Home | History | Annotate | Line # | Download | only in netinet6
nd6.c revision 1.105
      1 /*	$NetBSD: nd6.c,v 1.105 2006/10/12 01:32:39 christos Exp $	*/
      2 /*	$KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.105 2006/10/12 01:32:39 christos Exp $");
     35 
     36 #include "opt_ipsec.h"
     37 
     38 #include <sys/param.h>
     39 #include <sys/systm.h>
     40 #include <sys/callout.h>
     41 #include <sys/malloc.h>
     42 #include <sys/mbuf.h>
     43 #include <sys/socket.h>
     44 #include <sys/sockio.h>
     45 #include <sys/time.h>
     46 #include <sys/kernel.h>
     47 #include <sys/protosw.h>
     48 #include <sys/errno.h>
     49 #include <sys/ioctl.h>
     50 #include <sys/syslog.h>
     51 #include <sys/queue.h>
     52 
     53 #include <net/if.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_types.h>
     56 #include <net/route.h>
     57 #include <net/if_ether.h>
     58 #include <net/if_fddi.h>
     59 #include <net/if_arc.h>
     60 
     61 #include <netinet/in.h>
     62 #include <netinet6/in6_var.h>
     63 #include <netinet/ip6.h>
     64 #include <netinet6/ip6_var.h>
     65 #include <netinet6/scope6_var.h>
     66 #include <netinet6/nd6.h>
     67 #include <netinet/icmp6.h>
     68 
     69 #ifdef IPSEC
     70 #include <netinet6/ipsec.h>
     71 #endif
     72 
     73 #include <net/net_osdep.h>
     74 
     75 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
     76 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
     77 
     78 #define SIN6(s) ((struct sockaddr_in6 *)s)
     79 #define SDL(s) ((struct sockaddr_dl *)s)
     80 
     81 /* timer values */
     82 int	nd6_prune	= 1;	/* walk list every 1 seconds */
     83 int	nd6_delay	= 5;	/* delay first probe time 5 second */
     84 int	nd6_umaxtries	= 3;	/* maximum unicast query */
     85 int	nd6_mmaxtries	= 3;	/* maximum multicast query */
     86 int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
     87 int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
     88 
     89 /* preventing too many loops in ND option parsing */
     90 int nd6_maxndopt = 10;	/* max # of ND options allowed */
     91 
     92 int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
     93 
     94 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
     95 
     96 #ifdef ND6_DEBUG
     97 int nd6_debug = 1;
     98 #else
     99 int nd6_debug = 0;
    100 #endif
    101 
    102 /* for debugging? */
    103 static int nd6_inuse, nd6_allocated;
    104 
    105 struct llinfo_nd6 llinfo_nd6 = {
    106 	.ln_prev = &llinfo_nd6,
    107 	.ln_next = &llinfo_nd6,
    108 };
    109 struct nd_drhead nd_defrouter;
    110 struct nd_prhead nd_prefix = { 0 };
    111 
    112 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
    113 static struct sockaddr_in6 all1_sa;
    114 
    115 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
    116 static void nd6_slowtimo __P((void *));
    117 static int regen_tmpaddr __P((struct in6_ifaddr *));
    118 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
    119 static void nd6_llinfo_timer __P((void *));
    120 static void clear_llinfo_pqueue __P((struct llinfo_nd6 *));
    121 
    122 struct callout nd6_slowtimo_ch = CALLOUT_INITIALIZER;
    123 struct callout nd6_timer_ch = CALLOUT_INITIALIZER;
    124 extern struct callout in6_tmpaddrtimer_ch;
    125 
    126 static int fill_drlist __P((void *, size_t *, size_t));
    127 static int fill_prlist __P((void *, size_t *, size_t));
    128 
    129 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
    130 
    131 void
    132 nd6_init()
    133 {
    134 	static int nd6_init_done = 0;
    135 	int i;
    136 
    137 	if (nd6_init_done) {
    138 		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
    139 		return;
    140 	}
    141 
    142 	all1_sa.sin6_family = AF_INET6;
    143 	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
    144 	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
    145 		all1_sa.sin6_addr.s6_addr[i] = 0xff;
    146 
    147 	/* initialization of the default router list */
    148 	TAILQ_INIT(&nd_defrouter);
    149 
    150 	nd6_init_done = 1;
    151 
    152 	/* start timer */
    153 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
    154 	    nd6_slowtimo, NULL);
    155 }
    156 
    157 struct nd_ifinfo *
    158 nd6_ifattach(ifp)
    159 	struct ifnet *ifp;
    160 {
    161 	struct nd_ifinfo *nd;
    162 
    163 	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
    164 	bzero(nd, sizeof(*nd));
    165 
    166 	nd->initialized = 1;
    167 
    168 	nd->chlim = IPV6_DEFHLIM;
    169 	nd->basereachable = REACHABLE_TIME;
    170 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
    171 	nd->retrans = RETRANS_TIMER;
    172 	/*
    173 	 * Note that the default value of ip6_accept_rtadv is 0, which means
    174 	 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
    175 	 * here.
    176 	 */
    177 	nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
    178 
    179 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
    180 	nd6_setmtu0(ifp, nd);
    181 
    182 	return nd;
    183 }
    184 
    185 void
    186 nd6_ifdetach(nd)
    187 	struct nd_ifinfo *nd;
    188 {
    189 
    190 	free(nd, M_IP6NDP);
    191 }
    192 
    193 void
    194 nd6_setmtu(ifp)
    195 	struct ifnet *ifp;
    196 {
    197 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
    198 }
    199 
    200 void
    201 nd6_setmtu0(ifp, ndi)
    202 	struct ifnet *ifp;
    203 	struct nd_ifinfo *ndi;
    204 {
    205 	u_int32_t omaxmtu;
    206 
    207 	omaxmtu = ndi->maxmtu;
    208 
    209 	switch (ifp->if_type) {
    210 	case IFT_ARCNET:
    211 		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
    212 		break;
    213 	case IFT_FDDI:
    214 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
    215 		break;
    216 	default:
    217 		ndi->maxmtu = ifp->if_mtu;
    218 		break;
    219 	}
    220 
    221 	/*
    222 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
    223 	 * undesirable situation.  We thus notify the operator of the change
    224 	 * explicitly.  The check for omaxmtu is necessary to restrict the
    225 	 * log to the case of changing the MTU, not initializing it.
    226 	 */
    227 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
    228 		log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
    229 		    " small for IPv6 which needs %lu\n",
    230 		    if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
    231 		    IPV6_MMTU);
    232 	}
    233 
    234 	if (ndi->maxmtu > in6_maxmtu)
    235 		in6_setmaxmtu(); /* check all interfaces just in case */
    236 }
    237 
    238 void
    239 nd6_option_init(opt, icmp6len, ndopts)
    240 	void *opt;
    241 	int icmp6len;
    242 	union nd_opts *ndopts;
    243 {
    244 
    245 	bzero(ndopts, sizeof(*ndopts));
    246 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
    247 	ndopts->nd_opts_last
    248 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
    249 
    250 	if (icmp6len == 0) {
    251 		ndopts->nd_opts_done = 1;
    252 		ndopts->nd_opts_search = NULL;
    253 	}
    254 }
    255 
    256 /*
    257  * Take one ND option.
    258  */
    259 struct nd_opt_hdr *
    260 nd6_option(ndopts)
    261 	union nd_opts *ndopts;
    262 {
    263 	struct nd_opt_hdr *nd_opt;
    264 	int olen;
    265 
    266 	if (ndopts == NULL)
    267 		panic("ndopts == NULL in nd6_option");
    268 	if (ndopts->nd_opts_last == NULL)
    269 		panic("uninitialized ndopts in nd6_option");
    270 	if (ndopts->nd_opts_search == NULL)
    271 		return NULL;
    272 	if (ndopts->nd_opts_done)
    273 		return NULL;
    274 
    275 	nd_opt = ndopts->nd_opts_search;
    276 
    277 	/* make sure nd_opt_len is inside the buffer */
    278 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
    279 		bzero(ndopts, sizeof(*ndopts));
    280 		return NULL;
    281 	}
    282 
    283 	olen = nd_opt->nd_opt_len << 3;
    284 	if (olen == 0) {
    285 		/*
    286 		 * Message validation requires that all included
    287 		 * options have a length that is greater than zero.
    288 		 */
    289 		bzero(ndopts, sizeof(*ndopts));
    290 		return NULL;
    291 	}
    292 
    293 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
    294 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
    295 		/* option overruns the end of buffer, invalid */
    296 		bzero(ndopts, sizeof(*ndopts));
    297 		return NULL;
    298 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
    299 		/* reached the end of options chain */
    300 		ndopts->nd_opts_done = 1;
    301 		ndopts->nd_opts_search = NULL;
    302 	}
    303 	return nd_opt;
    304 }
    305 
    306 /*
    307  * Parse multiple ND options.
    308  * This function is much easier to use, for ND routines that do not need
    309  * multiple options of the same type.
    310  */
    311 int
    312 nd6_options(ndopts)
    313 	union nd_opts *ndopts;
    314 {
    315 	struct nd_opt_hdr *nd_opt;
    316 	int i = 0;
    317 
    318 	if (ndopts == NULL)
    319 		panic("ndopts == NULL in nd6_options");
    320 	if (ndopts->nd_opts_last == NULL)
    321 		panic("uninitialized ndopts in nd6_options");
    322 	if (ndopts->nd_opts_search == NULL)
    323 		return 0;
    324 
    325 	while (1) {
    326 		nd_opt = nd6_option(ndopts);
    327 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
    328 			/*
    329 			 * Message validation requires that all included
    330 			 * options have a length that is greater than zero.
    331 			 */
    332 			icmp6stat.icp6s_nd_badopt++;
    333 			bzero(ndopts, sizeof(*ndopts));
    334 			return -1;
    335 		}
    336 
    337 		if (nd_opt == NULL)
    338 			goto skip1;
    339 
    340 		switch (nd_opt->nd_opt_type) {
    341 		case ND_OPT_SOURCE_LINKADDR:
    342 		case ND_OPT_TARGET_LINKADDR:
    343 		case ND_OPT_MTU:
    344 		case ND_OPT_REDIRECTED_HEADER:
    345 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
    346 				nd6log((LOG_INFO,
    347 				    "duplicated ND6 option found (type=%d)\n",
    348 				    nd_opt->nd_opt_type));
    349 				/* XXX bark? */
    350 			} else {
    351 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
    352 					= nd_opt;
    353 			}
    354 			break;
    355 		case ND_OPT_PREFIX_INFORMATION:
    356 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
    357 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
    358 					= nd_opt;
    359 			}
    360 			ndopts->nd_opts_pi_end =
    361 				(struct nd_opt_prefix_info *)nd_opt;
    362 			break;
    363 		default:
    364 			/*
    365 			 * Unknown options must be silently ignored,
    366 			 * to accomodate future extension to the protocol.
