ip6_output.c revision 1.99 1 /* $NetBSD: ip6_output.c,v 1.99 2006/07/08 19:58:40 rpaulo Exp $ */
2 /* $KAME: ip6_output.c,v 1.172 2001/03/25 09:55:56 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1982, 1986, 1988, 1990, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * Redistribution and use in source and binary forms, with or without
38 * modification, are permitted provided that the following conditions
39 * are met:
40 * 1. Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * 2. Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in the
44 * documentation and/or other materials provided with the distribution.
45 * 3. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
62 */
63
64 #include <sys/cdefs.h>
65 __KERNEL_RCSID(0, "$NetBSD: ip6_output.c,v 1.99 2006/07/08 19:58:40 rpaulo Exp $");
66
67 #include "opt_inet.h"
68 #include "opt_inet6.h"
69 #include "opt_ipsec.h"
70 #include "opt_pfil_hooks.h"
71
72 #include <sys/param.h>
73 #include <sys/malloc.h>
74 #include <sys/mbuf.h>
75 #include <sys/errno.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <sys/systm.h>
80 #include <sys/proc.h>
81 #include <sys/kauth.h>
82
83 #include <net/if.h>
84 #include <net/route.h>
85 #ifdef PFIL_HOOKS
86 #include <net/pfil.h>
87 #endif
88
89 #include <netinet/in.h>
90 #include <netinet/in_var.h>
91 #include <netinet/ip6.h>
92 #include <netinet/icmp6.h>
93 #include <netinet/in_offload.h>
94 #include <netinet6/ip6_var.h>
95 #include <netinet6/in6_pcb.h>
96 #include <netinet6/nd6.h>
97 #include <netinet6/ip6protosw.h>
98 #include <netinet6/scope6_var.h>
99
100 #ifdef IPSEC
101 #include <netinet6/ipsec.h>
102 #include <netkey/key.h>
103 #endif /* IPSEC */
104
105 #include <net/net_osdep.h>
106
107 #ifdef PFIL_HOOKS
108 extern struct pfil_head inet6_pfil_hook; /* XXX */
109 #endif
110
111 struct ip6_exthdrs {
112 struct mbuf *ip6e_ip6;
113 struct mbuf *ip6e_hbh;
114 struct mbuf *ip6e_dest1;
115 struct mbuf *ip6e_rthdr;
116 struct mbuf *ip6e_dest2;
117 };
118
119 static int ip6_pcbopt __P((int, u_char *, int, struct ip6_pktopts **,
120 int, int));
121 static int ip6_getpcbopt __P((struct ip6_pktopts *, int, struct mbuf **));
122 static int ip6_setpktopt __P((int, u_char *, int, struct ip6_pktopts *, int,
123 int, int, int));
124 static int ip6_setmoptions __P((int, struct ip6_moptions **, struct mbuf *));
125 static int ip6_getmoptions __P((int, struct ip6_moptions *, struct mbuf **));
126 static int ip6_copyexthdr __P((struct mbuf **, caddr_t, int));
127 static int ip6_insertfraghdr __P((struct mbuf *, struct mbuf *, int,
128 struct ip6_frag **));
129 static int ip6_insert_jumboopt __P((struct ip6_exthdrs *, u_int32_t));
130 static int ip6_splithdr __P((struct mbuf *, struct ip6_exthdrs *));
131 static int ip6_getpmtu __P((struct route_in6 *, struct route_in6 *,
132 struct ifnet *, struct in6_addr *, u_long *, int *));
133 static int copypktopts __P((struct ip6_pktopts *, struct ip6_pktopts *, int));
134
135 #ifdef RFC2292
136 static int ip6_pcbopts __P((struct ip6_pktopts **, struct mbuf *,
137 struct socket *));
138 #endif
139
140 #define IN6_NEED_CHECKSUM(ifp, csum_flags) \
141 (__predict_true(((ifp)->if_flags & IFF_LOOPBACK) == 0 || \
142 (((csum_flags) & M_CSUM_UDPv6) != 0 && udp_do_loopback_cksum) || \
143 (((csum_flags) & M_CSUM_TCPv6) != 0 && tcp_do_loopback_cksum)))
144
145 /*
146 * IP6 output. The packet in mbuf chain m contains a skeletal IP6
147 * header (with pri, len, nxt, hlim, src, dst).
148 * This function may modify ver and hlim only.
149 * The mbuf chain containing the packet will be freed.
150 * The mbuf opt, if present, will not be freed.
151 *
152 * type of "mtu": rt_rmx.rmx_mtu is u_long, ifnet.ifr_mtu is int, and
153 * nd_ifinfo.linkmtu is u_int32_t. so we use u_long to hold largest one,
154 * which is rt_rmx.rmx_mtu.
155 */
156 int
157 ip6_output(m0, opt, ro, flags, im6o, so, ifpp)
158 struct mbuf *m0;
159 struct ip6_pktopts *opt;
160 struct route_in6 *ro;
161 int flags;
162 struct ip6_moptions *im6o;
163 struct socket *so;
164 struct ifnet **ifpp; /* XXX: just for statistics */
165 {
166 struct ip6_hdr *ip6, *mhip6;
167 struct ifnet *ifp, *origifp;
168 struct mbuf *m = m0;
169 int hlen, tlen, len, off;
170 struct route_in6 ip6route;
171 struct rtentry *rt = NULL;
172 struct sockaddr_in6 *dst, src_sa, dst_sa;
173 int error = 0;
174 struct in6_ifaddr *ia = NULL;
175 u_long mtu;
176 int alwaysfrag, dontfrag;
177 u_int32_t optlen = 0, plen = 0, unfragpartlen = 0;
178 struct ip6_exthdrs exthdrs;
179 struct in6_addr finaldst, src0, dst0;
180 u_int32_t zone;
181 struct route_in6 *ro_pmtu = NULL;
182 int hdrsplit = 0;
183 int needipsec = 0;
184 #ifdef IPSEC
185 int needipsectun = 0;
186 struct secpolicy *sp = NULL;
187
188 ip6 = mtod(m, struct ip6_hdr *);
189 #endif /* IPSEC */
190
191 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data, sizeof(struct ip6_hdr));
192
193 #define MAKE_EXTHDR(hp, mp) \
194 do { \
195 if (hp) { \
196 struct ip6_ext *eh = (struct ip6_ext *)(hp); \
197 error = ip6_copyexthdr((mp), (caddr_t)(hp), \
198 ((eh)->ip6e_len + 1) << 3); \
199 if (error) \
200 goto freehdrs; \
201 } \
202 } while (/*CONSTCOND*/ 0)
203
204 bzero(&exthdrs, sizeof(exthdrs));
205 if (opt) {
206 /* Hop-by-Hop options header */
207 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh);
208 /* Destination options header(1st part) */
209 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1);
210 /* Routing header */
211 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr);
212 /* Destination options header(2nd part) */
213 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2);
214 }
215
216 #ifdef IPSEC
217 if ((flags & IPV6_FORWARDING) != 0) {
218 needipsec = 0;
219 goto skippolicycheck;
220 }
221
222 /* get a security policy for this packet */
223 if (so == NULL)
224 sp = ipsec6_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND, 0, &error);
225 else {
226 if (IPSEC_PCB_SKIP_IPSEC(sotoinpcb_hdr(so)->inph_sp,
227 IPSEC_DIR_OUTBOUND)) {
228 needipsec = 0;
229 goto skippolicycheck;
230 }
231 sp = ipsec6_getpolicybysock(m, IPSEC_DIR_OUTBOUND, so, &error);
232 }
233
234 if (sp == NULL) {
235 ipsec6stat.out_inval++;
236 goto freehdrs;
237 }
238
239 error = 0;
240
241 /* check policy */
242 switch (sp->policy) {
243 case IPSEC_POLICY_DISCARD:
244 /*
245 * This packet is just discarded.
246 */
247 ipsec6stat.out_polvio++;
248 goto freehdrs;
249
250 case IPSEC_POLICY_BYPASS:
251 case IPSEC_POLICY_NONE:
252 /* no need to do IPsec. */
253 needipsec = 0;
254 break;
255
256 case IPSEC_POLICY_IPSEC:
257 if (sp->req == NULL) {
258 /* XXX should be panic ? */
259 printf("ip6_output: No IPsec request specified.\n");
260 error = EINVAL;
261 goto freehdrs;
262 }
263 needipsec = 1;
264 break;
265
266 case IPSEC_POLICY_ENTRUST:
267 default:
268 printf("ip6_output: Invalid policy found. %d\n", sp->policy);
269 }
270
271 skippolicycheck:;
272 #endif /* IPSEC */
273
274 if (needipsec &&
275 (m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
276 in6_delayed_cksum(m);
277 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
278 }
279
280 /*
281 * Calculate the total length of the extension header chain.
282 * Keep the length of the unfragmentable part for fragmentation.
283 */
284 optlen = 0;
285 if (exthdrs.ip6e_hbh) optlen += exthdrs.ip6e_hbh->m_len;
286 if (exthdrs.ip6e_dest1) optlen += exthdrs.ip6e_dest1->m_len;
287 if (exthdrs.ip6e_rthdr) optlen += exthdrs.ip6e_rthdr->m_len;
288 unfragpartlen = optlen + sizeof(struct ip6_hdr);
289 /* NOTE: we don't add AH/ESP length here. do that later. */
290 if (exthdrs.ip6e_dest2) optlen += exthdrs.ip6e_dest2->m_len;
291
292 /*
293 * If we need IPsec, or there is at least one extension header,
294 * separate IP6 header from the payload.
295 */
296 if ((needipsec || optlen) && !hdrsplit) {
297 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
298 m = NULL;
299 goto freehdrs;
300 }
301 m = exthdrs.ip6e_ip6;
302 hdrsplit++;
303 }
304
305 /* adjust pointer */
306 ip6 = mtod(m, struct ip6_hdr *);
307
308 /* adjust mbuf packet header length */
309 m->m_pkthdr.len += optlen;
310 plen = m->m_pkthdr.len - sizeof(*ip6);
311
312 /* If this is a jumbo payload, insert a jumbo payload option. */
313 if (plen > IPV6_MAXPACKET) {
314 if (!hdrsplit) {
315 if ((error = ip6_splithdr(m, &exthdrs)) != 0) {
316 m = NULL;
317 goto freehdrs;
318 }
319 m = exthdrs.ip6e_ip6;
320 hdrsplit++;
321 }
322 /* adjust pointer */
323 ip6 = mtod(m, struct ip6_hdr *);
324 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0)
325 goto freehdrs;
326 optlen += 8; /* XXX JUMBOOPTLEN */
327 ip6->ip6_plen = 0;
328 } else
329 ip6->ip6_plen = htons(plen);
330
331 /*
332 * Concatenate headers and fill in next header fields.
333 * Here we have, on "m"
334 * IPv6 payload
335 * and we insert headers accordingly. Finally, we should be getting:
336 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]
337 *
338 * during the header composing process, "m" points to IPv6 header.
339 * "mprev" points to an extension header prior to esp.
340 */
341 {
342 u_char *nexthdrp = &ip6->ip6_nxt;
343 struct mbuf *mprev = m;
344
345 /*
346 * we treat dest2 specially. this makes IPsec processing
347 * much easier. the goal here is to make mprev point the
348 * mbuf prior to dest2.
349 *
350 * result: IPv6 dest2 payload
351 * m and mprev will point to IPv6 header.
352 */
353 if (exthdrs.ip6e_dest2) {
354 if (!hdrsplit)
355 panic("assumption failed: hdr not split");
356 exthdrs.ip6e_dest2->m_next = m->m_next;
357 m->m_next = exthdrs.ip6e_dest2;
358 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt;
359 ip6->ip6_nxt = IPPROTO_DSTOPTS;
360 }
361
362 #define MAKE_CHAIN(m, mp, p, i)\
363 do {\
364 if (m) {\
365 if (!hdrsplit) \
366 panic("assumption failed: hdr not split"); \
367 *mtod((m), u_char *) = *(p);\
368 *(p) = (i);\
369 p = mtod((m), u_char *);\
370 (m)->m_next = (mp)->m_next;\
371 (mp)->m_next = (m);\
372 (mp) = (m);\
373 }\
374 } while (/*CONSTCOND*/ 0)
375 /*
376 * result: IPv6 hbh dest1 rthdr dest2 payload
377 * m will point to IPv6 header. mprev will point to the
378 * extension header prior to dest2 (rthdr in the above case).
379 */
380 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS);
381 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp,
382 IPPROTO_DSTOPTS);
383 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp,
384 IPPROTO_ROUTING);
385
386 M_CSUM_DATA_IPv6_HL_SET(m->m_pkthdr.csum_data,
387 sizeof(struct ip6_hdr) + optlen);
388
389 #ifdef IPSEC
390 if (!needipsec)
391 goto skip_ipsec2;
392
393 /*
394 * pointers after IPsec headers are not valid any more.
395 * other pointers need a great care too.
396 * (IPsec routines should not mangle mbufs prior to AH/ESP)
397 */
398 exthdrs.ip6e_dest2 = NULL;
399
400 {
401 struct ip6_rthdr *rh = NULL;
402 int segleft_org = 0;
403 struct ipsec_output_state state;
404
405 if (exthdrs.ip6e_rthdr) {
406 rh = mtod(exthdrs.ip6e_rthdr, struct ip6_rthdr *);
407 segleft_org = rh->ip6r_segleft;
408 rh->ip6r_segleft = 0;
409 }
410
411 bzero(&state, sizeof(state));
412 state.m = m;
413 error = ipsec6_output_trans(&state, nexthdrp, mprev, sp, flags,
414 &needipsectun);
415 m = state.m;
416 if (error) {
417 /* mbuf is already reclaimed in ipsec6_output_trans. */
418 m = NULL;
419 switch (error) {
420 case EHOSTUNREACH:
421 case ENETUNREACH:
422 case EMSGSIZE:
423 case ENOBUFS:
424 case ENOMEM:
425 break;
426 default:
427 printf("ip6_output (ipsec): error code %d\n", error);
428 /* FALLTHROUGH */
429 case ENOENT:
430 /* don't show these error codes to the user */
431 error = 0;
432 break;
433 }
434 goto bad;
435 }
436 if (exthdrs.ip6e_rthdr) {
437 /* ah6_output doesn't modify mbuf chain */
438 rh->ip6r_segleft = segleft_org;
439 }
440 }
441 skip_ipsec2:;
442 #endif
443 }
444
445 /*
446 * If there is a routing header, replace destination address field
447 * with the first hop of the routing header.
