nd6.c revision 1.117 1 /* $NetBSD: nd6.c,v 1.117 2007/07/19 20:48:57 dyoung Exp $ */
2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.117 2007/07/19 20:48:57 dyoung Exp $");
35
36 #include "opt_ipsec.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/callout.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47 #include <sys/protosw.h>
48 #include <sys/errno.h>
49 #include <sys/ioctl.h>
50 #include <sys/syslog.h>
51 #include <sys/queue.h>
52
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_types.h>
56 #include <net/route.h>
57 #include <net/if_ether.h>
58 #include <net/if_fddi.h>
59 #include <net/if_arc.h>
60
61 #include <netinet/in.h>
62 #include <netinet6/in6_var.h>
63 #include <netinet/ip6.h>
64 #include <netinet6/ip6_var.h>
65 #include <netinet6/scope6_var.h>
66 #include <netinet6/nd6.h>
67 #include <netinet/icmp6.h>
68
69 #ifdef IPSEC
70 #include <netinet6/ipsec.h>
71 #endif
72
73 #include <net/net_osdep.h>
74
75 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
76 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
77
78 #define SIN6(s) ((const struct sockaddr_in6 *)s)
79 #define SDL(s) ((struct sockaddr_dl *)s)
80
81 /* timer values */
82 int nd6_prune = 1; /* walk list every 1 seconds */
83 int nd6_delay = 5; /* delay first probe time 5 second */
84 int nd6_umaxtries = 3; /* maximum unicast query */
85 int nd6_mmaxtries = 3; /* maximum multicast query */
86 int nd6_useloopback = 1; /* use loopback interface for local traffic */
87 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
88
89 /* preventing too many loops in ND option parsing */
90 int nd6_maxndopt = 10; /* max # of ND options allowed */
91
92 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
93
94 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
95
96 #ifdef ND6_DEBUG
97 int nd6_debug = 1;
98 #else
99 int nd6_debug = 0;
100 #endif
101
102 /* for debugging? */
103 static int nd6_inuse, nd6_allocated;
104
105 struct llinfo_nd6 llinfo_nd6 = {
106 .ln_prev = &llinfo_nd6,
107 .ln_next = &llinfo_nd6,
108 };
109 struct nd_drhead nd_defrouter;
110 struct nd_prhead nd_prefix = { 0 };
111
112 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
113 static struct sockaddr_in6 all1_sa;
114
115 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
116 static void nd6_slowtimo __P((void *));
117 static int regen_tmpaddr __P((struct in6_ifaddr *));
118 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
119 static void nd6_llinfo_timer __P((void *));
120 static void clear_llinfo_pqueue __P((struct llinfo_nd6 *));
121
122 callout_t nd6_slowtimo_ch;
123 callout_t nd6_timer_ch;
124 extern callout_t in6_tmpaddrtimer_ch;
125
126 static int fill_drlist __P((void *, size_t *, size_t));
127 static int fill_prlist __P((void *, size_t *, size_t));
128
129 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
130
131 void
132 nd6_init(void)
133 {
134 static int nd6_init_done = 0;
135 int i;
136
137 if (nd6_init_done) {
138 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
139 return;
140 }
141
142 all1_sa.sin6_family = AF_INET6;
143 all1_sa.sin6_len = sizeof(struct sockaddr_in6);
144 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
145 all1_sa.sin6_addr.s6_addr[i] = 0xff;
146
147 /* initialization of the default router list */
148 TAILQ_INIT(&nd_defrouter);
149
150 nd6_init_done = 1;
151
152 callout_init(&nd6_slowtimo_ch, 0);
153 callout_init(&nd6_timer_ch, 0);
154
155 /* start timer */
156 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
157 nd6_slowtimo, NULL);
158 }
159
160 struct nd_ifinfo *
161 nd6_ifattach(struct ifnet *ifp)
162 {
163 struct nd_ifinfo *nd;
164
165 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
166 bzero(nd, sizeof(*nd));
167
168 nd->initialized = 1;
169
170 nd->chlim = IPV6_DEFHLIM;
171 nd->basereachable = REACHABLE_TIME;
172 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
173 nd->retrans = RETRANS_TIMER;
174 /*
175 * Note that the default value of ip6_accept_rtadv is 0, which means
176 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
177 * here.
178 */
179 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
180
181 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
182 nd6_setmtu0(ifp, nd);
183
184 return nd;
185 }
186
187 void
188 nd6_ifdetach(struct nd_ifinfo *nd)
189 {
190
191 free(nd, M_IP6NDP);
192 }
193
194 void
195 nd6_setmtu(struct ifnet *ifp)
196 {
197 nd6_setmtu0(ifp, ND_IFINFO(ifp));
198 }
199
200 void
201 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
202 {
203 u_int32_t omaxmtu;
204
205 omaxmtu = ndi->maxmtu;
206
207 switch (ifp->if_type) {
208 case IFT_ARCNET:
209 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
210 break;
211 case IFT_FDDI:
212 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
213 break;
214 default:
215 ndi->maxmtu = ifp->if_mtu;
216 break;
217 }
218
219 /*
220 * Decreasing the interface MTU under IPV6 minimum MTU may cause
221 * undesirable situation. We thus notify the operator of the change
222 * explicitly. The check for omaxmtu is necessary to restrict the
223 * log to the case of changing the MTU, not initializing it.
224 */
225 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
226 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
227 " small for IPv6 which needs %lu\n",
228 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
229 IPV6_MMTU);
230 }
231
232 if (ndi->maxmtu > in6_maxmtu)
233 in6_setmaxmtu(); /* check all interfaces just in case */
234 }
235
236 void
237 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
238 {
239
240 bzero(ndopts, sizeof(*ndopts));
241 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
242 ndopts->nd_opts_last
243 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
244
245 if (icmp6len == 0) {
246 ndopts->nd_opts_done = 1;
247 ndopts->nd_opts_search = NULL;
248 }
249 }
250
251 /*
252 * Take one ND option.
253 */
254 struct nd_opt_hdr *
255 nd6_option(union nd_opts *ndopts)
256 {
257 struct nd_opt_hdr *nd_opt;
258 int olen;
259
260 if (ndopts == NULL)
261 panic("ndopts == NULL in nd6_option");
262 if (ndopts->nd_opts_last == NULL)
263 panic("uninitialized ndopts in nd6_option");
264 if (ndopts->nd_opts_search == NULL)
265 return NULL;
266 if (ndopts->nd_opts_done)
267 return NULL;
268
269 nd_opt = ndopts->nd_opts_search;
270
271 /* make sure nd_opt_len is inside the buffer */
272 if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) {
273 bzero(ndopts, sizeof(*ndopts));
274 return NULL;
275 }
276
277 olen = nd_opt->nd_opt_len << 3;
278 if (olen == 0) {
279 /*
280 * Message validation requires that all included
281 * options have a length that is greater than zero.
282 */
283 bzero(ndopts, sizeof(*ndopts));
284 return NULL;
285 }
286
287 ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen);
288 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
289 /* option overruns the end of buffer, invalid */
290 bzero(ndopts, sizeof(*ndopts));
291 return NULL;
292 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
293 /* reached the end of options chain */
294 ndopts->nd_opts_done = 1;
295 ndopts->nd_opts_search = NULL;
296 }
297 return nd_opt;
298 }
299
300 /*
301 * Parse multiple ND options.
302 * This function is much easier to use, for ND routines that do not need
303 * multiple options of the same type.
304 */
305 int
306 nd6_options(union nd_opts *ndopts)
307 {
308 struct nd_opt_hdr *nd_opt;
309 int i = 0;
310
311 if (ndopts == NULL)
312 panic("ndopts == NULL in nd6_options");
313 if (ndopts->nd_opts_last == NULL)
314 panic("uninitialized ndopts in nd6_options");
315 if (ndopts->nd_opts_search == NULL)
316 return 0;
317
318 while (1) {
319 nd_opt = nd6_option(ndopts);
320 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
321 /*
322 * Message validation requires that all included
323 * options have a length that is greater than zero.
324 */
325 icmp6stat.icp6s_nd_badopt++;
326 bzero(ndopts, sizeof(*ndopts));
327 return -1;
328 }
329
330 if (nd_opt == NULL)
331 goto skip1;
332
333 switch (nd_opt->nd_opt_type) {
334 case ND_OPT_SOURCE_LINKADDR:
335 case ND_OPT_TARGET_LINKADDR:
336 case ND_OPT_MTU:
337 case ND_OPT_REDIRECTED_HEADER:
338 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
339 nd6log((LOG_INFO,
340 "duplicated ND6 option found (type=%d)\n",
341 nd_opt->nd_opt_type));
342 /* XXX bark? */
343 } else {
344 ndopts->nd_opt_array[nd_opt->nd_opt_type]
345 = nd_opt;
346 }
347 break;
348 case ND_OPT_PREFIX_INFORMATION:
349 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
350 ndopts->nd_opt_array[nd_opt->nd_opt_type]
351 = nd_opt;
352 }
353 ndopts->nd_opts_pi_end =
354 (struct nd_opt_prefix_info *)nd_opt;
355 break;
356 default:
357 /*
358 * Unknown options must be silently ignored,
359 * to accommodate future extension to the protocol.