    367 			 */
    368 			nd6log((LOG_DEBUG,
    369 			    "nd6_options: unsupported option %d - "
    370 			    "option ignored\n", nd_opt->nd_opt_type));
    371 		}
    372 
    373 skip1:
    374 		i++;
    375 		if (i > nd6_maxndopt) {
    376 			icmp6stat.icp6s_nd_toomanyopt++;
    377 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
    378 			break;
    379 		}
    380 
    381 		if (ndopts->nd_opts_done)
    382 			break;
    383 	}
    384 
    385 	return 0;
    386 }
    387 
    388 /*
    389  * ND6 timer routine to handle ND6 entries
    390  */
    391 void
    392 nd6_llinfo_settimer(ln, xtick)
    393 	struct llinfo_nd6 *ln;
    394 	long xtick;
    395 {
    396 	int s;
    397 
    398 	s = splsoftnet();
    399 
    400 	if (xtick < 0) {
    401 		ln->ln_expire = 0;
    402 		ln->ln_ntick = 0;
    403 		callout_stop(&ln->ln_timer_ch);
    404 	} else {
    405 		ln->ln_expire = time_second + xtick / hz;
    406 		if (xtick > INT_MAX) {
    407 			ln->ln_ntick = xtick - INT_MAX;
    408 			callout_reset(&ln->ln_timer_ch, INT_MAX,
    409 			    nd6_llinfo_timer, ln);
    410 		} else {
    411 			ln->ln_ntick = 0;
    412 			callout_reset(&ln->ln_timer_ch, xtick,
    413 			    nd6_llinfo_timer, ln);
    414 		}
    415 	}
    416 
    417 	splx(s);
    418 }
    419 
    420 static void
    421 nd6_llinfo_timer(arg)
    422 	void *arg;
    423 {
    424 	int s;
    425 	struct llinfo_nd6 *ln;
    426 	struct rtentry *rt;
    427 	const struct sockaddr_in6 *dst;
    428 	struct ifnet *ifp;
    429 	struct nd_ifinfo *ndi = NULL;
    430 
    431 	s = splsoftnet();
    432 
    433 	ln = (struct llinfo_nd6 *)arg;
    434 
    435 	if (ln->ln_ntick > 0) {
    436 		nd6_llinfo_settimer(ln, ln->ln_ntick);
    437 		splx(s);
    438 		return;
    439 	}
    440 
    441 	if ((rt = ln->ln_rt) == NULL)
    442 		panic("ln->ln_rt == NULL");
    443 	if ((ifp = rt->rt_ifp) == NULL)
    444 		panic("ln->ln_rt->rt_ifp == NULL");
    445 	ndi = ND_IFINFO(ifp);
    446 	dst = (struct sockaddr_in6 *)rt_key(rt);
    447 
    448 	/* sanity check */
    449 	if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
    450 		panic("rt_llinfo(%p) is not equal to ln(%p)",
    451 		      rt->rt_llinfo, ln);
    452 	if (!dst)
    453 		panic("dst=0 in nd6_timer(ln=%p)", ln);
    454 
    455 	switch (ln->ln_state) {
    456 	case ND6_LLINFO_INCOMPLETE:
    457 		if (ln->ln_asked < nd6_mmaxtries) {
    458 			ln->ln_asked++;
    459 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
    460 			nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
    461 		} else {
    462 			struct mbuf *m = ln->ln_hold;
    463 			if (m) {
    464 				struct mbuf *m0;
    465 
    466 				/*
    467 				 * assuming every packet in ln_hold has
    468 				 * the same IP header
    469 				 */
    470 				m0 = m->m_nextpkt;
    471 				m->m_nextpkt = NULL;
    472 				icmp6_error2(m, ICMP6_DST_UNREACH,
    473 				    ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
    474 
    475 				ln->ln_hold = m0;
    476 				clear_llinfo_pqueue(ln);
    477  			}
    478 			(void)nd6_free(rt, 0);
    479 			ln = NULL;
    480 		}
    481 		break;
    482 	case ND6_LLINFO_REACHABLE:
    483 		if (!ND6_LLINFO_PERMANENT(ln)) {
    484 			ln->ln_state = ND6_LLINFO_STALE;
    485 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
    486 		}
    487 		break;
    488 
    489 	case ND6_LLINFO_STALE:
    490 		/* Garbage Collection(RFC 2461 5.3) */
    491 		if (!ND6_LLINFO_PERMANENT(ln)) {
    492 			(void)nd6_free(rt, 1);
    493 			ln = NULL;
    494 		}
    495 		break;
    496 
    497 	case ND6_LLINFO_DELAY:
    498 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
    499 			/* We need NUD */
    500 			ln->ln_asked = 1;
    501 			ln->ln_state = ND6_LLINFO_PROBE;
    502 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
    503 			nd6_ns_output(ifp, &dst->sin6_addr,
    504 			    &dst->sin6_addr, ln, 0);
    505 		} else {
    506 			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
    507 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
    508 		}
    509 		break;
    510 	case ND6_LLINFO_PROBE:
    511 		if (ln->ln_asked < nd6_umaxtries) {
    512 			ln->ln_asked++;
    513 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
    514 			nd6_ns_output(ifp, &dst->sin6_addr,
    515 			    &dst->sin6_addr, ln, 0);
    516 		} else {
    517 			(void)nd6_free(rt, 0);
    518 			ln = NULL;
    519 		}
    520 		break;
    521 	}
    522 
    523 	splx(s);
    524 }
    525 
    526 /*
    527  * ND6 timer routine to expire default route list and prefix list
    528  */
    529 void
    530 nd6_timer(void *ignored_arg __unused)
    531 {
    532 	int s;
    533 	struct nd_defrouter *dr;
    534 	struct nd_prefix *pr;
    535 	struct in6_ifaddr *ia6, *nia6;
    536 	struct in6_addrlifetime *lt6;
    537 
    538 	s = splsoftnet();
    539 	callout_reset(&nd6_timer_ch, nd6_prune * hz,
    540 	    nd6_timer, NULL);
    541 
    542 	/* expire default router list */
    543 	dr = TAILQ_FIRST(&nd_defrouter);
    544 	while (dr) {
    545 		if (dr->expire && dr->expire < time_second) {
    546 			struct nd_defrouter *t;
    547 			t = TAILQ_NEXT(dr, dr_entry);
    548 			defrtrlist_del(dr);
    549 			dr = t;
    550 		} else {
    551 			dr = TAILQ_NEXT(dr, dr_entry);
    552 		}
    553 	}
    554 
    555 	/*
    556 	 * expire interface addresses.
    557 	 * in the past the loop was inside prefix expiry processing.
    558 	 * However, from a stricter speci-confrmance standpoint, we should
    559 	 * rather separate address lifetimes and prefix lifetimes.
    560 	 */
    561   addrloop:
    562 	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
    563 		nia6 = ia6->ia_next;
    564 		/* check address lifetime */
    565 		lt6 = &ia6->ia6_lifetime;
    566 		if (IFA6_IS_INVALID(ia6)) {
    567 			int regen = 0;
    568 
    569 			/*
    570 			 * If the expiring address is temporary, try
    571 			 * regenerating a new one.  This would be useful when
    572 			 * we suspended a laptop PC, then turned it on after a
    573 			 * period that could invalidate all temporary
    574 			 * addresses.  Although we may have to restart the
    575 			 * loop (see below), it must be after purging the
    576 			 * address.  Otherwise, we'd see an infinite loop of
    577 			 * regeneration.
    578 			 */
    579 			if (ip6_use_tempaddr &&
    580 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
    581 				if (regen_tmpaddr(ia6) == 0)
    582 					regen = 1;
    583 			}
    584 
    585  			in6_purgeaddr(&ia6->ia_ifa);
    586 
    587 			if (regen)
    588 				goto addrloop; /* XXX: see below */
    589 		} else if (IFA6_IS_DEPRECATED(ia6)) {
    590 			int oldflags = ia6->ia6_flags;
    591 
    592  			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
    593 
    594 			/*
    595 			 * If a temporary address has just become deprecated,
    596 			 * regenerate a new one if possible.
    597 			 */
    598 			if (ip6_use_tempaddr &&
    599 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
    600 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
    601 
    602 				if (regen_tmpaddr(ia6) == 0) {
    603 					/*
    604 					 * A new temporary address is
    605 					 * generated.
    606 					 * XXX: this means the address chain
    607 					 * has changed while we are still in
    608 					 * the loop.  Although the change
    609 					 * would not cause disaster (because
    610 					 * it's not a deletion, but an
    611 					 * addition,) we'd rather restart the
    612 					 * loop just for safety.  Or does this
    613 					 * significantly reduce performance??
    614 					 */
    615 					goto addrloop;
    616 				}
    617 			}
    618 		} else {
    619 			/*
    620 			 * A new RA might have made a deprecated address
    621 			 * preferred.
    622 			 */
    623 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
    624 		}
    625 	}
    626 
    627 	/* expire prefix list */
    628 	pr = nd_prefix.lh_first;
    629 	while (pr) {
    630 		/*
    631 		 * check prefix lifetime.
    632 		 * since pltime is just for autoconf, pltime processing for
    633 		 * prefix is not necessary.
    634 		 */
    635 		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
    636 		    time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
    637 			struct nd_prefix *t;
    638 			t = pr->ndpr_next;
    639 
    640 			/*
    641 			 * address expiration and prefix expiration are
    642 			 * separate.  NEVER perform in6_purgeaddr here.
    643 			 */
    644 
    645 			prelist_remove(pr);
    646 			pr = t;
    647 		} else
    648 			pr = pr->ndpr_next;
    649 	}
    650 	splx(s);
    651 }
    652 
    653 static int
    654 regen_tmpaddr(ia6)
    655 	struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */
    656 {
    657 	struct ifaddr *ifa;
    658 	struct ifnet *ifp;
    659 	struct in6_ifaddr *public_ifa6 = NULL;
    660 
    661 	ifp = ia6->ia_ifa.ifa_ifp;
    662 	for (ifa = ifp->if_addrlist.tqh_first; ifa;
    663 	     ifa = ifa->ifa_list.tqe_next) {
    664 		struct in6_ifaddr *it6;
    665 
    666 		if (ifa->ifa_addr->sa_family != AF_INET6)
    667 			continue;
    668 
    669 		it6 = (struct in6_ifaddr *)ifa;
    670 
    671 		/* ignore no autoconf addresses. */
    672 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
    673 			continue;
    674 
    675 		/* ignore autoconf addresses with different prefixes. */
    676 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
    677 			continue;
    678 
    679 		/*
    680 		 * Now we are looking at an autoconf address with the same
    681 		 * prefix as ours.  If the address is temporary and is still
    682 		 * preferred, do not create another one.  It would be rare, but
    683 		 * could happen, for example, when we resume a laptop PC after
    684 		 * a long period.
    685 		 */
    686 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
    687 		    !IFA6_IS_DEPRECATED(it6)) {
    688 			public_ifa6 = NULL;
    689 			break;
    690 		}
    691 
    692 		/*
    693 		 * This is a public autoconf address that has the same prefix
    694 		 * as ours.  If it is preferred, keep it.  We can't break the
    695 		 * loop here, because there may be a still-preferred temporary
    696 		 * address with the prefix.