448 */
449 if (exthdrs.ip6e_rthdr) {
450 struct ip6_rthdr *rh;
451 struct ip6_rthdr0 *rh0;
452 struct in6_addr *addr;
453 struct sockaddr_in6 sa;
454
455 rh = (struct ip6_rthdr *)(mtod(exthdrs.ip6e_rthdr,
456 struct ip6_rthdr *));
457 finaldst = ip6->ip6_dst;
458 switch (rh->ip6r_type) {
459 case IPV6_RTHDR_TYPE_0:
460 rh0 = (struct ip6_rthdr0 *)rh;
461 addr = (struct in6_addr *)(rh0 + 1);
462
463 /*
464 * construct a sockaddr_in6 form of
465 * the first hop.
466 *
467 * XXX: we may not have enough
468 * information about its scope zone;
469 * there is no standard API to pass
470 * the information from the
471 * application.
472 */
473 bzero(&sa, sizeof(sa));
474 sa.sin6_family = AF_INET6;
475 sa.sin6_len = sizeof(sa);
476 sa.sin6_addr = addr[0];
477 if ((error = sa6_embedscope(&sa,
478 ip6_use_defzone)) != 0) {
479 goto bad;
480 }
481 ip6->ip6_dst = sa.sin6_addr;
482 (void)memmove(&addr[0], &addr[1],
483 sizeof(struct in6_addr) *
484 (rh0->ip6r0_segleft - 1));
485 addr[rh0->ip6r0_segleft - 1] = finaldst;
486 /* XXX */
487 in6_clearscope(addr + rh0->ip6r0_segleft - 1);
488 break;
489 default: /* is it possible? */
490 error = EINVAL;
491 goto bad;
492 }
493 }
494
495 /* Source address validation */
496 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) &&
497 (flags & IPV6_UNSPECSRC) == 0) {
498 error = EOPNOTSUPP;
499 ip6stat.ip6s_badscope++;
500 goto bad;
501 }
502 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) {
503 error = EOPNOTSUPP;
504 ip6stat.ip6s_badscope++;
505 goto bad;
506 }
507
508 ip6stat.ip6s_localout++;
509
510 /*
511 * Route packet.
512 */
513 /* initialize cached route */
514 if (ro == 0) {
515 ro = &ip6route;
516 bzero((caddr_t)ro, sizeof(*ro));
517 }
518 ro_pmtu = ro;
519 if (opt && opt->ip6po_rthdr)
520 ro = &opt->ip6po_route;
521 dst = (struct sockaddr_in6 *)&ro->ro_dst;
522
523 /*
524 * if specified, try to fill in the traffic class field.
525 * do not override if a non-zero value is already set.
526 * we check the diffserv field and the ecn field separately.
527 */
528 if (opt && opt->ip6po_tclass >= 0) {
529 int mask = 0;
530
531 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0)
532 mask |= 0xfc;
533 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0)
534 mask |= 0x03;
535 if (mask != 0)
536 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20);
537 }
538
539 /* fill in or override the hop limit field, if necessary. */
540 if (opt && opt->ip6po_hlim != -1)
541 ip6->ip6_hlim = opt->ip6po_hlim & 0xff;
542 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
543 if (im6o != NULL)
544 ip6->ip6_hlim = im6o->im6o_multicast_hlim;
545 else
546 ip6->ip6_hlim = ip6_defmcasthlim;
547 }
548
549 #ifdef IPSEC
550 if (needipsec && needipsectun) {
551 struct ipsec_output_state state;
552
553 /*
554 * All the extension headers will become inaccessible
555 * (since they can be encrypted).
556 * Don't panic, we need no more updates to extension headers
557 * on inner IPv6 packet (since they are now encapsulated).
558 *
559 * IPv6 [ESP|AH] IPv6 [extension headers] payload
560 */
561 bzero(&exthdrs, sizeof(exthdrs));
562 exthdrs.ip6e_ip6 = m;
563
564 bzero(&state, sizeof(state));
565 state.m = m;
566 state.ro = (struct route *)ro;
567 state.dst = (struct sockaddr *)dst;
568
569 error = ipsec6_output_tunnel(&state, sp, flags);
570
571 m = state.m;
572 ro_pmtu = ro = (struct route_in6 *)state.ro;
573 dst = (struct sockaddr_in6 *)state.dst;
574 if (error) {
575 /* mbuf is already reclaimed in ipsec6_output_tunnel. */
576 m0 = m = NULL;
577 m = NULL;
578 switch (error) {
579 case EHOSTUNREACH:
580 case ENETUNREACH:
581 case EMSGSIZE:
582 case ENOBUFS:
583 case ENOMEM:
584 break;
585 default:
586 printf("ip6_output (ipsec): error code %d\n", error);
587 /* FALLTHROUGH */
588 case ENOENT:
589 /* don't show these error codes to the user */
590 error = 0;
591 break;
592 }
593 goto bad;
594 }
595
596 exthdrs.ip6e_ip6 = m;
597 }
598 #endif /* IPSEC */
599
600 /* adjust pointer */
601 ip6 = mtod(m, struct ip6_hdr *);
602
603 bzero(&dst_sa, sizeof(dst_sa));
604 dst_sa.sin6_family = AF_INET6;
605 dst_sa.sin6_len = sizeof(dst_sa);
606 dst_sa.sin6_addr = ip6->ip6_dst;
607 if ((error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, &rt, 0))
608 != 0) {
609 switch (error) {
610 case EHOSTUNREACH:
611 ip6stat.ip6s_noroute++;
612 break;
613 case EADDRNOTAVAIL:
614 default:
615 break; /* XXX statistics? */
616 }
617 if (ifp != NULL)
618 in6_ifstat_inc(ifp, ifs6_out_discard);
619 goto bad;
620 }
621 if (rt == NULL) {
622 /*
623 * If in6_selectroute() does not return a route entry,
624 * dst may not have been updated.
625 */
626 *dst = dst_sa; /* XXX */
627 }
628
629 /*
630 * then rt (for unicast) and ifp must be non-NULL valid values.
631 */
632 if ((flags & IPV6_FORWARDING) == 0) {
633 /* XXX: the FORWARDING flag can be set for mrouting. */
634 in6_ifstat_inc(ifp, ifs6_out_request);
635 }
636 if (rt != NULL) {
637 ia = (struct in6_ifaddr *)(rt->rt_ifa);
638 rt->rt_use++;
639 }
640
641 /*
642 * The outgoing interface must be in the zone of source and
643 * destination addresses. We should use ia_ifp to support the
644 * case of sending packets to an address of our own.
645 */
646 if (ia != NULL && ia->ia_ifp)
647 origifp = ia->ia_ifp;
648 else
649 origifp = ifp;
650
651 src0 = ip6->ip6_src;
652 if (in6_setscope(&src0, origifp, &zone))
653 goto badscope;
654 bzero(&src_sa, sizeof(src_sa));
655 src_sa.sin6_family = AF_INET6;
656 src_sa.sin6_len = sizeof(src_sa);
657 src_sa.sin6_addr = ip6->ip6_src;
658 if (sa6_recoverscope(&src_sa) || zone != src_sa.sin6_scope_id)
659 goto badscope;
660
661 dst0 = ip6->ip6_dst;
662 if (in6_setscope(&dst0, origifp, &zone))
663 goto badscope;
664 /* re-initialize to be sure */
665 bzero(&dst_sa, sizeof(dst_sa));
666 dst_sa.sin6_family = AF_INET6;
667 dst_sa.sin6_len = sizeof(dst_sa);
668 dst_sa.sin6_addr = ip6->ip6_dst;
669 if (sa6_recoverscope(&dst_sa) || zone != dst_sa.sin6_scope_id)
670 goto badscope;
671
672 /* scope check is done. */
673 goto routefound;
674
675 badscope:
676 ip6stat.ip6s_badscope++;
677 in6_ifstat_inc(origifp, ifs6_out_discard);
678 if (error == 0)
679 error = EHOSTUNREACH; /* XXX */
680 goto bad;
681
682 routefound:
683 if (rt && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
684 if (opt && opt->ip6po_nextroute.ro_rt) {
685 /*
686 * The nexthop is explicitly specified by the
687 * application. We assume the next hop is an IPv6
688 * address.
689 */
690 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop;
691 } else if ((rt->rt_flags & RTF_GATEWAY))
692 dst = (struct sockaddr_in6 *)rt->rt_gateway;
693 }
694
695 /*
696 * XXXXXX: original code follows:
697 */
698 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
699 m->m_flags &= ~(M_BCAST | M_MCAST); /* just in case */
700 else {
701 struct in6_multi *in6m;
702
703 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST;
704
705 in6_ifstat_inc(ifp, ifs6_out_mcast);
706
707 /*
708 * Confirm that the outgoing interface supports multicast.
709 */
710 if (!(ifp->if_flags & IFF_MULTICAST)) {
711 ip6stat.ip6s_noroute++;
712 in6_ifstat_inc(ifp, ifs6_out_discard);
713 error = ENETUNREACH;
714 goto bad;
715 }
716
717 IN6_LOOKUP_MULTI(ip6->ip6_dst, ifp, in6m);
718 if (in6m != NULL &&
719 (im6o == NULL || im6o->im6o_multicast_loop)) {
720 /*
721 * If we belong to the destination multicast group
722 * on the outgoing interface, and the caller did not
723 * forbid loopback, loop back a copy.
724 */
725 ip6_mloopback(ifp, m, dst);
726 } else {
727 /*
728 * If we are acting as a multicast router, perform
729 * multicast forwarding as if the packet had just
730 * arrived on the interface to which we are about
731 * to send. The multicast forwarding function
732 * recursively calls this function, using the
733 * IPV6_FORWARDING flag to prevent infinite recursion.
734 *
735 * Multicasts that are looped back by ip6_mloopback(),
736 * above, will be forwarded by the ip6_input() routine,
737 * if necessary.
738 */
739 if (ip6_mrouter && (flags & IPV6_FORWARDING) == 0) {
740 if (ip6_mforward(ip6, ifp, m) != 0) {
741 m_freem(m);
742 goto done;
743 }
744 }
745 }
746 /*
747 * Multicasts with a hoplimit of zero may be looped back,
748 * above, but must not be transmitted on a network.
749 * Also, multicasts addressed to the loopback interface
750 * are not sent -- the above call to ip6_mloopback() will
751 * loop back a copy if this host actually belongs to the
752 * destination group on the loopback interface.
753 */
754 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) ||
755 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) {
756 m_freem(m);
757 goto done;
758 }
759 }
760
761 /*
762 * Fill the outgoing inteface to tell the upper layer
763 * to increment per-interface statistics.
764 */
765 if (ifpp)
766 *ifpp = ifp;
767
768 /* Determine path MTU. */
769 if ((error = ip6_getpmtu(ro_pmtu, ro, ifp, &finaldst, &mtu,
770 &alwaysfrag)) != 0)
771 goto bad;
772 #ifdef IPSEC
773 if (needipsectun)
774 mtu = IPV6_MMTU;
775 #endif
776
777 /*
778 * The caller of this function may specify to use the minimum MTU
779 * in some cases.
780 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU
781 * setting. The logic is a bit complicated; by default, unicast
782 * packets will follow path MTU while multicast packets will be sent at
783 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets
784 * including unicast ones will be sent at the minimum MTU. Multicast
785 * packets will always be sent at the minimum MTU unless
786 * IP6PO_MINMTU_DISABLE is explicitly specified.
787 * See RFC 3542 for more details.
788 */
789 if (mtu > IPV6_MMTU) {
790 if ((flags & IPV6_MINMTU))
791 mtu = IPV6_MMTU;
792 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL)
793 mtu = IPV6_MMTU;
794 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) &&
795 (opt == NULL ||
796 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) {
797 mtu = IPV6_MMTU;
798 }
799 }
800
801 /*
802 * clear embedded scope identifiers if necessary.
803 * in6_clearscope will touch the addresses only when necessary.
804 */
805 in6_clearscope(&ip6->ip6_src);
806 in6_clearscope(&ip6->ip6_dst);
807
808 /*
809 * If the outgoing packet contains a hop-by-hop options header,
810 * it must be examined and processed even by the source node.
811 * (RFC 2460, section 4.)
812 */
813 if (exthdrs.ip6e_hbh) {
814 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *);
815 u_int32_t dummy1; /* XXX unused */
816 u_int32_t dummy2; /* XXX unused */
817
818 /*
819 * XXX: if we have to send an ICMPv6 error to the sender,
820 * we need the M_LOOP flag since icmp6_error() expects
821 * the IPv6 and the hop-by-hop options header are
822 * continuous unless the flag is set.
823 */
824 m->m_flags |= M_LOOP;
825 m->m_pkthdr.rcvif = ifp;
826 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1),
827 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh),
828 &dummy1, &dummy2) < 0) {
829 /* m was already freed at this point */
830 error = EINVAL;/* better error? */
831 goto done;
832 }
833 m->m_flags &= ~M_LOOP; /* XXX */
834 m->m_pkthdr.rcvif = NULL;
835 }
836
837 #ifdef PFIL_HOOKS
838 /*
839 * Run through list of hooks for output packets.
840 */
841 if ((error = pfil_run_hooks(&inet6_pfil_hook, &m, ifp, PFIL_OUT)) != 0)
842 goto done;
843 if (m == NULL)
844 goto done;
845 ip6 = mtod(m, struct ip6_hdr *);
846 #endif /* PFIL_HOOKS */
847 /*
848 * Send the packet to the outgoing interface.
849 * If necessary, do IPv6 fragmentation before sending.
850 *
851 * the logic here is rather complex:
852 * 1: normal case (dontfrag == 0, alwaysfrag == 0)
853 * 1-a: send as is if tlen <= path mtu
854 * 1-b: fragment if tlen > path mtu
855 *
856 * 2: if user asks us not to fragment (dontfrag == 1)
857 * 2-a: send as is if tlen <= interface mtu
858 * 2-b: error if tlen > interface mtu
859 *
860 * 3: if we always need to attach fragment header (alwaysfrag == 1)
861 * always fragment
862 *
863 * 4: if dontfrag == 1 && alwaysfrag == 1
864 * error, as we cannot handle this conflicting request
865 */
866 tlen = m->m_pkthdr.len;
867
868 if (opt && (opt->ip6po_flags & IP6PO_DONTFRAG))
869 dontfrag = 1;
870 else
871 dontfrag = 0;
872
873 if (dontfrag && alwaysfrag) { /* case 4 */
874 /* conflicting request - can't transmit */
875 error = EMSGSIZE;
876 goto bad;
877 }
878 if (dontfrag && tlen > IN6_LINKMTU(ifp)) { /* case 2-b */
879 /*
880 * Even if the DONTFRAG option is specified, we cannot send the
881 * packet when the data length is larger than the MTU of the
882 * outgoing interface.
