa));
    604 	dst_sa.sin6_family = AF_INET6;
    605 	dst_sa.sin6_len = sizeof(dst_sa);
    606 	dst_sa.sin6_addr = ip6->ip6_dst;
    607 	if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, &rt, 0))
    608 	    != 0) {
    609 		switch (error) {
    610 		case EHOSTUNREACH:
    611 			ip6stat.ip6s_noroute++;
    612 			break;
    613 		case EADDRNOTAVAIL:
    614 		default:
    615 			break; /* XXX statistics? */
    616 		}
    617 		if (ifp != NULL)
    618 			in6_ifstat_inc(ifp, ifs6_out_discard);
    619 		goto bad;
    620 	}
    621 	if (rt == NULL) {
    622 		/*
    623 		 * If in6_selectroute() does not return a route entry,
    624 		 * dst may not have been updated.
    625 		 */
    626 		*dst = dst_sa;	/* XXX */
    627 	}
    628 
    629 	/*
    630 	 * then rt (for unicast) and ifp must be non-NULL valid values.
    631 	 */
    632 	if ((flags & IPV6_FORWARDING) == 0) {
    633 		/* XXX: the FORWARDING flag can be set for mrouting. */
    634 		in6_ifstat_inc(ifp, ifs6_out_request);
    635 	}
    636 	if (rt != NULL) {
    637 		ia = (struct in6_ifaddr *)(rt->rt_ifa);
    638 		rt->rt_use++;
    639 	}
    640 
    641 	/*
    642 	 * The outgoing interface must be in the zone of source and
    643 	 * destination addresses.  We should use ia_ifp to support the
    644 	 * case of sending packets to an address of our own.
    645 	 */
    646 	if (ia != NULL && ia->ia_ifp)
    647 		origifp = ia->ia_ifp;
    648 	else
    649 		origifp = ifp;
    650 
    651 	src0 = ip6->ip6_src;
    652 	if (in6_setscope(&src0, origifp, &zone))
    653 		goto badscope;
    654 	bzero(&src_sa, sizeof(src_sa));
    655 	src_sa.sin6_family = AF_INET6;
    656 	src_sa.sin6_len = sizeof(src_sa);
    657 	src_sa.sin6_addr = ip6->ip6_src;
    658 	if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
    659 		goto badscope;
    660 
    661 	dst0 = ip6->ip6_dst;
    662 	if (in6_setscope(&dst0, origifp, &zone))
    663 		goto badscope;
    664 	/* re-initialize to be sure */
    665 	bzero(&dst_sa, sizeof(dst_sa));
    666 	dst_sa.sin6_family = AF_INET6;
    667 	dst_sa.sin6_len = sizeof(dst_sa);
    668 	dst_sa.sin6_addr = ip6->ip6_dst;
    669 	if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
    670 		goto badscope;
    671 
    672 	/* scope check is done. */
    673 	goto routefound;
    674 
    675   badscope:
    676 	ip6stat.ip6s_badscope++;
    677 	in6_ifstat_inc(origifp, ifs6_out_discard);
    678 	if (error == 0)
    679 		error = EHOSTUNREACH; /* XXX */
    680 	goto bad;
    681 
    682   routefound:
    683 	if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
    684 		if (opt && opt->ip6po_nextroute.ro_rt) {
    685 			/*
    686 			 * The nexthop is explicitly specified by the
    687 			 * application.  We assume the next hop is an IPv6
    688 			 * address.
    689 			 */
    690 			dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
    691 		} else if ((rt->rt_flags & RTF_GATEWAY))
    692 			dst = (struct sockaddr_in6 *)rt->rt_gateway;
    693 	}
    694 
    695 	/*
    696 	 * XXXXXX: original code follows:
    697 	 */
    698 	if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
    699 		m->m_flags &= ~(M_BCAST | M_MCAST);	/* just in case */
    700 	else {
    701 		struct	in6_multi *in6m;
    702 
    703 		m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
    704 
    705 		in6_ifstat_inc(ifp, ifs6_out_mcast);
    706 
    707 		/*
    708 		 * Confirm that the outgoing interface supports multicast.
    709 		 */
    710 		if (!(ifp->if_flags & IFF_MULTICAST)) {
    711 			ip6stat.ip6s_noroute++;
    712 			in6_ifstat_inc(ifp, ifs6_out_discard);
    713 			error = ENETUNREACH;
    714 			goto bad;
    715 		}
    716 
    717 		IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
    718 		if (in6m != NULL &&
    719 		   (im6o == NULL || im6o->im6o_multicast_loop)) {
    720 			/*
    721 			 * If we belong to the destination multicast group
    722 			 * on the outgoing interface, and the caller did not
    723 			 * forbid loopback, loop back a copy.
    724 			 */
    725 			ip6_mloopback(ifp, m, dst);
    726 		} else {
    727 			/*
    728 			 * If we are acting as a multicast router, perform
    729 			 * multicast forwarding as if the packet had just
    730 			 * arrived on the interface to which we are about
    731 			 * to send.  The multicast forwarding function
    732 			 * recursively calls this function, using the
    733 			 * IPV6_FORWARDING flag to prevent infinite recursion.
    734 			 *
    735 			 * Multicasts that are looped back by ip6_mloopback(),
    736 			 * above, will be forwarded by the ip6_input() routine,
    737 			 * if necessary.
    738 			 */
    739 			if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
    740 				if (ip6_mforward(ip6, ifp, m) != 0) {
    741 					m_freem(m);
    742 					goto done;
    743 				}
    744 			}
    745 		}
    746 		/*
    747 		 * Multicasts with a hoplimit of zero may be looped back,
    748 		 * above, but must not be transmitted on a network.
    749 		 * Also, multicasts addressed to the loopback interface
    750 		 * are not sent -- the above call to ip6_mloopback() will
    751 		 * loop back a copy if this host actually belongs to the
    752 		 * destination group on the loopback interface.
    753 		 */
    754 		if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
    755 		    IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
    756 			m_freem(m);
    757 			goto done;
    758 		}
    759 	}
    760 
    761 	/*
    762 	 * Fill the outgoing inteface to tell the upper layer
    763 	 * to increment per-interface statistics.
    764 	 */
    765 	if (ifpp)
    766 		*ifpp = ifp;
    767 
    768 	/* Determine path MTU. */
    769 	if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
    770 	    &alwaysfrag)) != 0)
    771 		goto bad;
    772 #ifdef IPSEC
    773 	if (needipsectun)
    774 		mtu = IPV6_MMTU;
    775 #endif
    776 
    777 	/*
    778 	 * The caller of this function may specify to use the minimum MTU
    779 	 * in some cases.
    780 	 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
    781 	 * setting.  The logic is a bit complicated; by default, unicast
    782 	 * packets will follow path MTU while multicast packets will be sent at
    783 	 * the minimum MTU.  If IP6PO_MINMTU_ALL is specified, all packets
    784 	 * including unicast ones will be sent at the minimum MTU.  Multicast
    785 	 * packets will always be sent at the minimum MTU unless
    786 	 * IP6PO_MINMTU_DISABLE is explicitly specified.
    787 	 * See RFC 3542 for more details.
    788 	 */
    789 	if (mtu > IPV6_MMTU) {
    790 		if ((flags & IPV6_MINMTU))
    791 			mtu = IPV6_MMTU;
    792 		else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
    793 			mtu = IPV6_MMTU;
    794 		else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
    795 			 (opt == NULL ||
    796 			  opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
    797 			mtu = IPV6_MMTU;
    798 		}
    799 	}
    800 
    801 	/*
    802 	 * clear embedded scope identifiers if necessary.
    803 	 * in6_clearscope will touch the addresses only when necessary.
    804 	 */
    805 	in6_clearscope(&ip6->ip6_src);
    806 	in6_clearscope(&ip6->ip6_dst);
    807 
    808 	/*
    809 	 * If the outgoing packet contains a hop-by-hop options header,
    810 	 * it must be examined and processed even by the source node.
    811 	 * (RFC 2460, section 4.)
    812 	 */
    813 	if (exthdrs.ip6e_hbh) {
    814 		struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
    815 		u_int32_t dummy1; /* XXX unused */
    816 		u_int32_t dummy2; /* XXX unused */
    817 
    818 		/*
    819 		 *  XXX: if we have to send an ICMPv6 error to the sender,
    820 		 *       we need the M_LOOP flag since icmp6_error() expects
    821 		 *       the IPv6 and the hop-by-hop options header are
    822 		 *       continuous unless the flag is set.
    823 		 */
    824 		m->m_flags |= M_LOOP;
    825 		m->m_pkthdr.rcvif = ifp;
    826 		if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
    827 		    ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
    828 		    &dummy1, &dummy2) < 0) {
    829 			/* m was already freed at this point */
    830 			error = EINVAL;/* better error? */
    831 			goto done;
    832 		}
    833 		m->m_flags &= ~M_LOOP; /* XXX */
    834 		m->m_pkthdr.rcvif = NULL;
    835 	}
    836 
    837 #ifdef PFIL_HOOKS
    838 	/*
    839 	 * Run through list of hooks for output packets.
    840 	 */
    841 	if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
    842 		goto done;
    843 	if (m == NULL)
    844 		goto done;
    845 	ip6 = mtod(m, struct ip6_hdr *);
    846 #endif /* PFIL_HOOKS */
    847 	/*
    848 	 * Send the packet to the outgoing interface.
    849 	 * If necessary, do IPv6 fragmentation before sending.
    850 	 *
    851 	 * the logic here is rather complex:
    852 	 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
    853 	 * 1-a:	send as is if tlen <= path mtu
    854 	 * 1-b:	fragment if tlen > path mtu
    855 	 *
    856 	 * 2: if user asks us not to fragment (dontfrag == 1)
    857 	 * 2-a:	send as is if tlen <= interface mtu
    858 	 * 2-b:	error if tlen > interface mtu
    859 	 *
    860 	 * 3: if we always need to attach fragment header (alwaysfrag == 1)
    861 	 *	always fragment
    862 	 *
    863 	 * 4: if dontfrag == 1 && alwaysfrag == 1
    864 	 *	error, as we cannot handle this conflicting request
    865 	 */
    866 	tlen = m->m_pkthdr.len;
    867 
    868 	if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
    869 		dontfrag = 1;
    870 	else
    871 		dontfrag = 0;
    872 
    873 	if (dontfrag && alwaysfrag) {	/* case 4 */
    874 		/* conflicting request - can't transmit */
    875 		error = EMSGSIZE;
    876 		goto bad;
    877 	}
    878 	if (dontfrag && tlen > IN6_LINKMTU(ifp)) {	/* case 2-b */
    879 		/*
    880 		 * Even if the DONTFRAG option is specified, we cannot send the
    881 		 * packet when the data length is larger than the MTU of the
    882 		 * outgoing interface.
    883 		 * Notify the error by sending IPV6_PATHMTU ancillary data as
    884 		 * well as returning an error code (the latter is not described
    885 		 * in the API spec.)
    886 		 */
    887 		u_int32_t mtu32;
    888 		struct ip6ctlparam ip6cp;
    889 
    890 		mtu32 = (u_int32_t)mtu;
    891 		bzero(&ip6cp, sizeof(ip6cp));
    892 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    893 		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
    894 		    (void *)&ip6cp);
    895 
    896 		error = EMSGSIZE;
    897 		goto bad;
    898 	}
    899 
    900 	/*
    901 	 * transmit packet without fragmentation
    902 	 */
    903 	if (dontfrag || (!alwaysfrag && tlen <= mtu)) {	/* case 1-a and 2-a */
    904 		struct in6_ifaddr *ia6;
    905 		int sw_csum;
    906 
    907 		ip6 = mtod(m, struct ip6_hdr *);
    908 		ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
    909 		if (ia6) {
    910 			/* Record statistics for this interface address. */
    911 			ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
    912 		}
    913 #ifdef IPSEC
    914 		/* clean ipsec history once it goes out of the node */
    915 		ipsec_delaux(m);
    916 #endif
    917 
    918 		sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
    919 		if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
    920 			if (IN6_NEED_CHECKSUM(ifp,
    921 			    sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
    922 				in6_delayed_cksum(m);
    923 			}
    924 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
    925 		}
    926 
    927 		error = nd6_output(ifp, origifp, m, dst, rt);
    928 		goto done;
    929 	}
    930 
    931 	/*
    932 	 * try to fragment the packet.  case 1-b and 3
    933 	 */
    934 	if (mtu < IPV6_MMTU) {
    935 		/* path MTU cannot be less than IPV6_MMTU */
    936 		error = EMSGSIZE;
    937 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    938 		goto bad;
    939 	} else if (ip6->ip6_plen == 0) {
    940 		/* jumbo payload cannot be fragmented */
    941 		error = EMSGSIZE;
    942 		in6_ifstat_inc(ifp, ifs6_out_fragfail);
    943 		goto bad;
    944 	} else {
    945 		struct mbuf **mnext, *m_frgpart;
    946 		struct ip6_frag *ip6f;
    947 		u_int32_t id = htonl(ip6_randomid());
    948 		u_char nextproto;
    949 		struct ip6ctlparam ip6cp;
    950 		u_int32_t mtu32;
    951 
    952 		/*
    953 		 * Too large for the destination or interface;
    954 		 * fragment if possible.
