nd6.c revision 1.122 1 /* $NetBSD: nd6.c,v 1.122 2007/11/10 00:07:57 dyoung Exp $ */
2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.122 2007/11/10 00:07:57 dyoung Exp $");
35
36 #include "opt_ipsec.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/callout.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47 #include <sys/protosw.h>
48 #include <sys/errno.h>
49 #include <sys/ioctl.h>
50 #include <sys/syslog.h>
51 #include <sys/queue.h>
52
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_types.h>
56 #include <net/route.h>
57 #include <net/if_ether.h>
58 #include <net/if_fddi.h>
59 #include <net/if_arc.h>
60
61 #include <netinet/in.h>
62 #include <netinet6/in6_var.h>
63 #include <netinet/ip6.h>
64 #include <netinet6/ip6_var.h>
65 #include <netinet6/scope6_var.h>
66 #include <netinet6/nd6.h>
67 #include <netinet/icmp6.h>
68
69 #ifdef IPSEC
70 #include <netinet6/ipsec.h>
71 #endif
72
73 #include <net/net_osdep.h>
74
75 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
76 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
77
78 /* timer values */
79 int nd6_prune = 1; /* walk list every 1 seconds */
80 int nd6_delay = 5; /* delay first probe time 5 second */
81 int nd6_umaxtries = 3; /* maximum unicast query */
82 int nd6_mmaxtries = 3; /* maximum multicast query */
83 int nd6_useloopback = 1; /* use loopback interface for local traffic */
84 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
85
86 /* preventing too many loops in ND option parsing */
87 int nd6_maxndopt = 10; /* max # of ND options allowed */
88
89 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
90
91 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
92
93 #ifdef ND6_DEBUG
94 int nd6_debug = 1;
95 #else
96 int nd6_debug = 0;
97 #endif
98
99 /* for debugging? */
100 static int nd6_inuse, nd6_allocated;
101
102 struct llinfo_nd6 llinfo_nd6 = {
103 .ln_prev = &llinfo_nd6,
104 .ln_next = &llinfo_nd6,
105 };
106 struct nd_drhead nd_defrouter;
107 struct nd_prhead nd_prefix = { 0 };
108
109 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
110 static const struct sockaddr_in6 all1_sa = {
111 .sin6_family = AF_INET6
112 , .sin6_len = sizeof(struct sockaddr_in6)
113 , .sin6_addr = {.s6_addr = {0xff, 0xff, 0xff, 0xff,
114 0xff, 0xff, 0xff, 0xff,
115 0xff, 0xff, 0xff, 0xff,
116 0xff, 0xff, 0xff, 0xff}}
117 };
118
119 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
120 static void nd6_slowtimo(void *);
121 static int regen_tmpaddr(struct in6_ifaddr *);
122 static struct llinfo_nd6 *nd6_free(struct rtentry *, int);
123 static void nd6_llinfo_timer(void *);
124 static void clear_llinfo_pqueue(struct llinfo_nd6 *);
125
126 callout_t nd6_slowtimo_ch;
127 callout_t nd6_timer_ch;
128 extern callout_t in6_tmpaddrtimer_ch;
129
130 static int fill_drlist(void *, size_t *, size_t);
131 static int fill_prlist(void *, size_t *, size_t);
132
133 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
134
135 void
136 nd6_init(void)
137 {
138 static int nd6_init_done = 0;
139
140 if (nd6_init_done) {
141 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
142 return;
143 }
144
145 /* initialization of the default router list */
146 TAILQ_INIT(&nd_defrouter);
147
148 nd6_init_done = 1;
149
150 callout_init(&nd6_slowtimo_ch, 0);
151 callout_init(&nd6_timer_ch, 0);
152
153 /* start timer */
154 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
155 nd6_slowtimo, NULL);
156 }
157
158 struct nd_ifinfo *
159 nd6_ifattach(struct ifnet *ifp)
160 {
161 struct nd_ifinfo *nd;
162
163 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
164 bzero(nd, sizeof(*nd));
165
166 nd->initialized = 1;
167
168 nd->chlim = IPV6_DEFHLIM;
169 nd->basereachable = REACHABLE_TIME;
170 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
171 nd->retrans = RETRANS_TIMER;
172 /*
173 * Note that the default value of ip6_accept_rtadv is 0, which means
174 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
175 * here.
176 */
177 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
178
179 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
180 nd6_setmtu0(ifp, nd);
181
182 return nd;
183 }
184
185 void
186 nd6_ifdetach(struct nd_ifinfo *nd)
187 {
188
189 free(nd, M_IP6NDP);
190 }
191
192 void
193 nd6_setmtu(struct ifnet *ifp)
194 {
195 nd6_setmtu0(ifp, ND_IFINFO(ifp));
196 }
197
198 void
199 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
200 {
201 u_int32_t omaxmtu;
202
203 omaxmtu = ndi->maxmtu;
204
205 switch (ifp->if_type) {
206 case IFT_ARCNET:
207 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
208 break;
209 case IFT_FDDI:
210 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
211 break;
212 default:
213 ndi->maxmtu = ifp->if_mtu;
214 break;
215 }
216
217 /*
218 * Decreasing the interface MTU under IPV6 minimum MTU may cause
219 * undesirable situation. We thus notify the operator of the change
220 * explicitly. The check for omaxmtu is necessary to restrict the
221 * log to the case of changing the MTU, not initializing it.
