ip6_output.c revision 1.95.2.4 1 /* $NetBSD: ip6_output.c,v 1.95.2.4 2006/05/06 23:32:11 christos Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.95.2.4 2006/05/06 23:32:11 christos Exp $");
66
67 #include "opt_inet.h"
68 #include "opt_ipsec.h"
69 #include "opt_pfil_hooks.h"
70
71 #include <sys/param.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/errno.h>
75 #include <sys/protosw.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/systm.h>
79 #include <sys/proc.h>
80 #include <sys/kauth.h>
81
82 #include <net/if.h>
83 #include <net/route.h>
84 #ifdef PFIL_HOOKS
85 #include <net/pfil.h>
86 #endif
87
88 #include <netinet/in.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip6.h>
91 #include <netinet/icmp6.h>
92 #include <netinet/in_offload.h>
93 #include <netinet6/ip6_var.h>
94 #include <netinet6/in6_pcb.h>
95 #include <netinet6/nd6.h>
96 #include <netinet6/ip6protosw.h>
97 #include <netinet6/scope6_var.h>
98
99 #ifdef IPSEC
100 #include <netinet6/ipsec.h>
101 #include <netkey/key.h>
102 #endif /* IPSEC */
103
104 #include <net/net_osdep.h>
105
106 #ifdef PFIL_HOOKS
107 extern struct pfil_head inet6_pfil_hook; /* XXX */
108 #endif
109
110 struct ip6_exthdrs {
111 struct mbuf *ip6e_ip6;
112 struct mbuf *ip6e_hbh;
113 struct mbuf *ip6e_dest1;
114 struct mbuf *ip6e_rthdr;
115 struct mbuf *ip6e_dest2;
116 };
117
118 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
119 struct socket *));
120 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
121 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
122 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
123 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
124 struct ip6_frag **));
125 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
126 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
127 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
128 struct ifnet *, struct in6_addr *, u_long *, int *));
129
130 #define IN6_NEED_CHECKSUM(ifp, csum_flags) \
131 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
132 (((csum_flags) & M_CSUM_UDPv6) != 0 && udp_do_loopback_cksum) || \
133 (((csum_flags) & M_CSUM_TCPv6) != 0 && tcp_do_loopback_cksum)))
134
135 /*
136 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
137 * header (with pri, len, nxt, hlim, src, dst).
138 * This function may modify ver and hlim only.
139 * The mbuf chain containing the packet will be freed.
140 * The mbuf opt, if present, will not be freed.
141 *
142 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
143 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
144 * which is rt_rmx.rmx_mtu.
145 */
146 int
147 ip6_output(m0, opt, ro, flags, im6o, so, ifpp)
148 struct mbuf *m0;
149 struct ip6_pktopts *opt;
150 struct route_in6 *ro;
151 int flags;
152 struct ip6_moptions *im6o;
153 struct socket *so;
154 struct ifnet **ifpp; /* XXX: just for statistics */
155 {
156 struct ip6_hdr *ip6, *mhip6;
157 struct ifnet *ifp, *origifp;
158 struct mbuf *m = m0;
159 int hlen, tlen, len, off;
160 struct route_in6 ip6route;
161 struct rtentry *rt = NULL;
162 struct sockaddr_in6 *dst, src_sa, dst_sa;
163 int error = 0;
164 struct in6_ifaddr *ia = NULL;
165 u_long mtu;
166 int alwaysfrag, dontfrag;
167 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
168 struct ip6_exthdrs exthdrs;
169 struct in6_addr finaldst, src0, dst0;
170 u_int32_t zone;
171 struct route_in6 *ro_pmtu = NULL;
172 int hdrsplit = 0;
173 int needipsec = 0;
174 #ifdef IPSEC
175 int needipsectun = 0;
176 struct secpolicy *sp = NULL;
177
178 ip6 = mtod(m, struct ip6_hdr *);
179 #endif /* IPSEC */
180
181 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
182
183 #define MAKE_EXTHDR(hp, mp) \
184 do { \
185 if (hp) { \
186 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
187 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
188 ((eh)->ip6e_len + 1) << 3); \
189 if (error) \
190 goto freehdrs; \
191 } \
192 } while (/*CONSTCOND*/ 0)
193
194 bzero(&exthdrs, sizeof(exthdrs));
195 if (opt) {
196 /* Hop-by-Hop options header */
197 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
198 /* Destination options header(1st part) */
199 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
200 /* Routing header */
201 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
202 /* Destination options header(2nd part) */
203 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
204 }
205
206 #ifdef IPSEC
207 if ((flags & IPV6_FORWARDING) != 0) {
208 needipsec = 0;
209 goto skippolicycheck;
210 }
211
212 /* get a security policy for this packet */
213 if (so == NULL)
214 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
215 else {
216 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
217 IPSEC_DIR_OUTBOUND)) {
218 needipsec = 0;
219 goto skippolicycheck;
220 }
221 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
222 }
223
224 if (sp == NULL) {
225 ipsec6stat.out_inval++;
226 goto freehdrs;
227 }
228
229 error = 0;
230
231 /* check policy */
232 switch (sp->policy) {
233 case IPSEC_POLICY_DISCARD:
234 /*
235 * This packet is just discarded.
236 */
237 ipsec6stat.out_polvio++;
238 goto freehdrs;
239
240 case IPSEC_POLICY_BYPASS:
241 case IPSEC_POLICY_NONE:
242 /* no need to do IPsec. */
243 needipsec = 0;
244 break;
245
246 case IPSEC_POLICY_IPSEC:
247 if (sp->req == NULL) {
248 /* XXX should be panic ? */
249 printf("ip6_output: No IPsec request specified.\n");
250 error = EINVAL;
251 goto freehdrs;
252 }
253 needipsec = 1;
254 break;
255
256 case IPSEC_POLICY_ENTRUST:
257 default:
258 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
259 }
260
261 skippolicycheck:;
262 #endif /* IPSEC */
263
264 if (needipsec &&
265 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
266 in6_delayed_cksum(m);
267 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
268 }
269
270 /*
271 * Calculate the total length of the extension header chain.
272 * Keep the length of the unfragmentable part for fragmentation.
273 */
274 optlen = 0;
275 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
276 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
277 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
278 unfragpartlen = optlen + sizeof(struct ip6_hdr);
279 /* NOTE: we don't add AH/ESP length here. do that later. */
280 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
281
282 /*
283 * If we need IPsec, or there is at least one extension header,
284 * separate IP6 header from the payload.
285 */
286 if ((needipsec || optlen) && !hdrsplit) {
287 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
288 m = NULL;
289 goto freehdrs;
290 }
291 m = exthdrs.ip6e_ip6;
292 hdrsplit++;
293 }
294
295 /* adjust pointer */
296 ip6 = mtod(m, struct ip6_hdr *);
297
298 /* adjust mbuf packet header length */
299 m->m_pkthdr.len += optlen;
300 plen = m->m_pkthdr.len - sizeof(*ip6);
301
302 /* If this is a jumbo payload, insert a jumbo payload option. */
303 if (plen > IPV6_MAXPACKET) {
304 if (!hdrsplit) {
305 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
306 m = NULL;
307 goto freehdrs;
308 }
309 m = exthdrs.ip6e_ip6;
310 hdrsplit++;
311 }
312 /* adjust pointer */
313 ip6 = mtod(m, struct ip6_hdr *);
314 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
315 goto freehdrs;
316 optlen += 8; /* XXX JUMBOOPTLEN */
317 ip6->ip6_plen = 0;
318 } else
319 ip6->ip6_plen = htons(plen);
320
321 /*
322 * Concatenate headers and fill in next header fields.
323 * Here we have, on "m"
324 * IPv6 payload
325 * and we insert headers accordingly. Finally, we should be getting:
326 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
327 *
328 * during the header composing process, "m" points to IPv6 header.
329 * "mprev" points to an extension header prior to esp.
330 */
331 {
332 u_char *nexthdrp = &ip6->ip6_nxt;
333 struct mbuf *mprev = m;
334
335 /*
336 * we treat dest2 specially. this makes IPsec processing
337 * much easier. the goal here is to make mprev point the
338 * mbuf prior to dest2.
339 *
340 * result: IPv6 dest2 payload
341 * m and mprev will point to IPv6 header.
342 */
343 if (exthdrs.ip6e_dest2) {
344 if (!hdrsplit)
345 panic("assumption failed: hdr not split");
346 exthdrs.ip6e_dest2->m_next = m->m_next;
347 m->m_next = exthdrs.ip6e_dest2;
348 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
349 ip6->ip6_nxt = IPPROTO_DSTOPTS;
350 }
351
352 #define MAKE_CHAIN(m, mp, p, i)\
353 do {\
354 if (m) {\
355 if (!hdrsplit) \
356 panic("assumption failed: hdr not split"); \
357 *mtod((m), u_char *) = *(p);\
358 *(p) = (i);\
359 p = mtod((m), u_char *);\
360 (m)->m_next = (mp)->m_next;\
361 (mp)->m_next = (m);\
362 (mp) = (m);\
363 }\
364 } while (/*CONSTCOND*/ 0)
365 /*
366 * result: IPv6 hbh dest1 rthdr dest2 payload
367 * m will point to IPv6 header. mprev will point to the
368 * extension header prior to dest2 (rthdr in the above case).
369 */
370 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
371 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
372 IPPROTO_DSTOPTS);
373 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
374 IPPROTO_ROUTING);
375
376 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
377 sizeof(struct ip6_hdr) + optlen);
378
379 #ifdef IPSEC
380 if (!needipsec)
381 goto skip_ipsec2;
382
383 /*
384 * pointers after IPsec headers are not valid any more.