    955 		 * Must be able to put at least 8 bytes per fragment.
    956 		 */
    957 		hlen = unfragpartlen;
    958 		if (mtu > IPV6_MAXPACKET)
    959 			mtu = IPV6_MAXPACKET;
    960 
    961 		/* Notify a proper path MTU to applications. */
    962 		mtu32 = (u_int32_t)mtu;
    963 		bzero(&ip6cp, sizeof(ip6cp));
    964 		ip6cp.ip6c_cmdarg = (void *)&mtu32;
    965 		pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
    966 		    (void *)&ip6cp);
    967 
    968 		len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
    969 		if (len < 8) {
    970 			error = EMSGSIZE;
    971 			in6_ifstat_inc(ifp, ifs6_out_fragfail);
    972 			goto bad;
    973 		}
    974 
    975 		mnext = &m->m_nextpkt;
    976 
    977 		/*
    978 		 * Change the next header field of the last header in the
    979 		 * unfragmentable part.
    980 		 */
    981 		if (exthdrs.ip6e_rthdr) {
    982 			nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
    983 			*mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
    984 		} else if (exthdrs.ip6e_dest1) {
    985 			nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
    986 			*mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
    987 		} else if (exthdrs.ip6e_hbh) {
    988 			nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
    989 			*mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
    990 		} else {
    991 			nextproto = ip6->ip6_nxt;
    992 			ip6->ip6_nxt = IPPROTO_FRAGMENT;
    993 		}
    994 
    995 		if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
    996 		    != 0) {
    997 			if (IN6_NEED_CHECKSUM(ifp,
    998 			    m->m_pkthdr.csum_flags &
    999 			    (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
   1000 				in6_delayed_cksum(m);
   1001 			}
   1002 			m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
   1003 		}
   1004 
   1005 		/*
   1006 		 * Loop through length of segment after first fragment,
   1007 		 * make new header and copy data of each part and link onto
   1008 		 * chain.
   1009 		 */
   1010 		m0 = m;
   1011 		for (off = hlen; off < tlen; off += len) {
   1012 			struct mbuf *mlast;
   1013 
   1014 			MGETHDR(m, M_DONTWAIT, MT_HEADER);
   1015 			if (!m) {
   1016 				error = ENOBUFS;
   1017 				ip6stat.ip6s_odropped++;
   1018 				goto sendorfree;
   1019 			}
   1020 			m->m_pkthdr.rcvif = NULL;
   1021 			m->m_flags = m0->m_flags & M_COPYFLAGS;
   1022 			*mnext = m;
   1023 			mnext = &m->m_nextpkt;
   1024 			m->m_data += max_linkhdr;
   1025 			mhip6 = mtod(m, struct ip6_hdr *);
   1026 			*mhip6 = *ip6;
   1027 			m->m_len = sizeof(*mhip6);
   1028 			error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
   1029 			if (error) {
   1030 				ip6stat.ip6s_odropped++;
   1031 				goto sendorfree;
   1032 			}
   1033 			ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
   1034 			if (off + len >= tlen)
   1035 				len = tlen - off;
   1036 			else
   1037 				ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
   1038 			mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
   1039 			    sizeof(*ip6f) - sizeof(struct ip6_hdr)));
   1040 			if ((m_frgpart = m_copy(m0, off, len)) == 0) {
   1041 				error = ENOBUFS;
   1042 				ip6stat.ip6s_odropped++;
   1043 				goto sendorfree;
   1044 			}
   1045 			for (mlast = m; mlast->m_next; mlast = mlast->m_next)
   1046 				;
   1047 			mlast->m_next = m_frgpart;
   1048 			m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
   1049 			m->m_pkthdr.rcvif = (struct ifnet *)0;
   1050 			ip6f->ip6f_reserved = 0;
   1051 			ip6f->ip6f_ident = id;
   1052 			ip6f->ip6f_nxt = nextproto;
   1053 			ip6stat.ip6s_ofragments++;
   1054 			in6_ifstat_inc(ifp, ifs6_out_fragcreat);
   1055 		}
   1056 
   1057 		in6_ifstat_inc(ifp, ifs6_out_fragok);
   1058 	}
   1059 
   1060 	/*
   1061 	 * Remove leading garbages.
   1062 	 */
   1063 sendorfree:
   1064 	m = m0->m_nextpkt;
   1065 	m0->m_nextpkt = 0;
   1066 	m_freem(m0);
   1067 	for (m0 = m; m; m = m0) {
   1068 		m0 = m->m_nextpkt;
   1069 		m->m_nextpkt = 0;
   1070 		if (error == 0) {
   1071 			struct in6_ifaddr *ia6;
   1072 			ip6 = mtod(m, struct ip6_hdr *);
   1073 			ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
   1074 			if (ia6) {
   1075 				/*
   1076 				 * Record statistics for this interface
   1077 				 * address.
   1078 				 */
   1079 				ia6->ia_ifa.ifa_data.ifad_outbytes +=
   1080 				    m->m_pkthdr.len;
   1081 			}
   1082 #ifdef IPSEC
   1083 			/* clean ipsec history once it goes out of the node */
   1084 			ipsec_delaux(m);
   1085 #endif
   1086 			error = nd6_output(ifp, origifp, m, dst, rt);
   1087 		} else
   1088 			m_freem(m);
   1089 	}
   1090 
   1091 	if (error == 0)
   1092 		ip6stat.ip6s_fragmented++;
   1093 
   1094 done:
   1095 	if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
   1096 		RTFREE(ro->ro_rt);
   1097 	} else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
   1098 		RTFREE(ro_pmtu->ro_rt);
   1099 	}
   1100 
   1101 #ifdef IPSEC
   1102 	if (sp != NULL)
   1103 		key_freesp(sp);
   1104 #endif /* IPSEC */
   1105 
   1106 	return (error);
   1107 
   1108 freehdrs:
   1109 	m_freem(exthdrs.ip6e_hbh);	/* m_freem will check if mbuf is 0 */
   1110 	m_freem(exthdrs.ip6e_dest1);
   1111 	m_freem(exthdrs.ip6e_rthdr);
   1112 	m_freem(exthdrs.ip6e_dest2);
   1113 	/* FALLTHROUGH */
   1114 bad:
   1115 	m_freem(m);
   1116 	goto done;
   1117 }
   1118 
   1119 static int
   1120 ip6_copyexthdr(mp, hdr, hlen)
   1121 	struct mbuf **mp;
   1122 	caddr_t hdr;
   1123 	int hlen;
   1124 {
   1125 	struct mbuf *m;
   1126 
   1127 	if (hlen > MCLBYTES)
   1128 		return (ENOBUFS); /* XXX */
   1129 
   1130 	MGET(m, M_DONTWAIT, MT_DATA);
   1131 	if (!m)
   1132 		return (ENOBUFS);
   1133 
   1134 	if (hlen > MLEN) {
   1135 		MCLGET(m, M_DONTWAIT);
   1136 		if ((m->m_flags & M_EXT) == 0) {
   1137 			m_free(m);
   1138 			return (ENOBUFS);
   1139 		}
   1140 	}
   1141 	m->m_len = hlen;
   1142 	if (hdr)
   1143 		bcopy(hdr, mtod(m, caddr_t), hlen);
   1144 
   1145 	*mp = m;
   1146 	return (0);
   1147 }
   1148 
   1149 /*
   1150  * Process a delayed payload checksum calculation.
   1151  */
   1152 void
   1153 in6_delayed_cksum(struct mbuf *m)
   1154 {
   1155 	uint16_t csum, offset;
   1156 
   1157 	KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1158 	KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
   1159 	KASSERT((m->m_pkthdr.csum_flags
   1160 	    & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
   1161 
   1162 	offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
   1163 	csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
   1164 	if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
   1165 		csum = 0xffff;
   1166 	}
   1167 
   1168 	offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
   1169 	if ((offset + sizeof(csum)) > m->m_len) {
   1170 		m_copyback(m, offset, sizeof(csum), &csum);
   1171 	} else {
   1172 		*(uint16_t *)(mtod(m, caddr_t) + offset) = csum;
   1173 	}
   1174 }
   1175 
   1176 /*
   1177  * Insert jumbo payload option.
   1178  */
   1179 static int
   1180 ip6_insert_jumboopt(exthdrs, plen)
   1181 	struct ip6_exthdrs *exthdrs;
   1182 	u_int32_t plen;
   1183 {
   1184 	struct mbuf *mopt;
   1185 	u_int8_t *optbuf;
   1186 	u_int32_t v;
   1187 
   1188 #define JUMBOOPTLEN	8	/* length of jumbo payload option and padding */
   1189 
   1190 	/*
   1191 	 * If there is no hop-by-hop options header, allocate new one.
   1192 	 * If there is one but it doesn't have enough space to store the
   1193 	 * jumbo payload option, allocate a cluster to store the whole options.
   1194 	 * Otherwise, use it to store the options.
   1195 	 */
   1196 	if (exthdrs->ip6e_hbh == 0) {
   1197 		MGET(mopt, M_DONTWAIT, MT_DATA);
   1198 		if (mopt == 0)
   1199 			return (ENOBUFS);
   1200 		mopt->m_len = JUMBOOPTLEN;
   1201 		optbuf = mtod(mopt, u_int8_t *);
   1202 		optbuf[1] = 0;	/* = ((JUMBOOPTLEN) >> 3) - 1 */
   1203 		exthdrs->ip6e_hbh = mopt;
   1204 	} else {
   1205 		struct ip6_hbh *hbh;
   1206 
   1207 		mopt = exthdrs->ip6e_hbh;
   1208 		if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
   1209 			/*
   1210 			 * XXX assumption:
   1211 			 * - exthdrs->ip6e_hbh is not referenced from places
   1212 			 *   other than exthdrs.
   1213 			 * - exthdrs->ip6e_hbh is not an mbuf chain.
   1214 			 */
   1215 			int oldoptlen = mopt->m_len;
   1216 			struct mbuf *n;
   1217 
   1218 			/*
   1219 			 * XXX: give up if the whole (new) hbh header does
   1220 			 * not fit even in an mbuf cluster.
   1221 			 */
   1222 			if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
   1223 				return (ENOBUFS);
   1224 
   1225 			/*
   1226 			 * As a consequence, we must always prepare a cluster
   1227 			 * at this point.
   1228 			 */
   1229 			MGET(n, M_DONTWAIT, MT_DATA);
   1230 			if (n) {
   1231 				MCLGET(n, M_DONTWAIT);
   1232 				if ((n->m_flags & M_EXT) == 0) {
   1233 					m_freem(n);
   1234 					n = NULL;
   1235 				}
   1236 			}
   1237 			if (!n)
   1238 				return (ENOBUFS);
   1239 			n->m_len = oldoptlen + JUMBOOPTLEN;
   1240 			bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
   1241 			    oldoptlen);
   1242 			optbuf = mtod(n, u_int8_t *) + oldoptlen;
   1243 			m_freem(mopt);
   1244 			mopt = exthdrs->ip6e_hbh = n;
   1245 		} else {
   1246 			optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
   1247 			mopt->m_len += JUMBOOPTLEN;
   1248 		}
   1249 		optbuf[0] = IP6OPT_PADN;
   1250 		optbuf[1] = 0;
   1251 
   1252 		/*
   1253 		 * Adjust the header length according to the pad and
   1254 		 * the jumbo payload option.
   1255 		 */
   1256 		hbh = mtod(mopt, struct ip6_hbh *);
   1257 		hbh->ip6h_len += (JUMBOOPTLEN >> 3);
   1258 	}
   1259 
   1260 	/* fill in the option. */
   1261 	optbuf[2] = IP6OPT_JUMBO;
   1262 	optbuf[3] = 4;
   1263 	v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
   1264 	bcopy(&v, &optbuf[4], sizeof(u_int32_t));
   1265 
   1266 	/* finally, adjust the packet header length */
   1267 	exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
   1268 
   1269 	return (0);
   1270 #undef JUMBOOPTLEN
   1271 }
   1272 
   1273 /*
   1274  * Insert fragment header and copy unfragmentable header portions.