883 * Notify the error by sending IPV6_PATHMTU ancillary data as
884 * well as returning an error code (the latter is not described
885 * in the API spec.)
886 */
887 u_int32_t mtu32;
888 struct ip6ctlparam ip6cp;
889
890 mtu32 = (u_int32_t)mtu;
891 bzero(&ip6cp, sizeof(ip6cp));
892 ip6cp.ip6c_cmdarg = (void *)&mtu32;
893 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
894 (void *)&ip6cp);
895
896 error = EMSGSIZE;
897 goto bad;
898 }
899
900 /*
901 * transmit packet without fragmentation
902 */
903 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* case 1-a and 2-a */
904 struct in6_ifaddr *ia6;
905 int sw_csum;
906
907 ip6 = mtod(m, struct ip6_hdr *);
908 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
909 if (ia6) {
910 /* Record statistics for this interface address. */
911 ia6->ia_ifa.ifa_data.ifad_outbytes += m->m_pkthdr.len;
912 }
913 #ifdef IPSEC
914 /* clean ipsec history once it goes out of the node */
915 ipsec_delaux(m);
916 #endif
917
918 sw_csum = m->m_pkthdr.csum_flags & ~ifp->if_csum_flags_tx;
919 if ((sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0) {
920 if (IN6_NEED_CHECKSUM(ifp,
921 sw_csum & (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
922 in6_delayed_cksum(m);
923 }
924 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
925 }
926
927 error = nd6_output(ifp, origifp, m, dst, rt);
928 goto done;
929 }
930
931 /*
932 * try to fragment the packet. case 1-b and 3
933 */
934 if (mtu < IPV6_MMTU) {
935 /* path MTU cannot be less than IPV6_MMTU */
936 error = EMSGSIZE;
937 in6_ifstat_inc(ifp, ifs6_out_fragfail);
938 goto bad;
939 } else if (ip6->ip6_plen == 0) {
940 /* jumbo payload cannot be fragmented */
941 error = EMSGSIZE;
942 in6_ifstat_inc(ifp, ifs6_out_fragfail);
943 goto bad;
944 } else {
945 struct mbuf **mnext, *m_frgpart;
946 struct ip6_frag *ip6f;
947 u_int32_t id = htonl(ip6_randomid());
948 u_char nextproto;
949 #if 0 /* see below */
950 struct ip6ctlparam ip6cp;
951 u_int32_t mtu32;
952 #endif
953
954 /*
955 * Too large for the destination or interface;
956 * fragment if possible.
957 * Must be able to put at least 8 bytes per fragment.
958 */
959 hlen = unfragpartlen;
960 if (mtu > IPV6_MAXPACKET)
961 mtu = IPV6_MAXPACKET;
962
963 #if 0
964 /*
965 * It is believed this code is a leftover from the
966 * development of the IPV6_RECVPATHMTU sockopt and
967 * associated work to implement RFC3542.
968 * It's not entirely clear what the intent of the API
969 * is at this point, so disable this code for now.
970 * The IPV6_RECVPATHMTU sockopt and/or IPV6_DONTFRAG
971 * will send notifications if the application requests.
972 */
973
974 /* Notify a proper path MTU to applications. */
975 mtu32 = (u_int32_t)mtu;
976 bzero(&ip6cp, sizeof(ip6cp));
977 ip6cp.ip6c_cmdarg = (void *)&mtu32;
978 pfctlinput2(PRC_MSGSIZE, (struct sockaddr *)&ro_pmtu->ro_dst,
979 (void *)&ip6cp);
980 #endif
981
982 len = (mtu - hlen - sizeof(struct ip6_frag)) & ~7;
983 if (len < 8) {
984 error = EMSGSIZE;
985 in6_ifstat_inc(ifp, ifs6_out_fragfail);
986 goto bad;
987 }
988
989 mnext = &m->m_nextpkt;
990
991 /*
992 * Change the next header field of the last header in the
993 * unfragmentable part.
994 */
995 if (exthdrs.ip6e_rthdr) {
996 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *);
997 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT;
998 } else if (exthdrs.ip6e_dest1) {
999 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *);
1000 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT;
1001 } else if (exthdrs.ip6e_hbh) {
1002 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *);
1003 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT;
1004 } else {
1005 nextproto = ip6->ip6_nxt;
1006 ip6->ip6_nxt = IPPROTO_FRAGMENT;
1007 }
1008
1009 if ((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6))
1010 != 0) {
1011 if (IN6_NEED_CHECKSUM(ifp,
1012 m->m_pkthdr.csum_flags &
1013 (M_CSUM_UDPv6|M_CSUM_TCPv6))) {
1014 in6_delayed_cksum(m);
1015 }
1016 m->m_pkthdr.csum_flags &= ~(M_CSUM_UDPv6|M_CSUM_TCPv6);
1017 }
1018
1019 /*
1020 * Loop through length of segment after first fragment,
1021 * make new header and copy data of each part and link onto
1022 * chain.
1023 */
1024 m0 = m;
1025 for (off = hlen; off < tlen; off += len) {
1026 struct mbuf *mlast;
1027
1028 MGETHDR(m, M_DONTWAIT, MT_HEADER);
1029 if (!m) {
1030 error = ENOBUFS;
1031 ip6stat.ip6s_odropped++;
1032 goto sendorfree;
1033 }
1034 m->m_pkthdr.rcvif = NULL;
1035 m->m_flags = m0->m_flags & M_COPYFLAGS;
1036 *mnext = m;
1037 mnext = &m->m_nextpkt;
1038 m->m_data += max_linkhdr;
1039 mhip6 = mtod(m, struct ip6_hdr *);
1040 *mhip6 = *ip6;
1041 m->m_len = sizeof(*mhip6);
1042 error = ip6_insertfraghdr(m0, m, hlen, &ip6f);
1043 if (error) {
1044 ip6stat.ip6s_odropped++;
1045 goto sendorfree;
1046 }
1047 ip6f->ip6f_offlg = htons((u_int16_t)((off - hlen) & ~7));
1048 if (off + len >= tlen)
1049 len = tlen - off;
1050 else
1051 ip6f->ip6f_offlg |= IP6F_MORE_FRAG;
1052 mhip6->ip6_plen = htons((u_int16_t)(len + hlen +
1053 sizeof(*ip6f) - sizeof(struct ip6_hdr)));
1054 if ((m_frgpart = m_copy(m0, off, len)) == 0) {
1055 error = ENOBUFS;
1056 ip6stat.ip6s_odropped++;
1057 goto sendorfree;
1058 }
1059 for (mlast = m; mlast->m_next; mlast = mlast->m_next)
1060 ;
1061 mlast->m_next = m_frgpart;
1062 m->m_pkthdr.len = len + hlen + sizeof(*ip6f);
1063 m->m_pkthdr.rcvif = (struct ifnet *)0;
1064 ip6f->ip6f_reserved = 0;
1065 ip6f->ip6f_ident = id;
1066 ip6f->ip6f_nxt = nextproto;
1067 ip6stat.ip6s_ofragments++;
1068 in6_ifstat_inc(ifp, ifs6_out_fragcreat);
1069 }
1070
1071 in6_ifstat_inc(ifp, ifs6_out_fragok);
1072 }
1073
1074 /*
1075 * Remove leading garbages.
1076 */
1077 sendorfree:
1078 m = m0->m_nextpkt;
1079 m0->m_nextpkt = 0;
1080 m_freem(m0);
1081 for (m0 = m; m; m = m0) {
1082 m0 = m->m_nextpkt;
1083 m->m_nextpkt = 0;
1084 if (error == 0) {
1085 struct in6_ifaddr *ia6;
1086 ip6 = mtod(m, struct ip6_hdr *);
1087 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src);
1088 if (ia6) {
1089 /*
1090 * Record statistics for this interface
1091 * address.
1092 */
1093 ia6->ia_ifa.ifa_data.ifad_outbytes +=
1094 m->m_pkthdr.len;
1095 }
1096 #ifdef IPSEC
1097 /* clean ipsec history once it goes out of the node */
1098 ipsec_delaux(m);
1099 #endif
1100 error = nd6_output(ifp, origifp, m, dst, rt);
1101 } else
1102 m_freem(m);
1103 }
1104
1105 if (error == 0)
1106 ip6stat.ip6s_fragmented++;
1107
1108 done:
1109 if (ro == &ip6route && ro->ro_rt) { /* brace necessary for RTFREE */
1110 RTFREE(ro->ro_rt);
1111 } else if (ro_pmtu == &ip6route && ro_pmtu->ro_rt) {
1112 RTFREE(ro_pmtu->ro_rt);
1113 }
1114
1115 #ifdef IPSEC
1116 if (sp != NULL)
1117 key_freesp(sp);
1118 #endif /* IPSEC */
1119
1120 return (error);
1121
1122 freehdrs:
1123 m_freem(exthdrs.ip6e_hbh); /* m_freem will check if mbuf is 0 */
1124 m_freem(exthdrs.ip6e_dest1);
1125 m_freem(exthdrs.ip6e_rthdr);
1126 m_freem(exthdrs.ip6e_dest2);
1127 /* FALLTHROUGH */
1128 bad:
1129 m_freem(m);
1130 goto done;
1131 }
1132
1133 static int
1134 ip6_copyexthdr(mp, hdr, hlen)
1135 struct mbuf **mp;
1136 caddr_t hdr;
1137 int hlen;
1138 {
1139 struct mbuf *m;
1140
1141 if (hlen > MCLBYTES)
1142 return (ENOBUFS); /* XXX */
1143
1144 MGET(m, M_DONTWAIT, MT_DATA);
1145 if (!m)
1146 return (ENOBUFS);
1147
1148 if (hlen > MLEN) {
1149 MCLGET(m, M_DONTWAIT);
1150 if ((m->m_flags & M_EXT) == 0) {
1151 m_free(m);
1152 return (ENOBUFS);
1153 }
1154 }
1155 m->m_len = hlen;
1156 if (hdr)
1157 bcopy(hdr, mtod(m, caddr_t), hlen);
1158
1159 *mp = m;
1160 return (0);
1161 }
1162
1163 /*
1164 * Process a delayed payload checksum calculation.
1165 */
1166 void
1167 in6_delayed_cksum(struct mbuf *m)
1168 {
1169 uint16_t csum, offset;
1170
1171 KASSERT((m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1172 KASSERT((~m->m_pkthdr.csum_flags & (M_CSUM_UDPv6|M_CSUM_TCPv6)) != 0);
1173 KASSERT((m->m_pkthdr.csum_flags
1174 & (M_CSUM_UDPv4|M_CSUM_TCPv4|M_CSUM_TSOv4)) == 0);
1175
1176 offset = M_CSUM_DATA_IPv6_HL(m->m_pkthdr.csum_data);
1177 csum = in6_cksum(m, 0, offset, m->m_pkthdr.len - offset);
1178 if (csum == 0 && (m->m_pkthdr.csum_flags & M_CSUM_UDPv6) != 0) {
1179 csum = 0xffff;
1180 }
1181
1182 offset += M_CSUM_DATA_IPv6_OFFSET(m->m_pkthdr.csum_data);
1183 if ((offset + sizeof(csum)) > m->m_len) {
1184 m_copyback(m, offset, sizeof(csum), &csum);
1185 } else {
1186 *(uint16_t *)(mtod(m, caddr_t) + offset) = csum;
1187 }
1188 }
1189
1190 /*
1191 * Insert jumbo payload option.
1192 */
1193 static int
1194 ip6_insert_jumboopt(exthdrs, plen)
1195 struct ip6_exthdrs *exthdrs;
1196 u_int32_t plen;
1197 {
1198 struct mbuf *mopt;
1199 u_int8_t *optbuf;
1200 u_int32_t v;
1201
1202 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */
1203
1204 /*
1205 * If there is no hop-by-hop options header, allocate new one.
1206 * If there is one but it doesn't have enough space to store the
1207 * jumbo payload option, allocate a cluster to store the whole options.
1208 * Otherwise, use it to store the options.
1209 */
1210 if (exthdrs->ip6e_hbh == 0) {
1211 MGET(mopt, M_DONTWAIT, MT_DATA);
1212 if (mopt == 0)
1213 return (ENOBUFS);
1214 mopt->m_len = JUMBOOPTLEN;
1215 optbuf = mtod(mopt, u_int8_t *);
1216 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */
1217 exthdrs->ip6e_hbh = mopt;
1218 } else {
1219 struct ip6_hbh *hbh;
1220
1221 mopt = exthdrs->ip6e_hbh;
1222 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) {
1223 /*
1224 * XXX assumption:
1225 * - exthdrs->ip6e_hbh is not referenced from places
1226 * other than exthdrs.
1227 * - exthdrs->ip6e_hbh is not an mbuf chain.
1228 */
1229 int oldoptlen = mopt->m_len;
1230 struct mbuf *n;
1231
1232 /*
1233 * XXX: give up if the whole (new) hbh header does
1234 * not fit even in an mbuf cluster.
1235 */
1236 if (oldoptlen + JUMBOOPTLEN > MCLBYTES)
1237 return (ENOBUFS);
1238
1239 /*
1240 * As a consequence, we must always prepare a cluster
1241 * at this point.
1242 */
1243 MGET(n, M_DONTWAIT, MT_DATA);
1244 if (n) {
1245 MCLGET(n, M_DONTWAIT);
1246 if ((n->m_flags & M_EXT) == 0) {
1247 m_freem(n);
1248 n = NULL;
1249 }
1250 }
1251 if (!n)
1252 return (ENOBUFS);
1253 n->m_len = oldoptlen + JUMBOOPTLEN;
1254 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t),
1255 oldoptlen);
1256 optbuf = mtod(n, u_int8_t *) + oldoptlen;
1257 m_freem(mopt);
1258 mopt = exthdrs->ip6e_hbh = n;
1259 } else {
1260 optbuf = mtod(mopt, u_int8_t *) + mopt->m_len;
1261 mopt->m_len += JUMBOOPTLEN;
1262 }
1263 optbuf[0] = IP6OPT_PADN;
1264 optbuf[1] = 0;
1265
1266 /*
1267 * Adjust the header length according to the pad and
1268 * the jumbo payload option.