222 */
223 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
224 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
225 " small for IPv6 which needs %lu\n",
226 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
227 IPV6_MMTU);
228 }
229
230 if (ndi->maxmtu > in6_maxmtu)
231 in6_setmaxmtu(); /* check all interfaces just in case */
232 }
233
234 void
235 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
236 {
237
238 bzero(ndopts, sizeof(*ndopts));
239 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
240 ndopts->nd_opts_last
241 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
242
243 if (icmp6len == 0) {
244 ndopts->nd_opts_done = 1;
245 ndopts->nd_opts_search = NULL;
246 }
247 }
248
249 /*
250 * Take one ND option.
251 */
252 struct nd_opt_hdr *
253 nd6_option(union nd_opts *ndopts)
254 {
255 struct nd_opt_hdr *nd_opt;
256 int olen;
257
258 if (ndopts == NULL)
259 panic("ndopts == NULL in nd6_option");
260 if (ndopts->nd_opts_last == NULL)
261 panic("uninitialized ndopts in nd6_option");
262 if (ndopts->nd_opts_search == NULL)
263 return NULL;
264 if (ndopts->nd_opts_done)
265 return NULL;
266
267 nd_opt = ndopts->nd_opts_search;
268
269 /* make sure nd_opt_len is inside the buffer */
270 if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) {
271 bzero(ndopts, sizeof(*ndopts));
272 return NULL;
273 }
274
275 olen = nd_opt->nd_opt_len << 3;
276 if (olen == 0) {
277 /*
278 * Message validation requires that all included
279 * options have a length that is greater than zero.
280 */
281 bzero(ndopts, sizeof(*ndopts));
282 return NULL;
283 }
284
285 ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen);
286 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
287 /* option overruns the end of buffer, invalid */
288 bzero(ndopts, sizeof(*ndopts));
289 return NULL;
290 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
291 /* reached the end of options chain */
292 ndopts->nd_opts_done = 1;
293 ndopts->nd_opts_search = NULL;
294 }
295 return nd_opt;
296 }
297
298 /*
299 * Parse multiple ND options.
300 * This function is much easier to use, for ND routines that do not need
301 * multiple options of the same type.
302 */
303 int
304 nd6_options(union nd_opts *ndopts)
305 {
306 struct nd_opt_hdr *nd_opt;
307 int i = 0;
308
309 if (ndopts == NULL)
310 panic("ndopts == NULL in nd6_options");
311 if (ndopts->nd_opts_last == NULL)
312 panic("uninitialized ndopts in nd6_options");
313 if (ndopts->nd_opts_search == NULL)
314 return 0;
315
316 while (1) {
317 nd_opt = nd6_option(ndopts);
318 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
319 /*
320 * Message validation requires that all included
321 * options have a length that is greater than zero.
322 */
323 icmp6stat.icp6s_nd_badopt++;
324 bzero(ndopts, sizeof(*ndopts));
325 return -1;
326 }
327
328 if (nd_opt == NULL)
329 goto skip1;
330
331 switch (nd_opt->nd_opt_type) {
332 case ND_OPT_SOURCE_LINKADDR:
333 case ND_OPT_TARGET_LINKADDR:
334 case ND_OPT_MTU:
335 case ND_OPT_REDIRECTED_HEADER:
336 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
337 nd6log((LOG_INFO,
338 "duplicated ND6 option found (type=%d)\n",
339 nd_opt->nd_opt_type));
340 /* XXX bark? */
341 } else {
342 ndopts->nd_opt_array[nd_opt->nd_opt_type]
343 = nd_opt;
344 }
345 break;
346 case ND_OPT_PREFIX_INFORMATION:
347 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
348 ndopts->nd_opt_array[nd_opt->nd_opt_type]
349 = nd_opt;
350 }
351 ndopts->nd_opts_pi_end =
352 (struct nd_opt_prefix_info *)nd_opt;
353 break;
354 default:
355 /*
356 * Unknown options must be silently ignored,
357 * to accommodate future extension to the protocol.