   1275  */
   1276 static int
   1277 ip6_insertfraghdr(m0, m, hlen, frghdrp)
   1278 	struct mbuf *m0, *m;
   1279 	int hlen;
   1280 	struct ip6_frag **frghdrp;
   1281 {
   1282 	struct mbuf *n, *mlast;
   1283 
   1284 	if (hlen > sizeof(struct ip6_hdr)) {
   1285 		n = m_copym(m0, sizeof(struct ip6_hdr),
   1286 		    hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
   1287 		if (n == 0)
   1288 			return (ENOBUFS);
   1289 		m->m_next = n;
   1290 	} else
   1291 		n = m;
   1292 
   1293 	/* Search for the last mbuf of unfragmentable part. */
   1294 	for (mlast = n; mlast->m_next; mlast = mlast->m_next)
   1295 		;
   1296 
   1297 	if ((mlast->m_flags & M_EXT) == 0 &&
   1298 	    M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
   1299 		/* use the trailing space of the last mbuf for the fragment hdr */
   1300 		*frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
   1301 		    mlast->m_len);
   1302 		mlast->m_len += sizeof(struct ip6_frag);
   1303 		m->m_pkthdr.len += sizeof(struct ip6_frag);
   1304 	} else {
   1305 		/* allocate a new mbuf for the fragment header */
   1306 		struct mbuf *mfrg;
   1307 
   1308 		MGET(mfrg, M_DONTWAIT, MT_DATA);
   1309 		if (mfrg == 0)
   1310 			return (ENOBUFS);
   1311 		mfrg->m_len = sizeof(struct ip6_frag);
   1312 		*frghdrp = mtod(mfrg, struct ip6_frag *);
   1313 		mlast->m_next = mfrg;
   1314 	}
   1315 
   1316 	return (0);
   1317 }
   1318 
   1319 static int
   1320 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup, alwaysfragp)
   1321 	struct route_in6 *ro_pmtu, *ro;
   1322 	struct ifnet *ifp;
   1323 	struct in6_addr *dst;
   1324 	u_long *mtup;
   1325 	int *alwaysfragp;
   1326 {
   1327 	u_int32_t mtu = 0;
   1328 	int alwaysfrag = 0;
   1329 	int error = 0;
   1330 
   1331 	if (ro_pmtu != ro) {
   1332 		/* The first hop and the final destination may differ. */
   1333 		struct sockaddr_in6 *sa6_dst =
   1334 		    (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
   1335 		if (ro_pmtu->ro_rt &&
   1336 		    ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
   1337 		      !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
   1338 			RTFREE(ro_pmtu->ro_rt);
   1339 			ro_pmtu->ro_rt = (struct rtentry *)NULL;
   1340 		}
   1341 		if (ro_pmtu->ro_rt == NULL) {
   1342 			bzero(sa6_dst, sizeof(*sa6_dst)); /* for safety */
   1343 			sa6_dst->sin6_family = AF_INET6;
   1344 			sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
   1345 			sa6_dst->sin6_addr = *dst;
   1346 
   1347 			rtalloc((struct route *)ro_pmtu);
   1348 		}
   1349 	}
   1350 	if (ro_pmtu->ro_rt) {
   1351 		u_int32_t ifmtu;
   1352 
   1353 		if (ifp == NULL)
   1354 			ifp = ro_pmtu->ro_rt->rt_ifp;
   1355 		ifmtu = IN6_LINKMTU(ifp);
   1356 		mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
   1357 		if (mtu == 0)
   1358 			mtu = ifmtu;
   1359 		else if (mtu < IPV6_MMTU) {
   1360 			/*
   1361 			 * RFC2460 section 5, last paragraph:
   1362 			 * if we record ICMPv6 too big message with
   1363 			 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
   1364 			 * or smaller, with fragment header attached.
   1365 			 * (fragment header is needed regardless from the
   1366 			 * packet size, for translators to identify packets)
   1367 			 */
   1368 			alwaysfrag = 1;
   1369 			mtu = IPV6_MMTU;
   1370 		} else if (mtu > ifmtu) {
   1371 			/*
   1372 			 * The MTU on the route is larger than the MTU on
   1373 			 * the interface!  This shouldn't happen, unless the
   1374 			 * MTU of the interface has been changed after the
   1375 			 * interface was brought up.  Change the MTU in the
   1376 			 * route to match the interface MTU (as long as the
   1377 			 * field isn't locked).
   1378 			 */
   1379 			mtu = ifmtu;
   1380 			if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU))
   1381 				ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
   1382 		}
   1383 	} else if (ifp) {
   1384 		mtu = IN6_LINKMTU(ifp);
   1385 	} else
   1386 		error = EHOSTUNREACH; /* XXX */
   1387 
   1388 	*mtup = mtu;
   1389 	if (alwaysfragp)
   1390 		*alwaysfragp = alwaysfrag;
   1391 	return (error);
   1392 }
   1393 
   1394 /*
   1395  * IP6 socket option processing.
   1396  */
   1397 int
   1398 ip6_ctloutput(op, so, level, optname, mp)
   1399 	int op;
   1400 	struct socket *so;
   1401 	int level, optname;
   1402 	struct mbuf **mp;
   1403 {
   1404 	int privileged, optdatalen, uproto;
   1405 	void *optdata;
   1406 	struct in6pcb *in6p = sotoin6pcb(so);
   1407 	struct mbuf *m = *mp;
   1408 	int error, optval;
   1409 	int optlen;
   1410 	struct proc *p = curproc;	/* XXX */
   1411 
   1412 	optlen = m ? m->m_len : 0;
   1413 	error = optval = 0;
   1414 	privileged = (p == 0 || kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER, &p->p_acflag)) ? 0 : 1;
   1415 	uproto = (int)so->so_proto->pr_protocol;
   1416 
   1417 	if (level == IPPROTO_IPV6) {
   1418 		switch (op) {
   1419 		case PRCO_SETOPT:
   1420 			switch (optname) {
   1421 #ifdef RFC2292
   1422 			case IPV6_2292PKTOPTIONS:
   1423 				/* m is freed in ip6_pcbopts */
   1424 				error = ip6_pcbopts(&in6p->in6p_outputopts,
   1425 				    m, so);
   1426 				break;
   1427 #endif
   1428 
   1429 			/*
   1430 			 * Use of some Hop-by-Hop options or some
   1431 			 * Destination options, might require special
   1432 			 * privilege.  That is, normal applications
   1433 			 * (without special privilege) might be forbidden
   1434 			 * from setting certain options in outgoing packets,
   1435 			 * and might never see certain options in received
   1436 			 * packets. [RFC 2292 Section 6]
   1437 			 * KAME specific note:
   1438 			 *  KAME prevents non-privileged users from sending or
   1439 			 *  receiving ANY hbh/dst options in order to avoid
   1440 			 *  overhead of parsing options in the kernel.
   1441 			 */
   1442 			case IPV6_RECVHOPOPTS:
   1443 			case IPV6_RECVDSTOPTS:
   1444 			case IPV6_RECVRTHDRDSTOPTS:
   1445 				if (!privileged) {
   1446 					error = EPERM;
   1447 					break;
   1448 				}
   1449 				/* FALLTHROUGH */
   1450 			case IPV6_UNICAST_HOPS:
   1451 			case IPV6_HOPLIMIT:
   1452 			case IPV6_FAITH:
   1453 
   1454 			case IPV6_RECVPKTINFO:
   1455 			case IPV6_RECVHOPLIMIT:
   1456 			case IPV6_RECVRTHDR:
   1457 			case IPV6_RECVPATHMTU:
   1458 			case IPV6_RECVTCLASS:
   1459 			case IPV6_V6ONLY:
   1460 				if (optlen != sizeof(int)) {
   1461 					error = EINVAL;
   1462 					break;
   1463 				}
   1464 				optval = *mtod(m, int *);
   1465 				switch (optname) {
   1466 
   1467 				case IPV6_UNICAST_HOPS:
   1468 					if (optval < -1 || optval >= 256)
   1469 						error = EINVAL;
   1470 					else {
   1471 						/* -1 = kernel default */
   1472 						in6p->in6p_hops = optval;
   1473 					}
   1474 					break;
   1475 #define OPTSET(bit) \
   1476 do { \
   1477 	if (optval) \
   1478 		in6p->in6p_flags |= (bit); \
   1479 	else \
   1480 		in6p->in6p_flags &= ~(bit); \
   1481 } while (/*CONSTCOND*/ 0)
   1482 
   1483 #ifdef RFC2292
   1484 #define OPTSET2292(bit) 			\
   1485 do { 						\
   1486 	in6p->in6p_flags |= IN6P_RFC2292; 	\
   1487 	if (optval) 				\
   1488 		in6p->in6p_flags |= (bit); 	\
   1489 	else 					\
   1490 		in6p->in6p_flags &= ~(bit); 	\
   1491 } while (/*CONSTCOND*/ 0)
   1492 #endif
   1493 
   1494 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
   1495 
   1496 				case IPV6_RECVPKTINFO:
   1497 #ifdef RFC2292
   1498 					/* cannot mix with RFC2292 */
   1499 					if (OPTBIT(IN6P_RFC2292)) {
   1500 						error = EINVAL;
   1501 						break;
   1502 					}
   1503 #endif
   1504 					OPTSET(IN6P_PKTINFO);
   1505 					break;
   1506 
   1507 				case IPV6_HOPLIMIT:
   1508 				{
   1509 					struct ip6_pktopts **optp;
   1510 
   1511 #ifdef RFC2292
   1512 					/* cannot mix with RFC2292 */
   1513 					if (OPTBIT(IN6P_RFC2292)) {
   1514 						error = EINVAL;
   1515 						break;
   1516 					}
   1517 #endif
   1518 					optp = &in6p->in6p_outputopts;
   1519 					error = ip6_pcbopt(IPV6_HOPLIMIT,
   1520 							   (u_char *)&optval,
   1521 							   sizeof(optval),
   1522 							   optp,
   1523 							   privileged, uproto);
   1524 					break;
   1525 				}
   1526 
   1527 				case IPV6_RECVHOPLIMIT:
   1528 #ifdef RFC2292
   1529 					/* cannot mix with RFC2292 */
   1530 					if (OPTBIT(IN6P_RFC2292)) {
   1531 						error = EINVAL;
   1532 						break;
   1533 					}
   1534 #endif
   1535 					OPTSET(IN6P_HOPLIMIT);
   1536 					break;
   1537 
   1538 				case IPV6_RECVHOPOPTS:
   1539 #ifdef RFC2292
   1540 					/* cannot mix with RFC2292 */
   1541 					if (OPTBIT(IN6P_RFC2292)) {
   1542 						error = EINVAL;
   1543 						break;
   1544 					}
   1545 #endif
   1546 					OPTSET(IN6P_HOPOPTS);
   1547 					break;
   1548 
   1549 				case IPV6_RECVDSTOPTS:
   1550 #ifdef RFC2292
   1551 					/* cannot mix with RFC2292 */
   1552 					if (OPTBIT(IN6P_RFC2292)) {
   1553 						error = EINVAL;
   1554 						break;
   1555 					}
   1556 #endif
   1557 					OPTSET(IN6P_DSTOPTS);
   1558 					break;
   1559 
   1560 				case IPV6_RECVRTHDRDSTOPTS:
   1561 #ifdef RFC2292
   1562 					/* cannot mix with RFC2292 */
   1563 					if (OPTBIT(IN6P_RFC2292)) {
   1564 						error = EINVAL;
   1565 						break;
   1566 					}
   1567 #endif
   1568 					OPTSET(IN6P_RTHDRDSTOPTS);
   1569 					break;
   1570 
   1571 				case IPV6_RECVRTHDR:
   1572 #ifdef RFC2292
   1573 					/* cannot mix with RFC2292 */
   1574 					if (OPTBIT(IN6P_RFC2292)) {
   1575 						error = EINVAL;
   1576 						break;
   1577 					}
   1578 #endif
   1579 					OPTSET(IN6P_RTHDR);
   1580 					break;
   1581 
   1582 				case IPV6_FAITH:
   1583 					OPTSET(IN6P_FAITH);
   1584 					break;
   1585 
   1586 				case IPV6_RECVPATHMTU:
   1587 					/*
   1588 					 * We ignore this option for TCP
   1589 					 * sockets.
   1590 					 * (RFC3542 leaves this case
   1591 					 * unspecified.)
   1592 					 */
   1593 					if (uproto != IPPROTO_TCP)
   1594 						OPTSET(IN6P_MTU);
   1595 					break;
   1596 
   1597 				case IPV6_V6ONLY:
   1598 					/*
   1599 					 * make setsockopt(IPV6_V6ONLY)
   1600 					 * available only prior to bind(2).
   1601 					 * see ipng mailing list, Jun 22 2001.