1269 */
1270 hbh = mtod(mopt, struct ip6_hbh *);
1271 hbh->ip6h_len += (JUMBOOPTLEN >> 3);
1272 }
1273
1274 /* fill in the option. */
1275 optbuf[2] = IP6OPT_JUMBO;
1276 optbuf[3] = 4;
1277 v = (u_int32_t)htonl(plen + JUMBOOPTLEN);
1278 bcopy(&v, &optbuf[4], sizeof(u_int32_t));
1279
1280 /* finally, adjust the packet header length */
1281 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN;
1282
1283 return (0);
1284 #undef JUMBOOPTLEN
1285 }
1286
1287 /*
1288 * Insert fragment header and copy unfragmentable header portions.
1289 */
1290 static int
1291 ip6_insertfraghdr(m0, m, hlen, frghdrp)
1292 struct mbuf *m0, *m;
1293 int hlen;
1294 struct ip6_frag **frghdrp;
1295 {
1296 struct mbuf *n, *mlast;
1297
1298 if (hlen > sizeof(struct ip6_hdr)) {
1299 n = m_copym(m0, sizeof(struct ip6_hdr),
1300 hlen - sizeof(struct ip6_hdr), M_DONTWAIT);
1301 if (n == 0)
1302 return (ENOBUFS);
1303 m->m_next = n;
1304 } else
1305 n = m;
1306
1307 /* Search for the last mbuf of unfragmentable part. */
1308 for (mlast = n; mlast->m_next; mlast = mlast->m_next)
1309 ;
1310
1311 if ((mlast->m_flags & M_EXT) == 0 &&
1312 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) {
1313 /* use the trailing space of the last mbuf for the fragment hdr */
1314 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) +
1315 mlast->m_len);
1316 mlast->m_len += sizeof(struct ip6_frag);
1317 m->m_pkthdr.len += sizeof(struct ip6_frag);
1318 } else {
1319 /* allocate a new mbuf for the fragment header */
1320 struct mbuf *mfrg;
1321
1322 MGET(mfrg, M_DONTWAIT, MT_DATA);
1323 if (mfrg == 0)
1324 return (ENOBUFS);
1325 mfrg->m_len = sizeof(struct ip6_frag);
1326 *frghdrp = mtod(mfrg, struct ip6_frag *);
1327 mlast->m_next = mfrg;
1328 }
1329
1330 return (0);
1331 }
1332
1333 static int
1334 ip6_getpmtu(ro_pmtu, ro, ifp, dst, mtup, alwaysfragp)
1335 struct route_in6 *ro_pmtu, *ro;
1336 struct ifnet *ifp;
1337 struct in6_addr *dst;
1338 u_long *mtup;
1339 int *alwaysfragp;
1340 {
1341 u_int32_t mtu = 0;
1342 int alwaysfrag = 0;
1343 int error = 0;
1344
1345 if (ro_pmtu != ro) {
1346 /* The first hop and the final destination may differ. */
1347 struct sockaddr_in6 *sa6_dst =
1348 (struct sockaddr_in6 *)&ro_pmtu->ro_dst;
1349 if (ro_pmtu->ro_rt &&
1350 ((ro_pmtu->ro_rt->rt_flags & RTF_UP) == 0 ||
1351 !IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst))) {
1352 RTFREE(ro_pmtu->ro_rt);
1353 ro_pmtu->ro_rt = (struct rtentry *)NULL;
1354 }
1355 if (ro_pmtu->ro_rt == NULL) {
1356 bzero(sa6_dst, sizeof(*sa6_dst)); /* for safety */
1357 sa6_dst->sin6_family = AF_INET6;
1358 sa6_dst->sin6_len = sizeof(struct sockaddr_in6);
1359 sa6_dst->sin6_addr = *dst;
1360
1361 rtalloc((struct route *)ro_pmtu);
1362 }
1363 }
1364 if (ro_pmtu->ro_rt) {
1365 u_int32_t ifmtu;
1366
1367 if (ifp == NULL)
1368 ifp = ro_pmtu->ro_rt->rt_ifp;
1369 ifmtu = IN6_LINKMTU(ifp);
1370 mtu = ro_pmtu->ro_rt->rt_rmx.rmx_mtu;
1371 if (mtu == 0)
1372 mtu = ifmtu;
1373 else if (mtu < IPV6_MMTU) {
1374 /*
1375 * RFC2460 section 5, last paragraph:
1376 * if we record ICMPv6 too big message with
1377 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU
1378 * or smaller, with fragment header attached.
1379 * (fragment header is needed regardless from the
1380 * packet size, for translators to identify packets)
1381 */
1382 alwaysfrag = 1;
1383 mtu = IPV6_MMTU;
1384 } else if (mtu > ifmtu) {
1385 /*
1386 * The MTU on the route is larger than the MTU on
1387 * the interface! This shouldn't happen, unless the
1388 * MTU of the interface has been changed after the
1389 * interface was brought up. Change the MTU in the
1390 * route to match the interface MTU (as long as the
1391 * field isn't locked).
1392 */
1393 mtu = ifmtu;
1394 if (!(ro_pmtu->ro_rt->rt_rmx.rmx_locks & RTV_MTU))
1395 ro_pmtu->ro_rt->rt_rmx.rmx_mtu = mtu;
1396 }
1397 } else if (ifp) {
1398 mtu = IN6_LINKMTU(ifp);
1399 } else
1400 error = EHOSTUNREACH; /* XXX */
1401
1402 *mtup = mtu;
1403 if (alwaysfragp)
1404 *alwaysfragp = alwaysfrag;
1405 return (error);
1406 }
1407
1408 /*
1409 * IP6 socket option processing.
1410 */
1411 int
1412 ip6_ctloutput(op, so, level, optname, mp)
1413 int op;
1414 struct socket *so;
1415 int level, optname;
1416 struct mbuf **mp;
1417 {
1418 int privileged, optdatalen, uproto;
1419 void *optdata;
1420 struct in6pcb *in6p = sotoin6pcb(so);
1421 struct mbuf *m = *mp;
1422 int error, optval;
1423 int optlen;
1424 struct proc *p = curproc; /* XXX */
1425
1426 optlen = m ? m->m_len : 0;
1427 error = optval = 0;
1428 privileged = (p == 0 || kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER, &p->p_acflag)) ? 0 : 1;
1429 uproto = (int)so->so_proto->pr_protocol;
1430
1431 if (level == IPPROTO_IPV6) {
1432 switch (op) {
1433 case PRCO_SETOPT:
1434 switch (optname) {
1435 #ifdef RFC2292
1436 case IPV6_2292PKTOPTIONS:
1437 /* m is freed in ip6_pcbopts */
1438 error = ip6_pcbopts(&in6p->in6p_outputopts,
1439 m, so);
1440 break;
1441 #endif
1442
1443 /*
1444 * Use of some Hop-by-Hop options or some
1445 * Destination options, might require special
1446 * privilege. That is, normal applications
1447 * (without special privilege) might be forbidden
1448 * from setting certain options in outgoing packets,
1449 * and might never see certain options in received
1450 * packets. [RFC 2292 Section 6]
1451 * KAME specific note:
1452 * KAME prevents non-privileged users from sending or
1453 * receiving ANY hbh/dst options in order to avoid
1454 * overhead of parsing options in the kernel.
1455 */
1456 case IPV6_RECVHOPOPTS:
1457 case IPV6_RECVDSTOPTS:
1458 case IPV6_RECVRTHDRDSTOPTS:
1459 if (!privileged) {
1460 error = EPERM;
1461 break;
1462 }
1463 /* FALLTHROUGH */
1464 case IPV6_UNICAST_HOPS:
1465 case IPV6_HOPLIMIT:
1466 case IPV6_FAITH:
1467
1468 case IPV6_RECVPKTINFO:
1469 case IPV6_RECVHOPLIMIT:
1470 case IPV6_RECVRTHDR:
1471 case IPV6_RECVPATHMTU:
1472 case IPV6_RECVTCLASS:
1473 case IPV6_V6ONLY:
1474 if (optlen != sizeof(int)) {
1475 error = EINVAL;
1476 break;
1477 }
1478 optval = *mtod(m, int *);
1479 switch (optname) {
1480
1481 case IPV6_UNICAST_HOPS:
1482 if (optval < -1 || optval >= 256)
1483 error = EINVAL;
1484 else {
1485 /* -1 = kernel default */
1486 in6p->in6p_hops = optval;
1487 }
1488 break;
1489 #define OPTSET(bit) \
1490 do { \
1491 if (optval) \
1492 in6p->in6p_flags |= (bit); \
1493 else \
1494 in6p->in6p_flags &= ~(bit); \
1495 } while (/*CONSTCOND*/ 0)
1496
1497 #ifdef RFC2292
1498 #define OPTSET2292(bit) \
1499 do { \
1500 in6p->in6p_flags |= IN6P_RFC2292; \
1501 if (optval) \
1502 in6p->in6p_flags |= (bit); \
1503 else \
1504 in6p->in6p_flags &= ~(bit); \
1505 } while (/*CONSTCOND*/ 0)
1506 #endif
1507
1508 #define OPTBIT(bit) (in6p->in6p_flags & (bit) ? 1 : 0)
1509
1510 case IPV6_RECVPKTINFO:
1511 #ifdef RFC2292
1512 /* cannot mix with RFC2292 */
1513 if (OPTBIT(IN6P_RFC2292)) {
1514 error = EINVAL;
1515 break;
1516 }
1517 #endif
1518 OPTSET(IN6P_PKTINFO);
1519 break;
1520
1521 case IPV6_HOPLIMIT:
1522 {
1523 struct ip6_pktopts **optp;
1524
1525 #ifdef RFC2292
1526 /* cannot mix with RFC2292 */
1527 if (OPTBIT(IN6P_RFC2292)) {
1528 error = EINVAL;
1529 break;
1530 }
1531 #endif
1532 optp = &in6p->in6p_outputopts;
1533 error = ip6_pcbopt(IPV6_HOPLIMIT,
1534 (u_char *)&optval,
1535 sizeof(optval),
1536 optp,
1537 privileged, uproto);
1538 break;
1539 }
1540
1541 case IPV6_RECVHOPLIMIT:
1542 #ifdef RFC2292
1543 /* cannot mix with RFC2292 */
1544 if (OPTBIT(IN6P_RFC2292)) {
1545 error = EINVAL;
1546 break;
1547 }
1548 #endif
1549 OPTSET(IN6P_HOPLIMIT);
1550 break;
1551
1552 case IPV6_RECVHOPOPTS:
1553 #ifdef RFC2292
1554 /* cannot mix with RFC2292 */
1555 if (OPTBIT(IN6P_RFC2292)) {
1556 error = EINVAL;
1557 break;
1558 }
1559 #endif
1560 OPTSET(IN6P_HOPOPTS);
1561 break;
1562
1563 case IPV6_RECVDSTOPTS:
1564 #ifdef RFC2292
1565 /* cannot mix with RFC2292 */
1566 if (OPTBIT(IN6P_RFC2292)) {
1567 error = EINVAL;
1568 break;
1569 }
1570 #endif
1571 OPTSET(IN6P_DSTOPTS);
1572 break;
1573
1574 case IPV6_RECVRTHDRDSTOPTS:
1575 #ifdef RFC2292
1576 /* cannot mix with RFC2292 */
1577 if (OPTBIT(IN6P_RFC2292)) {
1578 error = EINVAL;
1579 break;
1580 }
1581 #endif
1582 OPTSET(IN6P_RTHDRDSTOPTS);
1583 break;
1584
1585 case IPV6_RECVRTHDR:
1586 #ifdef RFC2292
1587 /* cannot mix with RFC2292 */
1588 if (OPTBIT(IN6P_RFC2292)) {
1589 error = EINVAL;
1590 break;
1591 }
1592 #endif
1593 OPTSET(IN6P_RTHDR);
1594 break;
1595
1596 case IPV6_FAITH:
1597 OPTSET(IN6P_FAITH);
1598 break;
1599
1600 case IPV6_RECVPATHMTU:
1601 /*
1602 * We ignore this option for TCP
1603 * sockets.
1604 * (RFC3542 leaves this case
1605 * unspecified.)
1606 */
1607 if (uproto != IPPROTO_TCP)
1608 OPTSET(IN6P_MTU);
1609 break;
1610
1611 case IPV6_V6ONLY:
1612 /*
1613 * make setsockopt(IPV6_V6ONLY)
1614 * available only prior to bind(2).
1615 * see ipng mailing list, Jun 22 2001.
1616 */
1617 if (in6p->in6p_lport ||
1618 !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
1619 error = EINVAL;
1620 break;
1621 }
1622 #ifdef INET6_BINDV6ONLY
1623 if (!optval)
1624 error = EINVAL;
1625 #else
1626 OPTSET(IN6P_IPV6_V6ONLY);
1627 #endif
1628 break;
1629 case IPV6_RECVTCLASS:
1630 #ifdef RFC2292
1631 /* cannot mix with RFC2292 XXX */
1632 if (OPTBIT(IN6P_RFC2292)) {
1633 error = EINVAL;
1634 break;
1635 }
1636 #endif
1637 OPTSET(IN6P_TCLASS);
1638 break;
1639
1640 }
1641 break;
1642
1643 case IPV6_OTCLASS:
1644 {
1645 struct ip6_pktopts **optp;
1646 u_int8_t tclass;
1647
1648 if (optlen != sizeof(tclass)) {
1649 error = EINVAL;
1650 break;
1651 }
1652 tclass = *mtod(m, u_int8_t *);
1653 optp = &in6p->in6p_outputopts;
1654 error = ip6_pcbopt(optname,
1655 (u_char *)&tclass,
1656 sizeof(tclass),
1657 optp,
1658 privileged, uproto);
1659 break;
1660 }
1661
1662 case IPV6_TCLASS:
1663 case IPV6_DONTFRAG:
1664 case IPV6_USE_MIN_MTU:
1665 if (optlen != sizeof(optval)) {
1666 error = EINVAL;
1667 break;
1668 }
1669 optval = *mtod(m, int *);
1670 {
1671 struct ip6_pktopts **optp;
1672 optp = &in6p->in6p_outputopts;
1673 error = ip6_pcbopt(optname,
1674 (u_char *)&optval,
1675 sizeof(optval),
1676 optp,
1677 privileged, uproto);
1678 break;
1679 }
1680
1681 #ifdef RFC2292
1682 case IPV6_2292PKTINFO:
1683 case IPV6_2292HOPLIMIT:
1684 case IPV6_2292HOPOPTS:
1685 case IPV6_2292DSTOPTS:
1686 case IPV6_2292RTHDR:
1687 /* RFC 2292 */
1688 if (optlen != sizeof(int)) {
1689 error = EINVAL;
1690 break;
1691 }
1692 optval = *mtod(m, int *);
1693 switch (optname) {
1694 case IPV6_2292PKTINFO:
1695 OPTSET2292(IN6P_PKTINFO);
1696 break;
1697 case IPV6_2292HOPLIMIT:
1698 OPTSET2292(IN6P_HOPLIMIT);
1699 break;
1700 case IPV6_2292HOPOPTS:
1701 /*
1702 * Check super-user privilege.