358 */
359 nd6log((LOG_DEBUG,
360 "nd6_options: unsupported option %d - "
361 "option ignored\n", nd_opt->nd_opt_type));
362 }
363
364 skip1:
365 i++;
366 if (i > nd6_maxndopt) {
367 icmp6stat.icp6s_nd_toomanyopt++;
368 nd6log((LOG_INFO, "too many loop in nd opt\n"));
369 break;
370 }
371
372 if (ndopts->nd_opts_done)
373 break;
374 }
375
376 return 0;
377 }
378
379 /*
380 * ND6 timer routine to handle ND6 entries
381 */
382 void
383 nd6_llinfo_settimer(struct llinfo_nd6 *ln, long xtick)
384 {
385 int s;
386
387 s = splsoftnet();
388
389 if (xtick < 0) {
390 ln->ln_expire = 0;
391 ln->ln_ntick = 0;
392 callout_stop(&ln->ln_timer_ch);
393 } else {
394 ln->ln_expire = time_second + xtick / hz;
395 if (xtick > INT_MAX) {
396 ln->ln_ntick = xtick - INT_MAX;
397 callout_reset(&ln->ln_timer_ch, INT_MAX,
398 nd6_llinfo_timer, ln);
399 } else {
400 ln->ln_ntick = 0;
401 callout_reset(&ln->ln_timer_ch, xtick,
402 nd6_llinfo_timer, ln);
403 }
404 }
405
406 splx(s);
407 }
408
409 static void
410 nd6_llinfo_timer(void *arg)
411 {
412 int s;
413 struct llinfo_nd6 *ln;
414 struct rtentry *rt;
415 const struct sockaddr_in6 *dst;
416 struct ifnet *ifp;
417 struct nd_ifinfo *ndi = NULL;
418
419 s = splsoftnet();
420
421 ln = (struct llinfo_nd6 *)arg;
422
423 if (ln->ln_ntick > 0) {
424 nd6_llinfo_settimer(ln, ln->ln_ntick);
425 splx(s);
426 return;
427 }
428
429 if ((rt = ln->ln_rt) == NULL)
430 panic("ln->ln_rt == NULL");
431 if ((ifp = rt->rt_ifp) == NULL)
432 panic("ln->ln_rt->rt_ifp == NULL");
433 ndi = ND_IFINFO(ifp);
434 dst = satocsin6(rt_getkey(rt));
435
436 /* sanity check */
437 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
438 panic("rt_llinfo(%p) is not equal to ln(%p)",
439 rt->rt_llinfo, ln);
440 if (!dst)
441 panic("dst=0 in nd6_timer(ln=%p)", ln);
442
443 switch (ln->ln_state) {
444 case ND6_LLINFO_INCOMPLETE:
445 if (ln->ln_asked < nd6_mmaxtries) {
446 ln->ln_asked++;
447 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
448 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
449 } else {
450 struct mbuf *m = ln->ln_hold;
451 if (m) {
452 struct mbuf *m0;
453
454 /*
455 * assuming every packet in ln_hold has
456 * the same IP header
457 */
458 m0 = m->m_nextpkt;
459 m->m_nextpkt = NULL;
460 icmp6_error2(m, ICMP6_DST_UNREACH,
461 ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
462
463 ln->ln_hold = m0;
464 clear_llinfo_pqueue(ln);
465 }
466 (void)nd6_free(rt, 0);
467 ln = NULL;
468 }
469 break;
470 case ND6_LLINFO_REACHABLE:
471 if (!ND6_LLINFO_PERMANENT(ln)) {
472 ln->ln_state = ND6_LLINFO_STALE;
473 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
474 }
475 break;
476
477 case ND6_LLINFO_STALE:
478 /* Garbage Collection(RFC 2461 5.3) */
479 if (!ND6_LLINFO_PERMANENT(ln)) {
480 (void)nd6_free(rt, 1);
481 ln = NULL;
482 }
483 break;
484
485 case ND6_LLINFO_DELAY:
486 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
487 /* We need NUD */
488 ln->ln_asked = 1;
489 ln->ln_state = ND6_LLINFO_PROBE;
490 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
491 nd6_ns_output(ifp, &dst->sin6_addr,
492 &dst->sin6_addr, ln, 0);
493 } else {
494 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
495 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
496 }
497 break;
498 case ND6_LLINFO_PROBE:
499 if (ln->ln_asked < nd6_umaxtries) {
500 ln->ln_asked++;
501 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
502 nd6_ns_output(ifp, &dst->sin6_addr,
503 &dst->sin6_addr, ln, 0);
504 } else {
505 (void)nd6_free(rt, 0);
506 ln = NULL;
507 }
508 break;
509 }
510
511 splx(s);
512 }
513
514 /*
515 * ND6 timer routine to expire default route list and prefix list
516 */
517 void
518 nd6_timer(void *ignored_arg)
519 {
520 int s;
521 struct nd_defrouter *next_dr, *dr;
522 struct nd_prefix *next_pr, *pr;
523 struct in6_ifaddr *ia6, *nia6;
524 struct in6_addrlifetime *lt6;
525
526 s = splsoftnet();
527 callout_reset(&nd6_timer_ch, nd6_prune * hz,
528 nd6_timer, NULL);
529
530 /* expire default router list */
531
532 for (dr = TAILQ_FIRST(&nd_defrouter); dr != NULL; dr = next_dr) {
533 next_dr = TAILQ_NEXT(dr, dr_entry);
534 if (dr->expire && dr->expire < time_second) {
535 defrtrlist_del(dr);
536 }
537 }
538
539 /*
540 * expire interface addresses.
541 * in the past the loop was inside prefix expiry processing.
542 * However, from a stricter speci-confrmance standpoint, we should
543 * rather separate address lifetimes and prefix lifetimes.
544 */
545 addrloop:
546 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
547 nia6 = ia6->ia_next;
548 /* check address lifetime */
549 lt6 = &ia6->ia6_lifetime;
550 if (IFA6_IS_INVALID(ia6)) {
551 int regen = 0;
552
553 /*
554 * If the expiring address is temporary, try
555 * regenerating a new one. This would be useful when
556 * we suspended a laptop PC, then turned it on after a
557 * period that could invalidate all temporary
558 * addresses. Although we may have to restart the
559 * loop (see below), it must be after purging the
560 * address. Otherwise, we'd see an infinite loop of
561 * regeneration.
562 */
563 if (ip6_use_tempaddr &&
564 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
565 if (regen_tmpaddr(ia6) == 0)
566 regen = 1;
567 }
568
569 in6_purgeaddr(&ia6->ia_ifa);
570
571 if (regen)
572 goto addrloop; /* XXX: see below */
573 } else if (IFA6_IS_DEPRECATED(ia6)) {
574 int oldflags = ia6->ia6_flags;
575
576 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
577
578 /*
579 * If a temporary address has just become deprecated,
580 * regenerate a new one if possible.