    697 		 */
    698 		if (!IFA6_IS_DEPRECATED(it6))
    699 		    public_ifa6 = it6;
    700 	}
    701 
    702 	if (public_ifa6 != NULL) {
    703 		int e;
    704 
    705 		/*
    706 		 * Random factor is introduced in the preferred lifetime, so
    707 		 * we do not need additional delay (3rd arg to in6_tmpifadd).
    708 		 */
    709 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
    710 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
    711 			    " tmp addr, errno=%d\n", e);
    712 			return (-1);
    713 		}
    714 		return (0);
    715 	}
    716 
    717 	return (-1);
    718 }
    719 
    720 /*
    721  * Nuke neighbor cache/prefix/default router management table, right before
    722  * ifp goes away.
    723  */
    724 void
    725 nd6_purge(ifp)
    726 	struct ifnet *ifp;
    727 {
    728 	struct llinfo_nd6 *ln, *nln;
    729 	struct nd_defrouter *dr, *ndr;
    730 	struct nd_prefix *pr, *npr;
    731 
    732 	/*
    733 	 * Nuke default router list entries toward ifp.
    734 	 * We defer removal of default router list entries that is installed
    735 	 * in the routing table, in order to keep additional side effects as
    736 	 * small as possible.
    737 	 */
    738 	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
    739 		ndr = TAILQ_NEXT(dr, dr_entry);
    740 		if (dr->installed)
    741 			continue;
    742 
    743 		if (dr->ifp == ifp)
    744 			defrtrlist_del(dr);
    745 	}
    746 	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
    747 		ndr = TAILQ_NEXT(dr, dr_entry);
    748 		if (!dr->installed)
    749 			continue;
    750 
    751 		if (dr->ifp == ifp)
    752 			defrtrlist_del(dr);
    753 	}
    754 
    755 	/* Nuke prefix list entries toward ifp */
    756 	for (pr = nd_prefix.lh_first; pr; pr = npr) {
    757 		npr = pr->ndpr_next;
    758 		if (pr->ndpr_ifp == ifp) {
    759 			/*
    760 			 * Because if_detach() does *not* release prefixes
    761 			 * while purging addresses the reference count will
    762 			 * still be above zero. We therefore reset it to
    763 			 * make sure that the prefix really gets purged.
    764 			 */
    765 			pr->ndpr_refcnt = 0;
    766 			/*
    767 			 * Previously, pr->ndpr_addr is removed as well,
    768 			 * but I strongly believe we don't have to do it.
    769 			 * nd6_purge() is only called from in6_ifdetach(),
    770 			 * which removes all the associated interface addresses
    771 			 * by itself.
    772 			 * (jinmei (at) kame.net 20010129)
    773 			 */
    774 			prelist_remove(pr);
    775 		}
    776 	}
    777 
    778 	/* cancel default outgoing interface setting */
    779 	if (nd6_defifindex == ifp->if_index)
    780 		nd6_setdefaultiface(0);
    781 
    782 	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
    783 		/* refresh default router list */
    784 		defrouter_select();
    785 	}
    786 
    787 	/*
    788 	 * Nuke neighbor cache entries for the ifp.
    789 	 * Note that rt->rt_ifp may not be the same as ifp,
    790 	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
    791 	 * nd6_rtrequest(), and ip6_input().
    792 	 */
    793 	ln = llinfo_nd6.ln_next;
    794 	while (ln && ln != &llinfo_nd6) {
    795 		struct rtentry *rt;
    796 		struct sockaddr_dl *sdl;
    797 
    798 		nln = ln->ln_next;
    799 		rt = ln->ln_rt;
    800 		if (rt && rt->rt_gateway &&
    801 		    rt->rt_gateway->sa_family == AF_LINK) {
    802 			sdl = (struct sockaddr_dl *)rt->rt_gateway;
    803 			if (sdl->sdl_index == ifp->if_index)
    804 				nln = nd6_free(rt, 0);
    805 		}
    806 		ln = nln;
    807 	}
    808 }
    809 
    810 struct rtentry *
    811 nd6_lookup(addr6, create, ifp)
    812 	struct in6_addr *addr6;
    813 	int create;
    814 	struct ifnet *ifp;
    815 {
    816 	struct rtentry *rt;
    817 	struct sockaddr_in6 sin6;
    818 
    819 	bzero(&sin6, sizeof(sin6));
    820 	sin6.sin6_len = sizeof(struct sockaddr_in6);
    821 	sin6.sin6_family = AF_INET6;
    822 	sin6.sin6_addr = *addr6;
    823 	rt = rtalloc1((struct sockaddr *)&sin6, create);
    824 	if (rt && (rt->rt_flags & RTF_LLINFO) == 0) {
    825 		/*
    826 		 * This is the case for the default route.
    827 		 * If we want to create a neighbor cache for the address, we
    828 		 * should free the route for the destination and allocate an
    829 		 * interface route.
    830 		 */
    831 		if (create) {
    832 			RTFREE(rt);
    833 			rt = NULL;
    834 		}
    835 	}
    836 	if (rt == NULL) {
    837 		if (create && ifp) {
    838 			int e;
    839 
    840 			/*
    841 			 * If no route is available and create is set,
    842 			 * we allocate a host route for the destination
    843 			 * and treat it like an interface route.
    844 			 * This hack is necessary for a neighbor which can't
    845 			 * be covered by our own prefix.
    846 			 */
    847 			struct ifaddr *ifa =
    848 			    ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
    849 			if (ifa == NULL)
    850 				return (NULL);
    851 
    852 			/*
    853 			 * Create a new route.  RTF_LLINFO is necessary
    854 			 * to create a Neighbor Cache entry for the
    855 			 * destination in nd6_rtrequest which will be
    856 			 * called in rtrequest via ifa->ifa_rtrequest.
    857 			 */
    858 			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
    859 			    ifa->ifa_addr, (struct sockaddr *)&all1_sa,
    860 			    (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
    861 			    ~RTF_CLONING, &rt)) != 0) {
    862 #if 0
    863 				log(LOG_ERR,
    864 				    "nd6_lookup: failed to add route for a "
    865 				    "neighbor(%s), errno=%d\n",
    866 				    ip6_sprintf(addr6), e);
    867 #endif
    868 				return (NULL);
    869 			}
    870 			if (rt == NULL)
    871 				return (NULL);
    872 			if (rt->rt_llinfo) {
    873 				struct llinfo_nd6 *ln =
    874 				    (struct llinfo_nd6 *)rt->rt_llinfo;
    875 				ln->ln_state = ND6_LLINFO_NOSTATE;
    876 			}
    877 		} else
    878 			return (NULL);
    879 	}
    880 	rt->rt_refcnt--;
    881 	/*
    882 	 * Validation for the entry.
    883 	 * Note that the check for rt_llinfo is necessary because a cloned
    884 	 * route from a parent route that has the L flag (e.g. the default
    885 	 * route to a p2p interface) may have the flag, too, while the
    886 	 * destination is not actually a neighbor.
    887 	 * XXX: we can't use rt->rt_ifp to check for the interface, since
    888 	 *      it might be the loopback interface if the entry is for our
    889 	 *      own address on a non-loopback interface. Instead, we should
    890 	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
    891 	 *	interface.
    892 	 * Note also that ifa_ifp and ifp may differ when we connect two
    893 	 * interfaces to a same link, install a link prefix to an interface,
    894 	 * and try to install a neighbor cache on an interface that does not
    895 	 * have a route to the prefix.
    896 	 */
    897 	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
    898 	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
    899 	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
    900 		if (create) {
    901 			nd6log((LOG_DEBUG,
    902 			    "nd6_lookup: failed to lookup %s (if = %s)\n",
    903 			    ip6_sprintf(addr6),
    904 			    ifp ? if_name(ifp) : "unspec"));
    905 		}
    906 		return (NULL);
    907 	}
    908 	return (rt);
    909 }
    910 
    911 /*
    912  * Detect if a given IPv6 address identifies a neighbor on a given link.
    913  * XXX: should take care of the destination of a p2p link?
    914  */
    915 int
    916 nd6_is_addr_neighbor(addr, ifp)
    917 	struct sockaddr_in6 *addr;
    918 	struct ifnet *ifp;
    919 {
    920 	struct nd_prefix *pr;
    921 
    922 	/*
    923 	 * A link-local address is always a neighbor.
    924 	 * XXX: a link does not necessarily specify a single interface.
    925 	 */
    926 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
    927 		struct sockaddr_in6 sin6_copy;
    928 		u_int32_t zone;
    929 
    930 		/*
    931 		 * We need sin6_copy since sa6_recoverscope() may modify the
    932 		 * content (XXX).
    933 		 */
    934 		sin6_copy = *addr;
    935 		if (sa6_recoverscope(&sin6_copy))
    936 			return (0); /* XXX: should be impossible */
    937 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
    938 			return (0);
    939 		if (sin6_copy.sin6_scope_id == zone)
    940 			return (1);
    941 		else
    942 			return (0);
    943 	}
    944 
    945 	/*
    946 	 * If the address matches one of our on-link prefixes, it should be a
    947 	 * neighbor.
    948 	 */
    949 	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
    950 		if (pr->ndpr_ifp != ifp)
    951 			continue;
    952 
    953 		if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
    954 			continue;
    955 
    956 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
    957 		    &addr->sin6_addr, &pr->ndpr_mask))
    958 			return (1);
    959 	}
    960 
    961 	/*
    962 	 * If the default router list is empty, all addresses are regarded
    963 	 * as on-link, and thus, as a neighbor.
    964 	 * XXX: we restrict the condition to hosts, because routers usually do
    965 	 * not have the "default router list".
    966 	 */
    967 	if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
    968 	    nd6_defifindex == ifp->if_index) {
    969 		return (1);
    970 	}
    971 
    972 	/*
    973 	 * Even if the address matches none of our addresses, it might be
    974 	 * in the neighbor cache.
    975 	 */
    976 	if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
    977 		return (1);
    978 
    979 	return (0);
    980 }
    981 
    982 /*
    983  * Free an nd6 llinfo entry.
    984  * Since the function would cause significant changes in the kernel, DO NOT
    985  * make it global, unless you have a strong reason for the change, and are sure
    986  * that the change is safe.
    987  */
    988 static struct llinfo_nd6 *
    989 nd6_free(rt, gc)
    990 	struct rtentry *rt;
    991 	int gc;
    992 {
    993 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
    994 	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
    995 	struct nd_defrouter *dr;
    996 
    997 	/*
    998 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
    999 	 * even though it is not harmful, it was not really necessary.