1703 * See comments for IPV6_RECVHOPOPTS.
1704 */
1705 if (!privileged)
1706 return (EPERM);
1707 OPTSET2292(IN6P_HOPOPTS);
1708 break;
1709 case IPV6_2292DSTOPTS:
1710 if (!privileged)
1711 return (EPERM);
1712 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */
1713 break;
1714 case IPV6_2292RTHDR:
1715 OPTSET2292(IN6P_RTHDR);
1716 break;
1717 }
1718 break;
1719 #endif
1720 case IPV6_PKTINFO:
1721 case IPV6_HOPOPTS:
1722 case IPV6_RTHDR:
1723 case IPV6_DSTOPTS:
1724 case IPV6_RTHDRDSTOPTS:
1725 case IPV6_NEXTHOP:
1726 {
1727 /* new advanced API (RFC3542) */
1728 u_char *optbuf;
1729 int optbuflen;
1730 struct ip6_pktopts **optp;
1731
1732 #ifdef RFC2292
1733 /* cannot mix with RFC2292 */
1734 if (OPTBIT(IN6P_RFC2292)) {
1735 error = EINVAL;
1736 break;
1737 }
1738 #endif
1739
1740 if (m && m->m_next) {
1741 error = EINVAL; /* XXX */
1742 break;
1743 }
1744 if (m) {
1745 optbuf = mtod(m, u_char *);
1746 optbuflen = m->m_len;
1747 } else {
1748 optbuf = NULL;
1749 optbuflen = 0;
1750 }
1751 optp = &in6p->in6p_outputopts;
1752 error = ip6_pcbopt(optname,
1753 optbuf, optbuflen,
1754 optp, privileged, uproto);
1755 break;
1756 }
1757 #undef OPTSET
1758
1759 case IPV6_MULTICAST_IF:
1760 case IPV6_MULTICAST_HOPS:
1761 case IPV6_MULTICAST_LOOP:
1762 case IPV6_JOIN_GROUP:
1763 case IPV6_LEAVE_GROUP:
1764 error = ip6_setmoptions(optname,
1765 &in6p->in6p_moptions, m);
1766 break;
1767
1768 case IPV6_PORTRANGE:
1769 optval = *mtod(m, int *);
1770
1771 switch (optval) {
1772 case IPV6_PORTRANGE_DEFAULT:
1773 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1774 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1775 break;
1776
1777 case IPV6_PORTRANGE_HIGH:
1778 in6p->in6p_flags &= ~(IN6P_LOWPORT);
1779 in6p->in6p_flags |= IN6P_HIGHPORT;
1780 break;
1781
1782 case IPV6_PORTRANGE_LOW:
1783 in6p->in6p_flags &= ~(IN6P_HIGHPORT);
1784 in6p->in6p_flags |= IN6P_LOWPORT;
1785 break;
1786
1787 default:
1788 error = EINVAL;
1789 break;
1790 }
1791 break;
1792
1793 #ifdef IPSEC
1794 case IPV6_IPSEC_POLICY:
1795 {
1796 caddr_t req = NULL;
1797 size_t len = 0;
1798 if (m) {
1799 req = mtod(m, caddr_t);
1800 len = m->m_len;
1801 }
1802 error = ipsec6_set_policy(in6p, optname, req,
1803 len, privileged);
1804 }
1805 break;
1806 #endif /* IPSEC */
1807
1808 default:
1809 error = ENOPROTOOPT;
1810 break;
1811 }
1812 if (m)
1813 (void)m_free(m);
1814 break;
1815
1816 case PRCO_GETOPT:
1817 switch (optname) {
1818 #ifdef RFC2292
1819 case IPV6_2292PKTOPTIONS:
1820 /*
1821 * RFC3542 (effectively) deprecated the
1822 * semantics of the 2292-style pktoptions.
1823 * Since it was not reliable in nature (i.e.,
1824 * applications had to expect the lack of some
1825 * information after all), it would make sense
1826 * to simplify this part by always returning
1827 * empty data.
1828 */
1829 *mp = m_get(M_WAIT, MT_SOOPTS);
1830 (*mp)->m_len = 0;
1831 break;
1832 #endif
1833
1834 case IPV6_RECVHOPOPTS:
1835 case IPV6_RECVDSTOPTS:
1836 case IPV6_RECVRTHDRDSTOPTS:
1837 case IPV6_UNICAST_HOPS:
1838 case IPV6_RECVPKTINFO:
1839 case IPV6_RECVHOPLIMIT:
1840 case IPV6_RECVRTHDR:
1841 case IPV6_RECVPATHMTU:
1842
1843 case IPV6_FAITH:
1844 case IPV6_V6ONLY:
1845 case IPV6_PORTRANGE:
1846 case IPV6_RECVTCLASS:
1847 switch (optname) {
1848
1849 case IPV6_RECVHOPOPTS:
1850 optval = OPTBIT(IN6P_HOPOPTS);
1851 break;
1852
1853 case IPV6_RECVDSTOPTS:
1854 optval = OPTBIT(IN6P_DSTOPTS);
1855 break;
1856
1857 case IPV6_RECVRTHDRDSTOPTS:
1858 optval = OPTBIT(IN6P_RTHDRDSTOPTS);
1859 break;
1860
1861 case IPV6_UNICAST_HOPS:
1862 optval = in6p->in6p_hops;
1863 break;
1864
1865 case IPV6_RECVPKTINFO:
1866 optval = OPTBIT(IN6P_PKTINFO);
1867 break;
1868
1869 case IPV6_RECVHOPLIMIT:
1870 optval = OPTBIT(IN6P_HOPLIMIT);
1871 break;
1872
1873 case IPV6_RECVRTHDR:
1874 optval = OPTBIT(IN6P_RTHDR);
1875 break;
1876
1877 case IPV6_RECVPATHMTU:
1878 optval = OPTBIT(IN6P_MTU);
1879 break;
1880
1881 case IPV6_FAITH:
1882 optval = OPTBIT(IN6P_FAITH);
1883 break;
1884
1885 case IPV6_V6ONLY:
1886 optval = OPTBIT(IN6P_IPV6_V6ONLY);
1887 break;
1888
1889 case IPV6_PORTRANGE:
1890 {
1891 int flags;
1892 flags = in6p->in6p_flags;
1893 if (flags & IN6P_HIGHPORT)
1894 optval = IPV6_PORTRANGE_HIGH;
1895 else if (flags & IN6P_LOWPORT)
1896 optval = IPV6_PORTRANGE_LOW;
1897 else
1898 optval = 0;
1899 break;
1900 }
1901 case IPV6_RECVTCLASS:
1902 optval = OPTBIT(IN6P_TCLASS);
1903 break;
1904
1905 }
1906 if (error)
1907 break;
1908 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1909 m->m_len = sizeof(int);
1910 *mtod(m, int *) = optval;
1911 break;
1912
1913 case IPV6_PATHMTU:
1914 {
1915 u_long pmtu = 0;
1916 struct ip6_mtuinfo mtuinfo;
1917 struct route_in6 *ro = (struct route_in6 *)&in6p
1918 ->in6p_route;
1919
1920 if (!(so->so_state & SS_ISCONNECTED))
1921 return (ENOTCONN);
1922 /*
1923 * XXX: we dot not consider the case of source
1924 * routing, or optional information to specify
1925 * the outgoing interface.
1926 */
1927 error = ip6_getpmtu(ro, NULL, NULL,
1928 &in6p->in6p_faddr, &pmtu, NULL);
1929 if (error)
1930 break;
1931 if (pmtu > IPV6_MAXPACKET)
1932 pmtu = IPV6_MAXPACKET;
1933
1934 memset(&mtuinfo, 0, sizeof(mtuinfo));
1935 mtuinfo.ip6m_mtu = (u_int32_t)pmtu;
1936 optdata = (void *)&mtuinfo;
1937 optdatalen = sizeof(mtuinfo);
1938 if (optdatalen > MCLBYTES)
1939 return (EMSGSIZE); /* XXX */
1940 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1941 if (optdatalen > MLEN)
1942 MCLGET(m, M_WAIT);
1943 m->m_len = optdatalen;
1944 memcpy(mtod(m, void *), optdata, optdatalen);
1945 break;
1946 }
1947
1948 #ifdef RFC2292
1949 case IPV6_2292PKTINFO:
1950 case IPV6_2292HOPLIMIT:
1951 case IPV6_2292HOPOPTS:
1952 case IPV6_2292RTHDR:
1953 case IPV6_2292DSTOPTS:
1954 switch (optname) {
1955 case IPV6_2292PKTINFO:
1956 optval = OPTBIT(IN6P_PKTINFO);
1957 break;
1958 case IPV6_2292HOPLIMIT:
1959 optval = OPTBIT(IN6P_HOPLIMIT);
1960 break;
1961 case IPV6_2292HOPOPTS:
1962 optval = OPTBIT(IN6P_HOPOPTS);
1963 break;
1964 case IPV6_2292RTHDR:
1965 optval = OPTBIT(IN6P_RTHDR);
1966 break;
1967 case IPV6_2292DSTOPTS:
1968 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS);
1969 break;
1970 }
1971 *mp = m = m_get(M_WAIT, MT_SOOPTS);
1972 m->m_len = sizeof(int);
1973 *mtod(m, int *) = optval;
1974 break;
1975 #endif
1976 case IPV6_PKTINFO:
1977 case IPV6_HOPOPTS:
1978 case IPV6_RTHDR:
1979 case IPV6_DSTOPTS:
1980 case IPV6_RTHDRDSTOPTS:
1981 case IPV6_NEXTHOP:
1982 case IPV6_OTCLASS:
1983 case IPV6_TCLASS:
1984 case IPV6_DONTFRAG:
1985 case IPV6_USE_MIN_MTU:
1986 error = ip6_getpcbopt(in6p->in6p_outputopts,
1987 optname, mp);
1988 break;
1989
1990 case IPV6_MULTICAST_IF:
1991 case IPV6_MULTICAST_HOPS:
1992 case IPV6_MULTICAST_LOOP:
1993 case IPV6_JOIN_GROUP:
1994 case IPV6_LEAVE_GROUP:
1995 error = ip6_getmoptions(optname,
1996 in6p->in6p_moptions, mp);
1997 break;
1998
1999 #ifdef IPSEC
2000 case IPV6_IPSEC_POLICY:
2001 {
2002 caddr_t req = NULL;
2003 size_t len = 0;
2004 if (m) {
2005 req = mtod(m, caddr_t);
2006 len = m->m_len;
2007 }
2008 error = ipsec6_get_policy(in6p, req, len, mp);
2009 break;
2010 }
2011 #endif /* IPSEC */
2012
2013
2014
2015
2016 default:
2017 error = ENOPROTOOPT;
2018 break;
2019 }
2020 break;
2021 }
2022 } else {
2023 error = EINVAL;
2024 if (op == PRCO_SETOPT && *mp)
2025 (void)m_free(*mp);
2026 }
2027 return (error);
2028 }
2029
2030 int
2031 ip6_raw_ctloutput(op, so, level, optname, mp)
2032 int op;
2033 struct socket *so;
2034 int level, optname;
2035 struct mbuf **mp;
2036 {
2037 int error = 0, optval, optlen;
2038 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum);
2039 struct in6pcb *in6p = sotoin6pcb(so);
2040 struct mbuf *m = *mp;
2041
2042 optlen = m ? m->m_len : 0;
2043
2044 if (level != IPPROTO_IPV6) {
2045 if (op == PRCO_SETOPT && *mp)
2046 (void)m_free(*mp);
2047 return (EINVAL);
2048 }
2049
2050 switch (optname) {
2051 case IPV6_CHECKSUM:
2052 /*
2053 * For ICMPv6 sockets, no modification allowed for checksum
2054 * offset, permit "no change" values to help existing apps.
2055 *
2056 * XXX RFC3542 says: "An attempt to set IPV6_CHECKSUM
2057 * for an ICMPv6 socket will fail." The current
2058 * behavior does not meet RFC3542.
2059 */
2060 switch (op) {
2061 case PRCO_SETOPT:
2062 if (optlen != sizeof(int)) {
2063 error = EINVAL;
2064 break;
2065 }
2066 optval = *mtod(m, int *);
2067 if ((optval % 2) != 0) {
2068 /* the API assumes even offset values */
2069 error = EINVAL;
2070 } else if (so->so_proto->pr_protocol ==
2071 IPPROTO_ICMPV6) {
2072 if (optval != icmp6off)
2073 error = EINVAL;
2074 } else
2075 in6p->in6p_cksum = optval;
2076 break;
2077
2078 case PRCO_GETOPT:
2079 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6)
2080 optval = icmp6off;
2081 else
2082 optval = in6p->in6p_cksum;
2083
2084 *mp = m = m_get(M_WAIT, MT_SOOPTS);
2085 m->m_len = sizeof(int);
2086 *mtod(m, int *) = optval;
2087 break;
2088
2089 default:
2090 error = EINVAL;
2091 break;
2092 }
2093 break;
2094
2095 default:
2096 error = ENOPROTOOPT;
2097 break;
2098 }
2099
2100 if (op == PRCO_SETOPT && m)
2101 (void)m_free(m);
2102
2103 return (error);
2104 }
2105
2106 #ifdef RFC2292
2107 /*
2108 * Set up IP6 options in pcb for insertion in output packets or
2109 * specifying behavior of outgoing packets.