581 */
582 if (ip6_use_tempaddr &&
583 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
584 (oldflags & IN6_IFF_DEPRECATED) == 0) {
585
586 if (regen_tmpaddr(ia6) == 0) {
587 /*
588 * A new temporary address is
589 * generated.
590 * XXX: this means the address chain
591 * has changed while we are still in
592 * the loop. Although the change
593 * would not cause disaster (because
594 * it's not a deletion, but an
595 * addition,) we'd rather restart the
596 * loop just for safety. Or does this
597 * significantly reduce performance??
598 */
599 goto addrloop;
600 }
601 }
602 } else {
603 /*
604 * A new RA might have made a deprecated address
605 * preferred.
606 */
607 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
608 }
609 }
610
611 /* expire prefix list */
612 for (pr = LIST_FIRST(&nd_prefix); pr != NULL; pr = next_pr) {
613 next_pr = LIST_NEXT(pr, ndpr_entry);
614 /*
615 * check prefix lifetime.
616 * since pltime is just for autoconf, pltime processing for
617 * prefix is not necessary.
618 */
619 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
620 time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
621
622 /*
623 * address expiration and prefix expiration are
624 * separate. NEVER perform in6_purgeaddr here.
625 */
626
627 prelist_remove(pr);
628 }
629 }
630 splx(s);
631 }
632
633 /* ia6: deprecated/invalidated temporary address */
634 static int
635 regen_tmpaddr(struct in6_ifaddr *ia6)
636 {
637 struct ifaddr *ifa;
638 struct ifnet *ifp;
639 struct in6_ifaddr *public_ifa6 = NULL;
640
641 ifp = ia6->ia_ifa.ifa_ifp;
642 TAILQ_FOREACH(ifa, &ifp->if_addrlist, ifa_list) {
643 struct in6_ifaddr *it6;
644
645 if (ifa->ifa_addr->sa_family != AF_INET6)
646 continue;
647
648 it6 = (struct in6_ifaddr *)ifa;
649
650 /* ignore no autoconf addresses. */
651 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
652 continue;
653
654 /* ignore autoconf addresses with different prefixes. */
655 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
656 continue;
657
658 /*
659 * Now we are looking at an autoconf address with the same
660 * prefix as ours. If the address is temporary and is still
661 * preferred, do not create another one. It would be rare, but
662 * could happen, for example, when we resume a laptop PC after
663 * a long period.
664 */
665 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
666 !IFA6_IS_DEPRECATED(it6)) {
667 public_ifa6 = NULL;
668 break;
669 }
670
671 /*
672 * This is a public autoconf address that has the same prefix
673 * as ours. If it is preferred, keep it. We can't break the
674 * loop here, because there may be a still-preferred temporary
675 * address with the prefix.
676 */
677 if (!IFA6_IS_DEPRECATED(it6))
678 public_ifa6 = it6;
679 }
680
681 if (public_ifa6 != NULL) {
682 int e;
683
684 /*
685 * Random factor is introduced in the preferred lifetime, so
686 * we do not need additional delay (3rd arg to in6_tmpifadd).
687 */
688 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
689 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
690 " tmp addr, errno=%d\n", e);
691 return -1;
692 }
693 return 0;
694 }
695
696 return -1;
697 }
698
699 /*
700 * Nuke neighbor cache/prefix/default router management table, right before
701 * ifp goes away.
702 */
703 void
704 nd6_purge(struct ifnet *ifp)
705 {
706 struct llinfo_nd6 *ln, *nln;
707 struct nd_defrouter *dr, *ndr;
708 struct nd_prefix *pr, *npr;
709
710 /*
711 * Nuke default router list entries toward ifp.
712 * We defer removal of default router list entries that is installed
713 * in the routing table, in order to keep additional side effects as
714 * small as possible.
715 */
716 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
717 ndr = TAILQ_NEXT(dr, dr_entry);
718 if (dr->installed)
719 continue;
720
721 if (dr->ifp == ifp)
722 defrtrlist_del(dr);
723 }
724 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
725 ndr = TAILQ_NEXT(dr, dr_entry);
726 if (!dr->installed)
727 continue;
728
729 if (dr->ifp == ifp)
730 defrtrlist_del(dr);
731 }
732
733 /* Nuke prefix list entries toward ifp */
734 for (pr = LIST_FIRST(&nd_prefix); pr != NULL; pr = npr) {
735 npr = LIST_NEXT(pr, ndpr_entry);
736 if (pr->ndpr_ifp == ifp) {
737 /*
738 * Because if_detach() does *not* release prefixes
739 * while purging addresses the reference count will
740 * still be above zero. We therefore reset it to
741 * make sure that the prefix really gets purged.
742 */
743 pr->ndpr_refcnt = 0;
744 /*
745 * Previously, pr->ndpr_addr is removed as well,
746 * but I strongly believe we don't have to do it.
747 * nd6_purge() is only called from in6_ifdetach(),
748 * which removes all the associated interface addresses
749 * by itself.
750 * (jinmei (at) kame.net 20010129)
751 */
752 prelist_remove(pr);
753 }
754 }
755
756 /* cancel default outgoing interface setting */
757 if (nd6_defifindex == ifp->if_index)
758 nd6_setdefaultiface(0);
759
760 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
761 /* refresh default router list */
762 defrouter_select();
763 }
764
765 /*
766 * Nuke neighbor cache entries for the ifp.