385 * other pointers need a great care too.
386 * (IPsec routines should not mangle mbufs prior to AH/ESP)
387 */
388 exthdrs.ip6e_dest2 = NULL;
389
390 {
391 struct ip6_rthdr *rh = NULL;
392 int segleft_org = 0;
393 struct ipsec_output_state state;
394
395 if (exthdrs.ip6e_rthdr) {
396 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
397 segleft_org = rh->ip6r_segleft;
398 rh->ip6r_segleft = 0;
399 }
400
401 bzero(&state, sizeof(state));
402 state.m = m;
403 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
404 &needipsectun);
405 m = state.m;
406 if (error) {
407 /* mbuf is already reclaimed in ipsec6_output_trans. */
408 m = NULL;
409 switch (error) {
410 case EHOSTUNREACH:
411 case ENETUNREACH:
412 case EMSGSIZE:
413 case ENOBUFS:
414 case ENOMEM:
415 break;
416 default:
417 printf("ip6_output (ipsec): error code %d\n", error);
418 /* FALLTHROUGH */
419 case ENOENT:
420 /* don't show these error codes to the user */
421 error = 0;
422 break;
423 }
424 goto bad;
425 }
426 if (exthdrs.ip6e_rthdr) {
427 /* ah6_output doesn't modify mbuf chain */
428 rh->ip6r_segleft = segleft_org;
429 }
430 }
431 skip_ipsec2:;
432 #endif
433 }
434
435 /*
436 * If there is a routing header, replace destination address field
437 * with the first hop of the routing header.
438 */
439 if (exthdrs.ip6e_rthdr) {
440 struct ip6_rthdr *rh;
441 struct ip6_rthdr0 *rh0;
442 struct in6_addr *addr;
443 struct sockaddr_in6 sa;
444
445 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
446 struct ip6_rthdr *));
447 finaldst = ip6->ip6_dst;
448 switch (rh->ip6r_type) {
449 case IPV6_RTHDR_TYPE_0:
450 rh0 = (struct ip6_rthdr0 *)rh;
451 addr = (struct in6_addr *)(rh0 + 1);
452
453 /*
454 * construct a sockaddr_in6 form of
455 * the first hop.
456 *
457 * XXX: we may not have enough
458 * information about its scope zone;
459 * there is no standard API to pass
460 * the information from the
461 * application.
462 */
463 bzero(&sa, sizeof(sa));
464 sa.sin6_family = AF_INET6;
465 sa.sin6_len = sizeof(sa);
466 sa.sin6_addr = addr[0];
467 if ((error = sa6_embedscope(&sa,
468 ip6_use_defzone)) != 0) {
469 goto bad;
470 }
471 ip6->ip6_dst = sa.sin6_addr;
472 (void)memmove(&addr[0], &addr[1],
473 sizeof(struct in6_addr) *
474 (rh0->ip6r0_segleft - 1));
475 addr[rh0->ip6r0_segleft - 1] = finaldst;
476 /* XXX */
477 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
478 break;
479 default: /* is it possible? */
480 error = EINVAL;
481 goto bad;
482 }
483 }
484
485 /* Source address validation */
486 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
487 (flags & IPV6_UNSPECSRC) == 0) {
488 error = EOPNOTSUPP;
489 ip6stat.ip6s_badscope++;
490 goto bad;
491 }
492 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
493 error = EOPNOTSUPP;
494 ip6stat.ip6s_badscope++;
495 goto bad;
496 }
497
498 ip6stat.ip6s_localout++;
499
500 /*
501 * Route packet.
502 */
503 /* initialize cached route */
504 if (ro == 0) {
505 ro = &ip6route;
506 bzero((caddr_t)ro, sizeof(*ro));
507 }
508 ro_pmtu = ro;
509 if (opt && opt->ip6po_rthdr)
510 ro = &opt->ip6po_route;
511 dst = (struct sockaddr_in6 *)&ro->ro_dst;
512
513 #ifdef notyet /* this will be available with the RFC3542 support */
514 /*
515 * if specified, try to fill in the traffic class field.
516 * do not override if a non-zero value is already set.
517 * we check the diffserv field and the ecn field separately.
518 */
519 if (opt && opt->ip6po_tclass >= 0) {
520 int mask = 0;
521
522 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
523 mask |= 0xfc;
524 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
525 mask |= 0x03;
526 if (mask != 0)
527 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
528 }
529 #endif
530
531 /* fill in or override the hop limit field, if necessary. */
532 if (opt && opt->ip6po_hlim != -1)
533 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
534 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
535 if (im6o != NULL)
536 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
537 else
538 ip6->ip6_hlim = ip6_defmcasthlim;
539 }
540
541 #ifdef IPSEC
542 if (needipsec && needipsectun) {
543 struct ipsec_output_state state;
544
545 /*
546 * All the extension headers will become inaccessible
547 * (since they can be encrypted).
548 * Don't panic, we need no more updates to extension headers
549 * on inner IPv6 packet (since they are now encapsulated).
550 *
551 * IPv6 [ESP|AH] IPv6 [extension headers] payload
552 */
553 bzero(&exthdrs, sizeof(exthdrs));
554 exthdrs.ip6e_ip6 = m;
555
556 bzero(&state, sizeof(state));
557 state.m = m;
558 state.ro = (struct route *)ro;
559 state.dst = (struct sockaddr *)dst;
560
561 error = ipsec6_output_tunnel(&state, sp, flags);
562
563 m = state.m;
564 ro_pmtu = ro = (struct route_in6 *)state.ro;
565 dst = (struct sockaddr_in6 *)state.dst;
566 if (error) {
567 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
568 m0 = m = NULL;
569 m = NULL;
570 switch (error) {
571 case EHOSTUNREACH:
572 case ENETUNREACH:
573 case EMSGSIZE:
574 case ENOBUFS:
575 case ENOMEM:
576 break;
577 default:
578 printf("ip6_output (ipsec): error code %d\n", error);
579 /* FALLTHROUGH */
580 case ENOENT:
581 /* don't show these error codes to the user */
582 error = 0;
583 break;
584 }
585 goto bad;
586 }
587
588 exthdrs.ip6e_ip6 = m;
589 }
590 #endif /* IPSEC */
591
592 /* adjust pointer */
593 ip6 = mtod(m, struct ip6_hdr *);
594
595 bzero(&dst_sa, sizeof(dst_sa));
596 dst_sa.sin6_family = AF_INET6;
597 dst_sa.sin6_len = sizeof(dst_sa);
598 dst_sa.sin6_addr = ip6->ip6_dst;
599 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, &rt, 0))
600 != 0) {
601 switch (error) {
602 case EHOSTUNREACH:
603 ip6stat.ip6s_noroute++;
604 break;
605 case EADDRNOTAVAIL:
606 default:
607 break; /* XXX statistics? */
608 }
609 if (ifp != NULL)
610 in6_ifstat_inc(ifp, ifs6_out_discard);
611 goto bad;
612 }
613 if (rt == NULL) {
614 /*
615 * If in6_selectroute() does not return a route entry,
616 * dst may not have been updated.
617 */
618 *dst = dst_sa; /* XXX */
619 }
620
621 /*
622 * then rt (for unicast) and ifp must be non-NULL valid values.
623 */
624 if ((flags & IPV6_FORWARDING) == 0) {
625 /* XXX: the FORWARDING flag can be set for mrouting. */
626 in6_ifstat_inc(ifp, ifs6_out_request);
627 }
628 if (rt != NULL) {
629 ia = (struct in6_ifaddr *)(rt->rt_ifa);
630 rt->rt_use++;
631 }
632
633 /*
634 * The outgoing interface must be in the zone of source and
635 * destination addresses. We should use ia_ifp to support the
636 * case of sending packets to an address of our own.
637 */
638 if (ia != NULL && ia->ia_ifp)
639 origifp = ia->ia_ifp;
640 else
641 origifp = ifp;
642
643 src0 = ip6->ip6_src;
644 if (in6_setscope(&src0, origifp, &zone))
645 goto badscope;
646 bzero(&src_sa, sizeof(src_sa));
647 src_sa.sin6_family = AF_INET6;
648 src_sa.sin6_len = sizeof(src_sa);
649 src_sa.sin6_addr = ip6->ip6_src;
650 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
651 goto badscope;
652
653 dst0 = ip6->ip6_dst;
654 if (in6_setscope(&dst0, origifp, &zone))
655 goto badscope;
656 /* re-initialize to be sure */
657 bzero(&dst_sa, sizeof(dst_sa));
658 dst_sa.sin6_family = AF_INET6;
659 dst_sa.sin6_len = sizeof(dst_sa);
660 dst_sa.sin6_addr = ip6->ip6_dst;
661 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
662 goto badscope;
663
664 /* scope check is done. */
665 goto routefound;
666
667 badscope:
668 ip6stat.ip6s_badscope++;
669 in6_ifstat_inc(origifp, ifs6_out_discard);
670 if (error == 0)
671 error = EHOSTUNREACH; /* XXX */
672 goto bad;
673
674 routefound:
675 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
676 #ifdef notyet /* this will be available with the RFC3542 support */
677 if (opt && opt->ip6po_nextroute.ro_rt) {
678 /*
679 * The nexthop is explicitly specified by the
680 * application. We assume the next hop is an IPv6
681 * address.