2110 */
2111 static int
2112 ip6_pcbopts(pktopt, m, so)
2113 struct ip6_pktopts **pktopt;
2114 struct mbuf *m;
2115 struct socket *so;
2116 {
2117 struct ip6_pktopts *opt = *pktopt;
2118 int error = 0;
2119 struct proc *p = curproc; /* XXX */
2120 int priv = 0;
2121
2122 /* turn off any old options. */
2123 if (opt) {
2124 #ifdef DIAGNOSTIC
2125 if (opt->ip6po_pktinfo || opt->ip6po_nexthop ||
2126 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 ||
2127 opt->ip6po_rhinfo.ip6po_rhi_rthdr)
2128 printf("ip6_pcbopts: all specified options are cleared.\n");
2129 #endif
2130 ip6_clearpktopts(opt, -1);
2131 } else
2132 opt = malloc(sizeof(*opt), M_IP6OPT, M_WAITOK);
2133 *pktopt = NULL;
2134
2135 if (!m || m->m_len == 0) {
2136 /*
2137 * Only turning off any previous options, regardless of
2138 * whether the opt is just created or given.
2139 */
2140 free(opt, M_IP6OPT);
2141 return (0);
2142 }
2143
2144 /* set options specified by user. */
2145 if (p && !kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER, &p->p_acflag))
2146 priv = 1;
2147 if ((error = ip6_setpktopts(m, opt, NULL, priv,
2148 so->so_proto->pr_protocol)) != 0) {
2149 ip6_clearpktopts(opt, -1); /* XXX: discard all options */
2150 free(opt, M_IP6OPT);
2151 return (error);
2152 }
2153 *pktopt = opt;
2154 return (0);
2155 }
2156 #endif
2157
2158 /*
2159 * initialize ip6_pktopts. beware that there are non-zero default values in
2160 * the struct.
2161 */
2162 void
2163 ip6_initpktopts(struct ip6_pktopts *opt)
2164 {
2165
2166 memset(opt, 0, sizeof(*opt));
2167 opt->ip6po_hlim = -1; /* -1 means default hop limit */
2168 opt->ip6po_tclass = -1; /* -1 means default traffic class */
2169 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY;
2170 }
2171
2172 #define sin6tosa(sin6) ((struct sockaddr *)(sin6)) /* XXX */
2173 static int
2174 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt,
2175 int priv, int uproto)
2176 {
2177 struct ip6_pktopts *opt;
2178
2179 if (*pktopt == NULL) {
2180 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT,
2181 M_WAITOK);
2182 ip6_initpktopts(*pktopt);
2183 }
2184 opt = *pktopt;
2185
2186 return (ip6_setpktopt(optname, buf, len, opt, priv, 1, 0, uproto));
2187 }
2188
2189 static int
2190 ip6_getpcbopt(struct ip6_pktopts *pktopt, int optname, struct mbuf **mp)
2191 {
2192 void *optdata = NULL;
2193 int optdatalen = 0;
2194 struct ip6_ext *ip6e;
2195 int error = 0;
2196 struct in6_pktinfo null_pktinfo;
2197 int deftclass = 0, on;
2198 int defminmtu = IP6PO_MINMTU_MCASTONLY;
2199 struct mbuf *m;
2200
2201 switch (optname) {
2202 case IPV6_PKTINFO:
2203 if (pktopt && pktopt->ip6po_pktinfo)
2204 optdata = (void *)pktopt->ip6po_pktinfo;
2205 else {
2206 /* XXX: we don't have to do this every time... */
2207 memset(&null_pktinfo, 0, sizeof(null_pktinfo));
2208 optdata = (void *)&null_pktinfo;
2209 }
2210 optdatalen = sizeof(struct in6_pktinfo);
2211 break;
2212 case IPV6_OTCLASS:
2213 /* XXX */
2214 return (EINVAL);
2215 case IPV6_TCLASS:
2216 if (pktopt && pktopt->ip6po_tclass >= 0)
2217 optdata = (void *)&pktopt->ip6po_tclass;
2218 else
2219 optdata = (void *)&deftclass;
2220 optdatalen = sizeof(int);
2221 break;
2222 case IPV6_HOPOPTS:
2223 if (pktopt && pktopt->ip6po_hbh) {
2224 optdata = (void *)pktopt->ip6po_hbh;
2225 ip6e = (struct ip6_ext *)pktopt->ip6po_hbh;
2226 optdatalen = (ip6e->ip6e_len + 1) << 3;
2227 }
2228 break;
2229 case IPV6_RTHDR:
2230 if (pktopt && pktopt->ip6po_rthdr) {
2231 optdata = (void *)pktopt->ip6po_rthdr;
2232 ip6e = (struct ip6_ext *)pktopt->ip6po_rthdr;
2233 optdatalen = (ip6e->ip6e_len + 1) << 3;
2234 }
2235 break;
2236 case IPV6_RTHDRDSTOPTS:
2237 if (pktopt && pktopt->ip6po_dest1) {
2238 optdata = (void *)pktopt->ip6po_dest1;
2239 ip6e = (struct ip6_ext *)pktopt->ip6po_dest1;
2240 optdatalen = (ip6e->ip6e_len + 1) << 3;
2241 }
2242 break;
2243 case IPV6_DSTOPTS:
2244 if (pktopt && pktopt->ip6po_dest2) {
2245 optdata = (void *)pktopt->ip6po_dest2;
2246 ip6e = (struct ip6_ext *)pktopt->ip6po_dest2;
2247 optdatalen = (ip6e->ip6e_len + 1) << 3;
2248 }
2249 break;
2250 case IPV6_NEXTHOP:
2251 if (pktopt && pktopt->ip6po_nexthop) {
2252 optdata = (void *)pktopt->ip6po_nexthop;
2253 optdatalen = pktopt->ip6po_nexthop->sa_len;
2254 }
2255 break;
2256 case IPV6_USE_MIN_MTU:
2257 if (pktopt)
2258 optdata = (void *)&pktopt->ip6po_minmtu;
2259 else
2260 optdata = (void *)&defminmtu;
2261 optdatalen = sizeof(int);
2262 break;
2263 case IPV6_DONTFRAG:
2264 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG))
2265 on = 1;
2266 else
2267 on = 0;
2268 optdata = (void *)&on;
2269 optdatalen = sizeof(on);
2270 break;
2271 default: /* should not happen */
2272 #ifdef DIAGNOSTIC
2273 panic("ip6_getpcbopt: unexpected option\n");
2274 #endif
2275 return (ENOPROTOOPT);
2276 }
2277
2278 if (optdatalen > MCLBYTES)
2279 return (EMSGSIZE); /* XXX */
2280 *mp = m = m_get(M_WAIT, MT_SOOPTS);
2281 if (optdatalen > MLEN)
2282 MCLGET(m, M_WAIT);
2283 m->m_len = optdatalen;
2284 if (optdatalen)
2285 memcpy(mtod(m, void *), optdata, optdatalen);
2286
2287 return (error);
2288 }
2289
2290 void
2291 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname)
2292 {
2293 if (optname == -1 || optname == IPV6_PKTINFO) {
2294 if (pktopt->ip6po_pktinfo)
2295 free(pktopt->ip6po_pktinfo, M_IP6OPT);
2296 pktopt->ip6po_pktinfo = NULL;
2297 }
2298 if (optname == -1 || optname == IPV6_HOPLIMIT)
2299 pktopt->ip6po_hlim = -1;
2300 if (optname == -1 || optname == IPV6_TCLASS)
2301 pktopt->ip6po_tclass = -1;
2302 if (optname == -1 || optname == IPV6_NEXTHOP) {
2303 if (pktopt->ip6po_nextroute.ro_rt) {
2304 RTFREE(pktopt->ip6po_nextroute.ro_rt);
2305 pktopt->ip6po_nextroute.ro_rt = NULL;
2306 }
2307 if (pktopt->ip6po_nexthop)
2308 free(pktopt->ip6po_nexthop, M_IP6OPT);
2309 pktopt->ip6po_nexthop = NULL;
2310 }
2311 if (optname == -1 || optname == IPV6_HOPOPTS) {
2312 if (pktopt->ip6po_hbh)
2313 free(pktopt->ip6po_hbh, M_IP6OPT);
2314 pktopt->ip6po_hbh = NULL;
2315 }
2316 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) {
2317 if (pktopt->ip6po_dest1)
2318 free(pktopt->ip6po_dest1, M_IP6OPT);
2319 pktopt->ip6po_dest1 = NULL;
2320 }
2321 if (optname == -1 || optname == IPV6_RTHDR) {
2322 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr)
2323 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT);
2324 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL;
2325 if (pktopt->ip6po_route.ro_rt) {
2326 RTFREE(pktopt->ip6po_route.ro_rt);
2327 pktopt->ip6po_route.ro_rt = NULL;
2328 }
2329 }
2330 if (optname == -1 || optname == IPV6_DSTOPTS) {
2331 if (pktopt->ip6po_dest2)
2332 free(pktopt->ip6po_dest2, M_IP6OPT);
2333 pktopt->ip6po_dest2 = NULL;
2334 }
2335 }
2336
2337 #define PKTOPT_EXTHDRCPY(type) \
2338 do { \
2339 if (src->type) { \
2340 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\
2341 dst->type = malloc(hlen, M_IP6OPT, canwait); \
2342 if (dst->type == NULL && canwait == M_NOWAIT) \
2343 goto bad; \
2344 memcpy(dst->type, src->type, hlen); \
2345 } \
2346 } while (/*CONSTCOND*/ 0)
2347
2348 static int
2349 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait)
2350 {
2351 dst->ip6po_hlim = src->ip6po_hlim;
2352 dst->ip6po_tclass = src->ip6po_tclass;
2353 dst->ip6po_flags = src->ip6po_flags;
2354 if (src->ip6po_pktinfo) {
2355 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo),
2356 M_IP6OPT, canwait);
2357 if (dst->ip6po_pktinfo == NULL && canwait == M_NOWAIT)
2358 goto bad;
2359 *dst->ip6po_pktinfo = *src->ip6po_pktinfo;
2360 }
2361 if (src->ip6po_nexthop) {
2362 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len,
2363 M_IP6OPT, canwait);
2364 if (dst->ip6po_nexthop == NULL && canwait == M_NOWAIT)
2365 goto bad;
2366 memcpy(dst->ip6po_nexthop, src->ip6po_nexthop,
2367 src->ip6po_nexthop->sa_len);
2368 }
2369 PKTOPT_EXTHDRCPY(ip6po_hbh);
2370 PKTOPT_EXTHDRCPY(ip6po_dest1);
2371 PKTOPT_EXTHDRCPY(ip6po_dest2);
2372 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */
2373 return (0);
2374
2375 bad:
2376 if (dst->ip6po_pktinfo) free(dst->ip6po_pktinfo, M_IP6OPT);
2377 if (dst->ip6po_nexthop) free(dst->ip6po_nexthop, M_IP6OPT);
2378 if (dst->ip6po_hbh) free(dst->ip6po_hbh, M_IP6OPT);
2379 if (dst->ip6po_dest1) free(dst->ip6po_dest1, M_IP6OPT);
2380 if (dst->ip6po_dest2) free(dst->ip6po_dest2, M_IP6OPT);
2381 if (dst->ip6po_rthdr) free(dst->ip6po_rthdr, M_IP6OPT);
2382
2383 return (ENOBUFS);
2384 }
2385 #undef PKTOPT_EXTHDRCPY
2386
2387 struct ip6_pktopts *
2388 ip6_copypktopts(struct ip6_pktopts *src, int canwait)
2389 {
2390 int error;
2391 struct ip6_pktopts *dst;
2392
2393 dst = malloc(sizeof(*dst), M_IP6OPT, canwait);
2394 if (dst == NULL && canwait == M_NOWAIT)
2395 return (NULL);
2396 ip6_initpktopts(dst);
2397
2398 if ((error = copypktopts(dst, src, canwait)) != 0) {
2399 free(dst, M_IP6OPT);
2400 return (NULL);
2401 }
2402
2403 return (dst);
2404 }
2405
2406 void
2407 ip6_freepcbopts(struct ip6_pktopts *pktopt)
2408 {
2409 if (pktopt == NULL)
2410 return;
2411
2412 ip6_clearpktopts(pktopt, -1);
2413
2414 free(pktopt, M_IP6OPT);
2415 }
2416
2417 /*
2418 * Set the IP6 multicast options in response to user setsockopt().
2419 */
2420 static int
2421 ip6_setmoptions(optname, im6op, m)
2422 int optname;
2423 struct ip6_moptions **im6op;
2424 struct mbuf *m;
2425 {
2426 int error = 0;
2427 u_int loop, ifindex;
2428 struct ipv6_mreq *mreq;
2429 struct ifnet *ifp;
2430 struct ip6_moptions *im6o = *im6op;
2431 struct route_in6 ro;
2432 struct in6_multi_mship *imm;
2433 struct proc *p = curproc; /* XXX */
2434
2435 if (im6o == NULL) {
2436 /*
2437 * No multicast option buffer attached to the pcb;
2438 * allocate one and initialize to default values.
2439 */
2440 im6o = (struct ip6_moptions *)
2441 malloc(sizeof(*im6o), M_IPMOPTS, M_WAITOK);
2442
2443 if (im6o == NULL)
2444 return (ENOBUFS);
2445 *im6op = im6o;
2446 im6o->im6o_multicast_ifp = NULL;
2447 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2448 im6o->im6o_multicast_loop = IPV6_DEFAULT_MULTICAST_LOOP;
2449 LIST_INIT(&im6o->im6o_memberships);
2450 }
2451
2452 switch (optname) {
2453
2454 case IPV6_MULTICAST_IF:
2455 /*
2456 * Select the interface for outgoing multicast packets.
2457 */
2458 if (m == NULL || m->m_len != sizeof(u_int)) {
2459 error = EINVAL;
2460 break;
2461 }
2462 bcopy(mtod(m, u_int *), &ifindex, sizeof(ifindex));
2463 if (ifindex != 0) {
2464 if (ifindex < 0 || if_indexlim <= ifindex ||
2465 !ifindex2ifnet[ifindex]) {
2466 error = ENXIO; /* XXX EINVAL? */
2467 break;
2468 }
2469 ifp = ifindex2ifnet[ifindex];
2470 if ((ifp->if_flags & IFF_MULTICAST) == 0) {
2471 error = EADDRNOTAVAIL;
2472 break;
2473 }
2474 } else
2475 ifp = NULL;
2476 im6o->im6o_multicast_ifp = ifp;
2477 break;
2478
2479 case IPV6_MULTICAST_HOPS:
2480 {
2481 /*
2482 * Set the IP6 hoplimit for outgoing multicast packets.