767 * Note that rt->rt_ifp may not be the same as ifp,
768 * due to KAME goto ours hack. See RTM_RESOLVE case in
769 * nd6_rtrequest(), and ip6_input().
770 */
771 ln = llinfo_nd6.ln_next;
772 while (ln && ln != &llinfo_nd6) {
773 struct rtentry *rt;
774 const struct sockaddr_dl *sdl;
775
776 nln = ln->ln_next;
777 rt = ln->ln_rt;
778 if (rt && rt->rt_gateway &&
779 rt->rt_gateway->sa_family == AF_LINK) {
780 sdl = satocsdl(rt->rt_gateway);
781 if (sdl->sdl_index == ifp->if_index)
782 nln = nd6_free(rt, 0);
783 }
784 ln = nln;
785 }
786 }
787
788 struct rtentry *
789 nd6_lookup(const struct in6_addr *addr6, int create, struct ifnet *ifp)
790 {
791 struct rtentry *rt;
792 struct sockaddr_in6 sin6;
793
794 sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
795 rt = rtalloc1((struct sockaddr *)&sin6, create);
796 if (rt && (rt->rt_flags & RTF_LLINFO) == 0) {
797 /*
798 * This is the case for the default route.
799 * If we want to create a neighbor cache for the address, we
800 * should free the route for the destination and allocate an
801 * interface route.
802 */
803 if (create) {
804 RTFREE(rt);
805 rt = NULL;
806 }
807 }
808 if (rt != NULL)
809 ;
810 else if (create && ifp) {
811 int e;
812
813 /*
814 * If no route is available and create is set,
815 * we allocate a host route for the destination
816 * and treat it like an interface route.
817 * This hack is necessary for a neighbor which can't
818 * be covered by our own prefix.
819 */
820 struct ifaddr *ifa =
821 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
822 if (ifa == NULL)
823 return NULL;
824
825 /*
826 * Create a new route. RTF_LLINFO is necessary
827 * to create a Neighbor Cache entry for the
828 * destination in nd6_rtrequest which will be
829 * called in rtrequest via ifa->ifa_rtrequest.
830 */
831 if ((e = rtrequest(RTM_ADD, (const struct sockaddr *)&sin6,
832 ifa->ifa_addr, (const struct sockaddr *)&all1_sa,
833 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
834 ~RTF_CLONING, &rt)) != 0) {
835 #if 0
836 log(LOG_ERR,
837 "nd6_lookup: failed to add route for a "
838 "neighbor(%s), errno=%d\n",
839 ip6_sprintf(addr6), e);
840 #endif
841 return NULL;
842 }
843 if (rt == NULL)
844 return NULL;
845 if (rt->rt_llinfo) {
846 struct llinfo_nd6 *ln =
847 (struct llinfo_nd6 *)rt->rt_llinfo;
848 ln->ln_state = ND6_LLINFO_NOSTATE;
849 }
850 } else
851 return NULL;
852 rt->rt_refcnt--;
853 /*
854 * Validation for the entry.
855 * Note that the check for rt_llinfo is necessary because a cloned
856 * route from a parent route that has the L flag (e.g. the default
857 * route to a p2p interface) may have the flag, too, while the
858 * destination is not actually a neighbor.
859 * XXX: we can't use rt->rt_ifp to check for the interface, since
860 * it might be the loopback interface if the entry is for our
861 * own address on a non-loopback interface. Instead, we should
862 * use rt->rt_ifa->ifa_ifp, which would specify the REAL
863 * interface.
864 * Note also that ifa_ifp and ifp may differ when we connect two
865 * interfaces to a same link, install a link prefix to an interface,
866 * and try to install a neighbor cache on an interface that does not
867 * have a route to the prefix.
868 */
869 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
870 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
871 (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
872 if (create) {
873 nd6log((LOG_DEBUG,
874 "nd6_lookup: failed to lookup %s (if = %s)\n",
875 ip6_sprintf(addr6),
876 ifp ? if_name(ifp) : "unspec"));
877 }
878 return NULL;
879 }
880 return rt;
881 }
882
883 /*
884 * Detect if a given IPv6 address identifies a neighbor on a given link.
885 * XXX: should take care of the destination of a p2p link?
886 */
887 int
888 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
889 {
890 struct nd_prefix *pr;
891
892 /*
893 * A link-local address is always a neighbor.
894 * XXX: a link does not necessarily specify a single interface.
895 */
896 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
897 struct sockaddr_in6 sin6_copy;
898 u_int32_t zone;
899
900 /*
901 * We need sin6_copy since sa6_recoverscope() may modify the
902 * content (XXX).
903 */
904 sin6_copy = *addr;
905 if (sa6_recoverscope(&sin6_copy))
906 return 0; /* XXX: should be impossible */
907 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
908 return 0;
909 if (sin6_copy.sin6_scope_id == zone)
910 return 1;
911 else
912 return 0;
913 }
914
915 /*
916 * If the address matches one of our on-link prefixes, it should be a
917 * neighbor.
918 */
919 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
920 if (pr->ndpr_ifp != ifp)
921 continue;
922
923 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
924 continue;
925
926 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
927 &addr->sin6_addr, &pr->ndpr_mask))
928 return 1;
929 }
930
931 /*
932 * If the default router list is empty, all addresses are regarded
933 * as on-link, and thus, as a neighbor.
934 * XXX: we restrict the condition to hosts, because routers usually do
935 * not have the "default router list".