   1000 	 */
   1001 
   1002 	/* cancel timer */
   1003 	nd6_llinfo_settimer(ln, -1);
   1004 
   1005 	if (!ip6_forwarding) {
   1006 		int s;
   1007 		s = splsoftnet();
   1008 		dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
   1009 		    rt->rt_ifp);
   1010 
   1011 		if (dr != NULL && dr->expire &&
   1012 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
   1013 			/*
   1014 			 * If the reason for the deletion is just garbage
   1015 			 * collection, and the neighbor is an active default
   1016 			 * router, do not delete it.  Instead, reset the GC
   1017 			 * timer using the router's lifetime.
   1018 			 * Simply deleting the entry would affect default
   1019 			 * router selection, which is not necessarily a good
   1020 			 * thing, especially when we're using router preference
   1021 			 * values.
   1022 			 * XXX: the check for ln_state would be redundant,
   1023 			 *      but we intentionally keep it just in case.
   1024 			 */
   1025 			if (dr->expire > time_second)
   1026 				nd6_llinfo_settimer(ln,
   1027 				    (dr->expire - time_second) * hz);
   1028 			else
   1029 				nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
   1030 			splx(s);
   1031 			return (ln->ln_next);
   1032 		}
   1033 
   1034 		if (ln->ln_router || dr) {
   1035 			/*
   1036 			 * rt6_flush must be called whether or not the neighbor
   1037 			 * is in the Default Router List.
   1038 			 * See a corresponding comment in nd6_na_input().
   1039 			 */
   1040 			rt6_flush(&in6, rt->rt_ifp);
   1041 		}
   1042 
   1043 		if (dr) {
   1044 			/*
   1045 			 * Unreachablity of a router might affect the default
   1046 			 * router selection and on-link detection of advertised
   1047 			 * prefixes.
   1048 			 */
   1049 
   1050 			/*
   1051 			 * Temporarily fake the state to choose a new default
   1052 			 * router and to perform on-link determination of
   1053 			 * prefixes correctly.
   1054 			 * Below the state will be set correctly,
   1055 			 * or the entry itself will be deleted.
   1056 			 */
   1057 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
   1058 
   1059 			/*
   1060 			 * Since defrouter_select() does not affect the
   1061 			 * on-link determination and MIP6 needs the check
   1062 			 * before the default router selection, we perform
   1063 			 * the check now.
   1064 			 */
   1065 			pfxlist_onlink_check();
   1066 
   1067 			/*
   1068 			 * refresh default router list
   1069 			 */
   1070 			defrouter_select();
   1071 		}
   1072 		splx(s);
   1073 	}
   1074 
   1075 	/*
   1076 	 * Before deleting the entry, remember the next entry as the
   1077 	 * return value.  We need this because pfxlist_onlink_check() above
   1078 	 * might have freed other entries (particularly the old next entry) as
   1079 	 * a side effect (XXX).
   1080 	 */
   1081 	next = ln->ln_next;
   1082 
   1083 	/*
   1084 	 * Detach the route from the routing tree and the list of neighbor
   1085 	 * caches, and disable the route entry not to be used in already
   1086 	 * cached routes.
   1087 	 */
   1088 	rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
   1089 	    rt_mask(rt), 0, (struct rtentry **)0);
   1090 
   1091 	return (next);
   1092 }
   1093 
   1094 /*
   1095  * Upper-layer reachability hint for Neighbor Unreachability Detection.
   1096  *
   1097  * XXX cost-effective methods?
   1098  */
   1099 void
   1100 nd6_nud_hint(rt, dst6, force)
   1101 	struct rtentry *rt;
   1102 	struct in6_addr *dst6;
   1103 	int force;
   1104 {
   1105 	struct llinfo_nd6 *ln;
   1106 
   1107 	/*
   1108 	 * If the caller specified "rt", use that.  Otherwise, resolve the
   1109 	 * routing table by supplied "dst6".
   1110 	 */
   1111 	if (rt == NULL) {
   1112 		if (dst6 == NULL)
   1113 			return;
   1114 		if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
   1115 			return;
   1116 	}
   1117 
   1118 	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
   1119 	    (rt->rt_flags & RTF_LLINFO) == 0 ||
   1120 	    !rt->rt_llinfo || !rt->rt_gateway ||
   1121 	    rt->rt_gateway->sa_family != AF_LINK) {
   1122 		/* This is not a host route. */
   1123 		return;
   1124 	}
   1125 
   1126 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
   1127 	if (ln->ln_state < ND6_LLINFO_REACHABLE)
   1128 		return;
   1129 
   1130 	/*
   1131 	 * if we get upper-layer reachability confirmation many times,
   1132 	 * it is possible we have false information.
   1133 	 */
   1134 	if (!force) {
   1135 		ln->ln_byhint++;
   1136 		if (ln->ln_byhint > nd6_maxnudhint)
   1137 			return;
   1138 	}
   1139 
   1140 	ln->ln_state = ND6_LLINFO_REACHABLE;
   1141 	if (!ND6_LLINFO_PERMANENT(ln)) {
   1142 		nd6_llinfo_settimer(ln,
   1143 		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
   1144 	}
   1145 }
   1146 
   1147 void
   1148 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info __unused)
   1149 {
   1150 	struct sockaddr *gate = rt->rt_gateway;
   1151 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
   1152 	static const struct sockaddr_dl null_sdl = {
   1153 		.sdl_len = sizeof(null_sdl),
   1154 		.sdl_family = AF_LINK,
   1155 	};
   1156 	struct ifnet *ifp = rt->rt_ifp;
   1157 	struct ifaddr *ifa;
   1158 
   1159 	if ((rt->rt_flags & RTF_GATEWAY) != 0)
   1160 		return;
   1161 
   1162 	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
   1163 		/*
   1164 		 * This is probably an interface direct route for a link
   1165 		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
   1166 		 * We do not need special treatment below for such a route.
   1167 		 * Moreover, the RTF_LLINFO flag which would be set below
   1168 		 * would annoy the ndp(8) command.
   1169 		 */
   1170 		return;
   1171 	}
   1172 
   1173 	if (req == RTM_RESOLVE &&
   1174 	    (nd6_need_cache(ifp) == 0 || /* stf case */
   1175 	     !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) {
   1176 		/*
   1177 		 * FreeBSD and BSD/OS often make a cloned host route based
   1178 		 * on a less-specific route (e.g. the default route).
   1179 		 * If the less specific route does not have a "gateway"
   1180 		 * (this is the case when the route just goes to a p2p or an
   1181 		 * stf interface), we'll mistakenly make a neighbor cache for
   1182 		 * the host route, and will see strange neighbor solicitation
   1183 		 * for the corresponding destination.  In order to avoid the
   1184 		 * confusion, we check if the destination of the route is
   1185 		 * a neighbor in terms of neighbor discovery, and stop the
   1186 		 * process if not.  Additionally, we remove the LLINFO flag
   1187 		 * so that ndp(8) will not try to get the neighbor information
   1188 		 * of the destination.
   1189 		 */
   1190 		rt->rt_flags &= ~RTF_LLINFO;
   1191 		return;
   1192 	}
   1193 
   1194 	switch (req) {
   1195 	case RTM_ADD:
   1196 		/*
   1197 		 * There is no backward compatibility :)
   1198 		 *
   1199 		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
   1200 		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
   1201 		 *	   rt->rt_flags |= RTF_CLONING;
   1202 		 */
   1203 		if ((rt->rt_flags & RTF_CLONING) ||
   1204 		    ((rt->rt_flags & RTF_LLINFO) && !ln)) {
   1205 			/*
   1206 			 * Case 1: This route should come from a route to
   1207 			 * interface (RTF_CLONING case) or the route should be
   1208 			 * treated as on-link but is currently not
   1209 			 * (RTF_LLINFO && !ln case).
   1210 			 */
   1211 			rt_setgate(rt, rt_key(rt),
   1212 				   (const struct sockaddr *)&null_sdl);
   1213 			gate = rt->rt_gateway;
   1214 			SDL(gate)->sdl_type = ifp->if_type;
   1215 			SDL(gate)->sdl_index = ifp->if_index;
   1216 			if (ln)
   1217 				nd6_llinfo_settimer(ln, 0);
   1218 			if ((rt->rt_flags & RTF_CLONING) != 0)
   1219 				break;
   1220 		}
   1221 		/*
   1222 		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
   1223 		 * We don't do that here since llinfo is not ready yet.
   1224 		 *
   1225 		 * There are also couple of other things to be discussed:
   1226 		 * - unsolicited NA code needs improvement beforehand
   1227 		 * - RFC2461 says we MAY send multicast unsolicited NA
   1228 		 *   (7.2.6 paragraph 4), however, it also says that we
   1229 		 *   SHOULD provide a mechanism to prevent multicast NA storm.
   1230 		 *   we don't have anything like it right now.
   1231 		 *   note that the mechanism needs a mutual agreement
   1232 		 *   between proxies, which means that we need to implement
   1233 		 *   a new protocol, or a new kludge.
   1234 		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
   1235 		 *   we need to check ip6forwarding before sending it.
   1236 		 *   (or should we allow proxy ND configuration only for
   1237 		 *   routers?  there's no mention about proxy ND from hosts)
   1238 		 */
   1239 #if 0
   1240 		/* XXX it does not work */
   1241 		if (rt->rt_flags & RTF_ANNOUNCE)
   1242 			nd6_na_output(ifp,
   1243 			      &SIN6(rt_key(rt))->sin6_addr,
   1244 			      &SIN6(rt_key(rt))->sin6_addr,
   1245 			      ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
   1246 			      1, NULL);
   1247 #endif
   1248 		/* FALLTHROUGH */
   1249 	case RTM_RESOLVE:
   1250 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
   1251 			/*
   1252 			 * Address resolution isn't necessary for a point to
   1253 			 * point link, so we can skip this test for a p2p link.
   1254 			 */
   1255 			if (gate->sa_family != AF_LINK ||
   1256 			    gate->sa_len < sizeof(null_sdl)) {
   1257 				log(LOG_DEBUG,
   1258 				    "nd6_rtrequest: bad gateway value: %s\n",
   1259 				    if_name(ifp));
   1260 				break;
   1261 			}
   1262 			SDL(gate)->sdl_type = ifp->if_type;
   1263 			SDL(gate)->sdl_index = ifp->if_index;
   1264 		}
   1265 		if (ln != NULL)
   1266 			break;	/* This happens on a route change */
   1267 		/*
   1268 		 * Case 2: This route may come from cloning, or a manual route
   1269 		 * add with a LL address.
   1270 		 */
   1271 		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
   1272 		rt->rt_llinfo = (caddr_t)ln;
   1273 		if (ln == NULL) {
   1274 			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
   1275 			break;
   1276 		}
   1277 		nd6_inuse++;
   1278 		nd6_allocated++;
   1279 		bzero(ln, sizeof(*ln));
   1280 		ln->ln_rt = rt;
   1281 		callout_init(&ln->ln_timer_ch);
   1282 		/* this is required for "ndp" command. - shin */
   1283 		if (req == RTM_ADD) {
   1284 		        /*
   1285 			 * gate should have some valid AF_LINK entry,
   1286 			 * and ln->ln_expire should have some lifetime
   1287 			 * which is specified by ndp command.