   1602 					 */
   1603 					if (in6p->in6p_lport ||
   1604 					    !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
   1605 						error = EINVAL;
   1606 						break;
   1607 					}
   1608 #ifdef INET6_BINDV6ONLY
   1609 					if (!optval)
   1610 						error = EINVAL;
   1611 #else
   1612 					OPTSET(IN6P_IPV6_V6ONLY);
   1613 #endif
   1614 					break;
   1615 				case IPV6_RECVTCLASS:
   1616 #ifdef RFC2292
   1617 					/* cannot mix with RFC2292 XXX */
   1618 					if (OPTBIT(IN6P_RFC2292)) {
   1619 						error = EINVAL;
   1620 						break;
   1621 					}
   1622 #endif
   1623 					OPTSET(IN6P_TCLASS);
   1624 					break;
   1625 
   1626 				}
   1627 				break;
   1628 
   1629 			case IPV6_OTCLASS:
   1630 			{
   1631 				struct ip6_pktopts **optp;
   1632 				u_int8_t tclass;
   1633 
   1634 				if (optlen != sizeof(tclass)) {
   1635 					error = EINVAL;
   1636 					break;
   1637 				}
   1638 				tclass = *mtod(m, u_int8_t *);
   1639 				optp = &in6p->in6p_outputopts;
   1640 				error = ip6_pcbopt(optname,
   1641 						   (u_char *)&tclass,
   1642 						   sizeof(tclass),
   1643 						   optp,
   1644 						   privileged, uproto);
   1645 				break;
   1646 			}
   1647 
   1648 			case IPV6_TCLASS:
   1649 			case IPV6_DONTFRAG:
   1650 			case IPV6_USE_MIN_MTU:
   1651 				if (optlen != sizeof(optval)) {
   1652 					error = EINVAL;
   1653 					break;
   1654 				}
   1655 				optval = *mtod(m, int *);
   1656 				{
   1657 					struct ip6_pktopts **optp;
   1658 					optp = &in6p->in6p_outputopts;
   1659 					error = ip6_pcbopt(optname,
   1660 							   (u_char *)&optval,
   1661 							   sizeof(optval),
   1662 							   optp,
   1663 							   privileged, uproto);
   1664 					break;
   1665 				}
   1666 
   1667 #ifdef RFC2292
   1668 			case IPV6_2292PKTINFO:
   1669 			case IPV6_2292HOPLIMIT:
   1670 			case IPV6_2292HOPOPTS:
   1671 			case IPV6_2292DSTOPTS:
   1672 			case IPV6_2292RTHDR:
   1673 				/* RFC 2292 */
   1674 				if (optlen != sizeof(int)) {
   1675 					error = EINVAL;
   1676 					break;
   1677 				}
   1678 				optval = *mtod(m, int *);
   1679 				switch (optname) {
   1680 				case IPV6_2292PKTINFO:
   1681 					OPTSET2292(IN6P_PKTINFO);
   1682 					break;
   1683 				case IPV6_2292HOPLIMIT:
   1684 					OPTSET2292(IN6P_HOPLIMIT);
   1685 					break;
   1686 				case IPV6_2292HOPOPTS:
   1687 					/*
   1688 					 * Check super-user privilege.
   1689 					 * See comments for IPV6_RECVHOPOPTS.
   1690 					 */
   1691 					if (!privileged)
   1692 						return (EPERM);
   1693 					OPTSET2292(IN6P_HOPOPTS);
   1694 					break;
   1695 				case IPV6_2292DSTOPTS:
   1696 					if (!privileged)
   1697 						return (EPERM);
   1698 					OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
   1699 					break;
   1700 				case IPV6_2292RTHDR:
   1701 					OPTSET2292(IN6P_RTHDR);
   1702 					break;
   1703 				}
   1704 				break;
   1705 #endif
   1706 			case IPV6_PKTINFO:
   1707 			case IPV6_HOPOPTS:
   1708 			case IPV6_RTHDR:
   1709 			case IPV6_DSTOPTS:
   1710 			case IPV6_RTHDRDSTOPTS:
   1711 			case IPV6_NEXTHOP:
   1712 			{
   1713 				/* new advanced API (RFC3542) */
   1714 				u_char *optbuf;
   1715 				int optbuflen;
   1716 				struct ip6_pktopts **optp;
   1717 
   1718 #ifdef RFC2292
   1719 				/* cannot mix with RFC2292 */
   1720 				if (OPTBIT(IN6P_RFC2292)) {
   1721 					error = EINVAL;
   1722 					break;
   1723 				}
   1724 #endif
   1725 
   1726 				if (m && m->m_next) {
   1727 					error = EINVAL;	/* XXX */
   1728 					break;
   1729 				}
   1730 				if (m) {
   1731 					optbuf = mtod(m, u_char *);
   1732 					optbuflen = m->m_len;
   1733 				} else {
   1734 					optbuf = NULL;
   1735 					optbuflen = 0;
   1736 				}
   1737 				optp = &in6p->in6p_outputopts;
   1738 				error = ip6_pcbopt(optname,
   1739 						   optbuf, optbuflen,
   1740 						   optp, privileged, uproto);
   1741 				break;
   1742 			}
   1743 #undef OPTSET
   1744 
   1745 			case IPV6_MULTICAST_IF:
   1746 			case IPV6_MULTICAST_HOPS:
   1747 			case IPV6_MULTICAST_LOOP:
   1748 			case IPV6_JOIN_GROUP:
   1749 			case IPV6_LEAVE_GROUP:
   1750                                 error = ip6_setmoptions(optname,
   1751 				    &in6p->in6p_moptions, m);
   1752 				break;
   1753 
   1754 			case IPV6_PORTRANGE:
   1755 				optval = *mtod(m, int *);
   1756 
   1757 				switch (optval) {
   1758 				case IPV6_PORTRANGE_DEFAULT:
   1759 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1760 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1761 					break;
   1762 
   1763 				case IPV6_PORTRANGE_HIGH:
   1764 					in6p->in6p_flags &= ~(IN6P_LOWPORT);
   1765 					in6p->in6p_flags |= IN6P_HIGHPORT;
   1766 					break;
   1767 
   1768 				case IPV6_PORTRANGE_LOW:
   1769 					in6p->in6p_flags &= ~(IN6P_HIGHPORT);
   1770 					in6p->in6p_flags |= IN6P_LOWPORT;
   1771 					break;
   1772 
   1773 				default:
   1774 					error = EINVAL;
   1775 					break;
   1776 				}
   1777 				break;
   1778 
   1779 #ifdef IPSEC
   1780 			case IPV6_IPSEC_POLICY:
   1781 			{
   1782 				caddr_t req = NULL;
   1783 				size_t len = 0;
   1784 				if (m) {
   1785 					req = mtod(m, caddr_t);
   1786 					len = m->m_len;
   1787 				}
   1788 				error = ipsec6_set_policy(in6p, optname, req,
   1789 							  len, privileged);
   1790 			}
   1791 				break;
   1792 #endif /* IPSEC */
   1793 
   1794 			default:
   1795 				error = ENOPROTOOPT;
   1796 				break;
   1797 			}
   1798 			if (m)
   1799 				(void)m_free(m);
   1800 			break;
   1801 
   1802 		case PRCO_GETOPT:
   1803 			switch (optname) {
   1804 #ifdef RFC2292
   1805 			case IPV6_2292PKTOPTIONS:
   1806 				/*
   1807 				 * RFC3542 (effectively) deprecated the
   1808 				 * semantics of the 2292-style pktoptions.
   1809 				 * Since it was not reliable in nature (i.e.,
   1810 				 * applications had to expect the lack of some
   1811 				 * information after all), it would make sense
   1812 				 * to simplify this part by always returning
   1813 				 * empty data.
   1814 				 */
   1815 				*mp = m_get(M_WAIT, MT_SOOPTS);
   1816 				(*mp)->m_len = 0;
   1817 				break;
   1818 #endif
   1819 
   1820 			case IPV6_RECVHOPOPTS:
   1821 			case IPV6_RECVDSTOPTS:
   1822 			case IPV6_RECVRTHDRDSTOPTS:
   1823 			case IPV6_UNICAST_HOPS:
   1824 			case IPV6_RECVPKTINFO:
   1825 			case IPV6_RECVHOPLIMIT:
   1826 			case IPV6_RECVRTHDR:
   1827 			case IPV6_RECVPATHMTU:
   1828 
   1829 			case IPV6_FAITH:
   1830 			case IPV6_V6ONLY:
   1831 			case IPV6_PORTRANGE:
   1832 			case IPV6_RECVTCLASS:
   1833 				switch (optname) {
   1834 
   1835 				case IPV6_RECVHOPOPTS:
   1836 					optval = OPTBIT(IN6P_HOPOPTS);
   1837 					break;
   1838 
   1839 				case IPV6_RECVDSTOPTS:
   1840 					optval = OPTBIT(IN6P_DSTOPTS);
   1841 					break;
   1842 
   1843 				case IPV6_RECVRTHDRDSTOPTS:
   1844 					optval = OPTBIT(IN6P_RTHDRDSTOPTS);
   1845 					break;
   1846 
   1847 				case IPV6_UNICAST_HOPS:
   1848 					optval = in6p->in6p_hops;
   1849 					break;
   1850 
   1851 				case IPV6_RECVPKTINFO:
   1852 					optval = OPTBIT(IN6P_PKTINFO);
   1853 					break;
   1854 
   1855 				case IPV6_RECVHOPLIMIT:
   1856 					optval = OPTBIT(IN6P_HOPLIMIT);
   1857 					break;
   1858 
   1859 				case IPV6_RECVRTHDR:
   1860 					optval = OPTBIT(IN6P_RTHDR);
   1861 					break;
   1862 
   1863 				case IPV6_RECVPATHMTU:
   1864 					optval = OPTBIT(IN6P_MTU);
   1865 					break;
   1866 
   1867 				case IPV6_FAITH:
   1868 					optval = OPTBIT(IN6P_FAITH);
   1869 					break;
   1870 
   1871 				case IPV6_V6ONLY:
   1872 					optval = OPTBIT(IN6P_IPV6_V6ONLY);
   1873 					break;
   1874 
   1875 				case IPV6_PORTRANGE:
   1876 				    {
   1877 					int flags;
   1878 					flags = in6p->in6p_flags;
   1879 					if (flags & IN6P_HIGHPORT)
   1880 						optval = IPV6_PORTRANGE_HIGH;
   1881 					else if (flags & IN6P_LOWPORT)
   1882 						optval = IPV6_PORTRANGE_LOW;
   1883 					else
   1884 						optval = 0;
   1885 					break;
   1886 				    }
   1887 				case IPV6_RECVTCLASS:
   1888 					optval = OPTBIT(IN6P_TCLASS);
   1889 					break;
   1890 
   1891 				}
   1892 				if (error)
   1893 					break;
   1894 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1895 				m->m_len = sizeof(int);
   1896 				*mtod(m, int *) = optval;
   1897 				break;
   1898 
   1899 			case IPV6_PATHMTU:
   1900 			    {
   1901 				u_long pmtu = 0;
   1902 				struct ip6_mtuinfo mtuinfo;
   1903 				struct route_in6 *ro = (struct route_in6 *)&in6p
   1904 ->in6p_route;
   1905 
   1906 				if (!(so->so_state & SS_ISCONNECTED))
   1907 					return (ENOTCONN);
   1908 				/*
   1909 				 * XXX: we dot not consider the case of source
   1910 				 * routing, or optional information to specify
   1911 				 * the outgoing interface.