936 */
937 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
938 nd6_defifindex == ifp->if_index) {
939 return 1;
940 }
941
942 /*
943 * Even if the address matches none of our addresses, it might be
944 * in the neighbor cache.
945 */
946 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
947 return 1;
948
949 return 0;
950 }
951
952 /*
953 * Free an nd6 llinfo entry.
954 * Since the function would cause significant changes in the kernel, DO NOT
955 * make it global, unless you have a strong reason for the change, and are sure
956 * that the change is safe.
957 */
958 static struct llinfo_nd6 *
959 nd6_free(struct rtentry *rt, int gc)
960 {
961 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
962 struct in6_addr in6 = satocsin6(rt_getkey(rt))->sin6_addr;
963 struct nd_defrouter *dr;
964
965 /*
966 * we used to have pfctlinput(PRC_HOSTDEAD) here.
967 * even though it is not harmful, it was not really necessary.
968 */
969
970 /* cancel timer */
971 nd6_llinfo_settimer(ln, -1);
972
973 if (!ip6_forwarding) {
974 int s;
975 s = splsoftnet();
976 dr = defrouter_lookup(&satocsin6(rt_getkey(rt))->sin6_addr,
977 rt->rt_ifp);
978
979 if (dr != NULL && dr->expire &&
980 ln->ln_state == ND6_LLINFO_STALE && gc) {
981 /*
982 * If the reason for the deletion is just garbage
983 * collection, and the neighbor is an active default
984 * router, do not delete it. Instead, reset the GC
985 * timer using the router's lifetime.
986 * Simply deleting the entry would affect default
987 * router selection, which is not necessarily a good
988 * thing, especially when we're using router preference
989 * values.
990 * XXX: the check for ln_state would be redundant,
991 * but we intentionally keep it just in case.
992 */
993 if (dr->expire > time_second)
994 nd6_llinfo_settimer(ln,
995 (dr->expire - time_second) * hz);
996 else
997 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
998 splx(s);
999 return ln->ln_next;
1000 }
1001
1002 if (ln->ln_router || dr) {
1003 /*
1004 * rt6_flush must be called whether or not the neighbor
1005 * is in the Default Router List.
1006 * See a corresponding comment in nd6_na_input().
1007 */
1008 rt6_flush(&in6, rt->rt_ifp);
1009 }
1010
1011 if (dr) {
1012 /*
1013 * Unreachablity of a router might affect the default
1014 * router selection and on-link detection of advertised
1015 * prefixes.
1016 */
1017
1018 /*
1019 * Temporarily fake the state to choose a new default
1020 * router and to perform on-link determination of
1021 * prefixes correctly.
1022 * Below the state will be set correctly,
1023 * or the entry itself will be deleted.
1024 */
1025 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1026
1027 /*
1028 * Since defrouter_select() does not affect the
1029 * on-link determination and MIP6 needs the check
1030 * before the default router selection, we perform
1031 * the check now.
1032 */
1033 pfxlist_onlink_check();
1034
1035 /*
1036 * refresh default router list
1037 */
1038 defrouter_select();
1039 }
1040 splx(s);
1041 }
1042
1043 /*
1044 * Before deleting the entry, remember the next entry as the
1045 * return value. We need this because pfxlist_onlink_check() above
1046 * might have freed other entries (particularly the old next entry) as
1047 * a side effect (XXX).
1048 */
1049 next = ln->ln_next;
1050
1051 /*
1052 * Detach the route from the routing tree and the list of neighbor
1053 * caches, and disable the route entry not to be used in already
1054 * cached routes.
1055 */
1056 rtrequest(RTM_DELETE, rt_getkey(rt), (struct sockaddr *)0,
1057 rt_mask(rt), 0, (struct rtentry **)0);
1058
1059 return next;
1060 }
1061
1062 /*
1063 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1064 *
1065 * XXX cost-effective methods?
1066 */
1067 void
1068 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1069 {
1070 struct llinfo_nd6 *ln;
1071
1072 /*
1073 * If the caller specified "rt", use that. Otherwise, resolve the
1074 * routing table by supplied "dst6".
1075 */
1076 if (rt == NULL) {
1077 if (dst6 == NULL)
1078 return;
1079 if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1080 return;
1081 }
1082
1083 if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1084 (rt->rt_flags & RTF_LLINFO) == 0 ||
1085 !rt->rt_llinfo || !rt->rt_gateway ||
1086 rt->rt_gateway->sa_family != AF_LINK) {
1087 /* This is not a host route. */
1088 return;
1089 }
1090
1091 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1092 if (ln->ln_state < ND6_LLINFO_REACHABLE)
1093 return;
1094
1095 /*
1096 * if we get upper-layer reachability confirmation many times,
1097 * it is possible we have false information.
1098 */
1099 if (!force) {
1100 ln->ln_byhint++;
1101 if (ln->ln_byhint > nd6_maxnudhint)
1102 return;
1103 }
1104
1105 ln->ln_state = ND6_LLINFO_REACHABLE;
1106 if (!ND6_LLINFO_PERMANENT(ln)) {
1107 nd6_llinfo_settimer(ln,
1108 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1109 }
1110 }
1111
1112 void
1113 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info)
1114 {
1115 struct sockaddr *gate = rt->rt_gateway;
1116 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1117 struct ifnet *ifp = rt->rt_ifp;
1118 uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen;
1119 struct ifaddr *ifa;
1120
1121 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1122 __LINE__, (void *)rt->_rt_key);
1123
1124 if ((rt->rt_flags & RTF_GATEWAY) != 0)
1125 return;
1126
1127 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1128 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1129 __LINE__, (void *)rt->_rt_key);
1130 /*
1131 * This is probably an interface direct route for a link
1132 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1133 * We do not need special treatment below for such a route.