   1288 			 */
   1289 			ln->ln_state = ND6_LLINFO_REACHABLE;
   1290 			ln->ln_byhint = 0;
   1291 		} else {
   1292 		        /*
   1293 			 * When req == RTM_RESOLVE, rt is created and
   1294 			 * initialized in rtrequest(), so rt_expire is 0.
   1295 			 */
   1296 			ln->ln_state = ND6_LLINFO_NOSTATE;
   1297 			nd6_llinfo_settimer(ln, 0);
   1298 		}
   1299 		rt->rt_flags |= RTF_LLINFO;
   1300 		ln->ln_next = llinfo_nd6.ln_next;
   1301 		llinfo_nd6.ln_next = ln;
   1302 		ln->ln_prev = &llinfo_nd6;
   1303 		ln->ln_next->ln_prev = ln;
   1304 
   1305 		/*
   1306 		 * check if rt_key(rt) is one of my address assigned
   1307 		 * to the interface.
   1308 		 */
   1309 		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
   1310 		    &SIN6(rt_key(rt))->sin6_addr);
   1311 		if (ifa) {
   1312 			caddr_t macp = nd6_ifptomac(ifp);
   1313 			nd6_llinfo_settimer(ln, -1);
   1314 			ln->ln_state = ND6_LLINFO_REACHABLE;
   1315 			ln->ln_byhint = 0;
   1316 			if (macp) {
   1317 				bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
   1318 				SDL(gate)->sdl_alen = ifp->if_addrlen;
   1319 			}
   1320 			if (nd6_useloopback) {
   1321 				rt->rt_ifp = lo0ifp;	/* XXX */
   1322 				/*
   1323 				 * Make sure rt_ifa be equal to the ifaddr
   1324 				 * corresponding to the address.
   1325 				 * We need this because when we refer
   1326 				 * rt_ifa->ia6_flags in ip6_input, we assume
   1327 				 * that the rt_ifa points to the address instead
   1328 				 * of the loopback address.
   1329 				 */
   1330 				if (ifa != rt->rt_ifa) {
   1331 					IFAFREE(rt->rt_ifa);
   1332 					IFAREF(ifa);
   1333 					rt->rt_ifa = ifa;
   1334 				}
   1335 			}
   1336 		} else if (rt->rt_flags & RTF_ANNOUNCE) {
   1337 			nd6_llinfo_settimer(ln, -1);
   1338 			ln->ln_state = ND6_LLINFO_REACHABLE;
   1339 			ln->ln_byhint = 0;
   1340 
   1341 			/* join solicited node multicast for proxy ND */
   1342 			if (ifp->if_flags & IFF_MULTICAST) {
   1343 				struct in6_addr llsol;
   1344 				int error;
   1345 
   1346 				llsol = SIN6(rt_key(rt))->sin6_addr;
   1347 				llsol.s6_addr32[0] = htonl(0xff020000);
   1348 				llsol.s6_addr32[1] = 0;
   1349 				llsol.s6_addr32[2] = htonl(1);
   1350 				llsol.s6_addr8[12] = 0xff;
   1351 				if (in6_setscope(&llsol, ifp, NULL))
   1352 					break;
   1353 				if (!in6_addmulti(&llsol, ifp, &error, 0)) {
   1354 					nd6log((LOG_ERR, "%s: failed to join "
   1355 					    "%s (errno=%d)\n", if_name(ifp),
   1356 					    ip6_sprintf(&llsol), error));
   1357 				}
   1358 			}
   1359 		}
   1360 		break;
   1361 
   1362 	case RTM_DELETE:
   1363 		if (ln == NULL)
   1364 			break;
   1365 		/* leave from solicited node multicast for proxy ND */
   1366 		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
   1367 		    (ifp->if_flags & IFF_MULTICAST) != 0) {
   1368 			struct in6_addr llsol;
   1369 			struct in6_multi *in6m;
   1370 
   1371 			llsol = SIN6(rt_key(rt))->sin6_addr;
   1372 			llsol.s6_addr32[0] = htonl(0xff020000);
   1373 			llsol.s6_addr32[1] = 0;
   1374 			llsol.s6_addr32[2] = htonl(1);
   1375 			llsol.s6_addr8[12] = 0xff;
   1376 			if (in6_setscope(&llsol, ifp, NULL) == 0) {
   1377 				IN6_LOOKUP_MULTI(llsol, ifp, in6m);
   1378 				if (in6m)
   1379 					in6_delmulti(in6m);
   1380 			}
   1381 		}
   1382 		nd6_inuse--;
   1383 		ln->ln_next->ln_prev = ln->ln_prev;
   1384 		ln->ln_prev->ln_next = ln->ln_next;
   1385 		ln->ln_prev = NULL;
   1386 		nd6_llinfo_settimer(ln, -1);
   1387 		rt->rt_llinfo = 0;
   1388 		rt->rt_flags &= ~RTF_LLINFO;
   1389 		clear_llinfo_pqueue(ln);
   1390 		Free((caddr_t)ln);
   1391 	}
   1392 }
   1393 
   1394 int
   1395 nd6_ioctl(cmd, data, ifp)
   1396 	u_long cmd;
   1397 	caddr_t	data;
   1398 	struct ifnet *ifp;
   1399 {
   1400 	struct in6_drlist *drl = (struct in6_drlist *)data;
   1401 	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
   1402 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
   1403 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
   1404 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
   1405 	struct nd_defrouter *dr;
   1406 	struct nd_prefix *pr;
   1407 	struct rtentry *rt;
   1408 	int i = 0, error = 0;
   1409 	int s;
   1410 
   1411 	switch (cmd) {
   1412 	case SIOCGDRLST_IN6:
   1413 		/*
   1414 		 * obsolete API, use sysctl under net.inet6.icmp6
   1415 		 */
   1416 		bzero(drl, sizeof(*drl));
   1417 		s = splsoftnet();
   1418 		dr = TAILQ_FIRST(&nd_defrouter);
   1419 		while (dr && i < DRLSTSIZ) {
   1420 			drl->defrouter[i].rtaddr = dr->rtaddr;
   1421 			in6_clearscope(&drl->defrouter[i].rtaddr);
   1422 
   1423 			drl->defrouter[i].flags = dr->flags;
   1424 			drl->defrouter[i].rtlifetime = dr->rtlifetime;
   1425 			drl->defrouter[i].expire = dr->expire;
   1426 			drl->defrouter[i].if_index = dr->ifp->if_index;
   1427 			i++;
   1428 			dr = TAILQ_NEXT(dr, dr_entry);
   1429 		}
   1430 		splx(s);
   1431 		break;
   1432 	case SIOCGPRLST_IN6:
   1433 		/*
   1434 		 * obsolete API, use sysctl under net.inet6.icmp6
   1435 		 *
   1436 		 * XXX the structure in6_prlist was changed in backward-
   1437 		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
   1438 		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
   1439 		 */
   1440 		/*
   1441 		 * XXX meaning of fields, especialy "raflags", is very
   1442 		 * differnet between RA prefix list and RR/static prefix list.
   1443 		 * how about separating ioctls into two?
   1444 		 */
   1445 		bzero(oprl, sizeof(*oprl));
   1446 		s = splsoftnet();
   1447 		pr = nd_prefix.lh_first;
   1448 		while (pr && i < PRLSTSIZ) {
   1449 			struct nd_pfxrouter *pfr;
   1450 			int j;
   1451 
   1452 			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
   1453 			oprl->prefix[i].raflags = pr->ndpr_raf;
   1454 			oprl->prefix[i].prefixlen = pr->ndpr_plen;
   1455 			oprl->prefix[i].vltime = pr->ndpr_vltime;
   1456 			oprl->prefix[i].pltime = pr->ndpr_pltime;
   1457 			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
   1458 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
   1459 				oprl->prefix[i].expire = 0;
   1460 			else {
   1461 				time_t maxexpire;
   1462 
   1463 				/* XXX: we assume time_t is signed. */
   1464 				maxexpire = (-1) &
   1465 				    ~((time_t)1 <<
   1466 				    ((sizeof(maxexpire) * 8) - 1));
   1467 				if (pr->ndpr_vltime <
   1468 				    maxexpire - pr->ndpr_lastupdate) {
   1469 					oprl->prefix[i].expire =
   1470 						 pr->ndpr_lastupdate +
   1471 						pr->ndpr_vltime;
   1472 				} else
   1473 					oprl->prefix[i].expire = maxexpire;
   1474 			}
   1475 
   1476 			pfr = pr->ndpr_advrtrs.lh_first;
   1477 			j = 0;
   1478 			while (pfr) {
   1479 				if (j < DRLSTSIZ) {
   1480 #define RTRADDR oprl->prefix[i].advrtr[j]
   1481 					RTRADDR = pfr->router->rtaddr;
   1482 					in6_clearscope(&RTRADDR);
   1483 #undef RTRADDR
   1484 				}
   1485 				j++;
   1486 				pfr = pfr->pfr_next;
   1487 			}
   1488 			oprl->prefix[i].advrtrs = j;
   1489 			oprl->prefix[i].origin = PR_ORIG_RA;
   1490 
   1491 			i++;
   1492 			pr = pr->ndpr_next;
   1493 		}
   1494 		splx(s);
   1495 
   1496 		break;
   1497 	case OSIOCGIFINFO_IN6:
   1498 #define ND	ndi->ndi
   1499 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
   1500 		memset(&ND, 0, sizeof(ND));
   1501 		ND.linkmtu = IN6_LINKMTU(ifp);
   1502 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
   1503 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
   1504 		ND.reachable = ND_IFINFO(ifp)->reachable;
   1505 		ND.retrans = ND_IFINFO(ifp)->retrans;
   1506 		ND.flags = ND_IFINFO(ifp)->flags;
   1507 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
   1508 		ND.chlim = ND_IFINFO(ifp)->chlim;
   1509 		break;
   1510 	case SIOCGIFINFO_IN6:
   1511 		ND = *ND_IFINFO(ifp);
   1512 		break;
   1513 	case SIOCSIFINFO_IN6:
   1514 		/*
   1515 		 * used to change host variables from userland.
   1516 		 * intented for a use on router to reflect RA configurations.