682 */
683 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
684 } else
685 #endif
686 if ((rt->rt_flags & RTF_GATEWAY))
687 dst = (struct sockaddr_in6 *)rt->rt_gateway;
688 }
689
690 /*
691 * XXXXXX: original code follows:
692 */
693 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
694 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
695 else {
696 struct in6_multi *in6m;
697
698 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
699
700 in6_ifstat_inc(ifp, ifs6_out_mcast);
701
702 /*
703 * Confirm that the outgoing interface supports multicast.
704 */
705 if (!(ifp->if_flags & IFF_MULTICAST)) {
706 ip6stat.ip6s_noroute++;
707 in6_ifstat_inc(ifp, ifs6_out_discard);
708 error = ENETUNREACH;
709 goto bad;
710 }
711
712 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
713 if (in6m != NULL &&
714 (im6o == NULL || im6o->im6o_multicast_loop)) {
715 /*
716 * If we belong to the destination multicast group
717 * on the outgoing interface, and the caller did not
718 * forbid loopback, loop back a copy.
719 */
720 ip6_mloopback(ifp, m, dst);
721 } else {
722 /*
723 * If we are acting as a multicast router, perform
724 * multicast forwarding as if the packet had just
725 * arrived on the interface to which we are about
726 * to send. The multicast forwarding function
727 * recursively calls this function, using the
728 * IPV6_FORWARDING flag to prevent infinite recursion.
729 *
730 * Multicasts that are looped back by ip6_mloopback(),
731 * above, will be forwarded by the ip6_input() routine,
732 * if necessary.
733 */
734 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
735 if (ip6_mforward(ip6, ifp, m) != 0) {
736 m_freem(m);
737 goto done;
738 }
739 }
740 }
741 /*
742 * Multicasts with a hoplimit of zero may be looped back,
743 * above, but must not be transmitted on a network.
744 * Also, multicasts addressed to the loopback interface
745 * are not sent -- the above call to ip6_mloopback() will
746 * loop back a copy if this host actually belongs to the
747 * destination group on the loopback interface.
748 */
749 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
750 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
751 m_freem(m);
752 goto done;
753 }
754 }
755
756 /*
757 * Fill the outgoing inteface to tell the upper layer
758 * to increment per-interface statistics.
759 */
760 if (ifpp)
761 *ifpp = ifp;
762
763 /* Determine path MTU. */
764 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
765 &alwaysfrag)) != 0)
766 goto bad;
767 #ifdef IPSEC
768 if (needipsectun)
769 mtu = IPV6_MMTU;
770 #endif
771
772 /*
773 * The caller of this function may specify to use the minimum MTU
774 * in some cases.
775 */
776 if (mtu > IPV6_MMTU) {
777 if ((flags & IPV6_MINMTU))
778 mtu = IPV6_MMTU;
779 }
780
781 /*
782 * clear embedded scope identifiers if necessary.
783 * in6_clearscope will touch the addresses only when necessary.
784 */
785 in6_clearscope(&ip6->ip6_src);
786 in6_clearscope(&ip6->ip6_dst);
787
788 /*
789 * If the outgoing packet contains a hop-by-hop options header,
790 * it must be examined and processed even by the source node.
791 * (RFC 2460, section 4.)
792 */
793 if (exthdrs.ip6e_hbh) {
794 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
795 u_int32_t dummy1; /* XXX unused */
796 u_int32_t dummy2; /* XXX unused */
797
798 /*
799 * XXX: if we have to send an ICMPv6 error to the sender,
800 * we need the M_LOOP flag since icmp6_error() expects
801 * the IPv6 and the hop-by-hop options header are
802 * continuous unless the flag is set.
803 */
804 m->m_flags |= M_LOOP;
805 m->m_pkthdr.rcvif = ifp;
806 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
807 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
808 &dummy1, &dummy2) < 0) {
809 /* m was already freed at this point */
810 error = EINVAL;/* better error? */
811 goto done;
812 }
813 m->m_flags &= ~M_LOOP; /* XXX */
814 m->m_pkthdr.rcvif = NULL;
815 }
816
817 #ifdef PFIL_HOOKS
818 /*
819 * Run through list of hooks for output packets.
820 */
821 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
822 goto done;
823 if (m == NULL)
824 goto done;
825 ip6 = mtod(m, struct ip6_hdr *);
826 #endif /* PFIL_HOOKS */
827 /*
828 * Send the packet to the outgoing interface.
829 * If necessary, do IPv6 fragmentation before sending.
830 *
831 * the logic here is rather complex:
832 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
833 * 1-a: send as is if tlen <= path mtu
834 * 1-b: fragment if tlen > path mtu
835 *
836 * 2: if user asks us not to fragment (dontfrag == 1)
837 * 2-a: send as is if tlen <= interface mtu
838 * 2-b: error if tlen > interface mtu
839 *
840 * 3: if we always need to attach fragment header (alwaysfrag == 1)
841 * always fragment
842 *
843 * 4: if dontfrag == 1 && alwaysfrag == 1
844 * error, as we cannot handle this conflicting request
845 */
846 tlen = m->m_pkthdr.len;
847
848 dontfrag = 0;
849 #ifdef notdef
850 if (dontfrag && alwaysfrag) { /* case 4 */
851 /* conflicting request - can't transmit */
852 error = EMSGSIZE;
853 goto bad;
854 }
855 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */
856 /*
857 * Even if the DONTFRAG option is specified, we cannot send the
858 * packet when the data length is larger than the MTU of the
859 * outgoing interface.
860 * Notify the error by sending IPV6_PATHMTU ancillary data as
861 * well as returning an error code (the latter is not described
862 * in the API spec.)
863 */
864 u_int32_t mtu32;
865 struct ip6ctlparam ip6cp;
866
867 mtu32 = (u_int32_t)mtu;
868 bzero(&ip6cp, sizeof(ip6cp));
869 ip6cp.ip6c_cmdarg = (void *)&mtu32;
870 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
871 (void *)&ip6cp);
872
873 error = EMSGSIZE;
874 goto bad;
875 }
876 #endif
877 /*
878 * transmit packet without fragmentation
879 */
880 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */
881 struct in6_ifaddr *ia6;
882 int sw_csum;
883
884 ip6 = mtod(m, struct ip6_hdr *);
885 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
886 if (ia6) {
887 /* Record statistics for this interface address. */
888 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
889 }
890 #ifdef IPSEC
891 /* clean ipsec history once it goes out of the node */
892 ipsec_delaux(m);
893 #endif
894
895 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
896 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
897 if (IN6_NEED_CHECKSUM(ifp,
898 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
899 in6_delayed_cksum(m);
900 }
901 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
902 }
903
904 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
905 goto done;
906 }
907
908 /*
909 * try to fragment the packet. case 1-b and 3
910 */
911 if (mtu < IPV6_MMTU) {
912 /* path MTU cannot be less than IPV6_MMTU */
913 error = EMSGSIZE;
914 in6_ifstat_inc(ifp, ifs6_out_fragfail);
915 goto bad;
916 } else if (ip6->ip6_plen == 0) {
917 /* jumbo payload cannot be fragmented */
918 error = EMSGSIZE;
919 in6_ifstat_inc(ifp, ifs6_out_fragfail);
920 goto bad;
921 } else {
922 struct mbuf **mnext, *m_frgpart;
923 struct ip6_frag *ip6f;
924 u_int32_t id = htonl(ip6_randomid());
925 u_char nextproto;
926 struct ip6ctlparam ip6cp;
927 u_int32_t mtu32;
928
929 /*
930 * Too large for the destination or interface;
931 * fragment if possible.
932 * Must be able to put at least 8 bytes per fragment.
933 */
934 hlen = unfragpartlen;
935 if (mtu > IPV6_MAXPACKET)
936 mtu = IPV6_MAXPACKET;
937
938 /* Notify a proper path MTU to applications. */
939 mtu32 = (u_int32_t)mtu;
940 bzero(&ip6cp, sizeof(ip6cp));
941 ip6cp.ip6c_cmdarg = (void *)&mtu32;
942 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
943 (void *)&ip6cp);
944
945 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
946 if (len < 8) {
947 error = EMSGSIZE;
948 in6_ifstat_inc(ifp, ifs6_out_fragfail);
949 goto bad;
950 }
951
952 mnext = &m->m_nextpkt;
953
954 /*
955 * Change the next header field of the last header in the
956 * unfragmentable part.
957 */
958 if (exthdrs.ip6e_rthdr) {
959 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
960 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
961 } else if (exthdrs.ip6e_dest1) {
962 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
963 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
964 } else if (exthdrs.ip6e_hbh) {
965 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
966 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
967 } else {
968 nextproto = ip6->ip6_nxt;
969 ip6->ip6_nxt = IPPROTO_FRAGMENT;
970 }
971
972 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
973 != 0) {
974 if (IN6_NEED_CHECKSUM(ifp,
975 m->m_pkthdr.csum_flags &
976 (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
977 in6_delayed_cksum(m);
978 }
979 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
980 }
981
982 /*
983 * Loop through length of segment after first fragment,
984 * make new header and copy data of each part and link onto
985 * chain.