2483 */
2484 int optval;
2485 if (m == NULL || m->m_len != sizeof(int)) {
2486 error = EINVAL;
2487 break;
2488 }
2489 bcopy(mtod(m, u_int *), &optval, sizeof(optval));
2490 if (optval < -1 || optval >= 256)
2491 error = EINVAL;
2492 else if (optval == -1)
2493 im6o->im6o_multicast_hlim = ip6_defmcasthlim;
2494 else
2495 im6o->im6o_multicast_hlim = optval;
2496 break;
2497 }
2498
2499 case IPV6_MULTICAST_LOOP:
2500 /*
2501 * Set the loopback flag for outgoing multicast packets.
2502 * Must be zero or one.
2503 */
2504 if (m == NULL || m->m_len != sizeof(u_int)) {
2505 error = EINVAL;
2506 break;
2507 }
2508 bcopy(mtod(m, u_int *), &loop, sizeof(loop));
2509 if (loop > 1) {
2510 error = EINVAL;
2511 break;
2512 }
2513 im6o->im6o_multicast_loop = loop;
2514 break;
2515
2516 case IPV6_JOIN_GROUP:
2517 /*
2518 * Add a multicast group membership.
2519 * Group must be a valid IP6 multicast address.
2520 */
2521 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2522 error = EINVAL;
2523 break;
2524 }
2525 mreq = mtod(m, struct ipv6_mreq *);
2526 if (IN6_IS_ADDR_UNSPECIFIED(&mreq->ipv6mr_multiaddr)) {
2527 /*
2528 * We use the unspecified address to specify to accept
2529 * all multicast addresses. Only super user is allowed
2530 * to do this.
2531 */
2532 if (kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER, &p->p_acflag))
2533 {
2534 error = EACCES;
2535 break;
2536 }
2537 } else if (!IN6_IS_ADDR_MULTICAST(&mreq->ipv6mr_multiaddr)) {
2538 error = EINVAL;
2539 break;
2540 }
2541
2542 /*
2543 * If no interface was explicitly specified, choose an
2544 * appropriate one according to the given multicast address.
2545 */
2546 if (mreq->ipv6mr_interface == 0) {
2547 struct sockaddr_in6 *dst;
2548
2549 /*
2550 * Look up the routing table for the
2551 * address, and choose the outgoing interface.
2552 * XXX: is it a good approach?
2553 */
2554 ro.ro_rt = NULL;
2555 dst = (struct sockaddr_in6 *)&ro.ro_dst;
2556 bzero(dst, sizeof(*dst));
2557 dst->sin6_family = AF_INET6;
2558 dst->sin6_len = sizeof(*dst);
2559 dst->sin6_addr = mreq->ipv6mr_multiaddr;
2560 rtalloc((struct route *)&ro);
2561 if (ro.ro_rt == NULL) {
2562 error = EADDRNOTAVAIL;
2563 break;
2564 }
2565 ifp = ro.ro_rt->rt_ifp;
2566 rtfree(ro.ro_rt);
2567 } else {
2568 /*
2569 * If the interface is specified, validate it.
2570 */
2571 if (mreq->ipv6mr_interface < 0 ||
2572 if_indexlim <= mreq->ipv6mr_interface ||
2573 !ifindex2ifnet[mreq->ipv6mr_interface]) {
2574 error = ENXIO; /* XXX EINVAL? */
2575 break;
2576 }
2577 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2578 }
2579
2580 /*
2581 * See if we found an interface, and confirm that it
2582 * supports multicast
2583 */
2584 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0) {
2585 error = EADDRNOTAVAIL;
2586 break;
2587 }
2588
2589 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
2590 error = EADDRNOTAVAIL; /* XXX: should not happen */
2591 break;
2592 }
2593
2594 /*
2595 * See if the membership already exists.
2596 */
2597 for (imm = im6o->im6o_memberships.lh_first;
2598 imm != NULL; imm = imm->i6mm_chain.le_next)
2599 if (imm->i6mm_maddr->in6m_ifp == ifp &&
2600 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2601 &mreq->ipv6mr_multiaddr))
2602 break;
2603 if (imm != NULL) {
2604 error = EADDRINUSE;
2605 break;
2606 }
2607 /*
2608 * Everything looks good; add a new record to the multicast
2609 * address list for the given interface.
2610 */
2611 imm = in6_joingroup(ifp, &mreq->ipv6mr_multiaddr, &error, 0);
2612 if (imm == NULL)
2613 break;
2614 LIST_INSERT_HEAD(&im6o->im6o_memberships, imm, i6mm_chain);
2615 break;
2616
2617 case IPV6_LEAVE_GROUP:
2618 /*
2619 * Drop a multicast group membership.
2620 * Group must be a valid IP6 multicast address.
2621 */
2622 if (m == NULL || m->m_len != sizeof(struct ipv6_mreq)) {
2623 error = EINVAL;
2624 break;
2625 }
2626 mreq = mtod(m, struct ipv6_mreq *);
2627
2628 /*
2629 * If an interface address was specified, get a pointer
2630 * to its ifnet structure.
2631 */
2632 if (mreq->ipv6mr_interface != 0) {
2633 if (mreq->ipv6mr_interface < 0 ||
2634 if_indexlim <= mreq->ipv6mr_interface ||
2635 !ifindex2ifnet[mreq->ipv6mr_interface]) {
2636 error = ENXIO; /* XXX EINVAL? */
2637 break;
2638 }
2639 ifp = ifindex2ifnet[mreq->ipv6mr_interface];
2640 } else
2641 ifp = NULL;
2642
2643 /* Fill in the scope zone ID */
2644 if (ifp) {
2645 if (in6_setscope(&mreq->ipv6mr_multiaddr, ifp, NULL)) {
2646 /* XXX: should not happen */
2647 error = EADDRNOTAVAIL;
2648 break;
2649 }
2650 } else if (mreq->ipv6mr_interface != 0) {
2651 /*
2652 * XXX: This case would happens when the (positive)
2653 * index is in the valid range, but the corresponding
2654 * interface has been detached dynamically. The above
2655 * check probably avoids such case to happen here, but
2656 * we check it explicitly for safety.
2657 */
2658 error = EADDRNOTAVAIL;
2659 break;
2660 } else { /* ipv6mr_interface == 0 */
2661 struct sockaddr_in6 sa6_mc;
2662
2663 /*
2664 * The API spec says as follows:
2665 * If the interface index is specified as 0, the
2666 * system may choose a multicast group membership to
2667 * drop by matching the multicast address only.
2668 * On the other hand, we cannot disambiguate the scope
2669 * zone unless an interface is provided. Thus, we
2670 * check if there's ambiguity with the default scope
2671 * zone as the last resort.
2672 */
2673 bzero(&sa6_mc, sizeof(sa6_mc));
2674 sa6_mc.sin6_family = AF_INET6;
2675 sa6_mc.sin6_len = sizeof(sa6_mc);
2676 sa6_mc.sin6_addr = mreq->ipv6mr_multiaddr;
2677 error = sa6_embedscope(&sa6_mc, ip6_use_defzone);
2678 if (error != 0)
2679 break;
2680 mreq->ipv6mr_multiaddr = sa6_mc.sin6_addr;
2681 }
2682
2683 /*
2684 * Find the membership in the membership list.
2685 */
2686 for (imm = im6o->im6o_memberships.lh_first;
2687 imm != NULL; imm = imm->i6mm_chain.le_next) {
2688 if ((ifp == NULL || imm->i6mm_maddr->in6m_ifp == ifp) &&
2689 IN6_ARE_ADDR_EQUAL(&imm->i6mm_maddr->in6m_addr,
2690 &mreq->ipv6mr_multiaddr))
2691 break;
2692 }
2693 if (imm == NULL) {
2694 /* Unable to resolve interface */
2695 error = EADDRNOTAVAIL;
2696 break;
2697 }
2698 /*
2699 * Give up the multicast address record to which the
2700 * membership points.
2701 */
2702 LIST_REMOVE(imm, i6mm_chain);
2703 in6_leavegroup(imm);
2704 break;
2705
2706 default:
2707 error = EOPNOTSUPP;
2708 break;
2709 }
2710
2711 /*
2712 * If all options have default values, no need to keep the mbuf.
2713 */
2714 if (im6o->im6o_multicast_ifp == NULL &&
2715 im6o->im6o_multicast_hlim == ip6_defmcasthlim &&
2716 im6o->im6o_multicast_loop == IPV6_DEFAULT_MULTICAST_LOOP &&
2717 im6o->im6o_memberships.lh_first == NULL) {
2718 free(*im6op, M_IPMOPTS);
2719 *im6op = NULL;
2720 }
2721
2722 return (error);
2723 }
2724
2725 /*
2726 * Return the IP6 multicast options in response to user getsockopt().
2727 */
2728 static int
2729 ip6_getmoptions(optname, im6o, mp)
2730 int optname;
2731 struct ip6_moptions *im6o;
2732 struct mbuf **mp;
2733 {
2734 u_int *hlim, *loop, *ifindex;
2735
2736 *mp = m_get(M_WAIT, MT_SOOPTS);
2737
2738 switch (optname) {
2739
2740 case IPV6_MULTICAST_IF:
2741 ifindex = mtod(*mp, u_int *);
2742 (*mp)->m_len = sizeof(u_int);
2743 if (im6o == NULL || im6o->im6o_multicast_ifp == NULL)
2744 *ifindex = 0;
2745 else
2746 *ifindex = im6o->im6o_multicast_ifp->if_index;
2747 return (0);
2748
2749 case IPV6_MULTICAST_HOPS:
2750 hlim = mtod(*mp, u_int *);
2751 (*mp)->m_len = sizeof(u_int);
2752 if (im6o == NULL)
2753 *hlim = ip6_defmcasthlim;
2754 else
2755 *hlim = im6o->im6o_multicast_hlim;
2756 return (0);
2757
2758 case IPV6_MULTICAST_LOOP:
2759 loop = mtod(*mp, u_int *);
2760 (*mp)->m_len = sizeof(u_int);
2761 if (im6o == NULL)
2762 *loop = ip6_defmcasthlim;
2763 else
2764 *loop = im6o->im6o_multicast_loop;
2765 return (0);
2766
2767 default:
2768 return (EOPNOTSUPP);
2769 }
2770 }
2771
2772 /*
2773 * Discard the IP6 multicast options.
2774 */
2775 void
2776 ip6_freemoptions(im6o)
2777 struct ip6_moptions *im6o;
2778 {
2779 struct in6_multi_mship *imm;
2780
2781 if (im6o == NULL)
2782 return;
2783
2784 while ((imm = im6o->im6o_memberships.lh_first) != NULL) {
2785 LIST_REMOVE(imm, i6mm_chain);
2786 in6_leavegroup(imm);
2787 }
2788 free(im6o, M_IPMOPTS);
2789 }
2790
2791 /*
2792 * Set IPv6 outgoing packet options based on advanced API.
2793 */
2794 int
2795 ip6_setpktopts(control, opt, stickyopt, priv, uproto)
2796 struct mbuf *control;
2797 struct ip6_pktopts *opt, *stickyopt;
2798 int priv, uproto;
2799 {
2800 struct cmsghdr *cm = 0;
2801
2802 if (control == NULL || opt == NULL)
2803 return (EINVAL);
2804
2805 ip6_initpktopts(opt);
2806 if (stickyopt) {
2807 int error;
2808
2809 /*
2810 * If stickyopt is provided, make a local copy of the options
2811 * for this particular packet, then override them by ancillary
2812 * objects.
2813 * XXX: copypktopts() does not copy the cached route to a next
2814 * hop (if any). This is not very good in terms of efficiency,
2815 * but we can allow this since this option should be rarely
2816 * used.
2817 */
2818 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0)
2819 return (error);
2820 }
2821
2822 /*
2823 * XXX: Currently, we assume all the optional information is stored
2824 * in a single mbuf.
2825 */
2826 if (control->m_next)
2827 return (EINVAL);
2828
2829 for (; control->m_len; control->m_data += CMSG_ALIGN(cm->cmsg_len),
2830 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) {
2831 int error;
2832
2833 if (control->m_len < CMSG_LEN(0))
2834 return (EINVAL);
2835
2836 cm = mtod(control, struct cmsghdr *);
2837 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len)
2838 return (EINVAL);
2839 if (cm->cmsg_level != IPPROTO_IPV6)
2840 continue;
2841
2842 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm),
2843 cm->cmsg_len - CMSG_LEN(0), opt, priv, 0, 1, uproto);
2844 if (error)
2845 return (error);
2846 }
2847
2848 return (0);
2849 }
2850
2851 /*
2852 * Set a particular packet option, as a sticky option or an ancillary data
2853 * item. "len" can be 0 only when it's a sticky option.
2854 * We have 4 cases of combination of "sticky" and "cmsg":
2855 * "sticky=0, cmsg=0": impossible
2856 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data
2857 * "sticky=1, cmsg=0": RFC3542 socket option
2858 * "sticky=1, cmsg=1": RFC2292 socket option
2859 */
2860 static int
2861 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt,
2862 int priv, int sticky, int cmsg, int uproto)
2863 {
2864 int minmtupolicy;
2865
2866 if (!sticky && !cmsg) {
2867 #ifdef DIAGNOSTIC
2868 printf("ip6_setpktopt: impossible case\n");
2869 #endif
2870 return (EINVAL);
2871 }
2872
2873 /*
2874 * IPV6_2292xxx is for backward compatibility to RFC2292, and should
2875 * not be specified in the context of RFC3542. Conversely,
2876 * RFC3542 types should not be specified in the context of RFC2292.
2877 */
2878 if (!cmsg) {
2879 switch (optname) {
2880 case IPV6_2292PKTINFO:
2881 case IPV6_2292HOPLIMIT:
2882 case IPV6_2292NEXTHOP:
2883 case IPV6_2292HOPOPTS:
2884 case IPV6_2292DSTOPTS:
2885 case IPV6_2292RTHDR:
2886 case IPV6_2292PKTOPTIONS:
2887 return (ENOPROTOOPT);
2888 }
2889 }
2890 if (sticky && cmsg) {
2891 switch (optname) {
2892 case IPV6_PKTINFO:
2893 case IPV6_HOPLIMIT:
2894 case IPV6_NEXTHOP:
2895 case IPV6_HOPOPTS:
2896 case IPV6_DSTOPTS:
2897 case IPV6_RTHDRDSTOPTS:
2898 case IPV6_RTHDR:
2899 case IPV6_USE_MIN_MTU:
2900 case IPV6_DONTFRAG:
2901 case IPV6_OTCLASS:
2902 case IPV6_TCLASS:
2903 return (ENOPROTOOPT);
2904 }
2905 }
2906
2907 switch (optname) {
2908 #ifdef RFC2292
2909 case IPV6_2292PKTINFO:
2910 #endif
2911 case IPV6_PKTINFO:
2912 {
2913 struct ifnet *ifp = NULL;
2914 struct in6_pktinfo *pktinfo;
2915
2916 if (len != sizeof(struct in6_pktinfo))
2917 return (EINVAL);
2918
2919 pktinfo = (struct in6_pktinfo *)buf;
2920
2921 /*
2922 * An application can clear any sticky IPV6_PKTINFO option by
2923 * doing a "regular" setsockopt with ipi6_addr being
2924 * in6addr_any and ipi6_ifindex being zero.