360 */
361 nd6log((LOG_DEBUG,
362 "nd6_options: unsupported option %d - "
363 "option ignored\n", nd_opt->nd_opt_type));
364 }
365
366 skip1:
367 i++;
368 if (i > nd6_maxndopt) {
369 icmp6stat.icp6s_nd_toomanyopt++;
370 nd6log((LOG_INFO, "too many loop in nd opt\n"));
371 break;
372 }
373
374 if (ndopts->nd_opts_done)
375 break;
376 }
377
378 return 0;
379 }
380
381 /*
382 * ND6 timer routine to handle ND6 entries
383 */
384 void
385 nd6_llinfo_settimer(struct llinfo_nd6 *ln, long xtick)
386 {
387 int s;
388
389 s = splsoftnet();
390
391 if (xtick < 0) {
392 ln->ln_expire = 0;
393 ln->ln_ntick = 0;
394 callout_stop(&ln->ln_timer_ch);
395 } else {
396 ln->ln_expire = time_second + xtick / hz;
397 if (xtick > INT_MAX) {
398 ln->ln_ntick = xtick - INT_MAX;
399 callout_reset(&ln->ln_timer_ch, INT_MAX,
400 nd6_llinfo_timer, ln);
401 } else {
402 ln->ln_ntick = 0;
403 callout_reset(&ln->ln_timer_ch, xtick,
404 nd6_llinfo_timer, ln);
405 }
406 }
407
408 splx(s);
409 }
410
411 static void
412 nd6_llinfo_timer(void *arg)
413 {
414 int s;
415 struct llinfo_nd6 *ln;
416 struct rtentry *rt;
417 const struct sockaddr_in6 *dst;
418 struct ifnet *ifp;
419 struct nd_ifinfo *ndi = NULL;
420
421 s = splsoftnet();
422
423 ln = (struct llinfo_nd6 *)arg;
424
425 if (ln->ln_ntick > 0) {
426 nd6_llinfo_settimer(ln, ln->ln_ntick);
427 splx(s);
428 return;
429 }
430
431 if ((rt = ln->ln_rt) == NULL)
432 panic("ln->ln_rt == NULL");
433 if ((ifp = rt->rt_ifp) == NULL)
434 panic("ln->ln_rt->rt_ifp == NULL");
435 ndi = ND_IFINFO(ifp);
436 dst = satocsin6(rt_getkey(rt));
437
438 /* sanity check */
439 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
440 panic("rt_llinfo(%p) is not equal to ln(%p)",
441 rt->rt_llinfo, ln);
442 if (!dst)
443 panic("dst=0 in nd6_timer(ln=%p)", ln);
444
445 switch (ln->ln_state) {
446 case ND6_LLINFO_INCOMPLETE:
447 if (ln->ln_asked < nd6_mmaxtries) {
448 ln->ln_asked++;
449 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
450 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
451 } else {
452 struct mbuf *m = ln->ln_hold;
453 if (m) {
454 struct mbuf *m0;
455
456 /*
457 * assuming every packet in ln_hold has
458 * the same IP header
459 */
460 m0 = m->m_nextpkt;
461 m->m_nextpkt = NULL;
462 icmp6_error2(m, ICMP6_DST_UNREACH,
463 ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
464
465 ln->ln_hold = m0;
466 clear_llinfo_pqueue(ln);
467 }
468 (void)nd6_free(rt, 0);
469 ln = NULL;
470 }
471 break;
472 case ND6_LLINFO_REACHABLE:
473 if (!ND6_LLINFO_PERMANENT(ln)) {
474 ln->ln_state = ND6_LLINFO_STALE;
475 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
476 }
477 break;
478
479 case ND6_LLINFO_STALE:
480 /* Garbage Collection(RFC 2461 5.3) */
481 if (!ND6_LLINFO_PERMANENT(ln)) {
482 (void)nd6_free(rt, 1);
483 ln = NULL;
484 }
485 break;
486
487 case ND6_LLINFO_DELAY:
488 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
489 /* We need NUD */
490 ln->ln_asked = 1;
491 ln->ln_state = ND6_LLINFO_PROBE;
492 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
493 nd6_ns_output(ifp, &dst->sin6_addr,
494 &dst->sin6_addr, ln, 0);
495 } else {
496 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
497 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
498 }
499 break;
500 case ND6_LLINFO_PROBE:
501 if (ln->ln_asked < nd6_umaxtries) {
502 ln->ln_asked++;
503 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
504 nd6_ns_output(ifp, &dst->sin6_addr,
505 &dst->sin6_addr, ln, 0);
506 } else {
507 (void)nd6_free(rt, 0);
508 ln = NULL;
509 }
510 break;
511 }
512
513 splx(s);
514 }
515
516 /*
517 * ND6 timer routine to expire default route list and prefix list
518 */
519 void
520 nd6_timer(void *ignored_arg)
521 {
522 int s;
523 struct nd_defrouter *next_dr, *dr;
524 struct nd_prefix *next_pr, *pr;
525 struct in6_ifaddr *ia6, *nia6;
526 struct in6_addrlifetime *lt6;
527
528 s = splsoftnet();
529 callout_reset(&nd6_timer_ch, nd6_prune * hz,
530 nd6_timer, NULL);
531
532 /* expire default router list */
533
534 for (dr = TAILQ_FIRST(&nd_defrouter); dr != NULL; dr = next_dr) {
535 next_dr = TAILQ_NEXT(dr, dr_entry);
536 if (dr->expire && dr->expire < time_second) {
537 defrtrlist_del(dr);
538 }
539 }
540
541 /*
542 * expire interface addresses.
543 * in the past the loop was inside prefix expiry processing.
544 * However, from a stricter speci-confrmance standpoint, we should
545 * rather separate address lifetimes and prefix lifetimes.
546 */
547 addrloop:
548 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
549 nia6 = ia6->ia_next;
550 /* check address lifetime */
551 lt6 = &ia6->ia6_lifetime;
552 if (IFA6_IS_INVALID(ia6)) {
553 int regen = 0;
554
555 /*
556 * If the expiring address is temporary, try
557 * regenerating a new one. This would be useful when
558 * we suspended a laptop PC, then turned it on after a
559 * period that could invalidate all temporary
560 * addresses. Although we may have to restart the
561 * loop (see below), it must be after purging the
562 * address. Otherwise, we'd see an infinite loop of
563 * regeneration.
564 */
565 if (ip6_use_tempaddr &&
566 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
567 if (regen_tmpaddr(ia6) == 0)
568 regen = 1;
569 }
570
571 in6_purgeaddr(&ia6->ia_ifa);
572
573 if (regen)
574 goto addrloop; /* XXX: see below */
575 } else if (IFA6_IS_DEPRECATED(ia6)) {
576 int oldflags = ia6->ia6_flags;
577
578 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
579
580 /*
581 * If a temporary address has just become deprecated,
582 * regenerate a new one if possible.
583 */
584 if (ip6_use_tempaddr &&
585 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
586 (oldflags & IN6_IFF_DEPRECATED) == 0) {
587
588 if (regen_tmpaddr(ia6) == 0) {
589 /*
590 * A new temporary address is
591 * generated.
592 * XXX: this means the address chain
593 * has changed while we are still in
594 * the loop. Although the change
595 * would not cause disaster (because
596 * it's not a deletion, but an
597 * addition,) we'd rather restart the
598 * loop just for safety. Or does this
599 * significantly reduce performance??
600 */
601 goto addrloop;
602 }
603 }
604 } else {
605 /*
606 * A new RA might have made a deprecated address
607 * preferred.
608 */
609 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
610 }
611 }
612
613 /* expire prefix list */
614 for (pr = LIST_FIRST(&nd_prefix); pr != NULL; pr = next_pr) {
615 next_pr = LIST_NEXT(pr, ndpr_entry);
616 /*
617 * check prefix lifetime.
618 * since pltime is just for autoconf, pltime processing for
619 * prefix is not necessary.
620 */
621 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
622 time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
623
624 /*
625 * address expiration and prefix expiration are
626 * separate. NEVER perform in6_purgeaddr here.
627 */
628
629 prelist_remove(pr);
630 }
631 }
632 splx(s);
633 }
634
635 /* ia6: deprecated/invalidated temporary address */
636 static int
637 regen_tmpaddr(struct in6_ifaddr *ia6)
638 {
639 struct ifaddr *ifa;
640 struct ifnet *ifp;
641 struct in6_ifaddr *public_ifa6 = NULL;
642
643 ifp = ia6->ia_ifa.ifa_ifp;
644 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
645 struct in6_ifaddr *it6;
646
647 if (ifa->ifa_addr->sa_family != AF_INET6)
648 continue;
649
650 it6 = (struct in6_ifaddr *)ifa;
651
652 /* ignore no autoconf addresses. */
653 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
654 continue;
655
656 /* ignore autoconf addresses with different prefixes. */
657 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
658 continue;
659
660 /*
661 * Now we are looking at an autoconf address with the same
662 * prefix as ours. If the address is temporary and is still
663 * preferred, do not create another one. It would be rare, but
664 * could happen, for example, when we resume a laptop PC after
665 * a long period.
666 */
667 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
668 !IFA6_IS_DEPRECATED(it6)) {
669 public_ifa6 = NULL;
670 break;
671 }
672
673 /*
674 * This is a public autoconf address that has the same prefix
675 * as ours. If it is preferred, keep it. We can't break the
676 * loop here, because there may be a still-preferred temporary
677 * address with the prefix.
678 */
679 if (!IFA6_IS_DEPRECATED(it6))
680 public_ifa6 = it6;
681 }
682
683 if (public_ifa6 != NULL) {
684 int e;
685
686 /*
687 * Random factor is introduced in the preferred lifetime, so
688 * we do not need additional delay (3rd arg to in6_tmpifadd).