   1912 				 */
   1913 				error = ip6_getpmtu(ro, NULL, NULL,
   1914 				    &in6p->in6p_faddr, &pmtu, NULL);
   1915 				if (error)
   1916 					break;
   1917 				if (pmtu > IPV6_MAXPACKET)
   1918 					pmtu = IPV6_MAXPACKET;
   1919 
   1920 				memset(&mtuinfo, 0, sizeof(mtuinfo));
   1921 				mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
   1922 				optdata = (void *)&mtuinfo;
   1923 				optdatalen = sizeof(mtuinfo);
   1924 				if (optdatalen > MCLBYTES)
   1925 					return (EMSGSIZE); /* XXX */
   1926 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1927 				if (optdatalen > MLEN)
   1928 					MCLGET(m, M_WAIT);
   1929 				m->m_len = optdatalen;
   1930 				memcpy(mtod(m, void *), optdata, optdatalen);
   1931 				break;
   1932 			    }
   1933 
   1934 #ifdef RFC2292
   1935 			case IPV6_2292PKTINFO:
   1936 			case IPV6_2292HOPLIMIT:
   1937 			case IPV6_2292HOPOPTS:
   1938 			case IPV6_2292RTHDR:
   1939 			case IPV6_2292DSTOPTS:
   1940 				switch (optname) {
   1941 				case IPV6_2292PKTINFO:
   1942 					optval = OPTBIT(IN6P_PKTINFO);
   1943 					break;
   1944 				case IPV6_2292HOPLIMIT:
   1945 					optval = OPTBIT(IN6P_HOPLIMIT);
   1946 					break;
   1947 				case IPV6_2292HOPOPTS:
   1948 					optval = OPTBIT(IN6P_HOPOPTS);
   1949 					break;
   1950 				case IPV6_2292RTHDR:
   1951 					optval = OPTBIT(IN6P_RTHDR);
   1952 					break;
   1953 				case IPV6_2292DSTOPTS:
   1954 					optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
   1955 					break;
   1956 				}
   1957 				*mp = m = m_get(M_WAIT, MT_SOOPTS);
   1958 				m->m_len = sizeof(int);
   1959 				*mtod(m, int *) = optval;
   1960 				break;
   1961 #endif
   1962 			case IPV6_PKTINFO:
   1963 			case IPV6_HOPOPTS:
   1964 			case IPV6_RTHDR:
   1965 			case IPV6_DSTOPTS:
   1966 			case IPV6_RTHDRDSTOPTS:
   1967 			case IPV6_NEXTHOP:
   1968 			case IPV6_OTCLASS:
   1969 			case IPV6_TCLASS:
   1970 			case IPV6_DONTFRAG:
   1971 			case IPV6_USE_MIN_MTU:
   1972 				error = ip6_getpcbopt(in6p->in6p_outputopts,
   1973 				    optname, mp);
   1974 				break;
   1975 
   1976 			case IPV6_MULTICAST_IF:
   1977 			case IPV6_MULTICAST_HOPS:
   1978 			case IPV6_MULTICAST_LOOP:
   1979 			case IPV6_JOIN_GROUP:
   1980 			case IPV6_LEAVE_GROUP:
   1981 				error = ip6_getmoptions(optname,
   1982 				    in6p->in6p_moptions, mp);
   1983 				break;
   1984 
   1985 #ifdef IPSEC
   1986 			case IPV6_IPSEC_POLICY:
   1987 			    {
   1988 				caddr_t req = NULL;
   1989 				size_t len = 0;
   1990 				if (m) {
   1991 					req = mtod(m, caddr_t);
   1992 					len = m->m_len;
   1993 				}
   1994 				error = ipsec6_get_policy(in6p, req, len, mp);
   1995 				break;
   1996 			    }
   1997 #endif /* IPSEC */
   1998 
   1999 
   2000 
   2001 
   2002 			default:
   2003 				error = ENOPROTOOPT;
   2004 				break;
   2005 			}
   2006 			break;
   2007 		}
   2008 	} else {
   2009 		error = EINVAL;
   2010 		if (op == PRCO_SETOPT && *mp)
   2011 			(void)m_free(*mp);
   2012 	}
   2013 	return (error);
   2014 }
   2015 
   2016 int
   2017 ip6_raw_ctloutput(op, so, level, optname, mp)
   2018 	int op;
   2019 	struct socket *so;
   2020 	int level, optname;
   2021 	struct mbuf **mp;
   2022 {
   2023 	int error = 0, optval, optlen;
   2024 	const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
   2025 	struct in6pcb *in6p = sotoin6pcb(so);
   2026 	struct mbuf *m = *mp;
   2027 
   2028 	optlen = m ? m->m_len : 0;
   2029 
   2030 	if (level != IPPROTO_IPV6) {
   2031 		if (op == PRCO_SETOPT && *mp)
   2032 			(void)m_free(*mp);
   2033 		return (EINVAL);
   2034 	}
   2035 
   2036 	switch (optname) {
   2037 	case IPV6_CHECKSUM:
   2038 		/*
   2039 		 * For ICMPv6 sockets, no modification allowed for checksum
   2040 		 * offset, permit "no change" values to help existing apps.
   2041 		 *
   2042 		 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
   2043 		 * for an ICMPv6 socket will fail."  The current
   2044 		 * behavior does not meet RFC3542.
   2045 		 */
   2046 		switch (op) {
   2047 		case PRCO_SETOPT:
   2048 			if (optlen != sizeof(int)) {
   2049 				error = EINVAL;
   2050 				break;
   2051 			}
   2052 			optval = *mtod(m, int *);
   2053 			if ((optval % 2) != 0) {
   2054 				/* the API assumes even offset values */
   2055 				error = EINVAL;
   2056 			} else if (so->so_proto->pr_protocol ==
   2057 			    IPPROTO_ICMPV6) {
   2058 				if (optval != icmp6off)
   2059 					error = EINVAL;
   2060 			} else
   2061 				in6p->in6p_cksum = optval;
   2062 			break;
   2063 
   2064 		case PRCO_GETOPT:
   2065 			if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
   2066 				optval = icmp6off;
   2067 			else
   2068 				optval = in6p->in6p_cksum;
   2069 
   2070 			*mp = m = m_get(M_WAIT, MT_SOOPTS);
   2071 			m->m_len = sizeof(int);
   2072 			*mtod(m, int *) = optval;
   2073 			break;
   2074 
   2075 		default:
   2076 			error = EINVAL;
   2077 			break;
   2078 		}
   2079 		break;
   2080 
   2081 	default:
   2082 		error = ENOPROTOOPT;
   2083 		break;
   2084 	}
   2085 
   2086 	if (op == PRCO_SETOPT && m)
   2087 		(void)m_free(m);
   2088 
   2089 	return (error);
   2090 }
   2091 
   2092 #ifdef RFC2292
   2093 /*
   2094  * Set up IP6 options in pcb for insertion in output packets or
   2095  * specifying behavior of outgoing packets.
   2096  */
   2097 static int
   2098 ip6_pcbopts(pktopt, m, so)
   2099 	struct ip6_pktopts **pktopt;
   2100 	struct mbuf *m;
   2101 	struct socket *so;
   2102 {
   2103 	struct ip6_pktopts *opt = *pktopt;
   2104 	int error = 0;
   2105 	struct proc *p = curproc;	/* XXX */
   2106 	int priv = 0;
   2107 
   2108 	/* turn off any old options. */
   2109 	if (opt) {
   2110 #ifdef DIAGNOSTIC
   2111 	    if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
   2112 		opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
   2113 		opt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2114 		    printf("ip6_pcbopts: all specified options are cleared.\n");
   2115 #endif
   2116 		ip6_clearpktopts(opt, -1);
   2117 	} else
   2118 		opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
   2119 	*pktopt = NULL;
   2120 
   2121 	if (!m || m->m_len == 0) {
   2122 		/*
   2123 		 * Only turning off any previous options, regardless of
   2124 		 * whether the opt is just created or given.
   2125 		 */
   2126 		free(opt, M_IP6OPT);
   2127 		return (0);
   2128 	}
   2129 
   2130 	/*  set options specified by user. */
   2131 	if (p && !kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER, &p->p_acflag))
   2132 		priv = 1;
   2133 	if ((error = ip6_setpktopts(m, opt, NULL, priv,
   2134 	    so->so_proto->pr_protocol)) != 0) {
   2135 		ip6_clearpktopts(opt, -1); /* XXX: discard all options */
   2136 		free(opt, M_IP6OPT);
   2137 		return (error);
   2138 	}
   2139 	*pktopt = opt;
   2140 	return (0);
   2141 }
   2142 #endif
   2143 
   2144 /*
   2145  * initialize ip6_pktopts.  beware that there are non-zero default values in
   2146  * the struct.
   2147  */
   2148 void
   2149 ip6_initpktopts(struct ip6_pktopts *opt)
   2150 {
   2151 
   2152 	memset(opt, 0, sizeof(*opt));
   2153 	opt->ip6po_hlim = -1;	/* -1 means default hop limit */
   2154 	opt->ip6po_tclass = -1;	/* -1 means default traffic class */
   2155 	opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
   2156 }
   2157 
   2158 #define sin6tosa(sin6)	((struct sockaddr *)(sin6)) /* XXX */
   2159 static int
   2160 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
   2161     int priv, int uproto)
   2162 {
   2163 	struct ip6_pktopts *opt;
   2164 
   2165 	if (*pktopt == NULL) {
   2166 		*pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
   2167 		    M_WAITOK);
   2168 		ip6_initpktopts(*pktopt);
   2169 	}
   2170 	opt = *pktopt;
   2171 
   2172 	return (ip6_setpktopt(optname, buf, len, opt, priv, 1, 0, uproto));
   2173 }
   2174 
   2175 static int
   2176 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct mbuf **mp)
   2177 {
   2178 	void *optdata = NULL;
   2179 	int optdatalen = 0;
   2180 	struct ip6_ext *ip6e;
   2181 	int error = 0;
   2182 	struct in6_pktinfo null_pktinfo;
   2183 	int deftclass = 0, on;
   2184 	int defminmtu = IP6PO_MINMTU_MCASTONLY;
   2185 	struct mbuf *m;
   2186 
   2187 	switch (optname) {
   2188 	case IPV6_PKTINFO:
   2189 		if (pktopt && pktopt->ip6po_pktinfo)
   2190 			optdata = (void *)pktopt->ip6po_pktinfo;
   2191 		else {
   2192 			/* XXX: we don't have to do this every time... */
   2193 			memset(&null_pktinfo, 0, sizeof(null_pktinfo));
   2194 			optdata = (void *)&null_pktinfo;
   2195 		}
   2196 		optdatalen = sizeof(struct in6_pktinfo);
   2197 		break;
   2198 	case IPV6_OTCLASS:
   2199 		/* XXX */
   2200 		return (EINVAL);
   2201 	case IPV6_TCLASS:
   2202 		if (pktopt && pktopt->ip6po_tclass >= 0)
   2203 			optdata = (void *)&pktopt->ip6po_tclass;
   2204 		else
   2205 			optdata = (void *)&deftclass;
   2206 		optdatalen = sizeof(int);
   2207 		break;
   2208 	case IPV6_HOPOPTS:
   2209 		if (pktopt && pktopt->ip6po_hbh) {
   2210 			optdata = (void *)pktopt->ip6po_hbh;
   2211 			ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
   2212 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2213 		}
   2214 		break;
   2215 	case IPV6_RTHDR:
   2216 		if (pktopt && pktopt->ip6po_rthdr) {
   2217 			optdata = (void *)pktopt->ip6po_rthdr;
   2218 			ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
   2219 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2220 		}
   2221 		break;
   2222 	case IPV6_RTHDRDSTOPTS:
   2223 		if (pktopt && pktopt->ip6po_dest1) {
   2224 			optdata = (void *)pktopt->ip6po_dest1;
   2225 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
   2226 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2227 		}
   2228 		break;
   2229 	case IPV6_DSTOPTS:
   2230 		if (pktopt && pktopt->ip6po_dest2) {
   2231 			optdata = (void *)pktopt->ip6po_dest2;
   2232 			ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
   2233 			optdatalen = (ip6e->ip6e_len + 1) << 3;
   2234 		}
   2235 		break;
   2236 	case IPV6_NEXTHOP:
   2237 		if (pktopt && pktopt->ip6po_nexthop) {
   2238 			optdata = (void *)pktopt->ip6po_nexthop;
   2239 			optdatalen = pktopt->ip6po_nexthop->sa_len;
   2240 		}
   2241 		break;
   2242 	case IPV6_USE_MIN_MTU:
   2243 		if (pktopt)
   2244 			optdata = (void *)&pktopt->ip6po_minmtu;
   2245 		else
   2246 			optdata = (void *)&defminmtu;
   2247 		optdatalen = sizeof(int);
   2248 		break;
   2249 	case IPV6_DONTFRAG:
   2250 		if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
   2251 			on = 1;
   2252 		else
   2253 			on = 0;
   2254 		optdata = (void *)&on;
   2255 		optdatalen = sizeof(on);
   2256 		break;
   2257 	default:		/* should not happen */
   2258 #ifdef DIAGNOSTIC
   2259 		panic("ip6_getpcbopt: unexpected option\n");
   2260 #endif
   2261 		return (ENOPROTOOPT);
   2262 	}
   2263 
   2264 	if (optdatalen > MCLBYTES)
   2265 		return (EMSGSIZE); /* XXX */
   2266 	*mp = m = m_get(M_WAIT, MT_SOOPTS);
   2267 	if (optdatalen > MLEN)
   2268 		MCLGET(m, M_WAIT);
   2269 	m->m_len = optdatalen;
   2270 	if (optdatalen)
   2271 		memcpy(mtod(m, void *), optdata, optdatalen);
   2272 
   2273 	return (error);
   2274 }
   2275 
   2276 void
   2277 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
   2278 {
   2279 	if (optname == -1 || optname == IPV6_PKTINFO) {
   2280 		if (pktopt->ip6po_pktinfo)
   2281 			free(pktopt->ip6po_pktinfo, M_IP6OPT);
   2282 		pktopt->ip6po_pktinfo = NULL;
   2283 	}
   2284 	if (optname == -1 || optname == IPV6_HOPLIMIT)
   2285 		pktopt->ip6po_hlim = -1;
   2286 	if (optname == -1 || optname == IPV6_TCLASS)
   2287 		pktopt->ip6po_tclass = -1;
   2288 	if (optname == -1 || optname == IPV6_NEXTHOP) {
   2289 		if (pktopt->ip6po_nextroute.ro_rt) {