986 */
987 m0 = m;
988 for (off = hlen; off < tlen; off += len) {
989 struct mbuf *mlast;
990
991 MGETHDR(m, M_DONTWAIT, MT_HEADER);
992 if (!m) {
993 error = ENOBUFS;
994 ip6stat.ip6s_odropped++;
995 goto sendorfree;
996 }
997 m->m_pkthdr.rcvif = NULL;
998 m->m_flags = m0->m_flags & M_COPYFLAGS;
999 *mnext = m;
1000 mnext = &m->m_nextpkt;
1001 m->m_data += max_linkhdr;
1002 mhip6 = mtod(m, struct ip6_hdr *);
1003 *mhip6 = *ip6;
1004 m->m_len = sizeof(*mhip6);
1005 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1006 if (error) {
1007 ip6stat.ip6s_odropped++;
1008 goto sendorfree;
1009 }
1010 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
1011 if (off + len >= tlen)
1012 len = tlen - off;
1013 else
1014 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1015 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
1016 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1017 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1018 error = ENOBUFS;
1019 ip6stat.ip6s_odropped++;
1020 goto sendorfree;
1021 }
1022 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
1023 ;
1024 mlast->m_next = m_frgpart;
1025 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1026 m->m_pkthdr.rcvif = (struct ifnet *)0;
1027 ip6f->ip6f_reserved = 0;
1028 ip6f->ip6f_ident = id;
1029 ip6f->ip6f_nxt = nextproto;
1030 ip6stat.ip6s_ofragments++;
1031 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1032 }
1033
1034 in6_ifstat_inc(ifp, ifs6_out_fragok);
1035 }
1036
1037 /*
1038 * Remove leading garbages.
1039 */
1040 sendorfree:
1041 m = m0->m_nextpkt;
1042 m0->m_nextpkt = 0;
1043 m_freem(m0);
1044 for (m0 = m; m; m = m0) {
1045 m0 = m->m_nextpkt;
1046 m->m_nextpkt = 0;
1047 if (error == 0) {
1048 struct in6_ifaddr *ia6;
1049 ip6 = mtod(m, struct ip6_hdr *);
1050 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1051 if (ia6) {
1052 /*
1053 * Record statistics for this interface
1054 * address.
1055 */
1056 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1057 m->m_pkthdr.len;
1058 }
1059 #ifdef IPSEC
1060 /* clean ipsec history once it goes out of the node */
1061 ipsec_delaux(m);
1062 #endif
1063 error = nd6_output(ifp, origifp, m, dst, ro->ro_rt);
1064 } else
1065 m_freem(m);
1066 }
1067
1068 if (error == 0)
1069 ip6stat.ip6s_fragmented++;
1070
1071 done:
1072 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1073 RTFREE(ro->ro_rt);
1074 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1075 RTFREE(ro_pmtu->ro_rt);
1076 }
1077
1078 #ifdef IPSEC
1079 if (sp != NULL)
1080 key_freesp(sp);
1081 #endif /* IPSEC */
1082
1083 return (error);
1084
1085 freehdrs:
1086 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1087 m_freem(exthdrs.ip6e_dest1);
1088 m_freem(exthdrs.ip6e_rthdr);
1089 m_freem(exthdrs.ip6e_dest2);
1090 /* FALLTHROUGH */
1091 bad:
1092 m_freem(m);
1093 goto done;
1094 }
1095
1096 static int
1097 ip6_copyexthdr(mp, hdr, hlen)
1098 struct mbuf **mp;
1099 caddr_t hdr;
1100 int hlen;
1101 {
1102 struct mbuf *m;
1103
1104 if (hlen > MCLBYTES)
1105 return (ENOBUFS); /* XXX */
1106
1107 MGET(m, M_DONTWAIT, MT_DATA);
1108 if (!m)
1109 return (ENOBUFS);
1110
1111 if (hlen > MLEN) {
1112 MCLGET(m, M_DONTWAIT);
1113 if ((m->m_flags & M_EXT) == 0) {
1114 m_free(m);
1115 return (ENOBUFS);
1116 }
1117 }
1118 m->m_len = hlen;
1119 if (hdr)
1120 bcopy(hdr, mtod(m, caddr_t), hlen);
1121
1122 *mp = m;
1123 return (0);
1124 }
1125
1126 /*
1127 * Process a delayed payload checksum calculation.
1128 */
1129 void
1130 in6_delayed_cksum(struct mbuf *m)
1131 {
1132 uint16_t csum, offset;
1133
1134 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1135 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1136 KASSERT((m->m_pkthdr.csum_flags
1137 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
1138
1139 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1140 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1141 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
1142 csum = 0xffff;
1143 }
1144
1145 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
1146 if ((offset + sizeof(csum)) > m->m_len) {
1147 m_copyback(m, offset, sizeof(csum), &csum);
1148 } else {
1149 *(uint16_t *)(mtod(m, caddr_t) + offset) = csum;
1150 }
1151 }
1152
1153 /*
1154 * Insert jumbo payload option.
1155 */
1156 static int
1157 ip6_insert_jumboopt(exthdrs, plen)
1158 struct ip6_exthdrs *exthdrs;
1159 u_int32_t plen;
1160 {
1161 struct mbuf *mopt;
1162 u_int8_t *optbuf;
1163 u_int32_t v;
1164
1165 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1166
1167 /*
1168 * If there is no hop-by-hop options header, allocate new one.
1169 * If there is one but it doesn't have enough space to store the
1170 * jumbo payload option, allocate a cluster to store the whole options.
1171 * Otherwise, use it to store the options.
1172 */
1173 if (exthdrs->ip6e_hbh == 0) {
1174 MGET(mopt, M_DONTWAIT, MT_DATA);
1175 if (mopt == 0)
1176 return (ENOBUFS);
1177 mopt->m_len = JUMBOOPTLEN;
1178 optbuf = mtod(mopt, u_int8_t *);
1179 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1180 exthdrs->ip6e_hbh = mopt;
1181 } else {
1182 struct ip6_hbh *hbh;
1183
1184 mopt = exthdrs->ip6e_hbh;
1185 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1186 /*
1187 * XXX assumption:
1188 * - exthdrs->ip6e_hbh is not referenced from places
1189 * other than exthdrs.
1190 * - exthdrs->ip6e_hbh is not an mbuf chain.
1191 */
1192 int oldoptlen = mopt->m_len;
1193 struct mbuf *n;
1194
1195 /*
1196 * XXX: give up if the whole (new) hbh header does
1197 * not fit even in an mbuf cluster.
1198 */
1199 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1200 return (ENOBUFS);
1201
1202 /*
1203 * As a consequence, we must always prepare a cluster
1204 * at this point.
1205 */
1206 MGET(n, M_DONTWAIT, MT_DATA);
1207 if (n) {
1208 MCLGET(n, M_DONTWAIT);
1209 if ((n->m_flags & M_EXT) == 0) {
1210 m_freem(n);
1211 n = NULL;
1212 }
1213 }
1214 if (!n)
1215 return (ENOBUFS);
1216 n->m_len = oldoptlen + JUMBOOPTLEN;
1217 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1218 oldoptlen);
1219 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1220 m_freem(mopt);
1221 mopt = exthdrs->ip6e_hbh = n;
1222 } else {
1223 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1224 mopt->m_len += JUMBOOPTLEN;
1225 }
1226 optbuf[0] = IP6OPT_PADN;
1227 optbuf[1] = 0;
1228
1229 /*
1230 * Adjust the header length according to the pad and
1231 * the jumbo payload option.
1232 */
1233 hbh = mtod(mopt, struct ip6_hbh *);
1234 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1235 }
1236
1237 /* fill in the option. */
1238 optbuf[2] = IP6OPT_JUMBO;
1239 optbuf[3] = 4;
1240 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1241 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1242
1243 /* finally, adjust the packet header length */
1244 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1245
1246 return (0);
1247 #undef JUMBOOPTLEN
1248 }
1249
1250 /*
1251 * Insert fragment header and copy unfragmentable header portions.
1252 */
1253 static int
1254 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1255 struct mbuf *m0, *m;
1256 int hlen;
1257 struct ip6_frag **frghdrp;
1258 {
1259 struct mbuf *n, *mlast;
1260
1261 if (hlen > sizeof(struct ip6_hdr)) {
1262 n = m_copym(m0, sizeof(struct ip6_hdr),
1263 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1264 if (n == 0)
1265 return (ENOBUFS);
1266 m->m_next = n;
1267 } else
1268 n = m;
1269
1270 /* Search for the last mbuf of unfragmentable part. */
1271 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1272 ;
1273
1274 if ((mlast->m_flags & M_EXT) == 0 &&
1275 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1276 /* use the trailing space of the last mbuf for the fragment hdr */
1277 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1278 mlast->m_len);
1279 mlast->m_len += sizeof(struct ip6_frag);
1280 m->m_pkthdr.len += sizeof(struct ip6_frag);
1281 } else {
1282 /* allocate a new mbuf for the fragment header */
1283 struct mbuf *mfrg;
1284
1285 MGET(mfrg, M_DONTWAIT, MT_DATA);
1286 if (mfrg == 0)
1287 return (ENOBUFS);
1288 mfrg->m_len = sizeof(struct ip6_frag);
1289 *frghdrp = mtod(mfrg, struct ip6_frag *);
1290 mlast->m_next = mfrg;
1291 }
1292
1293 return (0);
1294 }
1295
1296 static int
1297 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup, alwaysfragp)
1298 struct route_in6 *ro_pmtu, *ro;
1299 struct ifnet *ifp;
1300 struct in6_addr *dst;
1301 u_long *mtup;
1302 int *alwaysfragp;
1303 {
1304 u_int32_t mtu = 0;
1305 int alwaysfrag = 0;
1306 int error = 0;
1307
1308 if (ro_pmtu != ro) {
1309 /* The first hop and the final destination may differ. */
1310 struct sockaddr_in6 *sa6_dst =
1311 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1312 if (ro_pmtu->ro_rt &&
1313 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1314 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1315 RTFREE(ro_pmtu->ro_rt);
1316 ro_pmtu->ro_rt = (struct rtentry *)NULL;
1317 }
1318 if (ro_pmtu->ro_rt == NULL) {
1319 bzero(sa6_dst, sizeof(*sa6_dst)); /* for safety */
1320 sa6_dst->sin6_family = AF_INET6;
1321 sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1322 sa6_dst->sin6_addr = *dst;
1323
1324 rtalloc((struct route *)ro_pmtu);
1325 }
1326 }
1327 if (ro_pmtu->ro_rt) {
1328 u_int32_t ifmtu;
1329
1330 if (ifp == NULL)
1331 ifp = ro_pmtu->ro_rt->rt_ifp;
1332 ifmtu = IN6_LINKMTU(ifp);
1333 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1334 if (mtu == 0)
1335 mtu = ifmtu;
1336 else if (mtu < IPV6_MMTU) {
1337 /*
1338 * RFC2460 section 5, last paragraph:
1339 * if we record ICMPv6 too big message with
1340 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1341 * or smaller, with fragment header attached.