2925 * [RFC 3542, Section 6]
2926 */
2927 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo &&
2928 pktinfo->ipi6_ifindex == 0 &&
2929 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2930 ip6_clearpktopts(opt, optname);
2931 break;
2932 }
2933
2934 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO &&
2935 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) {
2936 return (EINVAL);
2937 }
2938
2939 /* validate the interface index if specified. */
2940 if (pktinfo->ipi6_ifindex >= if_indexlim ||
2941 pktinfo->ipi6_ifindex < 0) {
2942 return (ENXIO);
2943 }
2944 if (pktinfo->ipi6_ifindex) {
2945 ifp = ifindex2ifnet[pktinfo->ipi6_ifindex];
2946 if (ifp == NULL)
2947 return (ENXIO);
2948 }
2949
2950 /*
2951 * We store the address anyway, and let in6_selectsrc()
2952 * validate the specified address. This is because ipi6_addr
2953 * may not have enough information about its scope zone, and
2954 * we may need additional information (such as outgoing
2955 * interface or the scope zone of a destination address) to
2956 * disambiguate the scope.
2957 * XXX: the delay of the validation may confuse the
2958 * application when it is used as a sticky option.
2959 */
2960 if (opt->ip6po_pktinfo == NULL) {
2961 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo),
2962 M_IP6OPT, M_NOWAIT);
2963 if (opt->ip6po_pktinfo == NULL)
2964 return (ENOBUFS);
2965 }
2966 memcpy(opt->ip6po_pktinfo, pktinfo, sizeof(*pktinfo));
2967 break;
2968 }
2969
2970 #ifdef RFC2292
2971 case IPV6_2292HOPLIMIT:
2972 #endif
2973 case IPV6_HOPLIMIT:
2974 {
2975 int *hlimp;
2976
2977 /*
2978 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT
2979 * to simplify the ordering among hoplimit options.
2980 */
2981 if (optname == IPV6_HOPLIMIT && sticky)
2982 return (ENOPROTOOPT);
2983
2984 if (len != sizeof(int))
2985 return (EINVAL);
2986 hlimp = (int *)buf;
2987 if (*hlimp < -1 || *hlimp > 255)
2988 return (EINVAL);
2989
2990 opt->ip6po_hlim = *hlimp;
2991 break;
2992 }
2993
2994 case IPV6_OTCLASS:
2995 if (len != sizeof(u_int8_t))
2996 return (EINVAL);
2997
2998 opt->ip6po_tclass = *(u_int8_t *)buf;
2999 break;
3000
3001 case IPV6_TCLASS:
3002 {
3003 int tclass;
3004
3005 if (len != sizeof(int))
3006 return (EINVAL);
3007 tclass = *(int *)buf;
3008 if (tclass < -1 || tclass > 255)
3009 return (EINVAL);
3010
3011 opt->ip6po_tclass = tclass;
3012 break;
3013 }
3014
3015 #ifdef RFC2292
3016 case IPV6_2292NEXTHOP:
3017 #endif
3018 case IPV6_NEXTHOP:
3019 if (!priv)
3020 return (EPERM);
3021
3022 if (len == 0) { /* just remove the option */
3023 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3024 break;
3025 }
3026
3027 /* check if cmsg_len is large enough for sa_len */
3028 if (len < sizeof(struct sockaddr) || len < *buf)
3029 return (EINVAL);
3030
3031 switch (((struct sockaddr *)buf)->sa_family) {
3032 case AF_INET6:
3033 {
3034 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf;
3035 int error;
3036
3037 if (sa6->sin6_len != sizeof(struct sockaddr_in6))
3038 return (EINVAL);
3039
3040 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) ||
3041 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) {
3042 return (EINVAL);
3043 }
3044 if ((error = sa6_embedscope(sa6, ip6_use_defzone))
3045 != 0) {
3046 return (error);
3047 }
3048 break;
3049 }
3050 case AF_LINK: /* eventually be supported? */
3051 default:
3052 return (EAFNOSUPPORT);
3053 }
3054
3055 /* turn off the previous option, then set the new option. */
3056 ip6_clearpktopts(opt, IPV6_NEXTHOP);
3057 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT);
3058 if (opt->ip6po_nexthop == NULL)
3059 return (ENOBUFS);
3060 memcpy(opt->ip6po_nexthop, buf, *buf);
3061 break;
3062
3063 #ifdef RFC2292
3064 case IPV6_2292HOPOPTS:
3065 #endif
3066 case IPV6_HOPOPTS:
3067 {
3068 struct ip6_hbh *hbh;
3069 int hbhlen;
3070
3071 /*
3072 * XXX: We don't allow a non-privileged user to set ANY HbH
3073 * options, since per-option restriction has too much
3074 * overhead.
3075 */
3076 if (!priv)
3077 return (EPERM);
3078
3079 if (len == 0) {
3080 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3081 break; /* just remove the option */
3082 }
3083
3084 /* message length validation */
3085 if (len < sizeof(struct ip6_hbh))
3086 return (EINVAL);
3087 hbh = (struct ip6_hbh *)buf;
3088 hbhlen = (hbh->ip6h_len + 1) << 3;
3089 if (len != hbhlen)
3090 return (EINVAL);
3091
3092 /* turn off the previous option, then set the new option. */
3093 ip6_clearpktopts(opt, IPV6_HOPOPTS);
3094 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT);
3095 if (opt->ip6po_hbh == NULL)
3096 return (ENOBUFS);
3097 memcpy(opt->ip6po_hbh, hbh, hbhlen);
3098
3099 break;
3100 }
3101
3102 #ifdef RFC2292
3103 case IPV6_2292DSTOPTS:
3104 #endif
3105 case IPV6_DSTOPTS:
3106 case IPV6_RTHDRDSTOPTS:
3107 {
3108 struct ip6_dest *dest, **newdest = NULL;
3109 int destlen;
3110
3111 if (!priv) /* XXX: see the comment for IPV6_HOPOPTS */
3112 return (EPERM);
3113
3114 if (len == 0) {
3115 ip6_clearpktopts(opt, optname);
3116 break; /* just remove the option */
3117 }
3118
3119 /* message length validation */
3120 if (len < sizeof(struct ip6_dest))
3121 return (EINVAL);
3122 dest = (struct ip6_dest *)buf;
3123 destlen = (dest->ip6d_len + 1) << 3;
3124 if (len != destlen)
3125 return (EINVAL);
3126 /*
3127 * Determine the position that the destination options header
3128 * should be inserted; before or after the routing header.
3129 */
3130 switch (optname) {
3131 case IPV6_2292DSTOPTS:
3132 /*
3133 * The old advanced API is ambiguous on this point.
3134 * Our approach is to determine the position based
3135 * according to the existence of a routing header.
3136 * Note, however, that this depends on the order of the
3137 * extension headers in the ancillary data; the 1st
3138 * part of the destination options header must appear
3139 * before the routing header in the ancillary data,
3140 * too.
3141 * RFC3542 solved the ambiguity by introducing
3142 * separate ancillary data or option types.
3143 */
3144 if (opt->ip6po_rthdr == NULL)
3145 newdest = &opt->ip6po_dest1;
3146 else
3147 newdest = &opt->ip6po_dest2;
3148 break;
3149 case IPV6_RTHDRDSTOPTS:
3150 newdest = &opt->ip6po_dest1;
3151 break;
3152 case IPV6_DSTOPTS:
3153 newdest = &opt->ip6po_dest2;
3154 break;
3155 }
3156
3157 /* turn off the previous option, then set the new option. */
3158 ip6_clearpktopts(opt, optname);
3159 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT);
3160 if (*newdest == NULL)
3161 return (ENOBUFS);
3162 memcpy(*newdest, dest, destlen);
3163
3164 break;
3165 }
3166
3167 #ifdef RFC2292
3168 case IPV6_2292RTHDR:
3169 #endif
3170 case IPV6_RTHDR:
3171 {
3172 struct ip6_rthdr *rth;
3173 int rthlen;
3174
3175 if (len == 0) {
3176 ip6_clearpktopts(opt, IPV6_RTHDR);
3177 break; /* just remove the option */
3178 }
3179
3180 /* message length validation */
3181 if (len < sizeof(struct ip6_rthdr))
3182 return (EINVAL);
3183 rth = (struct ip6_rthdr *)buf;
3184 rthlen = (rth->ip6r_len + 1) << 3;
3185 if (len != rthlen)
3186 return (EINVAL);
3187 switch (rth->ip6r_type) {
3188 case IPV6_RTHDR_TYPE_0:
3189 if (rth->ip6r_len == 0) /* must contain one addr */
3190 return (EINVAL);
3191 if (rth->ip6r_len % 2) /* length must be even */
3192 return (EINVAL);
3193 if (rth->ip6r_len / 2 != rth->ip6r_segleft)
3194 return (EINVAL);
3195 break;
3196 default:
3197 return (EINVAL); /* not supported */
3198 }
3199 /* turn off the previous option */
3200 ip6_clearpktopts(opt, IPV6_RTHDR);
3201 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT);
3202 if (opt->ip6po_rthdr == NULL)
3203 return (ENOBUFS);
3204 memcpy(opt->ip6po_rthdr, rth, rthlen);
3205 break;
3206 }
3207
3208 case IPV6_USE_MIN_MTU:
3209 if (len != sizeof(int))
3210 return (EINVAL);
3211 minmtupolicy = *(int *)buf;
3212 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY &&
3213 minmtupolicy != IP6PO_MINMTU_DISABLE &&
3214 minmtupolicy != IP6PO_MINMTU_ALL) {
3215 return (EINVAL);
3216 }
3217 opt->ip6po_minmtu = minmtupolicy;
3218 break;
3219
3220 case IPV6_DONTFRAG:
3221 if (len != sizeof(int))
3222 return (EINVAL);
3223
3224 if (uproto == IPPROTO_TCP || *(int *)buf == 0) {
3225 /*
3226 * we ignore this option for TCP sockets.
3227 * (RFC3542 leaves this case unspecified.)
3228 */
3229 opt->ip6po_flags &= ~IP6PO_DONTFRAG;
3230 } else
3231 opt->ip6po_flags |= IP6PO_DONTFRAG;
3232 break;
3233
3234 default:
3235 return (ENOPROTOOPT);
3236 } /* end of switch */
3237
3238 return (0);
3239 }
3240
3241 /*
3242 * Routine called from ip6_output() to loop back a copy of an IP6 multicast
3243 * packet to the input queue of a specified interface. Note that this
3244 * calls the output routine of the loopback "driver", but with an interface
3245 * pointer that might NOT be lo0ifp -- easier than replicating that code here.
3246 */
3247 void
3248 ip6_mloopback(ifp, m, dst)
3249 struct ifnet *ifp;
3250 struct mbuf *m;
3251 struct sockaddr_in6 *dst;
3252 {
3253 struct mbuf *copym;
3254 struct ip6_hdr *ip6;
3255
3256 copym = m_copy(m, 0, M_COPYALL);
3257 if (copym == NULL)
3258 return;
3259
3260 /*
3261 * Make sure to deep-copy IPv6 header portion in case the data
3262 * is in an mbuf cluster, so that we can safely override the IPv6
3263 * header portion later.
3264 */
3265 if ((copym->m_flags & M_EXT) != 0 ||
3266 copym->m_len < sizeof(struct ip6_hdr)) {
3267 copym = m_pullup(copym, sizeof(struct ip6_hdr));
3268 if (copym == NULL)
3269 return;
3270 }
3271
3272 #ifdef DIAGNOSTIC
3273 if (copym->m_len < sizeof(*ip6)) {
3274 m_freem(copym);
3275 return;
3276 }
3277 #endif
3278
3279 ip6 = mtod(copym, struct ip6_hdr *);
3280 /*
3281 * clear embedded scope identifiers if necessary.
3282 * in6_clearscope will touch the addresses only when necessary.
3283 */
3284 in6_clearscope(&ip6->ip6_src);
3285 in6_clearscope(&ip6->ip6_dst);
3286
3287 (void)looutput(ifp, copym, (struct sockaddr *)dst, NULL);
3288 }
3289
3290 /*
3291 * Chop IPv6 header off from the payload.
3292 */
3293 static int
3294 ip6_splithdr(m, exthdrs)
3295 struct mbuf *m;
3296 struct ip6_exthdrs *exthdrs;
3297 {
3298 struct mbuf *mh;
3299 struct ip6_hdr *ip6;
3300
3301 ip6 = mtod(m, struct ip6_hdr *);
3302 if (m->m_len > sizeof(*ip6)) {
3303 MGETHDR(mh, M_DONTWAIT, MT_HEADER);
3304 if (mh == 0) {
3305 m_freem(m);
3306 return ENOBUFS;
3307 }
3308 M_MOVE_PKTHDR(mh, m);
3309 MH_ALIGN(mh, sizeof(*ip6));
3310 m->m_len -= sizeof(*ip6);
3311 m->m_data += sizeof(*ip6);
3312 mh->m_next = m;
3313 m = mh;
3314 m->m_len = sizeof(*ip6);
3315 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6));
3316 }
3317 exthdrs->ip6e_ip6 = m;
3318 return 0;
3319 }
3320
3321 /*
3322 * Compute IPv6 extension header length.
3323 */
3324 int
3325 ip6_optlen(in6p)
3326 struct in6pcb *in6p;
3327 {
3328 int len;
3329
3330 if (!in6p->in6p_outputopts)
3331 return 0;
3332
3333 len = 0;
3334 #define elen(x) \
3335 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0)
3336
3337 len += elen(in6p->in6p_outputopts->ip6po_hbh);
3338 len += elen(in6p->in6p_outputopts->ip6po_dest1);
3339 len += elen(in6p->in6p_outputopts->ip6po_rthdr);
3340 len += elen(in6p->in6p_outputopts->ip6po_dest2);
3341 return len;
3342 #undef elen
3343 }
3344