   2290 			RTFREE(pktopt->ip6po_nextroute.ro_rt);
   2291 			pktopt->ip6po_nextroute.ro_rt = NULL;
   2292 		}
   2293 		if (pktopt->ip6po_nexthop)
   2294 			free(pktopt->ip6po_nexthop, M_IP6OPT);
   2295 		pktopt->ip6po_nexthop = NULL;
   2296 	}
   2297 	if (optname == -1 || optname == IPV6_HOPOPTS) {
   2298 		if (pktopt->ip6po_hbh)
   2299 			free(pktopt->ip6po_hbh, M_IP6OPT);
   2300 		pktopt->ip6po_hbh = NULL;
   2301 	}
   2302 	if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
   2303 		if (pktopt->ip6po_dest1)
   2304 			free(pktopt->ip6po_dest1, M_IP6OPT);
   2305 		pktopt->ip6po_dest1 = NULL;
   2306 	}
   2307 	if (optname == -1 || optname == IPV6_RTHDR) {
   2308 		if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
   2309 			free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
   2310 		pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
   2311 		if (pktopt->ip6po_route.ro_rt) {
   2312 			RTFREE(pktopt->ip6po_route.ro_rt);
   2313 			pktopt->ip6po_route.ro_rt = NULL;
   2314 		}
   2315 	}
   2316 	if (optname == -1 || optname == IPV6_DSTOPTS) {
   2317 		if (pktopt->ip6po_dest2)
   2318 			free(pktopt->ip6po_dest2, M_IP6OPT);
   2319 		pktopt->ip6po_dest2 = NULL;
   2320 	}
   2321 }
   2322 
   2323 #define PKTOPT_EXTHDRCPY(type) 					\
   2324 do {								\
   2325 	if (src->type) {					\
   2326 		int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
   2327 		dst->type = malloc(hlen, M_IP6OPT, canwait);	\
   2328 		if (dst->type == NULL && canwait == M_NOWAIT)	\
   2329 			goto bad;				\
   2330 		memcpy(dst->type, src->type, hlen);		\
   2331 	}							\
   2332 } while (/*CONSTCOND*/ 0)
   2333 
   2334 static int
   2335 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
   2336 {
   2337 	dst->ip6po_hlim = src->ip6po_hlim;
   2338 	dst->ip6po_tclass = src->ip6po_tclass;
   2339 	dst->ip6po_flags = src->ip6po_flags;
   2340 	if (src->ip6po_pktinfo) {
   2341 		dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
   2342 		    M_IP6OPT, canwait);
   2343 		if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT)
   2344 			goto bad;
   2345 		*dst->ip6po_pktinfo = *src->ip6po_pktinfo;
   2346 	}
   2347 	if (src->ip6po_nexthop) {
   2348 		dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
   2349 		    M_IP6OPT, canwait);
   2350 		if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT)
   2351 			goto bad;
   2352 		memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
   2353 		    src->ip6po_nexthop->sa_len);
   2354 	}
   2355 	PKTOPT_EXTHDRCPY(ip6po_hbh);
   2356 	PKTOPT_EXTHDRCPY(ip6po_dest1);
   2357 	PKTOPT_EXTHDRCPY(ip6po_dest2);
   2358 	PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
   2359 	return (0);
   2360 
   2361   bad:
   2362 	if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
   2363 	if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
   2364 	if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
   2365 	if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
   2366 	if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
   2367 	if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
   2368 
   2369 	return (ENOBUFS);
   2370 }
   2371 #undef PKTOPT_EXTHDRCPY
   2372 
   2373 struct ip6_pktopts *
   2374 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
   2375 {
   2376 	int error;
   2377 	struct ip6_pktopts *dst;
   2378 
   2379 	dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
   2380 	if (dst == NULL && canwait == M_NOWAIT)
   2381 		return (NULL);
   2382 	ip6_initpktopts(dst);
   2383 
   2384 	if ((error = copypktopts(dst, src, canwait)) != 0) {
   2385 		free(dst, M_IP6OPT);
   2386 		return (NULL);
   2387 	}
   2388 
   2389 	return (dst);
   2390 }
   2391 
   2392 void
   2393 ip6_freepcbopts(struct ip6_pktopts *pktopt)
   2394 {
   2395 	if (pktopt == NULL)
   2396 		return;
   2397 
   2398 	ip6_clearpktopts(pktopt, -1);
   2399 
   2400 	free(pktopt, M_IP6OPT);
   2401 }
   2402 
   2403 /*
   2404  * Set the IP6 multicast options in response to user setsockopt().
   2405  */
   2406 static int
   2407 ip6_setmoptions(optname, im6op, m)
   2408 	int optname;
   2409 	struct ip6_moptions **im6op;
   2410 	struct mbuf *m;
   2411 {
   2412 	int error = 0;
   2413 	u_int loop, ifindex;
   2414 	struct ipv6_mreq *mreq;
   2415 	struct ifnet *ifp;
   2416 	struct ip6_moptions *im6o = *im6op;
   2417 	struct route_in6 ro;
   2418 	struct in6_multi_mship *imm;
   2419 	struct proc *p = curproc;	/* XXX */
   2420 
   2421 	if (im6o == NULL) {
   2422 		/*
   2423 		 * No multicast option buffer attached to the pcb;
   2424 		 * allocate one and initialize to default values.
   2425 		 */
   2426 		im6o = (struct ip6_moptions *)
   2427 			malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
   2428 
   2429 		if (im6o == NULL)
   2430 			return (ENOBUFS);
   2431 		*im6op = im6o;
   2432 		im6o->im6o_multicast_ifp = NULL;
   2433 		im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2434 		im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
   2435 		LIST_INIT(&im6o->im6o_memberships);
   2436 	}
   2437 
   2438 	switch (optname) {
   2439 
   2440 	case IPV6_MULTICAST_IF:
   2441 		/*
   2442 		 * Select the interface for outgoing multicast packets.
   2443 		 */
   2444 		if (m == NULL || m->m_len != sizeof(u_int)) {
   2445 			error = EINVAL;
   2446 			break;
   2447 		}
   2448 		bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
   2449 		if (ifindex != 0) {
   2450 			if (ifindex < 0 || if_indexlim <= ifindex ||
   2451 			    !ifindex2ifnet[ifindex]) {
   2452 				error = ENXIO;	/* XXX EINVAL? */
   2453 				break;
   2454 			}
   2455 			ifp = ifindex2ifnet[ifindex];
   2456 			if ((ifp->if_flags & IFF_MULTICAST) == 0) {
   2457 				error = EADDRNOTAVAIL;
   2458 				break;
   2459 			}
   2460 		} else
   2461 			ifp = NULL;
   2462 		im6o->im6o_multicast_ifp = ifp;
   2463 		break;
   2464 
   2465 	case IPV6_MULTICAST_HOPS:
   2466 	    {
   2467 		/*
   2468 		 * Set the IP6 hoplimit for outgoing multicast packets.
   2469 		 */
   2470 		int optval;
   2471 		if (m == NULL || m->m_len != sizeof(int)) {
   2472 			error = EINVAL;
   2473 			break;
   2474 		}
   2475 		bcopy(mtod(m, u_int *), &optval, sizeof(optval));
   2476 		if (optval < -1 || optval >= 256)
   2477 			error = EINVAL;
   2478 		else if (optval == -1)
   2479 			im6o->im6o_multicast_hlim = ip6_defmcasthlim;
   2480 		else
   2481 			im6o->im6o_multicast_hlim = optval;
   2482 		break;
   2483 	    }
   2484 
   2485 	case IPV6_MULTICAST_LOOP:
   2486 		/*
   2487 		 * Set the loopback flag for outgoing multicast packets.
   2488 		 * Must be zero or one.
   2489 		 */
   2490 		if (m == NULL || m->m_len != sizeof(u_int)) {
   2491 			error = EINVAL;
   2492 			break;
   2493 		}
   2494 		bcopy(mtod(m, u_int *), &loop, sizeof(loop));
   2495 		if (loop > 1) {
   2496 			error = EINVAL;
   2497 			break;
   2498 		}
   2499 		im6o->im6o_multicast_loop = loop;
   2500 		break;
   2501 
   2502 	case IPV6_JOIN_GROUP:
   2503 		/*
   2504 		 * Add a multicast group membership.
   2505 		 * Group must be a valid IP6 multicast address.
   2506 		 */
   2507 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
   2508 			error = EINVAL;
   2509 			break;
   2510 		}
   2511 		mreq = mtod(m, struct ipv6_mreq *);
   2512 		if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
   2513 			/*
   2514 			 * We use the unspecified address to specify to accept
   2515 			 * all multicast addresses. Only super user is allowed
   2516 			 * to do this.
   2517 			 */
   2518 			if (kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER, &p->p_acflag))
   2519 			{
   2520 				error = EACCES;
   2521 				break;
   2522 			}
   2523 		} else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
   2524 			error = EINVAL;
   2525 			break;
   2526 		}
   2527 
   2528 		/*
   2529 		 * If no interface was explicitly specified, choose an
   2530 		 * appropriate one according to the given multicast address.
   2531 		 */
   2532 		if (mreq->ipv6mr_interface == 0) {
   2533 			struct sockaddr_in6 *dst;
   2534 
   2535 			/*
   2536 			 * Look up the routing table for the
   2537 			 * address, and choose the outgoing interface.
   2538 			 *   XXX: is it a good approach?
   2539 			 */
   2540 			ro.ro_rt = NULL;
   2541 			dst = (struct sockaddr_in6 *)&ro.ro_dst;
   2542 			bzero(dst, sizeof(*dst));
   2543 			dst->sin6_family = AF_INET6;
   2544 			dst->sin6_len = sizeof(*dst);
   2545 			dst->sin6_addr = mreq->ipv6mr_multiaddr;
   2546 			rtalloc((struct route *)&ro);
   2547 			if (ro.ro_rt == NULL) {
   2548 				error = EADDRNOTAVAIL;
   2549 				break;
   2550 			}
   2551 			ifp = ro.ro_rt->rt_ifp;
   2552 			rtfree(ro.ro_rt);
   2553 		} else {
   2554 			/*
   2555 			 * If the interface is specified, validate it.
   2556 			 */
   2557 			if (mreq->ipv6mr_interface < 0 ||
   2558 			    if_indexlim <= mreq->ipv6mr_interface ||
   2559 			    !ifindex2ifnet[mreq->ipv6mr_interface]) {
   2560 				error = ENXIO;	/* XXX EINVAL? */
   2561 				break;
   2562 			}
   2563 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
   2564 		}
   2565 
   2566 		/*
   2567 		 * See if we found an interface, and confirm that it
   2568 		 * supports multicast
   2569 		 */
   2570 		if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
   2571 			error = EADDRNOTAVAIL;
   2572 			break;
   2573 		}
   2574 
   2575 		if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
   2576 			error = EADDRNOTAVAIL; /* XXX: should not happen */
   2577 			break;
   2578 		}
   2579 
   2580 		/*
   2581 		 * See if the membership already exists.
   2582 		 */
   2583 		for (imm = im6o->im6o_memberships.lh_first;
   2584 		     imm != NULL; imm = imm->i6mm_chain.le_next)
   2585 			if (imm->i6mm_maddr->in6m_ifp == ifp &&
   2586 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2587 			    &mreq->ipv6mr_multiaddr))
   2588 				break;
   2589 		if (imm != NULL) {
   2590 			error = EADDRINUSE;
   2591 			break;
   2592 		}
   2593 		/*
   2594 		 * Everything looks good; add a new record to the multicast
   2595 		 * address list for the given interface.
   2596 		 */
   2597 		imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error, 0);
   2598 		if (imm == NULL)
   2599 			break;
   2600 		LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
   2601 		break;
   2602 
   2603 	case IPV6_LEAVE_GROUP:
   2604 		/*
   2605 		 * Drop a multicast group membership.
   2606 		 * Group must be a valid IP6 multicast address.
   2607 		 */
   2608 		if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
   2609 			error = EINVAL;
   2610 			break;
   2611 		}
   2612 		mreq = mtod(m, struct ipv6_mreq *);
   2613 
   2614 		/*
   2615 		 * If an interface address was specified, get a pointer
   2616 		 * to its ifnet structure.
   2617 		 */
   2618 		if (mreq->ipv6mr_interface != 0) {
   2619 			if (mreq->ipv6mr_interface < 0 ||
   2620 			    if_indexlim <= mreq->ipv6mr_interface ||
   2621 			    !ifindex2ifnet[mreq->ipv6mr_interface]) {
   2622 				error = ENXIO;	/* XXX EINVAL? */
   2623 				break;
   2624 			}
   2625 			ifp = ifindex2ifnet[mreq->ipv6mr_interface];
   2626 		} else
   2627 			ifp = NULL;
   2628 
   2629 		/* Fill in the scope zone ID */
   2630 		if (ifp) {
   2631 			if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
   2632 				/* XXX: should not happen */
   2633 				error = EADDRNOTAVAIL;
   2634 				break;
   2635 			}
   2636 		} else if (mreq->ipv6mr_interface != 0) {
   2637 			/*
   2638 			 * XXX: This case would happens when the (positive)
   2639 			 * index is in the valid range, but the corresponding
   2640 			 * interface has been detached dynamically.  The above
   2641 			 * check probably avoids such case to happen here, but
   2642 			 * we check it explicitly for safety.