689 */
690 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
691 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
692 " tmp addr, errno=%d\n", e);
693 return -1;
694 }
695 return 0;
696 }
697
698 return -1;
699 }
700
701 /*
702 * Nuke neighbor cache/prefix/default router management table, right before
703 * ifp goes away.
704 */
705 void
706 nd6_purge(struct ifnet *ifp)
707 {
708 struct llinfo_nd6 *ln, *nln;
709 struct nd_defrouter *dr, *ndr;
710 struct nd_prefix *pr, *npr;
711
712 /*
713 * Nuke default router list entries toward ifp.
714 * We defer removal of default router list entries that is installed
715 * in the routing table, in order to keep additional side effects as
716 * small as possible.
717 */
718 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
719 ndr = TAILQ_NEXT(dr, dr_entry);
720 if (dr->installed)
721 continue;
722
723 if (dr->ifp == ifp)
724 defrtrlist_del(dr);
725 }
726 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
727 ndr = TAILQ_NEXT(dr, dr_entry);
728 if (!dr->installed)
729 continue;
730
731 if (dr->ifp == ifp)
732 defrtrlist_del(dr);
733 }
734
735 /* Nuke prefix list entries toward ifp */
736 for (pr = LIST_FIRST(&nd_prefix); pr != NULL; pr = npr) {
737 npr = LIST_NEXT(pr, ndpr_entry);
738 if (pr->ndpr_ifp == ifp) {
739 /*
740 * Because if_detach() does *not* release prefixes
741 * while purging addresses the reference count will
742 * still be above zero. We therefore reset it to
743 * make sure that the prefix really gets purged.
744 */
745 pr->ndpr_refcnt = 0;
746 /*
747 * Previously, pr->ndpr_addr is removed as well,
748 * but I strongly believe we don't have to do it.
749 * nd6_purge() is only called from in6_ifdetach(),
750 * which removes all the associated interface addresses
751 * by itself.
752 * (jinmei (at) kame.net 20010129)
753 */
754 prelist_remove(pr);
755 }
756 }
757
758 /* cancel default outgoing interface setting */
759 if (nd6_defifindex == ifp->if_index)
760 nd6_setdefaultiface(0);
761
762 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
763 /* refresh default router list */
764 defrouter_select();
765 }
766
767 /*
768 * Nuke neighbor cache entries for the ifp.
769 * Note that rt->rt_ifp may not be the same as ifp,
770 * due to KAME goto ours hack. See RTM_RESOLVE case in
771 * nd6_rtrequest(), and ip6_input().
772 */
773 ln = llinfo_nd6.ln_next;
774 while (ln && ln != &llinfo_nd6) {
775 struct rtentry *rt;
776 struct sockaddr_dl *sdl;
777
778 nln = ln->ln_next;
779 rt = ln->ln_rt;
780 if (rt && rt->rt_gateway &&
781 rt->rt_gateway->sa_family == AF_LINK) {
782 sdl = (struct sockaddr_dl *)rt->rt_gateway;
783 if (sdl->sdl_index == ifp->if_index)
784 nln = nd6_free(rt, 0);
785 }
786 ln = nln;
787 }
788 }
789
790 struct rtentry *
791 nd6_lookup(const struct in6_addr *addr6, int create, struct ifnet *ifp)
792 {
793 struct rtentry *rt;
794 struct sockaddr_in6 sin6;
795
796 bzero(&sin6, sizeof(sin6));
797 sin6.sin6_len = sizeof(struct sockaddr_in6);
798 sin6.sin6_family = AF_INET6;
799 sin6.sin6_addr = *addr6;
800 rt = rtalloc1((struct sockaddr *)&sin6, create);
801 if (rt && (rt->rt_flags & RTF_LLINFO) == 0) {
802 /*
803 * This is the case for the default route.
804 * If we want to create a neighbor cache for the address, we
805 * should free the route for the destination and allocate an
806 * interface route.
807 */
808 if (create) {
809 RTFREE(rt);
810 rt = NULL;
811 }
812 }
813 if (rt != NULL)
814 ;
815 else if (create && ifp) {
816 int e;
817
818 /*
819 * If no route is available and create is set,
820 * we allocate a host route for the destination
821 * and treat it like an interface route.
822 * This hack is necessary for a neighbor which can't
823 * be covered by our own prefix.
824 */
825 struct ifaddr *ifa =
826 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
827 if (ifa == NULL)
828 return NULL;
829
830 /*
831 * Create a new route. RTF_LLINFO is necessary
832 * to create a Neighbor Cache entry for the
833 * destination in nd6_rtrequest which will be
834 * called in rtrequest via ifa->ifa_rtrequest.
835 */
836 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
837 ifa->ifa_addr, (struct sockaddr *)&all1_sa,
838 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
839 ~RTF_CLONING, &rt)) != 0) {
840 #if 0
841 log(LOG_ERR,
842 "nd6_lookup: failed to add route for a "
843 "neighbor(%s), errno=%d\n",
844 ip6_sprintf(addr6), e);
845 #endif
846 return NULL;
847 }
848 if (rt == NULL)
849 return NULL;
850 if (rt->rt_llinfo) {
851 struct llinfo_nd6 *ln =
852 (struct llinfo_nd6 *)rt->rt_llinfo;
853 ln->ln_state = ND6_LLINFO_NOSTATE;
854 }
855 } else
856 return NULL;
857 rt->rt_refcnt--;
858 /*
859 * Validation for the entry.
860 * Note that the check for rt_llinfo is necessary because a cloned
861 * route from a parent route that has the L flag (e.g. the default
862 * route to a p2p interface) may have the flag, too, while the
863 * destination is not actually a neighbor.
864 * XXX: we can't use rt->rt_ifp to check for the interface, since
865 * it might be the loopback interface if the entry is for our
866 * own address on a non-loopback interface. Instead, we should
867 * use rt->rt_ifa->ifa_ifp, which would specify the REAL
868 * interface.
869 * Note also that ifa_ifp and ifp may differ when we connect two
870 * interfaces to a same link, install a link prefix to an interface,
871 * and try to install a neighbor cache on an interface that does not
872 * have a route to the prefix.
873 */
874 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
875 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
876 (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
877 if (create) {
878 nd6log((LOG_DEBUG,
879 "nd6_lookup: failed to lookup %s (if = %s)\n",
880 ip6_sprintf(addr6),
881 ifp ? if_name(ifp) : "unspec"));
882 }
883 return NULL;
884 }
885 return rt;
886 }
887
888 /*
889 * Detect if a given IPv6 address identifies a neighbor on a given link.
890 * XXX: should take care of the destination of a p2p link?
891 */
892 int
893 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
894 {
895 struct nd_prefix *pr;
896
897 /*
898 * A link-local address is always a neighbor.
899 * XXX: a link does not necessarily specify a single interface.
900 */
901 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
902 struct sockaddr_in6 sin6_copy;
903 u_int32_t zone;
904
905 /*
906 * We need sin6_copy since sa6_recoverscope() may modify the
907 * content (XXX).
908 */
909 sin6_copy = *addr;
910 if (sa6_recoverscope(&sin6_copy))
911 return 0; /* XXX: should be impossible */
912 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
913 return 0;
914 if (sin6_copy.sin6_scope_id == zone)
915 return 1;
916 else
917 return 0;
918 }
919
920 /*
921 * If the address matches one of our on-link prefixes, it should be a
922 * neighbor.
923 */
924 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
925 if (pr->ndpr_ifp != ifp)
926 continue;
927
928 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
929 continue;
930
931 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
932 &addr->sin6_addr, &pr->ndpr_mask))
933 return 1;
934 }
935
936 /*
937 * If the default router list is empty, all addresses are regarded
938 * as on-link, and thus, as a neighbor.
939 * XXX: we restrict the condition to hosts, because routers usually do
940 * not have the "default router list".
941 */
942 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
943 nd6_defifindex == ifp->if_index) {
944 return 1;
945 }
946
947 /*
948 * Even if the address matches none of our addresses, it might be
949 * in the neighbor cache.
950 */
951 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
952 return 1;
953
954 return 0;
955 }
956
957 /*
958 * Free an nd6 llinfo entry.
959 * Since the function would cause significant changes in the kernel, DO NOT
960 * make it global, unless you have a strong reason for the change, and are sure
961 * that the change is safe.
962 */
963 static struct llinfo_nd6 *
964 nd6_free(struct rtentry *rt, int gc)
965 {
966 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
967 struct in6_addr in6 = satocsin6(rt_getkey(rt))->sin6_addr;
968 struct nd_defrouter *dr;
969
970 /*
971 * we used to have pfctlinput(PRC_HOSTDEAD) here.
972 * even though it is not harmful, it was not really necessary.
973 */
974
975 /* cancel timer */
976 nd6_llinfo_settimer(ln, -1);
977
978 if (!ip6_forwarding) {
979 int s;
980 s = splsoftnet();
981 dr = defrouter_lookup(&satocsin6(rt_getkey(rt))->sin6_addr,
982 rt->rt_ifp);
983
984 if (dr != NULL && dr->expire &&
985 ln->ln_state == ND6_LLINFO_STALE && gc) {
986 /*
987 * If the reason for the deletion is just garbage
988 * collection, and the neighbor is an active default
989 * router, do not delete it. Instead, reset the GC
990 * timer using the router's lifetime.