1342 * (fragment header is needed regardless from the
1343 * packet size, for translators to identify packets)
1344 */
1345 alwaysfrag = 1;
1346 mtu = IPV6_MMTU;
1347 } else if (mtu > ifmtu) {
1348 /*
1349 * The MTU on the route is larger than the MTU on
1350 * the interface! This shouldn't happen, unless the
1351 * MTU of the interface has been changed after the
1352 * interface was brought up. Change the MTU in the
1353 * route to match the interface MTU (as long as the
1354 * field isn't locked).
1355 */
1356 mtu = ifmtu;
1357 if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU))
1358 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1359 }
1360 } else if (ifp) {
1361 mtu = IN6_LINKMTU(ifp);
1362 } else
1363 error = EHOSTUNREACH; /* XXX */
1364
1365 *mtup = mtu;
1366 if (alwaysfragp)
1367 *alwaysfragp = alwaysfrag;
1368 return (error);
1369 }
1370
1371 /*
1372 * IP6 socket option processing.
1373 */
1374 int
1375 ip6_ctloutput(op, so, level, optname, mp)
1376 int op;
1377 struct socket *so;
1378 int level, optname;
1379 struct mbuf **mp;
1380 {
1381 struct in6pcb *in6p = sotoin6pcb(so);
1382 struct mbuf *m = *mp;
1383 int optval = 0;
1384 int error = 0;
1385 struct proc *p = curproc; /* XXX */
1386
1387 if (level == IPPROTO_IPV6) {
1388 switch (op) {
1389 case PRCO_SETOPT:
1390 switch (optname) {
1391 case IPV6_PKTOPTIONS:
1392 /* m is freed in ip6_pcbopts */
1393 return (ip6_pcbopts(&in6p->in6p_outputopts,
1394 m, so));
1395 case IPV6_HOPOPTS:
1396 case IPV6_DSTOPTS:
1397 if (p == 0 || kauth_authorize_generic(p->p_cred,
1398 KAUTH_GENERIC_ISSUSER, &p->p_acflag)) {
1399 error = EPERM;
1400 break;
1401 }
1402 /* FALLTHROUGH */
1403 case IPV6_UNICAST_HOPS:
1404 case IPV6_RECVOPTS:
1405 case IPV6_RECVRETOPTS:
1406 case IPV6_RECVDSTADDR:
1407 case IPV6_PKTINFO:
1408 case IPV6_HOPLIMIT:
1409 case IPV6_RTHDR:
1410 case IPV6_FAITH:
1411 case IPV6_V6ONLY:
1412 case IPV6_USE_MIN_MTU:
1413 if (!m || m->m_len != sizeof(int)) {
1414 error = EINVAL;
1415 break;
1416 }
1417 optval = *mtod(m, int *);
1418 switch (optname) {
1419
1420 case IPV6_UNICAST_HOPS:
1421 if (optval < -1 || optval >= 256)
1422 error = EINVAL;
1423 else {
1424 /* -1 = kernel default */
1425 in6p->in6p_hops = optval;
1426 }
1427 break;
1428 #define OPTSET(bit) \
1429 do { \
1430 if (optval) \
1431 in6p->in6p_flags |= (bit); \
1432 else \
1433 in6p->in6p_flags &= ~(bit); \
1434 } while (/*CONSTCOND*/ 0)
1435
1436 case IPV6_RECVOPTS:
1437 OPTSET(IN6P_RECVOPTS);
1438 break;
1439
1440 case IPV6_RECVRETOPTS:
1441 OPTSET(IN6P_RECVRETOPTS);
1442 break;
1443
1444 case IPV6_RECVDSTADDR:
1445 OPTSET(IN6P_RECVDSTADDR);
1446 break;
1447
1448 case IPV6_PKTINFO:
1449 OPTSET(IN6P_PKTINFO);
1450 break;
1451
1452 case IPV6_HOPLIMIT:
1453 OPTSET(IN6P_HOPLIMIT);
1454 break;
1455
1456 case IPV6_HOPOPTS:
1457 OPTSET(IN6P_HOPOPTS);
1458 break;
1459
1460 case IPV6_DSTOPTS:
1461 OPTSET(IN6P_DSTOPTS);
1462 break;
1463
1464 case IPV6_RTHDR:
1465 OPTSET(IN6P_RTHDR);
1466 break;
1467
1468 case IPV6_FAITH:
1469 OPTSET(IN6P_FAITH);
1470 break;
1471
1472 case IPV6_USE_MIN_MTU:
1473 OPTSET(IN6P_MINMTU);
1474 break;
1475
1476 case IPV6_V6ONLY:
1477 /*
1478 * make setsockopt(IPV6_V6ONLY)
1479 * available only prior to bind(2).
1480 * see ipng mailing list, Jun 22 2001.
1481 */
1482 if (in6p->in6p_lport ||
1483 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1484 error = EINVAL;
1485 break;
1486 }
1487 #ifdef INET6_BINDV6ONLY
1488 if (!optval)
1489 error = EINVAL;
1490 #else
1491 OPTSET(IN6P_IPV6_V6ONLY);
1492 #endif
1493 break;
1494 }
1495 break;
1496 #undef OPTSET
1497
1498 case IPV6_MULTICAST_IF:
1499 case IPV6_MULTICAST_HOPS:
1500 case IPV6_MULTICAST_LOOP:
1501 case IPV6_JOIN_GROUP:
1502 case IPV6_LEAVE_GROUP:
1503 error = ip6_setmoptions(optname,
1504 &in6p->in6p_moptions, m);
1505 break;
1506
1507 case IPV6_PORTRANGE:
1508 optval = *mtod(m, int *);
1509
1510 switch (optval) {
1511 case IPV6_PORTRANGE_DEFAULT:
1512 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1513 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1514 break;
1515
1516 case IPV6_PORTRANGE_HIGH:
1517 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1518 in6p->in6p_flags |= IN6P_HIGHPORT;
1519 break;
1520
1521 case IPV6_PORTRANGE_LOW:
1522 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1523 in6p->in6p_flags |= IN6P_LOWPORT;
1524 break;
1525
1526 default:
1527 error = EINVAL;
1528 break;
1529 }
1530 break;
1531
1532 #ifdef IPSEC
1533 case IPV6_IPSEC_POLICY:
1534 {
1535 caddr_t req = NULL;
1536 size_t len = 0;
1537
1538 int priv = 0;
1539 if (p == 0 || kauth_authorize_generic(p->p_cred,
1540 KAUTH_GENERIC_ISSUSER, &p->p_acflag))
1541 priv = 0;
1542 else
1543 priv = 1;
1544 if (m) {
1545 req = mtod(m, caddr_t);
1546 len = m->m_len;
1547 }
1548 error = ipsec6_set_policy(in6p,
1549 optname, req, len, priv);
1550 }
1551 break;
1552 #endif /* IPSEC */
1553
1554 default:
1555 error = ENOPROTOOPT;
1556 break;
1557 }
1558 if (m)
1559 (void)m_free(m);
1560 break;
1561
1562 case PRCO_GETOPT:
1563 switch (optname) {
1564
1565 case IPV6_OPTIONS:
1566 case IPV6_RETOPTS:
1567 error = ENOPROTOOPT;
1568 break;
1569
1570 case IPV6_PKTOPTIONS:
1571 if (in6p->in6p_options) {
1572 *mp = m_copym(in6p->in6p_options, 0,
1573 M_COPYALL, M_WAIT);
1574 } else {
1575 *mp = m_get(M_WAIT, MT_SOOPTS);
1576 (*mp)->m_len = 0;
1577 }
1578 break;
1579
1580 case IPV6_HOPOPTS:
1581 case IPV6_DSTOPTS:
1582 if (p == 0 || kauth_authorize_generic(p->p_cred,
1583 KAUTH_GENERIC_ISSUSER, &p->p_acflag)) {
1584 error = EPERM;
1585 break;
1586 }
1587 /* FALLTHROUGH */
1588 case IPV6_UNICAST_HOPS:
1589 case IPV6_RECVOPTS:
1590 case IPV6_RECVRETOPTS:
1591 case IPV6_RECVDSTADDR:
1592 case IPV6_PORTRANGE:
1593 case IPV6_PKTINFO:
1594 case IPV6_HOPLIMIT:
1595 case IPV6_RTHDR:
1596 case IPV6_FAITH:
1597 case IPV6_V6ONLY:
1598 case IPV6_USE_MIN_MTU:
1599 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1600 m->m_len = sizeof(int);
1601 switch (optname) {
1602
1603 case IPV6_UNICAST_HOPS:
1604 optval = in6p->in6p_hops;
1605 break;
1606
1607 #define OPTBIT(bit) (in6p->in6p_flags & bit ? 1 : 0)
1608
1609 case IPV6_RECVOPTS:
1610 optval = OPTBIT(IN6P_RECVOPTS);
1611 break;
1612
1613 case IPV6_RECVRETOPTS:
1614 optval = OPTBIT(IN6P_RECVRETOPTS);
1615 break;
1616
1617 case IPV6_RECVDSTADDR:
1618 optval = OPTBIT(IN6P_RECVDSTADDR);
1619 break;
1620
1621 case IPV6_PORTRANGE:
1622 {
1623 int flags;
1624 flags = in6p->in6p_flags;
1625 if (flags & IN6P_HIGHPORT)
1626 optval = IPV6_PORTRANGE_HIGH;
1627 else if (flags & IN6P_LOWPORT)
1628 optval = IPV6_PORTRANGE_LOW;
1629 else
1630 optval = 0;
1631 break;
1632 }
1633
1634 case IPV6_PKTINFO:
1635 optval = OPTBIT(IN6P_PKTINFO);
1636 break;
1637
1638 case IPV6_HOPLIMIT:
1639 optval = OPTBIT(IN6P_HOPLIMIT);
1640 break;
1641
1642 case IPV6_HOPOPTS:
1643 optval = OPTBIT(IN6P_HOPOPTS);
1644 break;
1645
1646 case IPV6_DSTOPTS:
1647 optval = OPTBIT(IN6P_DSTOPTS);
1648 break;
1649
1650 case IPV6_RTHDR:
1651 optval = OPTBIT(IN6P_RTHDR);
1652 break;
1653
1654 case IPV6_FAITH:
1655 optval = OPTBIT(IN6P_FAITH);
1656 break;
1657
1658 case IPV6_V6ONLY:
1659 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1660 break;
1661
1662 case IPV6_USE_MIN_MTU:
1663 optval = OPTBIT(IN6P_MINMTU);
1664 break;
1665 }
1666 *mtod(m, int *) = optval;
1667 break;
1668
1669 case IPV6_MULTICAST_IF:
1670 case IPV6_MULTICAST_HOPS:
1671 case IPV6_MULTICAST_LOOP:
1672 case IPV6_JOIN_GROUP:
1673 case IPV6_LEAVE_GROUP:
1674 error = ip6_getmoptions(optname, in6p->in6p_moptions, mp);
1675 break;
1676
1677 #if 0 /* defined(IPSEC) */
1678 /* XXX: code broken */
1679 case IPV6_IPSEC_POLICY:
1680 {
1681 caddr_t req = NULL;
1682 size_t len = 0;
1683
1684 if (m) {
1685 req = mtod(m, caddr_t);
1686 len = m->m_len;
1687 }
1688 error = ipsec6_get_policy(in6p, req, len, mp);
1689 break;
1690 }
1691 #endif /* IPSEC */
1692
1693 default:
1694 error = ENOPROTOOPT;
1695 break;
1696 }
1697 break;
1698 }
1699 } else {
1700 error = EINVAL;
1701 if (op == PRCO_SETOPT && *mp)
1702 (void)m_free(*mp);
1703 }
1704 return (error);
1705 }
1706
1707 int
1708 ip6_raw_ctloutput(op, so, level, optname, mp)
1709 int op;
1710 struct socket *so;
1711 int level, optname;
1712 struct mbuf **mp;
1713 {
1714 int error = 0, optval, optlen;
1715 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
1716 struct in6pcb *in6p = sotoin6pcb(so);
1717 struct mbuf *m = *mp;
1718
1719 optlen = m ? m->m_len : 0;
1720
1721 if (level != IPPROTO_IPV6) {
1722 if (op == PRCO_SETOPT && *mp)
1723 (void)m_free(*mp);
1724 return (EINVAL);
1725 }
1726
1727 switch (optname) {
1728 case IPV6_CHECKSUM:
1729 /*
1730 * For ICMPv6 sockets, no modification allowed for checksum
1731 * offset, permit "no change" values to help existing apps.
1732 *
1733 * XXX 2292bis says: "An attempt to set IPV6_CHECKSUM
1734 * for an ICMPv6 socket will fail."
1735 * The current behavior does not meet 2292bis.
1736 */
1737 switch (op) {
1738 case PRCO_SETOPT:
1739 if (optlen != sizeof(int)) {
1740 error = EINVAL;
1741 break;
1742 }
1743 optval = *mtod(m, int *);
1744 if ((optval % 2) != 0) {
1745 /* the API assumes even offset values */
1746 error = EINVAL;
1747 } else if (so->so_proto->pr_protocol ==
1748 IPPROTO_ICMPV6) {
1749 if (optval != icmp6off)
1750 error = EINVAL;
1751 } else
1752 in6p->in6p_cksum = optval;
1753 break;
1754
1755 case PRCO_GETOPT:
1756 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
1757 optval = icmp6off;
1758 else
1759 optval = in6p->in6p_cksum;
1760
1761 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1762 m->m_len = sizeof(int);
1763 *mtod(m, int *) = optval;
1764 break;
1765
1766 default:
1767 error = EINVAL;
1768 break;
1769 }
1770 break;
1771
1772 default:
1773 error = ENOPROTOOPT;
1774 break;
1775 }
1776
1777 if (op == PRCO_SETOPT && m)
1778 (void)m_free(m);
1779
1780 return (error);
1781 }
1782
1783 /*
1784 * Set up IP6 options in pcb for insertion in output packets.
1785 * Store in mbuf with pointer in pcbopt, adding pseudo-option
1786 * with destination address if source routed.
1787 */
1788 static int
1789 ip6_pcbopts(pktopt, m, so)
1790 struct ip6_pktopts **pktopt;
1791 struct mbuf *m;
1792 struct socket *so;
1793 {
1794 struct ip6_pktopts *opt = *pktopt;
1795 int error = 0;
1796 struct proc *p = curproc; /* XXX */
1797 int priv = 0;
1798
1799 /* turn off any old options. */
1800 if (opt) {
1801 if (opt->ip6po_m)
1802 (void)m_free(opt->ip6po_m);
1803 } else
1804 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
1805 *pktopt = 0;
1806
1807 if (!m || m->m_len == 0) {
1808 /*
1809 * Only turning off any previous options.
1810 */
1811 free(opt, M_IP6OPT);
1812 if (m)
1813 (void)m_free(m);
1814 return (0);
1815 }
1816
1817 /* set options specified by user. */
1818 if (p && !kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER, &p->p_acflag))
1819 priv = 1;
1820 if ((error = ip6_setpktoptions(m, opt, priv)) != 0) {
1821 (void)m_free(m);
1822 free(opt, M_IP6OPT);
1823 return (error);
1824 }
1825 *pktopt = opt;
1826 return (0);
1827 }
1828
1829 /*
1830 * Set the IP6 multicast options in response to user setsockopt().
1831 */
1832 static int
1833 ip6_setmoptions(optname, im6op, m)
1834 int optname;
1835 struct ip6_moptions **im6op;
1836 struct mbuf *m;
1837 {
1838 int error = 0;
1839 u_int loop, ifindex;
1840 struct ipv6_mreq *mreq;
1841 struct ifnet *ifp;
1842 struct ip6_moptions *im6o = *im6op;
1843 struct route_in6 ro;
1844 struct in6_multi_mship *imm;
1845 struct proc *p = curproc; /* XXX */
1846
1847 if (im6o == NULL) {
1848 /*
1849 * No multicast option buffer attached to the pcb;
1850 * allocate one and initialize to default values.
1851 */
1852 im6o = (struct ip6_moptions *)
1853 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
1854
1855 if (im6o == NULL)
1856 return (ENOBUFS);
1857 *im6op = im6o;
1858 im6o->im6o_multicast_ifp = NULL;
1859 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1860 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
1861 LIST_INIT(&im6o->im6o_memberships);
1862 }
1863
1864 switch (optname) {
1865
1866 case IPV6_MULTICAST_IF:
1867 /*
1868 * Select the interface for outgoing multicast packets.
1869 */
1870 if (m == NULL || m->m_len != sizeof(u_int)) {
1871 error = EINVAL;
1872 break;
1873 }
1874 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
1875 if (ifindex != 0) {
1876 if (ifindex < 0 || if_indexlim <= ifindex ||
1877 !ifindex2ifnet[ifindex]) {
1878 error = ENXIO; /* XXX EINVAL? */
1879 break;
1880 }
1881 ifp = ifindex2ifnet[ifindex];
1882 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
1883 error = EADDRNOTAVAIL;
1884 break;
1885 }
1886 } else
1887 ifp = NULL;
1888 im6o->im6o_multicast_ifp = ifp;
1889 break;
1890
1891 case IPV6_MULTICAST_HOPS:
1892 {
1893 /*
1894 * Set the IP6 hoplimit for outgoing multicast packets.
1895 */
1896 int optval;
1897 if (m == NULL || m->m_len != sizeof(int)) {
1898 error = EINVAL;
1899 break;
1900 }
1901 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
1902 if (optval < -1 || optval >= 256)
1903 error = EINVAL;
1904 else if (optval == -1)
1905 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
1906 else
1907 im6o->im6o_multicast_hlim = optval;
1908 break;
1909 }
1910
1911 case IPV6_MULTICAST_LOOP:
1912 /*
1913 * Set the loopback flag for outgoing multicast packets.
1914 * Must be zero or one.