   2643 			 */
   2644 			error = EADDRNOTAVAIL;
   2645 			break;
   2646 		} else {	/* ipv6mr_interface == 0 */
   2647 			struct sockaddr_in6 sa6_mc;
   2648 
   2649 			/*
   2650 			 * The API spec says as follows:
   2651 			 *  If the interface index is specified as 0, the
   2652 			 *  system may choose a multicast group membership to
   2653 			 *  drop by matching the multicast address only.
   2654 			 * On the other hand, we cannot disambiguate the scope
   2655 			 * zone unless an interface is provided.  Thus, we
   2656 			 * check if there's ambiguity with the default scope
   2657 			 * zone as the last resort.
   2658 			 */
   2659 			bzero(&sa6_mc, sizeof(sa6_mc));
   2660 			sa6_mc.sin6_family = AF_INET6;
   2661 			sa6_mc.sin6_len = sizeof(sa6_mc);
   2662 			sa6_mc.sin6_addr = mreq->ipv6mr_multiaddr;
   2663 			error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
   2664 			if (error != 0)
   2665 				break;
   2666 			mreq->ipv6mr_multiaddr = sa6_mc.sin6_addr;
   2667 		}
   2668 
   2669 		/*
   2670 		 * Find the membership in the membership list.
   2671 		 */
   2672 		for (imm = im6o->im6o_memberships.lh_first;
   2673 		     imm != NULL; imm = imm->i6mm_chain.le_next) {
   2674 			if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
   2675 			    IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
   2676 			    &mreq->ipv6mr_multiaddr))
   2677 				break;
   2678 		}
   2679 		if (imm == NULL) {
   2680 			/* Unable to resolve interface */
   2681 			error = EADDRNOTAVAIL;
   2682 			break;
   2683 		}
   2684 		/*
   2685 		 * Give up the multicast address record to which the
   2686 		 * membership points.
   2687 		 */
   2688 		LIST_REMOVE(imm, i6mm_chain);
   2689 		in6_leavegroup(imm);
   2690 		break;
   2691 
   2692 	default:
   2693 		error = EOPNOTSUPP;
   2694 		break;
   2695 	}
   2696 
   2697 	/*
   2698 	 * If all options have default values, no need to keep the mbuf.
   2699 	 */
   2700 	if (im6o->im6o_multicast_ifp == NULL &&
   2701 	    im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
   2702 	    im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
   2703 	    im6o->im6o_memberships.lh_first == NULL) {
   2704 		free(*im6op, M_IPMOPTS);
   2705 		*im6op = NULL;
   2706 	}
   2707 
   2708 	return (error);
   2709 }
   2710 
   2711 /*
   2712  * Return the IP6 multicast options in response to user getsockopt().
   2713  */
   2714 static int
   2715 ip6_getmoptions(optname, im6o, mp)
   2716 	int optname;
   2717 	struct ip6_moptions *im6o;
   2718 	struct mbuf **mp;
   2719 {
   2720 	u_int *hlim, *loop, *ifindex;
   2721 
   2722 	*mp = m_get(M_WAIT, MT_SOOPTS);
   2723 
   2724 	switch (optname) {
   2725 
   2726 	case IPV6_MULTICAST_IF:
   2727 		ifindex = mtod(*mp, u_int *);
   2728 		(*mp)->m_len = sizeof(u_int);
   2729 		if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
   2730 			*ifindex = 0;
   2731 		else
   2732 			*ifindex = im6o->im6o_multicast_ifp->if_index;
   2733 		return (0);
   2734 
   2735 	case IPV6_MULTICAST_HOPS:
   2736 		hlim = mtod(*mp, u_int *);
   2737 		(*mp)->m_len = sizeof(u_int);
   2738 		if (im6o == NULL)
   2739 			*hlim = ip6_defmcasthlim;
   2740 		else
   2741 			*hlim = im6o->im6o_multicast_hlim;
   2742 		return (0);
   2743 
   2744 	case IPV6_MULTICAST_LOOP:
   2745 		loop = mtod(*mp, u_int *);
   2746 		(*mp)->m_len = sizeof(u_int);
   2747 		if (im6o == NULL)
   2748 			*loop = ip6_defmcasthlim;
   2749 		else
   2750 			*loop = im6o->im6o_multicast_loop;
   2751 		return (0);
   2752 
   2753 	default:
   2754 		return (EOPNOTSUPP);
   2755 	}
   2756 }
   2757 
   2758 /*
   2759  * Discard the IP6 multicast options.
   2760  */
   2761 void
   2762 ip6_freemoptions(im6o)
   2763 	struct ip6_moptions *im6o;
   2764 {
   2765 	struct in6_multi_mship *imm;
   2766 
   2767 	if (im6o == NULL)
   2768 		return;
   2769 
   2770 	while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
   2771 		LIST_REMOVE(imm, i6mm_chain);
   2772 		in6_leavegroup(imm);
   2773 	}
   2774 	free(im6o, M_IPMOPTS);
   2775 }
   2776 
   2777 /*
   2778  * Set IPv6 outgoing packet options based on advanced API.
   2779  */
   2780 int
   2781 ip6_setpktopts(control, opt, stickyopt, priv, uproto)
   2782 	struct mbuf *control;
   2783 	struct ip6_pktopts *opt, *stickyopt;
   2784 	int priv, uproto;
   2785 {
   2786 	struct cmsghdr *cm = 0;
   2787 
   2788 	if (control == NULL || opt == NULL)
   2789 		return (EINVAL);
   2790 
   2791 	ip6_initpktopts(opt);
   2792 	if (stickyopt) {
   2793 		int error;
   2794 
   2795 		/*
   2796 		 * If stickyopt is provided, make a local copy of the options
   2797 		 * for this particular packet, then override them by ancillary
   2798 		 * objects.
   2799 		 * XXX: copypktopts() does not copy the cached route to a next
   2800 		 * hop (if any).  This is not very good in terms of efficiency,
   2801 		 * but we can allow this since this option should be rarely
   2802 		 * used.
   2803 		 */
   2804 		if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
   2805 			return (error);
   2806 	}
   2807 
   2808 	/*
   2809 	 * XXX: Currently, we assume all the optional information is stored
   2810 	 * in a single mbuf.
   2811 	 */
   2812 	if (control->m_next)
   2813 		return (EINVAL);
   2814 
   2815 	for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
   2816 	    control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
   2817 		int error;
   2818 
   2819 		if (control->m_len < CMSG_LEN(0))
   2820 			return (EINVAL);
   2821 
   2822 		cm = mtod(control, struct cmsghdr *);
   2823 		if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
   2824 			return (EINVAL);
   2825 		if (cm->cmsg_level != IPPROTO_IPV6)
   2826 			continue;
   2827 
   2828 		error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
   2829 		    cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, 1, uproto);
   2830 		if (error)
   2831 			return (error);
   2832 	}
   2833 
   2834 	return (0);
   2835 }
   2836 
   2837 /*
   2838  * Set a particular packet option, as a sticky option or an ancillary data
   2839  * item.  "len" can be 0 only when it's a sticky option.
   2840  * We have 4 cases of combination of "sticky" and "cmsg":
   2841  * "sticky=0, cmsg=0": impossible
   2842  * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
   2843  * "sticky=1, cmsg=0": RFC3542 socket option
   2844  * "sticky=1, cmsg=1": RFC2292 socket option
   2845  */
   2846 static int
   2847 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
   2848     int priv, int sticky, int cmsg, int uproto)
   2849 {
   2850 	int minmtupolicy;
   2851 
   2852 	if (!sticky && !cmsg) {
   2853 #ifdef DIAGNOSTIC
   2854 		printf("ip6_setpktopt: impossible case\n");
   2855 #endif
   2856 		return (EINVAL);
   2857 	}
   2858 
   2859 	/*
   2860 	 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
   2861 	 * not be specified in the context of RFC3542.  Conversely,
   2862 	 * RFC3542 types should not be specified in the context of RFC2292.
   2863 	 */
   2864 	if (!cmsg) {
   2865 		switch (optname) {
   2866 		case IPV6_2292PKTINFO:
   2867 		case IPV6_2292HOPLIMIT:
   2868 		case IPV6_2292NEXTHOP:
   2869 		case IPV6_2292HOPOPTS:
   2870 		case IPV6_2292DSTOPTS:
   2871 		case IPV6_2292RTHDR:
   2872 		case IPV6_2292PKTOPTIONS:
   2873 			return (ENOPROTOOPT);
   2874 		}
   2875 	}
   2876 	if (sticky && cmsg) {
   2877 		switch (optname) {
   2878 		case IPV6_PKTINFO:
   2879 		case IPV6_HOPLIMIT:
   2880 		case IPV6_NEXTHOP:
   2881 		case IPV6_HOPOPTS:
   2882 		case IPV6_DSTOPTS:
   2883 		case IPV6_RTHDRDSTOPTS:
   2884 		case IPV6_RTHDR:
   2885 		case IPV6_USE_MIN_MTU:
   2886 		case IPV6_DONTFRAG:
   2887 		case IPV6_OTCLASS:
   2888 		case IPV6_TCLASS:
   2889 			return (ENOPROTOOPT);
   2890 		}
   2891 	}
   2892 
   2893 	switch (optname) {
   2894 #ifdef RFC2292
   2895 	case IPV6_2292PKTINFO:
   2896 #endif
   2897 	case IPV6_PKTINFO:
   2898 	{
   2899 		struct ifnet *ifp = NULL;
   2900 		struct in6_pktinfo *pktinfo;
   2901 
   2902 		if (len != sizeof(struct in6_pktinfo))
   2903 			return (EINVAL);
   2904 
   2905 		pktinfo = (struct in6_pktinfo *)buf;
   2906 
   2907 		/*
   2908 		 * An application can clear any sticky IPV6_PKTINFO option by
   2909 		 * doing a "regular" setsockopt with ipi6_addr being
   2910 		 * in6addr_any and ipi6_ifindex being zero.
   2911 		 * [RFC 3542, Section 6]
   2912 		 */
   2913 		if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
   2914 		    pktinfo->ipi6_ifindex == 0 &&
   2915 		    IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2916 			ip6_clearpktopts(opt, optname);
   2917 			break;
   2918 		}
   2919 
   2920 		if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
   2921 		    sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
   2922 			return (EINVAL);
   2923 		}
   2924 
   2925 		/* validate the interface index if specified. */
   2926 		if (pktinfo->ipi6_ifindex >= if_indexlim ||
   2927 		    pktinfo->ipi6_ifindex < 0) {
   2928 			 return (ENXIO);
   2929 		}
   2930 		if (pktinfo->ipi6_ifindex) {
   2931 			ifp = ifindex2ifnet[pktinfo->ipi6_ifindex];
   2932 			if (ifp == NULL)
   2933 				return (ENXIO);
   2934 		}
   2935 
   2936 		/*
   2937 		 * We store the address anyway, and let in6_selectsrc()
   2938 		 * validate the specified address.  This is because ipi6_addr
   2939 		 * may not have enough information about its scope zone, and
   2940 		 * we may need additional information (such as outgoing
   2941 		 * interface or the scope zone of a destination address) to
   2942 		 * disambiguate the scope.
   2943 		 * XXX: the delay of the validation may confuse the
   2944 		 * application when it is used as a sticky option.
   2945 		 */
   2946 		if (opt->ip6po_pktinfo == NULL) {
   2947 			opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
   2948 			    M_IP6OPT, M_NOWAIT);
   2949 			if (opt->ip6po_pktinfo == NULL)
   2950 				return (ENOBUFS);
   2951 		}
   2952 		memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
   2953 		break;
   2954 	}
   2955 
   2956 #ifdef RFC2292
   2957 	case IPV6_2292HOPLIMIT:
   2958 #endif
   2959 	case IPV6_HOPLIMIT:
   2960 	{
   2961 		int *hlimp;
   2962 
   2963 		/*
   2964 		 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
   2965 		 * to simplify the ordering among hoplimit options.