991 * Simply deleting the entry would affect default
992 * router selection, which is not necessarily a good
993 * thing, especially when we're using router preference
994 * values.
995 * XXX: the check for ln_state would be redundant,
996 * but we intentionally keep it just in case.
997 */
998 if (dr->expire > time_second)
999 nd6_llinfo_settimer(ln,
1000 (dr->expire - time_second) * hz);
1001 else
1002 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1003 splx(s);
1004 return ln->ln_next;
1005 }
1006
1007 if (ln->ln_router || dr) {
1008 /*
1009 * rt6_flush must be called whether or not the neighbor
1010 * is in the Default Router List.
1011 * See a corresponding comment in nd6_na_input().
1012 */
1013 rt6_flush(&in6, rt->rt_ifp);
1014 }
1015
1016 if (dr) {
1017 /*
1018 * Unreachablity of a router might affect the default
1019 * router selection and on-link detection of advertised
1020 * prefixes.
1021 */
1022
1023 /*
1024 * Temporarily fake the state to choose a new default
1025 * router and to perform on-link determination of
1026 * prefixes correctly.
1027 * Below the state will be set correctly,
1028 * or the entry itself will be deleted.
1029 */
1030 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1031
1032 /*
1033 * Since defrouter_select() does not affect the
1034 * on-link determination and MIP6 needs the check
1035 * before the default router selection, we perform
1036 * the check now.
1037 */
1038 pfxlist_onlink_check();
1039
1040 /*
1041 * refresh default router list
1042 */
1043 defrouter_select();
1044 }
1045 splx(s);
1046 }
1047
1048 /*
1049 * Before deleting the entry, remember the next entry as the
1050 * return value. We need this because pfxlist_onlink_check() above
1051 * might have freed other entries (particularly the old next entry) as
1052 * a side effect (XXX).
1053 */
1054 next = ln->ln_next;
1055
1056 /*
1057 * Detach the route from the routing tree and the list of neighbor
1058 * caches, and disable the route entry not to be used in already
1059 * cached routes.
1060 */
1061 rtrequest(RTM_DELETE, rt_getkey(rt), (struct sockaddr *)0,
1062 rt_mask(rt), 0, (struct rtentry **)0);
1063
1064 return next;
1065 }
1066
1067 /*
1068 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1069 *
1070 * XXX cost-effective methods?
1071 */
1072 void
1073 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1074 {
1075 struct llinfo_nd6 *ln;
1076
1077 /*
1078 * If the caller specified "rt", use that. Otherwise, resolve the
1079 * routing table by supplied "dst6".
1080 */
1081 if (rt == NULL) {
1082 if (dst6 == NULL)
1083 return;
1084 if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1085 return;
1086 }
1087
1088 if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1089 (rt->rt_flags & RTF_LLINFO) == 0 ||
1090 !rt->rt_llinfo || !rt->rt_gateway ||
1091 rt->rt_gateway->sa_family != AF_LINK) {
1092 /* This is not a host route. */
1093 return;
1094 }
1095
1096 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1097 if (ln->ln_state < ND6_LLINFO_REACHABLE)
1098 return;
1099
1100 /*
1101 * if we get upper-layer reachability confirmation many times,
1102 * it is possible we have false information.
1103 */
1104 if (!force) {
1105 ln->ln_byhint++;
1106 if (ln->ln_byhint > nd6_maxnudhint)
1107 return;
1108 }
1109
1110 ln->ln_state = ND6_LLINFO_REACHABLE;
1111 if (!ND6_LLINFO_PERMANENT(ln)) {
1112 nd6_llinfo_settimer(ln,
1113 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1114 }
1115 }
1116
1117 void
1118 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info)
1119 {
1120 struct sockaddr *gate = rt->rt_gateway;
1121 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1122 static const struct sockaddr_dl null_sdl = {
1123 .sdl_len = sizeof(null_sdl),
1124 .sdl_family = AF_LINK,
1125 };
1126 struct ifnet *ifp = rt->rt_ifp;
1127 struct ifaddr *ifa;
1128
1129 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1130 __LINE__, (void *)rt->_rt_key);
1131
1132 if ((rt->rt_flags & RTF_GATEWAY) != 0)
1133 return;
1134
1135 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1136 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1137 __LINE__, (void *)rt->_rt_key);
1138 /*
1139 * This is probably an interface direct route for a link
1140 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1141 * We do not need special treatment below for such a route.
1142 * Moreover, the RTF_LLINFO flag which would be set below
1143 * would annoy the ndp(8) command.
1144 */
1145 return;
1146 }
1147
1148 if (req == RTM_RESOLVE &&
1149 (nd6_need_cache(ifp) == 0 || /* stf case */
1150 !nd6_is_addr_neighbor(satocsin6(rt_getkey(rt)), ifp))) {
1151 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1152 __LINE__, (void *)rt->_rt_key);
1153 /*
1154 * FreeBSD and BSD/OS often make a cloned host route based
1155 * on a less-specific route (e.g. the default route).
1156 * If the less specific route does not have a "gateway"
1157 * (this is the case when the route just goes to a p2p or an
1158 * stf interface), we'll mistakenly make a neighbor cache for
1159 * the host route, and will see strange neighbor solicitation
1160 * for the corresponding destination. In order to avoid the
1161 * confusion, we check if the destination of the route is
1162 * a neighbor in terms of neighbor discovery, and stop the
1163 * process if not. Additionally, we remove the LLINFO flag
1164 * so that ndp(8) will not try to get the neighbor information
1165 * of the destination.
1166 */
1167 rt->rt_flags &= ~RTF_LLINFO;
1168 return;
1169 }
1170
1171 switch (req) {
1172 case RTM_ADD:
1173 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1174 __LINE__, (void *)rt->_rt_key);
1175 /*
1176 * There is no backward compatibility :)
1177 *
1178 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1179 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1180 * rt->rt_flags |= RTF_CLONING;
1181 */
1182 if ((rt->rt_flags & RTF_CLONING) ||
1183 ((rt->rt_flags & RTF_LLINFO) && !ln)) {
1184 /*
1185 * Case 1: This route should come from a route to
1186 * interface (RTF_CLONING case) or the route should be
1187 * treated as on-link but is currently not
1188 * (RTF_LLINFO && !ln case).
1189 */
1190 rt_setgate(rt, (const struct sockaddr *)&null_sdl);
1191 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1192 __LINE__, (void *)rt->_rt_key);
1193 gate = rt->rt_gateway;
1194 SDL(gate)->sdl_type = ifp->if_type;
1195 SDL(gate)->sdl_index = ifp->if_index;
1196 if (ln)
1197 nd6_llinfo_settimer(ln, 0);
1198 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1199 __LINE__, (void *)rt->_rt_key);
1200 if ((rt->rt_flags & RTF_CLONING) != 0)
1201 break;
1202 }
1203 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1204 __LINE__, (void *)rt->_rt_key);
1205 /*
1206 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1207 * We don't do that here since llinfo is not ready yet.
1208 *
1209 * There are also couple of other things to be discussed:
1210 * - unsolicited NA code needs improvement beforehand
1211 * - RFC2461 says we MAY send multicast unsolicited NA
1212 * (7.2.6 paragraph 4), however, it also says that we
1213 * SHOULD provide a mechanism to prevent multicast NA storm.
1214 * we don't have anything like it right now.
1215 * note that the mechanism needs a mutual agreement
1216 * between proxies, which means that we need to implement
1217 * a new protocol, or a new kludge.
1218 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1219 * we need to check ip6forwarding before sending it.
1220 * (or should we allow proxy ND configuration only for
1221 * routers? there's no mention about proxy ND from hosts)
1222 */
1223 #if 0
1224 /* XXX it does not work */
1225 if (rt->rt_flags & RTF_ANNOUNCE)
1226 nd6_na_output(ifp,
1227 &SIN6(rt_getkey(rt))->sin6_addr,
1228 &SIN6(rt_getkey(rt))->sin6_addr,
1229 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1230 1, NULL);
1231 #endif
1232 /* FALLTHROUGH */
1233 case RTM_RESOLVE:
1234 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1235 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1236 __LINE__, (void *)rt->_rt_key);
1237 /*
1238 * Address resolution isn't necessary for a point to
1239 * point link, so we can skip this test for a p2p link.
1240 */
1241 if (gate->sa_family != AF_LINK ||
1242 gate->sa_len < sizeof(null_sdl)) {
1243 log(LOG_DEBUG,
1244 "nd6_rtrequest: bad gateway value: %s\n",
1245 if_name(ifp));
1246 break;
1247 }
1248 SDL(gate)->sdl_type = ifp->if_type;
1249 SDL(gate)->sdl_index = ifp->if_index;
1250 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1251 __LINE__, (void *)rt->_rt_key);
1252 }
1253 if (ln != NULL)
1254 break; /* This happens on a route change */
1255 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1256 __LINE__, (void *)rt->_rt_key);
1257 /*
1258 * Case 2: This route may come from cloning, or a manual route
1259 * add with a LL address.
1260 */
1261 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1262 rt->rt_llinfo = (void *)ln;
1263 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1264 __LINE__, (void *)rt->_rt_key);
1265 if (ln == NULL) {
1266 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1267 break;
1268 }
1269 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1270 __LINE__, (void *)rt->_rt_key);
1271 nd6_inuse++;
1272 nd6_allocated++;
1273 bzero(ln, sizeof(*ln));
1274 ln->ln_rt = rt;
1275 callout_init(&ln->ln_timer_ch, 0);
1276 /* this is required for "ndp" command. - shin */
1277 if (req == RTM_ADD) {
1278 /*
1279 * gate should have some valid AF_LINK entry,
1280 * and ln->ln_expire should have some lifetime
1281 * which is specified by ndp command.