1915 */
1916 if (m == NULL || m->m_len != sizeof(u_int)) {
1917 error = EINVAL;
1918 break;
1919 }
1920 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
1921 if (loop > 1) {
1922 error = EINVAL;
1923 break;
1924 }
1925 im6o->im6o_multicast_loop = loop;
1926 break;
1927
1928 case IPV6_JOIN_GROUP:
1929 /*
1930 * Add a multicast group membership.
1931 * Group must be a valid IP6 multicast address.
1932 */
1933 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
1934 error = EINVAL;
1935 break;
1936 }
1937 mreq = mtod(m, struct ipv6_mreq *);
1938 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
1939 /*
1940 * We use the unspecified address to specify to accept
1941 * all multicast addresses. Only super user is allowed
1942 * to do this.
1943 */
1944 if (kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER, &p->p_acflag))
1945 {
1946 error = EACCES;
1947 break;
1948 }
1949 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
1950 error = EINVAL;
1951 break;
1952 }
1953
1954 /*
1955 * If no interface was explicitly specified, choose an
1956 * appropriate one according to the given multicast address.
1957 */
1958 if (mreq->ipv6mr_interface == 0) {
1959 struct sockaddr_in6 *dst;
1960
1961 /*
1962 * Look up the routing table for the
1963 * address, and choose the outgoing interface.
1964 * XXX: is it a good approach?
1965 */
1966 ro.ro_rt = NULL;
1967 dst = (struct sockaddr_in6 *)&ro.ro_dst;
1968 bzero(dst, sizeof(*dst));
1969 dst->sin6_family = AF_INET6;
1970 dst->sin6_len = sizeof(*dst);
1971 dst->sin6_addr = mreq->ipv6mr_multiaddr;
1972 rtalloc((struct route *)&ro);
1973 if (ro.ro_rt == NULL) {
1974 error = EADDRNOTAVAIL;
1975 break;
1976 }
1977 ifp = ro.ro_rt->rt_ifp;
1978 rtfree(ro.ro_rt);
1979 } else {
1980 /*
1981 * If the interface is specified, validate it.
1982 */
1983 if (mreq->ipv6mr_interface < 0 ||
1984 if_indexlim <= mreq->ipv6mr_interface ||
1985 !ifindex2ifnet[mreq->ipv6mr_interface]) {
1986 error = ENXIO; /* XXX EINVAL? */
1987 break;
1988 }
1989 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
1990 }
1991
1992 /*
1993 * See if we found an interface, and confirm that it
1994 * supports multicast
1995 */
1996 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
1997 error = EADDRNOTAVAIL;
1998 break;
1999 }
2000
2001 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
2002 error = EADDRNOTAVAIL; /* XXX: should not happen */
2003 break;
2004 }
2005
2006 /*
2007 * See if the membership already exists.
2008 */
2009 for (imm = im6o->im6o_memberships.lh_first;
2010 imm != NULL; imm = imm->i6mm_chain.le_next)
2011 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2012 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2013 &mreq->ipv6mr_multiaddr))
2014 break;
2015 if (imm != NULL) {
2016 error = EADDRINUSE;
2017 break;
2018 }
2019 /*
2020 * Everything looks good; add a new record to the multicast
2021 * address list for the given interface.
2022 */
2023 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error, 0);
2024 if (imm == NULL)
2025 break;
2026 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2027 break;
2028
2029 case IPV6_LEAVE_GROUP:
2030 /*
2031 * Drop a multicast group membership.
2032 * Group must be a valid IP6 multicast address.
2033 */
2034 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2035 error = EINVAL;
2036 break;
2037 }
2038 mreq = mtod(m, struct ipv6_mreq *);
2039
2040 /*
2041 * If an interface address was specified, get a pointer
2042 * to its ifnet structure.
2043 */
2044 if (mreq->ipv6mr_interface != 0) {
2045 if (mreq->ipv6mr_interface < 0 ||
2046 if_indexlim <= mreq->ipv6mr_interface ||
2047 !ifindex2ifnet[mreq->ipv6mr_interface]) {
2048 error = ENXIO; /* XXX EINVAL? */
2049 break;
2050 }
2051 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2052 } else
2053 ifp = NULL;
2054
2055 /* Fill in the scope zone ID */
2056 if (ifp) {
2057 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
2058 /* XXX: should not happen */
2059 error = EADDRNOTAVAIL;
2060 break;
2061 }
2062 } else if (mreq->ipv6mr_interface != 0) {
2063 /*
2064 * XXX: This case would happens when the (positive)
2065 * index is in the valid range, but the corresponding
2066 * interface has been detached dynamically. The above
2067 * check probably avoids such case to happen here, but
2068 * we check it explicitly for safety.
2069 */
2070 error = EADDRNOTAVAIL;
2071 break;
2072 } else { /* ipv6mr_interface == 0 */
2073 struct sockaddr_in6 sa6_mc;
2074
2075 /*
2076 * The API spec says as follows:
2077 * If the interface index is specified as 0, the
2078 * system may choose a multicast group membership to
2079 * drop by matching the multicast address only.
2080 * On the other hand, we cannot disambiguate the scope
2081 * zone unless an interface is provided. Thus, we
2082 * check if there's ambiguity with the default scope
2083 * zone as the last resort.
2084 */
2085 bzero(&sa6_mc, sizeof(sa6_mc));
2086 sa6_mc.sin6_family = AF_INET6;
2087 sa6_mc.sin6_len = sizeof(sa6_mc);
2088 sa6_mc.sin6_addr = mreq->ipv6mr_multiaddr;
2089 error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2090 if (error != 0)
2091 break;
2092 mreq->ipv6mr_multiaddr = sa6_mc.sin6_addr;
2093 }
2094
2095 /*
2096 * Find the membership in the membership list.
2097 */
2098 for (imm = im6o->im6o_memberships.lh_first;
2099 imm != NULL; imm = imm->i6mm_chain.le_next) {
2100 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2101 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2102 &mreq->ipv6mr_multiaddr))
2103 break;
2104 }
2105 if (imm == NULL) {
2106 /* Unable to resolve interface */
2107 error = EADDRNOTAVAIL;
2108 break;
2109 }
2110 /*
2111 * Give up the multicast address record to which the
2112 * membership points.
2113 */
2114 LIST_REMOVE(imm, i6mm_chain);
2115 in6_leavegroup(imm);
2116 break;
2117
2118 default:
2119 error = EOPNOTSUPP;
2120 break;
2121 }
2122
2123 /*
2124 * If all options have default values, no need to keep the mbuf.
2125 */
2126 if (im6o->im6o_multicast_ifp == NULL &&
2127 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2128 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2129 im6o->im6o_memberships.lh_first == NULL) {
2130 free(*im6op, M_IPMOPTS);
2131 *im6op = NULL;
2132 }
2133
2134 return (error);
2135 }
2136
2137 /*
2138 * Return the IP6 multicast options in response to user getsockopt().
2139 */
2140 static int
2141 ip6_getmoptions(optname, im6o, mp)
2142 int optname;
2143 struct ip6_moptions *im6o;
2144 struct mbuf **mp;
2145 {
2146 u_int *hlim, *loop, *ifindex;
2147
2148 *mp = m_get(M_WAIT, MT_SOOPTS);
2149
2150 switch (optname) {
2151
2152 case IPV6_MULTICAST_IF:
2153 ifindex = mtod(*mp, u_int *);
2154 (*mp)->m_len = sizeof(u_int);
2155 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2156 *ifindex = 0;
2157 else
2158 *ifindex = im6o->im6o_multicast_ifp->if_index;
2159 return (0);
2160
2161 case IPV6_MULTICAST_HOPS:
2162 hlim = mtod(*mp, u_int *);
2163 (*mp)->m_len = sizeof(u_int);
2164 if (im6o == NULL)
2165 *hlim = ip6_defmcasthlim;
2166 else
2167 *hlim = im6o->im6o_multicast_hlim;
2168 return (0);
2169
2170 case IPV6_MULTICAST_LOOP:
2171 loop = mtod(*mp, u_int *);
2172 (*mp)->m_len = sizeof(u_int);
2173 if (im6o == NULL)
2174 *loop = ip6_defmcasthlim;
2175 else
2176 *loop = im6o->im6o_multicast_loop;
2177 return (0);
2178
2179 default:
2180 return (EOPNOTSUPP);
2181 }
2182 }
2183
2184 /*
2185 * Discard the IP6 multicast options.
2186 */
2187 void
2188 ip6_freemoptions(im6o)
2189 struct ip6_moptions *im6o;
2190 {
2191 struct in6_multi_mship *imm;
2192
2193 if (im6o == NULL)
2194 return;
2195
2196 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2197 LIST_REMOVE(imm, i6mm_chain);
2198 in6_leavegroup(imm);
2199 }
2200 free(im6o, M_IPMOPTS);
2201 }
2202
2203 /*
2204 * Set IPv6 outgoing packet options based on advanced API.
2205 */
2206 int
2207 ip6_setpktoptions(control, opt, priv)
2208 struct mbuf *control;
2209 struct ip6_pktopts *opt;
2210 int priv;
2211 {
2212 struct cmsghdr *cm = 0;
2213
2214 if (control == 0 || opt == 0)
2215 return (EINVAL);
2216
2217 bzero(opt, sizeof(*opt));
2218 opt->ip6po_hlim = -1; /* -1 means to use default hop limit */
2219
2220 /*
2221 * XXX: Currently, we assume all the optional information is stored
2222 * in a single mbuf.