   1517 		 */
   1518 		/* 0 means 'unspecified' */
   1519 		if (ND.linkmtu != 0) {
   1520 			if (ND.linkmtu < IPV6_MMTU ||
   1521 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
   1522 				error = EINVAL;
   1523 				break;
   1524 			}
   1525 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
   1526 		}
   1527 
   1528 		if (ND.basereachable != 0) {
   1529 			int obasereachable = ND_IFINFO(ifp)->basereachable;
   1530 
   1531 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
   1532 			if (ND.basereachable != obasereachable)
   1533 				ND_IFINFO(ifp)->reachable =
   1534 				    ND_COMPUTE_RTIME(ND.basereachable);
   1535 		}
   1536 		if (ND.retrans != 0)
   1537 			ND_IFINFO(ifp)->retrans = ND.retrans;
   1538 		if (ND.chlim != 0)
   1539 			ND_IFINFO(ifp)->chlim = ND.chlim;
   1540 		/* FALLTHROUGH */
   1541 	case SIOCSIFINFO_FLAGS:
   1542 		ND_IFINFO(ifp)->flags = ND.flags;
   1543 		break;
   1544 #undef ND
   1545 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
   1546 		/* sync kernel routing table with the default router list */
   1547 		defrouter_reset();
   1548 		defrouter_select();
   1549 		break;
   1550 	case SIOCSPFXFLUSH_IN6:
   1551 	{
   1552 		/* flush all the prefix advertised by routers */
   1553 		struct nd_prefix *pfx, *next;
   1554 
   1555 		s = splsoftnet();
   1556 		for (pfx = nd_prefix.lh_first; pfx; pfx = next) {
   1557 			struct in6_ifaddr *ia, *ia_next;
   1558 
   1559 			next = pfx->ndpr_next;
   1560 
   1561 			if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
   1562 				continue; /* XXX */
   1563 
   1564 			/* do we really have to remove addresses as well? */
   1565 			for (ia = in6_ifaddr; ia; ia = ia_next) {
   1566 				/* ia might be removed.  keep the next ptr. */
   1567 				ia_next = ia->ia_next;
   1568 
   1569 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
   1570 					continue;
   1571 
   1572 				if (ia->ia6_ndpr == pfx)
   1573 					in6_purgeaddr(&ia->ia_ifa);
   1574 			}
   1575 			prelist_remove(pfx);
   1576 		}
   1577 		splx(s);
   1578 		break;
   1579 	}
   1580 	case SIOCSRTRFLUSH_IN6:
   1581 	{
   1582 		/* flush all the default routers */
   1583 		struct nd_defrouter *drtr, *next;
   1584 
   1585 		s = splsoftnet();
   1586 		defrouter_reset();
   1587 		for (drtr = TAILQ_FIRST(&nd_defrouter); drtr; drtr = next) {
   1588 			next = TAILQ_NEXT(drtr, dr_entry);
   1589 			defrtrlist_del(drtr);
   1590 		}
   1591 		defrouter_select();
   1592 		splx(s);
   1593 		break;
   1594 	}
   1595 	case SIOCGNBRINFO_IN6:
   1596 	{
   1597 		struct llinfo_nd6 *ln;
   1598 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
   1599 
   1600 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
   1601 			return (error);
   1602 
   1603 		s = splsoftnet();
   1604 		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL ||
   1605 		    (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) {
   1606 			error = EINVAL;
   1607 			splx(s);
   1608 			break;
   1609 		}
   1610 		nbi->state = ln->ln_state;
   1611 		nbi->asked = ln->ln_asked;
   1612 		nbi->isrouter = ln->ln_router;
   1613 		nbi->expire = ln->ln_expire;
   1614 		splx(s);
   1615 
   1616 		break;
   1617 	}
   1618 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
   1619 		ndif->ifindex = nd6_defifindex;
   1620 		break;
   1621 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
   1622 		return (nd6_setdefaultiface(ndif->ifindex));
   1623 	}
   1624 	return (error);
   1625 }
   1626 
   1627 /*
   1628  * Create neighbor cache entry and cache link-layer address,
   1629  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
   1630  */
   1631 struct rtentry *
   1632 nd6_cache_lladdr(
   1633     struct ifnet *ifp,
   1634     struct in6_addr *from,
   1635     char *lladdr,
   1636     int lladdrlen __unused,
   1637     int type,	/* ICMP6 type */
   1638     int code	/* type dependent information */
   1639 )
   1640 {
   1641 	struct rtentry *rt = NULL;
   1642 	struct llinfo_nd6 *ln = NULL;
   1643 	int is_newentry;
   1644 	struct sockaddr_dl *sdl = NULL;
   1645 	int do_update;
   1646 	int olladdr;
   1647 	int llchange;
   1648 	int newstate = 0;
   1649 
   1650 	if (ifp == NULL)
   1651 		panic("ifp == NULL in nd6_cache_lladdr");
   1652 	if (from == NULL)
   1653 		panic("from == NULL in nd6_cache_lladdr");
   1654 
   1655 	/* nothing must be updated for unspecified address */
   1656 	if (IN6_IS_ADDR_UNSPECIFIED(from))
   1657 		return NULL;
   1658 
   1659 	/*
   1660 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
   1661 	 * the caller.
   1662 	 *
   1663 	 * XXX If the link does not have link-layer adderss, what should
   1664 	 * we do? (ifp->if_addrlen == 0)
   1665 	 * Spec says nothing in sections for RA, RS and NA.  There's small
   1666 	 * description on it in NS section (RFC 2461 7.2.3).
   1667 	 */
   1668 
   1669 	rt = nd6_lookup(from, 0, ifp);
   1670 	if (rt == NULL) {
   1671 #if 0
   1672 		/* nothing must be done if there's no lladdr */
   1673 		if (!lladdr || !lladdrlen)
   1674 			return NULL;
   1675 #endif
   1676 
   1677 		rt = nd6_lookup(from, 1, ifp);
   1678 		is_newentry = 1;
   1679 	} else {
   1680 		/* do nothing if static ndp is set */
   1681 		if (rt->rt_flags & RTF_STATIC)
   1682 			return NULL;
   1683 		is_newentry = 0;
   1684 	}
   1685 
   1686 	if (rt == NULL)
   1687 		return NULL;
   1688 	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
   1689 fail:
   1690 		(void)nd6_free(rt, 0);
   1691 		return NULL;
   1692 	}
   1693 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
   1694 	if (ln == NULL)
   1695 		goto fail;
   1696 	if (rt->rt_gateway == NULL)
   1697 		goto fail;
   1698 	if (rt->rt_gateway->sa_family != AF_LINK)
   1699 		goto fail;
   1700 	sdl = SDL(rt->rt_gateway);
   1701 
   1702 	olladdr = (sdl->sdl_alen) ? 1 : 0;
   1703 	if (olladdr && lladdr) {
   1704 		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
   1705 			llchange = 1;
   1706 		else
   1707 			llchange = 0;
   1708 	} else
   1709 		llchange = 0;
   1710 
   1711 	/*
   1712 	 * newentry olladdr  lladdr  llchange	(*=record)
   1713 	 *	0	n	n	--	(1)
   1714 	 *	0	y	n	--	(2)
   1715 	 *	0	n	y	--	(3) * STALE
   1716 	 *	0	y	y	n	(4) *
   1717 	 *	0	y	y	y	(5) * STALE
   1718 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
   1719 	 *	1	--	y	--	(7) * STALE
   1720 	 */
   1721 
   1722 	if (lladdr) {		/* (3-5) and (7) */
   1723 		/*
   1724 		 * Record source link-layer address
   1725 		 * XXX is it dependent to ifp->if_type?
   1726 		 */
   1727 		sdl->sdl_alen = ifp->if_addrlen;
   1728 		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
   1729 	}
   1730 
   1731 	if (!is_newentry) {
   1732 		if ((!olladdr && lladdr) ||		/* (3) */
   1733 		    (olladdr && lladdr && llchange)) {	/* (5) */
   1734 			do_update = 1;
   1735 			newstate = ND6_LLINFO_STALE;
   1736 		} else					/* (1-2,4) */
   1737 			do_update = 0;
   1738 	} else {
   1739 		do_update = 1;
   1740 		if (lladdr == NULL)			/* (6) */
   1741 			newstate = ND6_LLINFO_NOSTATE;
   1742 		else					/* (7) */
   1743 			newstate = ND6_LLINFO_STALE;
   1744 	}
   1745 
   1746 	if (do_update) {
   1747 		/*
   1748 		 * Update the state of the neighbor cache.
   1749 		 */
   1750 		ln->ln_state = newstate;
   1751 
   1752 		if (ln->ln_state == ND6_LLINFO_STALE) {
   1753 			/*
   1754 			 * XXX: since nd6_output() below will cause
   1755 			 * state tansition to DELAY and reset the timer,
   1756 			 * we must set the timer now, although it is actually
   1757 			 * meaningless.
   1758 			 */
   1759 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
   1760 
   1761  			if (ln->ln_hold) {
   1762 				struct mbuf *m_hold, *m_hold_next;
   1763 				for (m_hold = ln->ln_hold; m_hold;
   1764 				     m_hold = m_hold_next) {
   1765 					struct mbuf *mpkt = NULL;
   1766 
   1767 					m_hold_next = m_hold->m_nextpkt;
   1768 					mpkt = m_copym(m_hold, 0, M_COPYALL, M_DONTWAIT);
   1769 					if (mpkt == NULL) {
   1770 						m_freem(m_hold);
   1771 						break;
   1772 					}
   1773 					mpkt->m_nextpkt = NULL;
   1774 
   1775 					/*
   1776 					 * we assume ifp is not a p2p here, so
   1777 					 * just set the 2nd argument as the
   1778 					 * 1st one.
   1779 					 */
   1780 					nd6_output(ifp, ifp, mpkt,
   1781 					     (struct sockaddr_in6 *)rt_key(rt),
   1782 					     rt);
   1783 				}
   1784  				ln->ln_hold = NULL;
   1785  			}
   1786 		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
   1787 			/* probe right away */
   1788 			nd6_llinfo_settimer((void *)ln, 0);
   1789 		}
   1790 	}
   1791 
   1792 	/*
   1793 	 * ICMP6 type dependent behavior.
   1794 	 *
   1795 	 * NS: clear IsRouter if new entry
   1796 	 * RS: clear IsRouter
   1797 	 * RA: set IsRouter if there's lladdr
   1798 	 * redir: clear IsRouter if new entry
   1799 	 *
   1800 	 * RA case, (1):
   1801 	 * The spec says that we must set IsRouter in the following cases:
   1802 	 * - If lladdr exist, set IsRouter.  This means (1-5).
   1803 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
   1804 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
   1805 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
   1806 	 * neighbor cache, this is similar to (6).
   1807 	 * This case is rare but we figured that we MUST NOT set IsRouter.
   1808 	 *
   1809 	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
   1810 	 *							D R
   1811 	 *	0	n	n	--	(1)	c   ?     s
   1812 	 *	0	y	n	--	(2)	c   s     s
   1813 	 *	0	n	y	--	(3)	c   s     s
   1814 	 *	0	y	y	n	(4)	c   s     s
   1815 	 *	0	y	y	y	(5)	c   s     s
   1816 	 *	1	--	n	--	(6) c	c 	c s
   1817 	 *	1	--	y	--	(7) c	c   s	c s
   1818 	 *
   1819 	 *					(c=clear s=set)
   1820 	 */
   1821 	switch (type & 0xff) {
   1822 	case ND_NEIGHBOR_SOLICIT:
   1823 		/*
   1824 		 * New entry must have is_router flag cleared.