1282 */
1283 ln->ln_state = ND6_LLINFO_REACHABLE;
1284 ln->ln_byhint = 0;
1285 } else {
1286 /*
1287 * When req == RTM_RESOLVE, rt is created and
1288 * initialized in rtrequest(), so rt_expire is 0.
1289 */
1290 ln->ln_state = ND6_LLINFO_NOSTATE;
1291 nd6_llinfo_settimer(ln, 0);
1292 }
1293 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1294 __LINE__, (void *)rt->_rt_key);
1295 rt->rt_flags |= RTF_LLINFO;
1296 ln->ln_next = llinfo_nd6.ln_next;
1297 llinfo_nd6.ln_next = ln;
1298 ln->ln_prev = &llinfo_nd6;
1299 ln->ln_next->ln_prev = ln;
1300
1301 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1302 __LINE__, (void *)rt->_rt_key);
1303 /*
1304 * check if rt_getkey(rt) is an address assigned
1305 * to the interface.
1306 */
1307 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1308 &SIN6(rt_getkey(rt))->sin6_addr);
1309 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1310 __LINE__, (void *)rt->_rt_key);
1311 if (ifa) {
1312 void *macp = nd6_ifptomac(ifp);
1313 nd6_llinfo_settimer(ln, -1);
1314 ln->ln_state = ND6_LLINFO_REACHABLE;
1315 ln->ln_byhint = 0;
1316 if (macp) {
1317 bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1318 SDL(gate)->sdl_alen = ifp->if_addrlen;
1319 }
1320 if (nd6_useloopback) {
1321 rt->rt_ifp = lo0ifp; /* XXX */
1322 /*
1323 * Make sure rt_ifa be equal to the ifaddr
1324 * corresponding to the address.
1325 * We need this because when we refer
1326 * rt_ifa->ia6_flags in ip6_input, we assume
1327 * that the rt_ifa points to the address instead
1328 * of the loopback address.
1329 */
1330 if (ifa != rt->rt_ifa)
1331 rt_replace_ifa(rt, ifa);
1332 rt->rt_flags &= ~RTF_CLONED;
1333 }
1334 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1335 nd6_llinfo_settimer(ln, -1);
1336 ln->ln_state = ND6_LLINFO_REACHABLE;
1337 ln->ln_byhint = 0;
1338
1339 /* join solicited node multicast for proxy ND */
1340 if (ifp->if_flags & IFF_MULTICAST) {
1341 struct in6_addr llsol;
1342 int error;
1343
1344 llsol = SIN6(rt_getkey(rt))->sin6_addr;
1345 llsol.s6_addr32[0] = htonl(0xff020000);
1346 llsol.s6_addr32[1] = 0;
1347 llsol.s6_addr32[2] = htonl(1);
1348 llsol.s6_addr8[12] = 0xff;
1349 if (in6_setscope(&llsol, ifp, NULL))
1350 break;
1351 if (!in6_addmulti(&llsol, ifp, &error, 0)) {
1352 nd6log((LOG_ERR, "%s: failed to join "
1353 "%s (errno=%d)\n", if_name(ifp),
1354 ip6_sprintf(&llsol), error));
1355 }
1356 }
1357 }
1358 break;
1359
1360 case RTM_DELETE:
1361 if (ln == NULL)
1362 break;
1363 /* leave from solicited node multicast for proxy ND */
1364 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1365 (ifp->if_flags & IFF_MULTICAST) != 0) {
1366 struct in6_addr llsol;
1367 struct in6_multi *in6m;
1368
1369 llsol = SIN6(rt_getkey(rt))->sin6_addr;
1370 llsol.s6_addr32[0] = htonl(0xff020000);
1371 llsol.s6_addr32[1] = 0;
1372 llsol.s6_addr32[2] = htonl(1);
1373 llsol.s6_addr8[12] = 0xff;
1374 if (in6_setscope(&llsol, ifp, NULL) == 0) {
1375 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1376 if (in6m)
1377 in6_delmulti(in6m);
1378 }
1379 }
1380 nd6_inuse--;
1381 ln->ln_next->ln_prev = ln->ln_prev;
1382 ln->ln_prev->ln_next = ln->ln_next;
1383 ln->ln_prev = NULL;
1384 nd6_llinfo_settimer(ln, -1);
1385 rt->rt_llinfo = 0;
1386 rt->rt_flags &= ~RTF_LLINFO;
1387 clear_llinfo_pqueue(ln);
1388 Free((void *)ln);
1389 }
1390 }
1391
1392 int
1393 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp)
1394 {
1395 struct in6_drlist *drl = (struct in6_drlist *)data;
1396 struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1397 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1398 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1399 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1400 struct nd_defrouter *dr;
1401 struct nd_prefix *pr;
1402 struct rtentry *rt;
1403 int i = 0, error = 0;
1404 int s;
1405
1406 switch (cmd) {
1407 case SIOCGDRLST_IN6:
1408 /*
1409 * obsolete API, use sysctl under net.inet6.icmp6
1410 */
1411 bzero(drl, sizeof(*drl));
1412 s = splsoftnet();
1413 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
1414 if (i >= DRLSTSIZ)
1415 break;
1416 drl->defrouter[i].rtaddr = dr->rtaddr;
1417 in6_clearscope(&drl->defrouter[i].rtaddr);
1418
1419 drl->defrouter[i].flags = dr->flags;
1420 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1421 drl->defrouter[i].expire = dr->expire;
1422 drl->defrouter[i].if_index = dr->ifp->if_index;
1423 i++;
1424 }
1425 splx(s);
1426 break;
1427 case SIOCGPRLST_IN6:
1428 /*
1429 * obsolete API, use sysctl under net.inet6.icmp6
1430 *
1431 * XXX the structure in6_prlist was changed in backward-
1432 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1433 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1434 */
1435 /*
1436 * XXX meaning of fields, especialy "raflags", is very
1437 * differnet between RA prefix list and RR/static prefix list.
1438 * how about separating ioctls into two?
1439 */
1440 bzero(oprl, sizeof(*oprl));
1441 s = splsoftnet();
1442 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
1443 struct nd_pfxrouter *pfr;
1444 int j;
1445
1446 if (i >= PRLSTSIZ)
1447 break;
1448 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1449 oprl->prefix[i].raflags = pr->ndpr_raf;
1450 oprl->prefix[i].prefixlen = pr->ndpr_plen;
1451 oprl->prefix[i].vltime = pr->ndpr_vltime;
1452 oprl->prefix[i].pltime = pr->ndpr_pltime;
1453 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1454 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1455 oprl->prefix[i].expire = 0;
1456 else {
1457 time_t maxexpire;
1458
1459 /* XXX: we assume time_t is signed. */
1460 maxexpire = (-1) &
1461 ~((time_t)1 <<
1462 ((sizeof(maxexpire) * 8) - 1));
1463 if (pr->ndpr_vltime <
1464 maxexpire - pr->ndpr_lastupdate) {
1465 oprl->prefix[i].expire =
1466 pr->ndpr_lastupdate +
1467 pr->ndpr_vltime;
1468 } else
1469 oprl->prefix[i].expire = maxexpire;
1470 }
1471
1472 j = 0;
1473 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
1474 if (j < DRLSTSIZ) {
1475 #define RTRADDR oprl->prefix[i].advrtr[j]
1476 RTRADDR = pfr->router->rtaddr;
1477 in6_clearscope(&RTRADDR);
1478 #undef RTRADDR
1479 }
1480 j++;
1481 }
1482 oprl->prefix[i].advrtrs = j;
1483 oprl->prefix[i].origin = PR_ORIG_RA;
1484
1485 i++;
1486 }
1487 splx(s);
1488
1489 break;
1490 case OSIOCGIFINFO_IN6:
1491 #define ND ndi->ndi
1492 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1493 memset(&ND, 0, sizeof(ND));
1494 ND.linkmtu = IN6_LINKMTU(ifp);
1495 ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1496 ND.basereachable = ND_IFINFO(ifp)->basereachable;
1497 ND.reachable = ND_IFINFO(ifp)->reachable;
1498 ND.retrans = ND_IFINFO(ifp)->retrans;
1499 ND.flags = ND_IFINFO(ifp)->flags;
1500 ND.recalctm = ND_IFINFO(ifp)->recalctm;
1501 ND.chlim = ND_IFINFO(ifp)->chlim;
1502 break;
1503 case SIOCGIFINFO_IN6:
1504 ND = *ND_IFINFO(ifp);
1505 break;
1506 case SIOCSIFINFO_IN6:
1507 /*
1508 * used to change host variables from userland.
1509 * intented for a use on router to reflect RA configurations.