1134 * Moreover, the RTF_LLINFO flag which would be set below
1135 * would annoy the ndp(8) command.
1136 */
1137 return;
1138 }
1139
1140 if (req == RTM_RESOLVE &&
1141 (nd6_need_cache(ifp) == 0 || /* stf case */
1142 !nd6_is_addr_neighbor(satocsin6(rt_getkey(rt)), ifp))) {
1143 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1144 __LINE__, (void *)rt->_rt_key);
1145 /*
1146 * FreeBSD and BSD/OS often make a cloned host route based
1147 * on a less-specific route (e.g. the default route).
1148 * If the less specific route does not have a "gateway"
1149 * (this is the case when the route just goes to a p2p or an
1150 * stf interface), we'll mistakenly make a neighbor cache for
1151 * the host route, and will see strange neighbor solicitation
1152 * for the corresponding destination. In order to avoid the
1153 * confusion, we check if the destination of the route is
1154 * a neighbor in terms of neighbor discovery, and stop the
1155 * process if not. Additionally, we remove the LLINFO flag
1156 * so that ndp(8) will not try to get the neighbor information
1157 * of the destination.
1158 */
1159 rt->rt_flags &= ~RTF_LLINFO;
1160 return;
1161 }
1162
1163 switch (req) {
1164 case RTM_ADD:
1165 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1166 __LINE__, (void *)rt->_rt_key);
1167 /*
1168 * There is no backward compatibility :)
1169 *
1170 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1171 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1172 * rt->rt_flags |= RTF_CLONING;
1173 */
1174 if ((rt->rt_flags & RTF_CLONING) ||
1175 ((rt->rt_flags & RTF_LLINFO) && !ln)) {
1176 union {
1177 struct sockaddr sa;
1178 struct sockaddr_dl sdl;
1179 struct sockaddr_storage ss;
1180 } u;
1181 /*
1182 * Case 1: This route should come from a route to
1183 * interface (RTF_CLONING case) or the route should be
1184 * treated as on-link but is currently not
1185 * (RTF_LLINFO && !ln case).
1186 */
1187 sockaddr_dl_init(&u.sdl, sizeof(u.ss),
1188 ifp->if_index, ifp->if_type,
1189 NULL, namelen, NULL, addrlen);
1190 rt_setgate(rt, &u.sa);
1191 gate = rt->rt_gateway;
1192 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1193 __LINE__, (void *)rt->_rt_key);
1194 if (ln)
1195 nd6_llinfo_settimer(ln, 0);
1196 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1197 __LINE__, (void *)rt->_rt_key);
1198 if ((rt->rt_flags & RTF_CLONING) != 0)
1199 break;
1200 }
1201 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1202 __LINE__, (void *)rt->_rt_key);
1203 /*
1204 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1205 * We don't do that here since llinfo is not ready yet.
1206 *
1207 * There are also couple of other things to be discussed:
1208 * - unsolicited NA code needs improvement beforehand
1209 * - RFC2461 says we MAY send multicast unsolicited NA
1210 * (7.2.6 paragraph 4), however, it also says that we
1211 * SHOULD provide a mechanism to prevent multicast NA storm.
1212 * we don't have anything like it right now.
1213 * note that the mechanism needs a mutual agreement
1214 * between proxies, which means that we need to implement
1215 * a new protocol, or a new kludge.
1216 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1217 * we need to check ip6forwarding before sending it.
1218 * (or should we allow proxy ND configuration only for
1219 * routers? there's no mention about proxy ND from hosts)
1220 */
1221 #if 0
1222 /* XXX it does not work */
1223 if (rt->rt_flags & RTF_ANNOUNCE)
1224 nd6_na_output(ifp,
1225 &satocsin6(rt_getkey(rt))->sin6_addr,
1226 &satocsin6(rt_getkey(rt))->sin6_addr,
1227 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1228 1, NULL);
1229 #endif
1230 /* FALLTHROUGH */
1231 case RTM_RESOLVE:
1232 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1233 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1234 __LINE__, (void *)rt->_rt_key);
1235 /*
1236 * Address resolution isn't necessary for a point to
1237 * point link, so we can skip this test for a p2p link.
1238 */
1239 if (gate->sa_family != AF_LINK ||
1240 gate->sa_len <
1241 sockaddr_dl_measure(namelen, addrlen)) {
1242 log(LOG_DEBUG,
1243 "nd6_rtrequest: bad gateway value: %s\n",
1244 if_name(ifp));
1245 break;
1246 }
1247 satosdl(gate)->sdl_type = ifp->if_type;
1248 satosdl(gate)->sdl_index = ifp->if_index;
1249 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1250 __LINE__, (void *)rt->_rt_key);
1251 }
1252 if (ln != NULL)
1253 break; /* This happens on a route change */
1254 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1255 __LINE__, (void *)rt->_rt_key);
1256 /*
1257 * Case 2: This route may come from cloning, or a manual route
1258 * add with a LL address.