2223 */
2224 if (control->m_next)
2225 return (EINVAL);
2226
2227 opt->ip6po_m = control;
2228
2229 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2230 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2231 cm = mtod(control, struct cmsghdr *);
2232 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2233 return (EINVAL);
2234 if (cm->cmsg_level != IPPROTO_IPV6)
2235 continue;
2236
2237 switch (cm->cmsg_type) {
2238 case IPV6_PKTINFO:
2239 if (cm->cmsg_len != CMSG_LEN(sizeof(struct in6_pktinfo)))
2240 return (EINVAL);
2241 opt->ip6po_pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm);
2242 if (opt->ip6po_pktinfo->ipi6_ifindex >= if_indexlim ||
2243 opt->ip6po_pktinfo->ipi6_ifindex < 0)
2244 return (ENXIO);
2245 if (opt->ip6po_pktinfo->ipi6_ifindex > 0 &&
2246 !ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex])
2247 return (ENXIO);
2248
2249 if (opt->ip6po_pktinfo->ipi6_ifindex) {
2250 struct ifnet *ifp;
2251 int error;
2252
2253 /* ipi6_ifindex must be valid here */
2254 ifp = ifindex2ifnet[opt->ip6po_pktinfo->ipi6_ifindex];
2255 error = in6_setscope(&opt->ip6po_pktinfo->ipi6_addr,
2256 ifp, NULL);
2257 if (error != 0)
2258 return (error);
2259 }
2260
2261 /*
2262 * Check if the requested source address is indeed a
2263 * unicast address assigned to the node, and can be
2264 * used as the packet's source address.
2265 */
2266 if (!IN6_IS_ADDR_UNSPECIFIED(&opt->ip6po_pktinfo->ipi6_addr)) {
2267 struct ifaddr *ia;
2268 struct in6_ifaddr *ia6;
2269 struct sockaddr_in6 sin6;
2270
2271 bzero(&sin6, sizeof(sin6));
2272 sin6.sin6_len = sizeof(sin6);
2273 sin6.sin6_family = AF_INET6;
2274 sin6.sin6_addr =
2275 opt->ip6po_pktinfo->ipi6_addr;
2276 ia = ifa_ifwithaddr(sin6tosa(&sin6));
2277 if (ia == NULL ||
2278 (opt->ip6po_pktinfo->ipi6_ifindex &&
2279 (ia->ifa_ifp->if_index !=
2280 opt->ip6po_pktinfo->ipi6_ifindex))) {
2281 return (EADDRNOTAVAIL);
2282 }
2283 ia6 = (struct in6_ifaddr *)ia;
2284 if ((ia6->ia6_flags & (IN6_IFF_ANYCAST|IN6_IFF_NOTREADY)) != 0) {
2285 return (EADDRNOTAVAIL);
2286 }
2287
2288 /*
2289 * Check if the requested source address is
2290 * indeed a unicast address assigned to the
2291 * node.
2292 */
2293 if (IN6_IS_ADDR_MULTICAST(&opt->ip6po_pktinfo->ipi6_addr))
2294 return (EADDRNOTAVAIL);
2295 }
2296 break;
2297
2298 case IPV6_HOPLIMIT:
2299 if (cm->cmsg_len != CMSG_LEN(sizeof(int)))
2300 return (EINVAL);
2301 else {
2302 int t;
2303
2304 bcopy(CMSG_DATA(cm), &t, sizeof(t));
2305 if (t < -1 || t > 255)
2306 return (EINVAL);
2307 opt->ip6po_hlim = t;
2308 }
2309 break;
2310
2311 case IPV6_NEXTHOP:
2312 if (!priv)
2313 return (EPERM);
2314
2315 /* check if cmsg_len is large enough for sa_len */
2316 if (cm->cmsg_len < sizeof(u_char) ||
2317 cm->cmsg_len < CMSG_LEN(*CMSG_DATA(cm)))
2318 return (EINVAL);
2319
2320 opt->ip6po_nexthop = (struct sockaddr *)CMSG_DATA(cm);
2321
2322 break;
2323
2324 case IPV6_HOPOPTS:
2325 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_hbh)))
2326 return (EINVAL);
2327 else {
2328 struct ip6_hbh *t;
2329
2330 t = (struct ip6_hbh *)CMSG_DATA(cm);
2331 if (cm->cmsg_len !=
2332 CMSG_LEN((t->ip6h_len + 1) << 3))
2333 return (EINVAL);
2334 opt->ip6po_hbh = t;
2335 }
2336 break;
2337
2338 case IPV6_DSTOPTS:
2339 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_dest)))
2340 return (EINVAL);
2341
2342 /*
2343 * If there is no routing header yet, the destination
2344 * options header should be put on the 1st part.
2345 * Otherwise, the header should be on the 2nd part.
2346 * (See RFC 2460, section 4.1)
2347 */
2348 if (opt->ip6po_rthdr == NULL) {
2349 struct ip6_dest *t;
2350
2351 t = (struct ip6_dest *)CMSG_DATA(cm);
2352 if (cm->cmsg_len !=
2353 CMSG_LEN((t->ip6d_len + 1) << 3));
2354 return (EINVAL);
2355 opt->ip6po_dest1 = t;
2356 }
2357 else {
2358 struct ip6_dest *t;
2359
2360 t = (struct ip6_dest *)CMSG_DATA(cm);
2361 if (cm->cmsg_len !=
2362 CMSG_LEN((opt->ip6po_dest2->ip6d_len + 1) << 3))
2363 return (EINVAL);
2364 opt->ip6po_dest2 = t;
2365 }
2366 break;
2367
2368 case IPV6_RTHDR:
2369 if (cm->cmsg_len < CMSG_LEN(sizeof(struct ip6_rthdr)))
2370 return (EINVAL);
2371 else {
2372 struct ip6_rthdr *t;
2373
2374 t = (struct ip6_rthdr *)CMSG_DATA(cm);
2375 if (cm->cmsg_len !=
2376 CMSG_LEN((t->ip6r_len + 1) << 3))
2377 return (EINVAL);
2378 switch (t->ip6r_type) {
2379 case IPV6_RTHDR_TYPE_0:
2380 if (t->ip6r_segleft == 0)
2381 return (EINVAL);
2382 break;
2383 default:
2384 return (EINVAL);
2385 }
2386 opt->ip6po_rthdr = t;
2387 }
2388 break;
2389
2390 default:
2391 return (ENOPROTOOPT);
2392 }
2393 }
2394
2395 return (0);
2396 }
2397
2398 /*
2399 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
2400 * packet to the input queue of a specified interface. Note that this
2401 * calls the output routine of the loopback "driver", but with an interface
2402 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
2403 */
2404 void
2405 ip6_mloopback(ifp, m, dst)
2406 struct ifnet *ifp;
2407 struct mbuf *m;
2408 struct sockaddr_in6 *dst;
2409 {
2410 struct mbuf *copym;
2411 struct ip6_hdr *ip6;
2412
2413 copym = m_copy(m, 0, M_COPYALL);
2414 if (copym == NULL)
2415 return;
2416
2417 /*
2418 * Make sure to deep-copy IPv6 header portion in case the data
2419 * is in an mbuf cluster, so that we can safely override the IPv6
2420 * header portion later.
2421 */
2422 if ((copym->m_flags & M_EXT) != 0 ||
2423 copym->m_len < sizeof(struct ip6_hdr)) {
2424 copym = m_pullup(copym, sizeof(struct ip6_hdr));
2425 if (copym == NULL)
2426 return;
2427 }
2428
2429 #ifdef DIAGNOSTIC
2430 if (copym->m_len < sizeof(*ip6)) {
2431 m_freem(copym);
2432 return;
2433 }
2434 #endif
2435
2436 ip6 = mtod(copym, struct ip6_hdr *);
2437 /*
2438 * clear embedded scope identifiers if necessary.
2439 * in6_clearscope will touch the addresses only when necessary.
2440 */
2441 in6_clearscope(&ip6->ip6_src);
2442 in6_clearscope(&ip6->ip6_dst);
2443
2444 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
2445 }
2446
2447 /*
2448 * Chop IPv6 header off from the payload.
2449 */
2450 static int
2451 ip6_splithdr(m, exthdrs)
2452 struct mbuf *m;
2453 struct ip6_exthdrs *exthdrs;
2454 {
2455 struct mbuf *mh;
2456 struct ip6_hdr *ip6;
2457
2458 ip6 = mtod(m, struct ip6_hdr *);
2459 if (m->m_len > sizeof(*ip6)) {
2460 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
2461 if (mh == 0) {
2462 m_freem(m);
2463 return ENOBUFS;
2464 }
2465 M_MOVE_PKTHDR(mh, m);
2466 MH_ALIGN(mh, sizeof(*ip6));
2467 m->m_len -= sizeof(*ip6);
2468 m->m_data += sizeof(*ip6);
2469 mh->m_next = m;
2470 m = mh;
2471 m->m_len = sizeof(*ip6);
2472 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
2473 }
2474 exthdrs->ip6e_ip6 = m;
2475 return 0;
2476 }
2477
2478 /*
2479 * Compute IPv6 extension header length.
2480 */
2481 int
2482 ip6_optlen(in6p)
2483 struct in6pcb *in6p;
2484 {
2485 int len;
2486
2487 if (!in6p->in6p_outputopts)
2488 return 0;
2489
2490 len = 0;
2491 #define elen(x) \
2492 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
2493
2494 len += elen(in6p->in6p_outputopts->ip6po_hbh);
2495 len += elen(in6p->in6p_outputopts->ip6po_dest1);
2496 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
2497 len += elen(in6p->in6p_outputopts->ip6po_dest2);
2498 return len;
2499 #undef elen
2500 }
2501