1510 */
1511 /* 0 means 'unspecified' */
1512 if (ND.linkmtu != 0) {
1513 if (ND.linkmtu < IPV6_MMTU ||
1514 ND.linkmtu > IN6_LINKMTU(ifp)) {
1515 error = EINVAL;
1516 break;
1517 }
1518 ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1519 }
1520
1521 if (ND.basereachable != 0) {
1522 int obasereachable = ND_IFINFO(ifp)->basereachable;
1523
1524 ND_IFINFO(ifp)->basereachable = ND.basereachable;
1525 if (ND.basereachable != obasereachable)
1526 ND_IFINFO(ifp)->reachable =
1527 ND_COMPUTE_RTIME(ND.basereachable);
1528 }
1529 if (ND.retrans != 0)
1530 ND_IFINFO(ifp)->retrans = ND.retrans;
1531 if (ND.chlim != 0)
1532 ND_IFINFO(ifp)->chlim = ND.chlim;
1533 /* FALLTHROUGH */
1534 case SIOCSIFINFO_FLAGS:
1535 ND_IFINFO(ifp)->flags = ND.flags;
1536 break;
1537 #undef ND
1538 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1539 /* sync kernel routing table with the default router list */
1540 defrouter_reset();
1541 defrouter_select();
1542 break;
1543 case SIOCSPFXFLUSH_IN6:
1544 {
1545 /* flush all the prefix advertised by routers */
1546 struct nd_prefix *pfx, *next;
1547
1548 s = splsoftnet();
1549 for (pfx = LIST_FIRST(&nd_prefix); pfx; pfx = next) {
1550 struct in6_ifaddr *ia, *ia_next;
1551
1552 next = LIST_NEXT(pfx, ndpr_entry);
1553
1554 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
1555 continue; /* XXX */
1556
1557 /* do we really have to remove addresses as well? */
1558 for (ia = in6_ifaddr; ia; ia = ia_next) {
1559 /* ia might be removed. keep the next ptr. */
1560 ia_next = ia->ia_next;
1561
1562 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1563 continue;
1564
1565 if (ia->ia6_ndpr == pfx)
1566 in6_purgeaddr(&ia->ia_ifa);
1567 }
1568 prelist_remove(pfx);
1569 }
1570 splx(s);
1571 break;
1572 }
1573 case SIOCSRTRFLUSH_IN6:
1574 {
1575 /* flush all the default routers */
1576 struct nd_defrouter *drtr, *next;
1577
1578 s = splsoftnet();
1579 defrouter_reset();
1580 for (drtr = TAILQ_FIRST(&nd_defrouter); drtr; drtr = next) {
1581 next = TAILQ_NEXT(drtr, dr_entry);
1582 defrtrlist_del(drtr);
1583 }
1584 defrouter_select();
1585 splx(s);
1586 break;
1587 }
1588 case SIOCGNBRINFO_IN6:
1589 {
1590 struct llinfo_nd6 *ln;
1591 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1592
1593 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1594 return error;
1595
1596 s = splsoftnet();
1597 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL ||
1598 (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) {
1599 error = EINVAL;
1600 splx(s);
1601 break;
1602 }
1603 nbi->state = ln->ln_state;
1604 nbi->asked = ln->ln_asked;
1605 nbi->isrouter = ln->ln_router;
1606 nbi->expire = ln->ln_expire;
1607 splx(s);
1608
1609 break;
1610 }
1611 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1612 ndif->ifindex = nd6_defifindex;
1613 break;
1614 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1615 return nd6_setdefaultiface(ndif->ifindex);
1616 }
1617 return error;
1618 }
1619
1620 void
1621 nd6_llinfo_release_pkts(struct llinfo_nd6 *ln, struct ifnet *ifp,
1622 struct rtentry *rt)
1623 {
1624 struct mbuf *m_hold, *m_hold_next;
1625
1626 for (m_hold = ln->ln_hold, ln->ln_hold = NULL;
1627 m_hold != NULL;
1628 m_hold = m_hold_next) {
1629 m_hold_next = m_hold->m_nextpkt;
1630 m_hold->m_nextpkt = NULL;
1631
1632 /*
1633 * we assume ifp is not a p2p here, so
1634 * just set the 2nd argument as the
1635 * 1st one.
1636 */
1637 nd6_output(ifp, ifp, m_hold, satocsin6(rt_getkey(rt)), rt);
1638 }
1639 }
1640
1641 /*
1642 * Create neighbor cache entry and cache link-layer address,
1643 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1644 */
1645 struct rtentry *
1646 nd6_cache_lladdr(
1647 struct ifnet *ifp,
1648 struct in6_addr *from,
1649 char *lladdr,
1650 int lladdrlen,
1651 int type, /* ICMP6 type */
1652 int code /* type dependent information */
1653 )
1654 {
1655 struct rtentry *rt = NULL;
1656 struct llinfo_nd6 *ln = NULL;
1657 int is_newentry;
1658 struct sockaddr_dl *sdl = NULL;
1659 int do_update;
1660 int olladdr;
1661 int llchange;
1662 int newstate = 0;
1663
1664 if (ifp == NULL)
1665 panic("ifp == NULL in nd6_cache_lladdr");
1666 if (from == NULL)
1667 panic("from == NULL in nd6_cache_lladdr");
1668
1669 /* nothing must be updated for unspecified address */
1670 if (IN6_IS_ADDR_UNSPECIFIED(from))
1671 return NULL;
1672
1673 /*
1674 * Validation about ifp->if_addrlen and lladdrlen must be done in
1675 * the caller.
1676 *
1677 * XXX If the link does not have link-layer adderss, what should
1678 * we do? (ifp->if_addrlen == 0)
1679 * Spec says nothing in sections for RA, RS and NA. There's small
1680 * description on it in NS section (RFC 2461 7.2.3).
1681 */
1682
1683 rt = nd6_lookup(from, 0, ifp);
1684 if (rt == NULL) {
1685 #if 0
1686 /* nothing must be done if there's no lladdr */
1687 if (!lladdr || !lladdrlen)
1688 return NULL;
1689 #endif
1690
1691 rt = nd6_lookup(from, 1, ifp);
1692 is_newentry = 1;
1693 } else {
1694 /* do nothing if static ndp is set */
1695 if (rt->rt_flags & RTF_STATIC)
1696 return NULL;
1697 is_newentry = 0;
1698 }
1699
1700 if (rt == NULL)
1701 return NULL;
1702 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1703 fail:
1704 (void)nd6_free(rt, 0);
1705 return NULL;
1706 }
1707 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1708 if (ln == NULL)
1709 goto fail;
1710 if (rt->rt_gateway == NULL)
1711 goto fail;
1712 if (rt->rt_gateway->sa_family != AF_LINK)
1713 goto fail;
1714 sdl = SDL(rt->rt_gateway);
1715
1716 olladdr = (sdl->sdl_alen) ? 1 : 0;
1717 if (olladdr && lladdr) {
1718 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1719 llchange = 1;
1720 else
1721 llchange = 0;
1722 } else
1723 llchange = 0;
1724
1725 /*
1726 * newentry olladdr lladdr llchange (*=record)
1727 * 0 n n -- (1)
1728 * 0 y n -- (2)
1729 * 0 n y -- (3) * STALE
1730 * 0 y y n (4) *
1731 * 0 y y y (5) * STALE
1732 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1733 * 1 -- y -- (7) * STALE
1734 */
1735
1736 if (lladdr) { /* (3-5) and (7) */
1737 /*
1738 * Record source link-layer address
1739 * XXX is it dependent to ifp->if_type?
1740 */
1741 sdl->sdl_alen = ifp->if_addrlen;
1742 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1743 }
1744
1745 if (!is_newentry) {
1746 if ((!olladdr && lladdr) || /* (3) */
1747 (olladdr && lladdr && llchange)) { /* (5) */
1748 do_update = 1;
1749 newstate = ND6_LLINFO_STALE;
1750 } else /* (1-2,4) */
1751 do_update = 0;
1752 } else {
1753 do_update = 1;
1754 if (lladdr == NULL) /* (6) */
1755 newstate = ND6_LLINFO_NOSTATE;
1756 else /* (7) */
1757 newstate = ND6_LLINFO_STALE;
1758 }
1759
1760 if (do_update) {
1761 /*
1762 * Update the state of the neighbor cache.
1763 */
1764 ln->ln_state = newstate;
1765
1766 if (ln->ln_state == ND6_LLINFO_STALE) {
1767 /*
1768 * XXX: since nd6_output() below will cause
1769 * state tansition to DELAY and reset the timer,
1770 * we must set the timer now, although it is actually
1771 * meaningless.
1772 */
1773 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1774
1775 nd6_llinfo_release_pkts(ln, ifp, rt);
1776 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1777 /* probe right away */
1778 nd6_llinfo_settimer((void *)ln, 0);
1779 }
1780 }
1781
1782 /*
1783 * ICMP6 type dependent behavior.
1784 *
1785 * NS: clear IsRouter if new entry
1786 * RS: clear IsRouter
1787 * RA: set IsRouter if there's lladdr
1788 * redir: clear IsRouter if new entry
1789 *
1790 * RA case, (1):
1791 * The spec says that we must set IsRouter in the following cases:
1792 * - If lladdr exist, set IsRouter. This means (1-5).
1793 * - If it is old entry (!newentry), set IsRouter. This means (7).
1794 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1795 * A quetion arises for (1) case. (1) case has no lladdr in the
1796 * neighbor cache, this is similar to (6).
1797 * This case is rare but we figured that we MUST NOT set IsRouter.
1798 *
1799 * newentry olladdr lladdr llchange NS RS RA redir
1800 * D R
1801 * 0 n n -- (1) c ? s
1802 * 0 y n -- (2) c s s
1803 * 0 n y -- (3) c s s
1804 * 0 y y n (4) c s s
1805 * 0 y y y (5) c s s
1806 * 1 -- n -- (6) c c c s
1807 * 1 -- y -- (7) c c s c s
1808 *
1809 * (c=clear s=set)
1810 */
1811 switch (type & 0xff) {
1812 case ND_NEIGHBOR_SOLICIT:
1813 /*
1814 * New entry must have is_router flag cleared.