   1825 		 */
   1826 		if (is_newentry)	/* (6-7) */
   1827 			ln->ln_router = 0;
   1828 		break;
   1829 	case ND_REDIRECT:
   1830 		/*
   1831 		 * If the icmp is a redirect to a better router, always set the
   1832 		 * is_router flag.  Otherwise, if the entry is newly created,
   1833 		 * clear the flag.  [RFC 2461, sec 8.3]
   1834 		 */
   1835 		if (code == ND_REDIRECT_ROUTER)
   1836 			ln->ln_router = 1;
   1837 		else if (is_newentry) /* (6-7) */
   1838 			ln->ln_router = 0;
   1839 		break;
   1840 	case ND_ROUTER_SOLICIT:
   1841 		/*
   1842 		 * is_router flag must always be cleared.
   1843 		 */
   1844 		ln->ln_router = 0;
   1845 		break;
   1846 	case ND_ROUTER_ADVERT:
   1847 		/*
   1848 		 * Mark an entry with lladdr as a router.
   1849 		 */
   1850 		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
   1851 		    (is_newentry && lladdr)) {			/* (7) */
   1852 			ln->ln_router = 1;
   1853 		}
   1854 		break;
   1855 	}
   1856 
   1857 	/*
   1858 	 * When the link-layer address of a router changes, select the
   1859 	 * best router again.  In particular, when the neighbor entry is newly
   1860 	 * created, it might affect the selection policy.
   1861 	 * Question: can we restrict the first condition to the "is_newentry"
   1862 	 * case?
   1863 	 * XXX: when we hear an RA from a new router with the link-layer
   1864 	 * address option, defrouter_select() is called twice, since
   1865 	 * defrtrlist_update called the function as well.  However, I believe
   1866 	 * we can compromise the overhead, since it only happens the first
   1867 	 * time.
   1868 	 * XXX: although defrouter_select() should not have a bad effect
   1869 	 * for those are not autoconfigured hosts, we explicitly avoid such
   1870 	 * cases for safety.
   1871 	 */
   1872 	if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
   1873 		defrouter_select();
   1874 
   1875 	return rt;
   1876 }
   1877 
   1878 static void
   1879 nd6_slowtimo(void *ignored_arg __unused)
   1880 {
   1881 	int s = splsoftnet();
   1882 	struct nd_ifinfo *nd6if;
   1883 	struct ifnet *ifp;
   1884 
   1885 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
   1886 	    nd6_slowtimo, NULL);
   1887 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
   1888 	{
   1889 		nd6if = ND_IFINFO(ifp);
   1890 		if (nd6if->basereachable && /* already initialized */
   1891 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
   1892 			/*
   1893 			 * Since reachable time rarely changes by router
   1894 			 * advertisements, we SHOULD insure that a new random
   1895 			 * value gets recomputed at least once every few hours.
   1896 			 * (RFC 2461, 6.3.4)
   1897 			 */
   1898 			nd6if->recalctm = nd6_recalc_reachtm_interval;
   1899 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
   1900 		}
   1901 	}
   1902 	splx(s);
   1903 }
   1904 
   1905 #define senderr(e) { error = (e); goto bad;}
   1906 int
   1907 nd6_output(ifp, origifp, m0, dst, rt0)
   1908 	struct ifnet *ifp;
   1909 	struct ifnet *origifp;
   1910 	struct mbuf *m0;
   1911 	struct sockaddr_in6 *dst;
   1912 	struct rtentry *rt0;
   1913 {
   1914 	struct mbuf *m = m0;
   1915 	struct rtentry *rt = rt0;
   1916 	struct sockaddr_in6 *gw6 = NULL;
   1917 	struct llinfo_nd6 *ln = NULL;
   1918 	int error = 0;
   1919 
   1920 	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
   1921 		goto sendpkt;
   1922 
   1923 	if (nd6_need_cache(ifp) == 0)
   1924 		goto sendpkt;
   1925 
   1926 	/*
   1927 	 * next hop determination.  This routine is derived from ether_output.
   1928 	 */
   1929 	if (rt) {
   1930 		if ((rt->rt_flags & RTF_UP) == 0) {
   1931 			if ((rt0 = rt = rtalloc1((struct sockaddr *)dst,
   1932 			    1)) != NULL)
   1933 			{
   1934 				rt->rt_refcnt--;
   1935 				if (rt->rt_ifp != ifp)
   1936 					senderr(EHOSTUNREACH);
   1937 			} else
   1938 				senderr(EHOSTUNREACH);
   1939 		}
   1940 
   1941 		if (rt->rt_flags & RTF_GATEWAY) {
   1942 			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
   1943 
   1944 			/*
   1945 			 * We skip link-layer address resolution and NUD
   1946 			 * if the gateway is not a neighbor from ND point
   1947 			 * of view, regardless of the value of nd_ifinfo.flags.
   1948 			 * The second condition is a bit tricky; we skip
   1949 			 * if the gateway is our own address, which is
   1950 			 * sometimes used to install a route to a p2p link.
   1951 			 */
   1952 			if (!nd6_is_addr_neighbor(gw6, ifp) ||
   1953 			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
   1954 				/*
   1955 				 * We allow this kind of tricky route only
   1956 				 * when the outgoing interface is p2p.
   1957 				 * XXX: we may need a more generic rule here.
   1958 				 */
   1959 				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
   1960 					senderr(EHOSTUNREACH);
   1961 
   1962 				goto sendpkt;
   1963 			}
   1964 
   1965 			if (rt->rt_gwroute == 0)
   1966 				goto lookup;
   1967 			if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
   1968 				rtfree(rt); rt = rt0;
   1969 			lookup:
   1970 				rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
   1971 				if ((rt = rt->rt_gwroute) == 0)
   1972 					senderr(EHOSTUNREACH);
   1973 				/* the "G" test below also prevents rt == rt0 */
   1974 				if ((rt->rt_flags & RTF_GATEWAY) ||
   1975 				    (rt->rt_ifp != ifp)) {
   1976 					rt->rt_refcnt--;
   1977 					rt0->rt_gwroute = 0;
   1978 					senderr(EHOSTUNREACH);
   1979 				}
   1980 			}
   1981 		}
   1982 	}
   1983 
   1984 	/*
   1985 	 * Address resolution or Neighbor Unreachability Detection
   1986 	 * for the next hop.
   1987 	 * At this point, the destination of the packet must be a unicast
   1988 	 * or an anycast address(i.e. not a multicast).
   1989 	 */
   1990 
   1991 	/* Look up the neighbor cache for the nexthop */
   1992 	if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
   1993 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
   1994 	else {
   1995 		/*
   1996 		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
   1997 		 * the condition below is not very efficient.  But we believe
   1998 		 * it is tolerable, because this should be a rare case.
   1999 		 */
   2000 		if (nd6_is_addr_neighbor(dst, ifp) &&
   2001 		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
   2002 			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
   2003 	}
   2004 	if (ln == NULL || rt == NULL) {
   2005 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
   2006 		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
   2007 			log(LOG_DEBUG,
   2008 			    "nd6_output: can't allocate llinfo for %s "
   2009 			    "(ln=%p, rt=%p)\n",
   2010 			    ip6_sprintf(&dst->sin6_addr), ln, rt);
   2011 			senderr(EIO);	/* XXX: good error? */
   2012 		}
   2013 
   2014 		goto sendpkt;	/* send anyway */
   2015 	}
   2016 
   2017 	/* We don't have to do link-layer address resolution on a p2p link. */
   2018 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
   2019 	    ln->ln_state < ND6_LLINFO_REACHABLE) {
   2020 		ln->ln_state = ND6_LLINFO_STALE;
   2021 		nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
   2022 	}
   2023 
   2024 	/*
   2025 	 * The first time we send a packet to a neighbor whose entry is
   2026 	 * STALE, we have to change the state to DELAY and a sets a timer to
   2027 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
   2028 	 * neighbor unreachability detection on expiration.
   2029 	 * (RFC 2461 7.3.3)
   2030 	 */
   2031 	if (ln->ln_state == ND6_LLINFO_STALE) {
   2032 		ln->ln_asked = 0;
   2033 		ln->ln_state = ND6_LLINFO_DELAY;
   2034 		nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
   2035 	}
   2036 
   2037 	/*
   2038 	 * If the neighbor cache entry has a state other than INCOMPLETE
   2039 	 * (i.e. its link-layer address is already resolved), just
   2040 	 * send the packet.
   2041 	 */
   2042 	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
   2043 		goto sendpkt;
   2044 
   2045 	/*
   2046 	 * There is a neighbor cache entry, but no ethernet address
   2047 	 * response yet.  Append this latest packet to the end of the
   2048 	 * packet queue in the mbuf, unless the number of the packet
   2049 	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
   2050 	 * the oldest packet in the queue will be removed.
   2051 	 */
   2052 	if (ln->ln_state == ND6_LLINFO_NOSTATE)
   2053 		ln->ln_state = ND6_LLINFO_INCOMPLETE;
   2054 	if (ln->ln_hold) {
   2055 		struct mbuf *m_hold;
   2056 		int i;
   2057 
   2058 		i = 0;
   2059 		for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
   2060 			i++;
   2061 			if (m_hold->m_nextpkt == NULL) {
   2062 				m_hold->m_nextpkt = m;
   2063 				break;
   2064 			}
   2065 		}
   2066 		while (i >= nd6_maxqueuelen) {
   2067 			m_hold = ln->ln_hold;
   2068 			ln->ln_hold = ln->ln_hold->m_nextpkt;
   2069 			m_freem(m_hold);
   2070 			i--;
   2071 		}
   2072 	} else {
   2073 		ln->ln_hold = m;
   2074 	}
   2075 
   2076 	/*
   2077 	 * If there has been no NS for the neighbor after entering the
   2078 	 * INCOMPLETE state, send the first solicitation.
   2079 	 */
   2080 	if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
   2081 		ln->ln_asked++;
   2082 		nd6_llinfo_settimer(ln,
   2083 		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
   2084 		nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
   2085 	}
   2086 	return (0);
   2087 
   2088   sendpkt:
   2089 	/* discard the packet if IPv6 operation is disabled on the interface */
   2090 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
   2091 		error = ENETDOWN; /* better error? */
   2092 		goto bad;
   2093 	}
   2094 
   2095 #ifdef IPSEC
   2096 	/* clean ipsec history once it goes out of the node */
   2097 	ipsec_delaux(m);
   2098 #endif
   2099 	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
   2100 		return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
   2101 					 rt));
   2102 	}
   2103 	return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
   2104 
   2105   bad:
   2106 	if (m)
   2107 		m_freem(m);
   2108 	return (error);
   2109 }
   2110 #undef senderr
   2111 
   2112 int
   2113 nd6_need_cache(ifp)
   2114 	struct ifnet *ifp;
   2115 {
   2116 	/*
   2117 	 * XXX: we currently do not make neighbor cache on any interface
   2118 	 * other than ARCnet, Ethernet, FDDI and GIF.