   2966 		 */
   2967 		if (optname == IPV6_HOPLIMIT && sticky)
   2968 			return (ENOPROTOOPT);
   2969 
   2970 		if (len != sizeof(int))
   2971 			return (EINVAL);
   2972 		hlimp = (int *)buf;
   2973 		if (*hlimp < -1 || *hlimp > 255)
   2974 			return (EINVAL);
   2975 
   2976 		opt->ip6po_hlim = *hlimp;
   2977 		break;
   2978 	}
   2979 
   2980 	case IPV6_OTCLASS:
   2981 		if (len != sizeof(u_int8_t))
   2982 			return (EINVAL);
   2983 
   2984 		opt->ip6po_tclass = *(u_int8_t *)buf;
   2985 		break;
   2986 
   2987 	case IPV6_TCLASS:
   2988 	{
   2989 		int tclass;
   2990 
   2991 		if (len != sizeof(int))
   2992 			return (EINVAL);
   2993 		tclass = *(int *)buf;
   2994 		if (tclass < -1 || tclass > 255)
   2995 			return (EINVAL);
   2996 
   2997 		opt->ip6po_tclass = tclass;
   2998 		break;
   2999 	}
   3000 
   3001 #ifdef RFC2292
   3002 	case IPV6_2292NEXTHOP:
   3003 #endif
   3004 	case IPV6_NEXTHOP:
   3005 		if (!priv)
   3006 			return (EPERM);
   3007 
   3008 		if (len == 0) {	/* just remove the option */
   3009 			ip6_clearpktopts(opt, IPV6_NEXTHOP);
   3010 			break;
   3011 		}
   3012 
   3013 		/* check if cmsg_len is large enough for sa_len */
   3014 		if (len < sizeof(struct sockaddr) || len < *buf)
   3015 			return (EINVAL);
   3016 
   3017 		switch (((struct sockaddr *)buf)->sa_family) {
   3018 		case AF_INET6:
   3019 		{
   3020 			struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
   3021 			int error;
   3022 
   3023 			if (sa6->sin6_len != sizeof(struct sockaddr_in6))
   3024 				return (EINVAL);
   3025 
   3026 			if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
   3027 			    IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
   3028 				return (EINVAL);
   3029 			}
   3030 			if ((error = sa6_embedscope(sa6, ip6_use_defzone))
   3031 			    != 0) {
   3032 				return (error);
   3033 			}
   3034 			break;
   3035 		}
   3036 		case AF_LINK:	/* eventually be supported? */
   3037 		default:
   3038 			return (EAFNOSUPPORT);
   3039 		}
   3040 
   3041 		/* turn off the previous option, then set the new option. */
   3042 		ip6_clearpktopts(opt, IPV6_NEXTHOP);
   3043 		opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
   3044 		if (opt->ip6po_nexthop == NULL)
   3045 			return (ENOBUFS);
   3046 		memcpy(opt->ip6po_nexthop, buf, *buf);
   3047 		break;
   3048 
   3049 #ifdef RFC2292
   3050 	case IPV6_2292HOPOPTS:
   3051 #endif
   3052 	case IPV6_HOPOPTS:
   3053 	{
   3054 		struct ip6_hbh *hbh;
   3055 		int hbhlen;
   3056 
   3057 		/*
   3058 		 * XXX: We don't allow a non-privileged user to set ANY HbH
   3059 		 * options, since per-option restriction has too much
   3060 		 * overhead.
   3061 		 */
   3062 		if (!priv)
   3063 			return (EPERM);
   3064 
   3065 		if (len == 0) {
   3066 			ip6_clearpktopts(opt, IPV6_HOPOPTS);
   3067 			break;	/* just remove the option */
   3068 		}
   3069 
   3070 		/* message length validation */
   3071 		if (len < sizeof(struct ip6_hbh))
   3072 			return (EINVAL);
   3073 		hbh = (struct ip6_hbh *)buf;
   3074 		hbhlen = (hbh->ip6h_len + 1) << 3;
   3075 		if (len != hbhlen)
   3076 			return (EINVAL);
   3077 
   3078 		/* turn off the previous option, then set the new option. */
   3079 		ip6_clearpktopts(opt, IPV6_HOPOPTS);
   3080 		opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
   3081 		if (opt->ip6po_hbh == NULL)
   3082 			return (ENOBUFS);
   3083 		memcpy(opt->ip6po_hbh, hbh, hbhlen);
   3084 
   3085 		break;
   3086 	}
   3087 
   3088 #ifdef RFC2292
   3089 	case IPV6_2292DSTOPTS:
   3090 #endif
   3091 	case IPV6_DSTOPTS:
   3092 	case IPV6_RTHDRDSTOPTS:
   3093 	{
   3094 		struct ip6_dest *dest, **newdest = NULL;
   3095 		int destlen;
   3096 
   3097 		if (!priv)	/* XXX: see the comment for IPV6_HOPOPTS */
   3098 			return (EPERM);
   3099 
   3100 		if (len == 0) {
   3101 			ip6_clearpktopts(opt, optname);
   3102 			break;	/* just remove the option */
   3103 		}
   3104 
   3105 		/* message length validation */
   3106 		if (len < sizeof(struct ip6_dest))
   3107 			return (EINVAL);
   3108 		dest = (struct ip6_dest *)buf;
   3109 		destlen = (dest->ip6d_len + 1) << 3;
   3110 		if (len != destlen)
   3111 			return (EINVAL);
   3112 		/*
   3113 		 * Determine the position that the destination options header
   3114 		 * should be inserted; before or after the routing header.
   3115 		 */
   3116 		switch (optname) {
   3117 		case IPV6_2292DSTOPTS:
   3118 			/*
   3119 			 * The old advanced API is ambiguous on this point.
   3120 			 * Our approach is to determine the position based
   3121 			 * according to the existence of a routing header.
   3122 			 * Note, however, that this depends on the order of the
   3123 			 * extension headers in the ancillary data; the 1st
   3124 			 * part of the destination options header must appear
   3125 			 * before the routing header in the ancillary data,
   3126 			 * too.
   3127 			 * RFC3542 solved the ambiguity by introducing
   3128 			 * separate ancillary data or option types.
   3129 			 */
   3130 			if (opt->ip6po_rthdr == NULL)
   3131 				newdest = &opt->ip6po_dest1;
   3132 			else
   3133 				newdest = &opt->ip6po_dest2;
   3134 			break;
   3135 		case IPV6_RTHDRDSTOPTS:
   3136 			newdest = &opt->ip6po_dest1;
   3137 			break;
   3138 		case IPV6_DSTOPTS:
   3139 			newdest = &opt->ip6po_dest2;
   3140 			break;
   3141 		}
   3142 
   3143 		/* turn off the previous option, then set the new option. */
   3144 		ip6_clearpktopts(opt, optname);
   3145 		*newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
   3146 		if (*newdest == NULL)
   3147 			return (ENOBUFS);
   3148 		memcpy(*newdest, dest, destlen);
   3149 
   3150 		break;
   3151 	}
   3152 
   3153 #ifdef RFC2292
   3154 	case IPV6_2292RTHDR:
   3155 #endif
   3156 	case IPV6_RTHDR:
   3157 	{
   3158 		struct ip6_rthdr *rth;
   3159 		int rthlen;
   3160 
   3161 		if (len == 0) {
   3162 			ip6_clearpktopts(opt, IPV6_RTHDR);
   3163 			break;	/* just remove the option */
   3164 		}
   3165 
   3166 		/* message length validation */
   3167 		if (len < sizeof(struct ip6_rthdr))
   3168 			return (EINVAL);
   3169 		rth = (struct ip6_rthdr *)buf;
   3170 		rthlen = (rth->ip6r_len + 1) << 3;
   3171 		if (len != rthlen)
   3172 			return (EINVAL);
   3173 		switch (rth->ip6r_type) {
   3174 		case IPV6_RTHDR_TYPE_0:
   3175 			if (rth->ip6r_len == 0)	/* must contain one addr */
   3176 				return (EINVAL);
   3177 			if (rth->ip6r_len % 2) /* length must be even */
   3178 				return (EINVAL);
   3179 			if (rth->ip6r_len / 2 != rth->ip6r_segleft)
   3180 				return (EINVAL);
   3181 			break;
   3182 		default:
   3183 			return (EINVAL);	/* not supported */
   3184 		}
   3185 		/* turn off the previous option */
   3186 		ip6_clearpktopts(opt, IPV6_RTHDR);
   3187 		opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
   3188 		if (opt->ip6po_rthdr == NULL)
   3189 			return (ENOBUFS);
   3190 		memcpy(opt->ip6po_rthdr, rth, rthlen);
   3191 		break;
   3192 	}
   3193 
   3194 	case IPV6_USE_MIN_MTU:
   3195 		if (len != sizeof(int))
   3196 			return (EINVAL);
   3197 		minmtupolicy = *(int *)buf;
   3198 		if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
   3199 		    minmtupolicy != IP6PO_MINMTU_DISABLE &&
   3200 		    minmtupolicy != IP6PO_MINMTU_ALL) {
   3201 			return (EINVAL);
   3202 		}
   3203 		opt->ip6po_minmtu = minmtupolicy;
   3204 		break;
   3205 
   3206 	case IPV6_DONTFRAG:
   3207 		if (len != sizeof(int))
   3208 			return (EINVAL);
   3209 
   3210 		if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
   3211 			/*
   3212 			 * we ignore this option for TCP sockets.
   3213 			 * (RFC3542 leaves this case unspecified.)
   3214 			 */
   3215 			opt->ip6po_flags &= ~IP6PO_DONTFRAG;
   3216 		} else
   3217 			opt->ip6po_flags |= IP6PO_DONTFRAG;
   3218 		break;
   3219 
   3220 	default:
   3221 		return (ENOPROTOOPT);
   3222 	} /* end of switch */
   3223 
   3224 	return (0);
   3225 }
   3226 
   3227 /*
   3228  * Routine called from ip6_output() to loop back a copy of an IP6 multicast
   3229  * packet to the input queue of a specified interface.  Note that this
   3230  * calls the output routine of the loopback "driver", but with an interface
   3231  * pointer that might NOT be lo0ifp -- easier than replicating that code here.
   3232  */
   3233 void
   3234 ip6_mloopback(ifp, m, dst)
   3235 	struct ifnet *ifp;
   3236 	struct mbuf *m;
   3237 	struct sockaddr_in6 *dst;
   3238 {
   3239 	struct mbuf *copym;
   3240 	struct ip6_hdr *ip6;
   3241 
   3242 	copym = m_copy(m, 0, M_COPYALL);
   3243 	if (copym == NULL)
   3244 		return;
   3245 
   3246 	/*
   3247 	 * Make sure to deep-copy IPv6 header portion in case the data
   3248 	 * is in an mbuf cluster, so that we can safely override the IPv6
   3249 	 * header portion later.
   3250 	 */
   3251 	if ((copym->m_flags & M_EXT) != 0 ||
   3252 	    copym->m_len < sizeof(struct ip6_hdr)) {
   3253 		copym = m_pullup(copym, sizeof(struct ip6_hdr));
   3254 		if (copym == NULL)
   3255 			return;
   3256 	}
   3257 
   3258 #ifdef DIAGNOSTIC
   3259 	if (copym->m_len < sizeof(*ip6)) {
   3260 		m_freem(copym);
   3261 		return;
   3262 	}
   3263 #endif
   3264 
   3265 	ip6 = mtod(copym, struct ip6_hdr *);
   3266 	/*
   3267 	 * clear embedded scope identifiers if necessary.
   3268 	 * in6_clearscope will touch the addresses only when necessary.
   3269 	 */
   3270 	in6_clearscope(&ip6->ip6_src);
   3271 	in6_clearscope(&ip6->ip6_dst);
   3272 
   3273 	(void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
   3274 }
   3275 
   3276 /*
   3277  * Chop IPv6 header off from the payload.
   3278  */
   3279 static int
   3280 ip6_splithdr(m, exthdrs)
   3281 	struct mbuf *m;
   3282 	struct ip6_exthdrs *exthdrs;
   3283 {
   3284 	struct mbuf *mh;
   3285 	struct ip6_hdr *ip6;
   3286 
   3287 	ip6 = mtod(m, struct ip6_hdr *);
   3288 	if (m->m_len > sizeof(*ip6)) {
   3289 		MGETHDR(mh, M_DONTWAIT, MT_HEADER);
   3290 		if (mh == 0) {
   3291 			m_freem(m);
   3292 			return ENOBUFS;
   3293 		}
   3294 		M_MOVE_PKTHDR(mh, m);
   3295 		MH_ALIGN(mh, sizeof(*ip6));
   3296 		m->m_len -= sizeof(*ip6);
   3297 		m->m_data += sizeof(*ip6);
   3298 		mh->m_next = m;
   3299 		m = mh;
   3300 		m->m_len = sizeof(*ip6);
   3301 		bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
   3302 	}
   3303 	exthdrs->ip6e_ip6 = m;
   3304 	return 0;
   3305 }
   3306 
   3307 /*
   3308  * Compute IPv6 extension header length.
   3309  */
   3310 int
   3311 ip6_optlen(in6p)
   3312 	struct in6pcb *in6p;
   3313 {
   3314 	int len;
   3315 
   3316 	if (!in6p->in6p_outputopts)
   3317 		return 0;
   3318 
   3319 	len = 0;
   3320 #define elen(x) \
   3321     (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
   3322 
   3323 	len += elen(in6p->in6p_outputopts->ip6po_hbh);
   3324 	len += elen(in6p->in6p_outputopts->ip6po_dest1);
   3325 	len += elen(in6p->in6p_outputopts->ip6po_rthdr);
   3326 	len += elen(in6p->in6p_outputopts->ip6po_dest2);
   3327 	return len;
   3328 #undef elen
   3329 }
   3330