1815 */
1816 if (is_newentry) /* (6-7) */
1817 ln->ln_router = 0;
1818 break;
1819 case ND_REDIRECT:
1820 /*
1821 * If the icmp is a redirect to a better router, always set the
1822 * is_router flag. Otherwise, if the entry is newly created,
1823 * clear the flag. [RFC 2461, sec 8.3]
1824 */
1825 if (code == ND_REDIRECT_ROUTER)
1826 ln->ln_router = 1;
1827 else if (is_newentry) /* (6-7) */
1828 ln->ln_router = 0;
1829 break;
1830 case ND_ROUTER_SOLICIT:
1831 /*
1832 * is_router flag must always be cleared.
1833 */
1834 ln->ln_router = 0;
1835 break;
1836 case ND_ROUTER_ADVERT:
1837 /*
1838 * Mark an entry with lladdr as a router.
1839 */
1840 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
1841 (is_newentry && lladdr)) { /* (7) */
1842 ln->ln_router = 1;
1843 }
1844 break;
1845 }
1846
1847 /*
1848 * When the link-layer address of a router changes, select the
1849 * best router again. In particular, when the neighbor entry is newly
1850 * created, it might affect the selection policy.
1851 * Question: can we restrict the first condition to the "is_newentry"
1852 * case?
1853 * XXX: when we hear an RA from a new router with the link-layer
1854 * address option, defrouter_select() is called twice, since
1855 * defrtrlist_update called the function as well. However, I believe
1856 * we can compromise the overhead, since it only happens the first
1857 * time.
1858 * XXX: although defrouter_select() should not have a bad effect
1859 * for those are not autoconfigured hosts, we explicitly avoid such
1860 * cases for safety.
1861 */
1862 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1863 defrouter_select();
1864
1865 return rt;
1866 }
1867
1868 static void
1869 nd6_slowtimo(void *ignored_arg)
1870 {
1871 int s = splsoftnet();
1872 struct nd_ifinfo *nd6if;
1873 struct ifnet *ifp;
1874
1875 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1876 nd6_slowtimo, NULL);
1877 TAILQ_FOREACH(ifp, &ifnet, if_list) {
1878 nd6if = ND_IFINFO(ifp);
1879 if (nd6if->basereachable && /* already initialized */
1880 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1881 /*
1882 * Since reachable time rarely changes by router
1883 * advertisements, we SHOULD insure that a new random
1884 * value gets recomputed at least once every few hours.
1885 * (RFC 2461, 6.3.4)
1886 */
1887 nd6if->recalctm = nd6_recalc_reachtm_interval;
1888 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1889 }
1890 }
1891 splx(s);
1892 }
1893
1894 #define senderr(e) { error = (e); goto bad;}
1895 int
1896 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
1897 const struct sockaddr_in6 *dst, struct rtentry *rt0)
1898 {
1899 struct mbuf *m = m0;
1900 struct rtentry *rt = rt0;
1901 struct sockaddr_in6 *gw6 = NULL;
1902 struct llinfo_nd6 *ln = NULL;
1903 int error = 0;
1904
1905 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1906 goto sendpkt;
1907
1908 if (nd6_need_cache(ifp) == 0)
1909 goto sendpkt;
1910
1911 /*
1912 * next hop determination. This routine is derived from ether_output.
1913 */
1914 if (rt) {
1915 if ((rt->rt_flags & RTF_UP) == 0) {
1916 if ((rt0 = rt = rtalloc1(sin6tocsa(dst), 1)) != NULL) {
1917 rt->rt_refcnt--;
1918 if (rt->rt_ifp != ifp)
1919 senderr(EHOSTUNREACH);
1920 } else
1921 senderr(EHOSTUNREACH);
1922 }
1923
1924 if (rt->rt_flags & RTF_GATEWAY) {
1925 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1926
1927 /*
1928 * We skip link-layer address resolution and NUD
1929 * if the gateway is not a neighbor from ND point
1930 * of view, regardless of the value of nd_ifinfo.flags.
1931 * The second condition is a bit tricky; we skip
1932 * if the gateway is our own address, which is
1933 * sometimes used to install a route to a p2p link.
1934 */
1935 if (!nd6_is_addr_neighbor(gw6, ifp) ||
1936 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1937 /*
1938 * We allow this kind of tricky route only
1939 * when the outgoing interface is p2p.
1940 * XXX: we may need a more generic rule here.
1941 */
1942 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1943 senderr(EHOSTUNREACH);
1944
1945 goto sendpkt;
1946 }
1947
1948 if (rt->rt_gwroute == 0)
1949 goto lookup;
1950 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
1951 rtfree(rt); rt = rt0;
1952 lookup:
1953 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
1954 if ((rt = rt->rt_gwroute) == 0)
1955 senderr(EHOSTUNREACH);
1956 /* the "G" test below also prevents rt == rt0 */
1957 if ((rt->rt_flags & RTF_GATEWAY) ||
1958 (rt->rt_ifp != ifp)) {
1959 rt->rt_refcnt--;
1960 rt0->rt_gwroute = 0;
1961 senderr(EHOSTUNREACH);
1962 }
1963 }
1964 }
1965 }
1966
1967 /*
1968 * Address resolution or Neighbor Unreachability Detection
1969 * for the next hop.
1970 * At this point, the destination of the packet must be a unicast
1971 * or an anycast address(i.e. not a multicast).
1972 */
1973
1974 /* Look up the neighbor cache for the nexthop */
1975 if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
1976 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1977 else {
1978 /*
1979 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1980 * the condition below is not very efficient. But we believe
1981 * it is tolerable, because this should be a rare case.
1982 */
1983 if (nd6_is_addr_neighbor(dst, ifp) &&
1984 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
1985 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1986 }
1987 if (ln == NULL || rt == NULL) {
1988 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
1989 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
1990 log(LOG_DEBUG,
1991 "nd6_output: can't allocate llinfo for %s "
1992 "(ln=%p, rt=%p)\n",
1993 ip6_sprintf(&dst->sin6_addr), ln, rt);
1994 senderr(EIO); /* XXX: good error? */
1995 }
1996
1997 goto sendpkt; /* send anyway */
1998 }
1999
2000 /* We don't have to do link-layer address resolution on a p2p link. */
2001 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2002 ln->ln_state < ND6_LLINFO_REACHABLE) {
2003 ln->ln_state = ND6_LLINFO_STALE;
2004 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2005 }
2006
2007 /*
2008 * The first time we send a packet to a neighbor whose entry is
2009 * STALE, we have to change the state to DELAY and a sets a timer to
2010 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2011 * neighbor unreachability detection on expiration.
2012 * (RFC 2461 7.3.3)
2013 */
2014 if (ln->ln_state == ND6_LLINFO_STALE) {
2015 ln->ln_asked = 0;
2016 ln->ln_state = ND6_LLINFO_DELAY;
2017 nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2018 }
2019
2020 /*
2021 * If the neighbor cache entry has a state other than INCOMPLETE
2022 * (i.e. its link-layer address is already resolved), just
2023 * send the packet.
2024 */
2025 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2026 goto sendpkt;
2027
2028 /*
2029 * There is a neighbor cache entry, but no ethernet address
2030 * response yet. Append this latest packet to the end of the
2031 * packet queue in the mbuf, unless the number of the packet
2032 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen,
2033 * the oldest packet in the queue will be removed.
2034 */
2035 if (ln->ln_state == ND6_LLINFO_NOSTATE)
2036 ln->ln_state = ND6_LLINFO_INCOMPLETE;
2037 if (ln->ln_hold) {
2038 struct mbuf *m_hold;
2039 int i;
2040
2041 i = 0;
2042 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2043 i++;
2044 if (m_hold->m_nextpkt == NULL) {
2045 m_hold->m_nextpkt = m;
2046 break;
2047 }
2048 }
2049 while (i >= nd6_maxqueuelen) {
2050 m_hold = ln->ln_hold;
2051 ln->ln_hold = ln->ln_hold->m_nextpkt;
2052 m_freem(m_hold);
2053 i--;
2054 }
2055 } else {
2056 ln->ln_hold = m;
2057 }
2058
2059 /*
2060 * If there has been no NS for the neighbor after entering the
2061 * INCOMPLETE state, send the first solicitation.
2062 */
2063 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2064 ln->ln_asked++;
2065 nd6_llinfo_settimer(ln,
2066 (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2067 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2068 }
2069 return 0;
2070
2071 sendpkt:
2072 /* discard the packet if IPv6 operation is disabled on the interface */
2073 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2074 error = ENETDOWN; /* better error? */
2075 goto bad;
2076 }
2077
2078 #ifdef IPSEC
2079 /* clean ipsec history once it goes out of the node */
2080 ipsec_delaux(m);
2081 #endif
2082 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
2083 return (*ifp->if_output)(origifp, m, sin6tocsa(dst), rt);
2084 }
2085 return (*ifp->if_output)(ifp, m, sin6tocsa(dst), rt);
2086
2087 bad:
2088 if (m != NULL)
2089 m_freem(m);
2090 return error;
2091 }
2092 #undef senderr
2093
2094 int
2095 nd6_need_cache(struct ifnet *ifp)
2096 {
2097 /*
2098 * XXX: we currently do not make neighbor cache on any interface
2099 * other than ARCnet, Ethernet, FDDI and GIF.