   2119 	 *
   2120 	 * RFC2893 says:
   2121 	 * - unidirectional tunnels needs no ND
   2122 	 */
   2123 	switch (ifp->if_type) {
   2124 	case IFT_ARCNET:
   2125 	case IFT_ETHER:
   2126 	case IFT_FDDI:
   2127 	case IFT_IEEE1394:
   2128 	case IFT_CARP:
   2129 	case IFT_GIF:		/* XXX need more cases? */
   2130 	case IFT_PPP:
   2131 	case IFT_TUNNEL:
   2132 		return (1);
   2133 	default:
   2134 		return (0);
   2135 	}
   2136 }
   2137 
   2138 int
   2139 nd6_storelladdr(ifp, rt, m, dst, desten)
   2140 	struct ifnet *ifp;
   2141 	struct rtentry *rt;
   2142 	struct mbuf *m;
   2143 	struct sockaddr *dst;
   2144 	u_char *desten;
   2145 {
   2146 	struct sockaddr_dl *sdl;
   2147 
   2148 	if (m->m_flags & M_MCAST) {
   2149 		switch (ifp->if_type) {
   2150 		case IFT_ETHER:
   2151 		case IFT_FDDI:
   2152 			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
   2153 						 desten);
   2154 			return (1);
   2155 		case IFT_IEEE1394:
   2156 			bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen);
   2157 			return (1);
   2158 		case IFT_ARCNET:
   2159 			*desten = 0;
   2160 			return (1);
   2161 		default:
   2162 			m_freem(m);
   2163 			return (0);
   2164 		}
   2165 	}
   2166 
   2167 	if (rt == NULL) {
   2168 		/* this could happen, if we could not allocate memory */
   2169 		m_freem(m);
   2170 		return (0);
   2171 	}
   2172 	if (rt->rt_gateway->sa_family != AF_LINK) {
   2173 		printf("nd6_storelladdr: something odd happens\n");
   2174 		m_freem(m);
   2175 		return (0);
   2176 	}
   2177 	sdl = SDL(rt->rt_gateway);
   2178 	if (sdl->sdl_alen == 0) {
   2179 		/* this should be impossible, but we bark here for debugging */
   2180 		printf("nd6_storelladdr: sdl_alen == 0, dst=%s, if=%s\n",
   2181 		    ip6_sprintf(&SIN6(dst)->sin6_addr), if_name(ifp));
   2182 		m_freem(m);
   2183 		return (0);
   2184 	}
   2185 
   2186 	bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
   2187 	return (1);
   2188 }
   2189 
   2190 static void
   2191 clear_llinfo_pqueue(ln)
   2192 	struct llinfo_nd6 *ln;
   2193 {
   2194 	struct mbuf *m_hold, *m_hold_next;
   2195 
   2196 	for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
   2197 		m_hold_next = m_hold->m_nextpkt;
   2198 		m_hold->m_nextpkt = NULL;
   2199 		m_freem(m_hold);
   2200 	}
   2201 
   2202 	ln->ln_hold = NULL;
   2203 	return;
   2204 }
   2205 
   2206 int
   2207 nd6_sysctl(
   2208     int name,
   2209     void *oldp,	/* syscall arg, need copyout */
   2210     size_t *oldlenp,
   2211     void *newp,	/* syscall arg, need copyin */
   2212     size_t newlen __unused
   2213 )
   2214 {
   2215 	void *p;
   2216 	size_t ol;
   2217 	int error;
   2218 
   2219 	error = 0;
   2220 
   2221 	if (newp)
   2222 		return EPERM;
   2223 	if (oldp && !oldlenp)
   2224 		return EINVAL;
   2225 	ol = oldlenp ? *oldlenp : 0;
   2226 
   2227 	if (oldp) {
   2228 		p = malloc(*oldlenp, M_TEMP, M_WAITOK);
   2229 		if (p == NULL)
   2230 			return ENOMEM;
   2231 	} else
   2232 		p = NULL;
   2233 	switch (name) {
   2234 	case ICMPV6CTL_ND6_DRLIST:
   2235 		error = fill_drlist(p, oldlenp, ol);
   2236 		if (!error && p != NULL && oldp != NULL)
   2237 			error = copyout(p, oldp, *oldlenp);
   2238 		break;
   2239 
   2240 	case ICMPV6CTL_ND6_PRLIST:
   2241 		error = fill_prlist(p, oldlenp, ol);
   2242 		if (!error && p != NULL && oldp != NULL)
   2243 			error = copyout(p, oldp, *oldlenp);
   2244 		break;
   2245 
   2246 	case ICMPV6CTL_ND6_MAXQLEN:
   2247 		break;
   2248 
   2249 	default:
   2250 		error = ENOPROTOOPT;
   2251 		break;
   2252 	}
   2253 	if (p)
   2254 		free(p, M_TEMP);
   2255 
   2256 	return (error);
   2257 }
   2258 
   2259 static int
   2260 fill_drlist(oldp, oldlenp, ol)
   2261 	void *oldp;
   2262 	size_t *oldlenp, ol;
   2263 {
   2264 	int error = 0, s;
   2265 	struct in6_defrouter *d = NULL, *de = NULL;
   2266 	struct nd_defrouter *dr;
   2267 	size_t l;
   2268 
   2269 	s = splsoftnet();
   2270 
   2271 	if (oldp) {
   2272 		d = (struct in6_defrouter *)oldp;
   2273 		de = (struct in6_defrouter *)((caddr_t)oldp + *oldlenp);
   2274 	}
   2275 	l = 0;
   2276 
   2277 	for (dr = TAILQ_FIRST(&nd_defrouter); dr;
   2278 	     dr = TAILQ_NEXT(dr, dr_entry)) {
   2279 
   2280 		if (oldp && d + 1 <= de) {
   2281 			bzero(d, sizeof(*d));
   2282 			d->rtaddr.sin6_family = AF_INET6;
   2283 			d->rtaddr.sin6_len = sizeof(struct sockaddr_in6);
   2284 			d->rtaddr.sin6_addr = dr->rtaddr;
   2285 			if (sa6_recoverscope(&d->rtaddr)) {
   2286 				log(LOG_ERR,
   2287 				    "scope error in router list (%s)\n",
   2288 				    ip6_sprintf(&d->rtaddr.sin6_addr));
   2289 				/* XXX: press on... */
   2290 			}
   2291 			d->flags = dr->flags;
   2292 			d->rtlifetime = dr->rtlifetime;
   2293 			d->expire = dr->expire;
   2294 			d->if_index = dr->ifp->if_index;
   2295 		}
   2296 
   2297 		l += sizeof(*d);
   2298 		if (d)
   2299 			d++;
   2300 	}
   2301 
   2302 	if (oldp) {
   2303 		if (l > ol)
   2304 			error = ENOMEM;
   2305 	}
   2306 	if (oldlenp)
   2307 		*oldlenp = l;	/* (caddr_t)d - (caddr_t)oldp */
   2308 
   2309 	splx(s);
   2310 
   2311 	return (error);
   2312 }
   2313 
   2314 static int
   2315 fill_prlist(oldp, oldlenp, ol)
   2316 	void *oldp;
   2317 	size_t *oldlenp, ol;
   2318 {
   2319 	int error = 0, s;
   2320 	struct nd_prefix *pr;
   2321 	struct in6_prefix *p = NULL;
   2322 	struct in6_prefix *pe = NULL;
   2323 	size_t l;
   2324 
   2325 	s = splsoftnet();
   2326 
   2327 	if (oldp) {
   2328 		p = (struct in6_prefix *)oldp;
   2329 		pe = (struct in6_prefix *)((caddr_t)oldp + *oldlenp);
   2330 	}
   2331 	l = 0;
   2332 
   2333 	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
   2334 		u_short advrtrs;
   2335 		size_t advance;
   2336 		struct sockaddr_in6 *sin6;
   2337 		struct sockaddr_in6 *s6;
   2338 		struct nd_pfxrouter *pfr;
   2339 
   2340 		if (oldp && p + 1 <= pe)
   2341 		{
   2342 			bzero(p, sizeof(*p));
   2343 			sin6 = (struct sockaddr_in6 *)(p + 1);
   2344 
   2345 			p->prefix = pr->ndpr_prefix;
   2346 			if (sa6_recoverscope(&p->prefix)) {
   2347 				log(LOG_ERR,
   2348 				    "scope error in prefix list (%s)\n",
   2349 				    ip6_sprintf(&p->prefix.sin6_addr));
   2350 				/* XXX: press on... */
   2351 			}
   2352 			p->raflags = pr->ndpr_raf;
   2353 			p->prefixlen = pr->ndpr_plen;
   2354 			p->vltime = pr->ndpr_vltime;
   2355 			p->pltime = pr->ndpr_pltime;
   2356 			p->if_index = pr->ndpr_ifp->if_index;
   2357 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
   2358 				p->expire = 0;
   2359 			else {
   2360 				time_t maxexpire;
   2361 
   2362 				/* XXX: we assume time_t is signed. */
   2363 				maxexpire = (-1) &
   2364 				    ~((time_t)1 <<
   2365 				    ((sizeof(maxexpire) * 8) - 1));
   2366 				if (pr->ndpr_vltime <
   2367 				    maxexpire - pr->ndpr_lastupdate) {
   2368 					p->expire = pr->ndpr_lastupdate +
   2369 						pr->ndpr_vltime;
   2370 				} else
   2371 					p->expire = maxexpire;
   2372 			}
   2373 			p->refcnt = pr->ndpr_refcnt;
   2374 			p->flags = pr->ndpr_stateflags;
   2375 			p->origin = PR_ORIG_RA;
   2376 			advrtrs = 0;
   2377 			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
   2378 			     pfr = pfr->pfr_next) {
   2379 				if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
   2380 					advrtrs++;
   2381 					continue;
   2382 				}
   2383 				s6 = &sin6[advrtrs];
   2384 				s6->sin6_family = AF_INET6;
   2385 				s6->sin6_len = sizeof(struct sockaddr_in6);
   2386 				s6->sin6_addr = pfr->router->rtaddr;
   2387 				s6->sin6_scope_id = 0;
   2388 				if (sa6_recoverscope(s6)) {
   2389 					log(LOG_ERR,
   2390 					    "scope error in "
   2391 					    "prefix list (%s)\n",
   2392 					    ip6_sprintf(&pfr->router->rtaddr));
   2393 				}
   2394 				advrtrs++;
   2395 			}
   2396 			p->advrtrs = advrtrs;
   2397 		}
   2398 		else {
   2399 			advrtrs = 0;
   2400 			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
   2401 			     pfr = pfr->pfr_next)
   2402 				advrtrs++;
   2403 		}
   2404 
   2405 		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
   2406 		l += advance;
   2407 		if (p)
   2408 			p = (struct in6_prefix *)((caddr_t)p + advance);
   2409 	}
   2410 
   2411 	if (oldp) {
   2412 		*oldlenp = l;	/* (caddr_t)d - (caddr_t)oldp */
   2413 		if (l > ol)
   2414 			error = ENOMEM;
   2415 	} else
   2416 		*oldlenp = l;
   2417 
   2418 	splx(s);
   2419 
   2420 	return (error);
   2421 }
   2422