2100 *
2101 * RFC2893 says:
2102 * - unidirectional tunnels needs no ND
2103 */
2104 switch (ifp->if_type) {
2105 case IFT_ARCNET:
2106 case IFT_ETHER:
2107 case IFT_FDDI:
2108 case IFT_IEEE1394:
2109 case IFT_CARP:
2110 case IFT_GIF: /* XXX need more cases? */
2111 case IFT_PPP:
2112 case IFT_TUNNEL:
2113 return 1;
2114 default:
2115 return 0;
2116 }
2117 }
2118
2119 int
2120 nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt,
2121 struct mbuf *m, const struct sockaddr *dst, u_char *lldst,
2122 size_t dstsize)
2123 {
2124 const struct sockaddr_dl *sdl;
2125
2126 if (m->m_flags & M_MCAST) {
2127 switch (ifp->if_type) {
2128 case IFT_ETHER:
2129 case IFT_FDDI:
2130 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr, lldst);
2131 return 1;
2132 case IFT_IEEE1394:
2133 bcopy(ifp->if_broadcastaddr, lldst, ifp->if_addrlen);
2134 return 1;
2135 case IFT_ARCNET:
2136 *lldst = 0;
2137 return 1;
2138 default:
2139 m_freem(m);
2140 return 0;
2141 }
2142 }
2143
2144 if (rt == NULL) {
2145 /* this could happen, if we could not allocate memory */
2146 m_freem(m);
2147 return 0;
2148 }
2149 if (rt->rt_gateway->sa_family != AF_LINK) {
2150 printf("%s: something odd happens\n", __func__);
2151 m_freem(m);
2152 return 0;
2153 }
2154 sdl = SDL(rt->rt_gateway);
2155 if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) {
2156 /* this should be impossible, but we bark here for debugging */
2157 printf("%s: sdl_alen == 0, dst=%s, if=%s\n", __func__,
2158 ip6_sprintf(&SIN6(dst)->sin6_addr), if_name(ifp));
2159 m_freem(m);
2160 return 0;
2161 }
2162
2163 memcpy(lldst, CLLADDR(sdl), MIN(dstsize, sdl->sdl_alen));
2164 return 1;
2165 }
2166
2167 static void
2168 clear_llinfo_pqueue(struct llinfo_nd6 *ln)
2169 {
2170 struct mbuf *m_hold, *m_hold_next;
2171
2172 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2173 m_hold_next = m_hold->m_nextpkt;
2174 m_hold->m_nextpkt = NULL;
2175 m_freem(m_hold);
2176 }
2177
2178 ln->ln_hold = NULL;
2179 return;
2180 }
2181
2182 int
2183 nd6_sysctl(
2184 int name,
2185 void *oldp, /* syscall arg, need copyout */
2186 size_t *oldlenp,
2187 void *newp, /* syscall arg, need copyin */
2188 size_t newlen
2189 )
2190 {
2191 void *p;
2192 size_t ol;
2193 int error;
2194
2195 error = 0;
2196
2197 if (newp)
2198 return EPERM;
2199 if (oldp && !oldlenp)
2200 return EINVAL;
2201 ol = oldlenp ? *oldlenp : 0;
2202
2203 if (oldp) {
2204 p = malloc(*oldlenp, M_TEMP, M_WAITOK);
2205 if (p == NULL)
2206 return ENOMEM;
2207 } else
2208 p = NULL;
2209 switch (name) {
2210 case ICMPV6CTL_ND6_DRLIST:
2211 error = fill_drlist(p, oldlenp, ol);
2212 if (!error && p != NULL && oldp != NULL)
2213 error = copyout(p, oldp, *oldlenp);
2214 break;
2215
2216 case ICMPV6CTL_ND6_PRLIST:
2217 error = fill_prlist(p, oldlenp, ol);
2218 if (!error && p != NULL && oldp != NULL)
2219 error = copyout(p, oldp, *oldlenp);
2220 break;
2221
2222 case ICMPV6CTL_ND6_MAXQLEN:
2223 break;
2224
2225 default:
2226 error = ENOPROTOOPT;
2227 break;
2228 }
2229 if (p)
2230 free(p, M_TEMP);
2231
2232 return error;
2233 }
2234
2235 static int
2236 fill_drlist(void *oldp, size_t *oldlenp, size_t ol)
2237 {
2238 int error = 0, s;
2239 struct in6_defrouter *d = NULL, *de = NULL;
2240 struct nd_defrouter *dr;
2241 size_t l;
2242
2243 s = splsoftnet();
2244
2245 if (oldp) {
2246 d = (struct in6_defrouter *)oldp;
2247 de = (struct in6_defrouter *)((char *)oldp + *oldlenp);
2248 }
2249 l = 0;
2250
2251 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
2252
2253 if (oldp && d + 1 <= de) {
2254 bzero(d, sizeof(*d));
2255 d->rtaddr.sin6_family = AF_INET6;
2256 d->rtaddr.sin6_len = sizeof(struct sockaddr_in6);
2257 d->rtaddr.sin6_addr = dr->rtaddr;
2258 if (sa6_recoverscope(&d->rtaddr)) {
2259 log(LOG_ERR,
2260 "scope error in router list (%s)\n",
2261 ip6_sprintf(&d->rtaddr.sin6_addr));
2262 /* XXX: press on... */
2263 }
2264 d->flags = dr->flags;
2265 d->rtlifetime = dr->rtlifetime;
2266 d->expire = dr->expire;
2267 d->if_index = dr->ifp->if_index;
2268 }
2269
2270 l += sizeof(*d);
2271 if (d)
2272 d++;
2273 }
2274
2275 if (oldp) {
2276 if (l > ol)
2277 error = ENOMEM;
2278 }
2279 if (oldlenp)
2280 *oldlenp = l; /* (void *)d - (void *)oldp */
2281
2282 splx(s);
2283
2284 return error;
2285 }
2286
2287 static int
2288 fill_prlist(void *oldp, size_t *oldlenp, size_t ol)
2289 {
2290 int error = 0, s;
2291 struct nd_prefix *pr;
2292 struct in6_prefix *p = NULL;
2293 struct in6_prefix *pe = NULL;
2294 size_t l;
2295
2296 s = splsoftnet();
2297
2298 if (oldp) {
2299 p = (struct in6_prefix *)oldp;
2300 pe = (struct in6_prefix *)((char *)oldp + *oldlenp);
2301 }
2302 l = 0;
2303
2304 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
2305 u_short advrtrs;
2306 size_t advance;
2307 struct sockaddr_in6 *sin6;
2308 struct sockaddr_in6 *s6;
2309 struct nd_pfxrouter *pfr;
2310
2311 if (oldp && p + 1 <= pe)
2312 {
2313 bzero(p, sizeof(*p));
2314 sin6 = (struct sockaddr_in6 *)(p + 1);
2315
2316 p->prefix = pr->ndpr_prefix;
2317 if (sa6_recoverscope(&p->prefix)) {
2318 log(LOG_ERR,
2319 "scope error in prefix list (%s)\n",
2320 ip6_sprintf(&p->prefix.sin6_addr));
2321 /* XXX: press on... */
2322 }
2323 p->raflags = pr->ndpr_raf;
2324 p->prefixlen = pr->ndpr_plen;
2325 p->vltime = pr->ndpr_vltime;
2326 p->pltime = pr->ndpr_pltime;
2327 p->if_index = pr->ndpr_ifp->if_index;
2328 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2329 p->expire = 0;
2330 else {
2331 time_t maxexpire;
2332
2333 /* XXX: we assume time_t is signed. */
2334 maxexpire = (-1) &
2335 ~((time_t)1 <<
2336 ((sizeof(maxexpire) * 8) - 1));
2337 if (pr->ndpr_vltime <
2338 maxexpire - pr->ndpr_lastupdate) {
2339 p->expire = pr->ndpr_lastupdate +
2340 pr->ndpr_vltime;
2341 } else
2342 p->expire = maxexpire;
2343 }
2344 p->refcnt = pr->ndpr_refcnt;
2345 p->flags = pr->ndpr_stateflags;
2346 p->origin = PR_ORIG_RA;
2347 advrtrs = 0;
2348 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2349 if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2350 advrtrs++;
2351 continue;
2352 }
2353 s6 = &sin6[advrtrs];
2354 s6->sin6_family = AF_INET6;
2355 s6->sin6_len = sizeof(struct sockaddr_in6);
2356 s6->sin6_addr = pfr->router->rtaddr;
2357 s6->sin6_scope_id = 0;
2358 if (sa6_recoverscope(s6)) {
2359 log(LOG_ERR,
2360 "scope error in "
2361 "prefix list (%s)\n",
2362 ip6_sprintf(&pfr->router->rtaddr));
2363 }
2364 advrtrs++;
2365 }
2366 p->advrtrs = advrtrs;
2367 }
2368 else {
2369 advrtrs = 0;
2370 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
2371 advrtrs++;
2372 }
2373
2374 advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2375 l += advance;
2376 if (p)
2377 p = (struct in6_prefix *)((char *)p + advance);
2378 }
2379
2380 if (oldp) {
2381 *oldlenp = l; /* (void *)d - (void *)oldp */
2382 if (l > ol)
2383 error = ENOMEM;
2384 } else
2385 *oldlenp = l;
2386
2387 splx(s);
2388
2389 return error;
2390 }
2391