1259 */
1260 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1261 rt->rt_llinfo = (void *)ln;
1262 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1263 __LINE__, (void *)rt->_rt_key);
1264 if (ln == NULL) {
1265 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1266 break;
1267 }
1268 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1269 __LINE__, (void *)rt->_rt_key);
1270 nd6_inuse++;
1271 nd6_allocated++;
1272 bzero(ln, sizeof(*ln));
1273 ln->ln_rt = rt;
1274 callout_init(&ln->ln_timer_ch, 0);
1275 /* this is required for "ndp" command. - shin */
1276 if (req == RTM_ADD) {
1277 /*
1278 * gate should have some valid AF_LINK entry,
1279 * and ln->ln_expire should have some lifetime
1280 * which is specified by ndp command.
1281 */
1282 ln->ln_state = ND6_LLINFO_REACHABLE;
1283 ln->ln_byhint = 0;
1284 } else {
1285 /*
1286 * When req == RTM_RESOLVE, rt is created and
1287 * initialized in rtrequest(), so rt_expire is 0.
1288 */
1289 ln->ln_state = ND6_LLINFO_NOSTATE;
1290 nd6_llinfo_settimer(ln, 0);
1291 }
1292 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1293 __LINE__, (void *)rt->_rt_key);
1294 rt->rt_flags |= RTF_LLINFO;
1295 ln->ln_next = llinfo_nd6.ln_next;
1296 llinfo_nd6.ln_next = ln;
1297 ln->ln_prev = &llinfo_nd6;
1298 ln->ln_next->ln_prev = ln;
1299
1300 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1301 __LINE__, (void *)rt->_rt_key);
1302 /*
1303 * check if rt_getkey(rt) is an address assigned
1304 * to the interface.
1305 */
1306 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp,
1307 &satocsin6(rt_getkey(rt))->sin6_addr);
1308 RT_DPRINTF("%s l.%d: rt->_rt_key = %p\n", __func__,
1309 __LINE__, (void *)rt->_rt_key);
1310 if (ifa) {
1311 const void *mac;
1312 nd6_llinfo_settimer(ln, -1);
1313 ln->ln_state = ND6_LLINFO_REACHABLE;
1314 ln->ln_byhint = 0;
1315 if ((mac = nd6_ifptomac(ifp)) != NULL) {
1316 /* XXX check for error */
1317 (void)sockaddr_dl_setaddr(satosdl(gate),
1318 gate->sa_len, mac, ifp->if_addrlen);
1319 }
1320 if (nd6_useloopback) {
1321 ifp = rt->rt_ifp = lo0ifp; /* XXX */
1322 /*
1323 * Make sure rt_ifa be equal to the ifaddr
1324 * corresponding to the address.
1325 * We need this because when we refer
1326 * rt_ifa->ia6_flags in ip6_input, we assume
1327 * that the rt_ifa points to the address instead
1328 * of the loopback address.
1329 */
1330 if (ifa != rt->rt_ifa)
1331 rt_replace_ifa(rt, ifa);
1332 rt->rt_flags &= ~RTF_CLONED;
1333 }
1334 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1335 nd6_llinfo_settimer(ln, -1);
1336 ln->ln_state = ND6_LLINFO_REACHABLE;
1337 ln->ln_byhint = 0;
1338
1339 /* join solicited node multicast for proxy ND */
1340 if (ifp->if_flags & IFF_MULTICAST) {
1341 struct in6_addr llsol;
1342 int error;
1343
1344 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1345 llsol.s6_addr32[0] = htonl(0xff020000);
1346 llsol.s6_addr32[1] = 0;
1347 llsol.s6_addr32[2] = htonl(1);
1348 llsol.s6_addr8[12] = 0xff;
1349 if (in6_setscope(&llsol, ifp, NULL))
1350 break;
1351 if (!in6_addmulti(&llsol, ifp, &error, 0)) {
1352 nd6log((LOG_ERR, "%s: failed to join "
1353 "%s (errno=%d)\n", if_name(ifp),
1354 ip6_sprintf(&llsol), error));
1355 }
1356 }
1357 }
1358 break;
1359
1360 case RTM_DELETE:
1361 if (ln == NULL)
1362 break;
1363 /* leave from solicited node multicast for proxy ND */
1364 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1365 (ifp->if_flags & IFF_MULTICAST) != 0) {
1366 struct in6_addr llsol;
1367 struct in6_multi *in6m;
1368
1369 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1370 llsol.s6_addr32[0] = htonl(0xff020000);
1371 llsol.s6_addr32[1] = 0;
1372 llsol.s6_addr32[2] = htonl(1);
1373 llsol.s6_addr8[12] = 0xff;
1374 if (in6_setscope(&llsol, ifp, NULL) == 0) {
1375 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1376 if (in6m)
1377 in6_delmulti(in6m);
1378 }
1379 }
1380 nd6_inuse--;
1381 ln->ln_next->ln_prev = ln->ln_prev;
1382 ln->ln_prev->ln_next = ln->ln_next;
1383 ln->ln_prev = NULL;
1384 nd6_llinfo_settimer(ln, -1);
1385 rt->rt_llinfo = 0;
1386 rt->rt_flags &= ~RTF_LLINFO;
1387 clear_llinfo_pqueue(ln);
1388 Free((void *)ln);
1389 }
1390 }
1391
1392 int
1393 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp)
1394 {
1395 struct in6_drlist *drl = (struct in6_drlist *)data;
1396 struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1397 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1398 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1399 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1400 struct nd_defrouter *dr;
1401 struct nd_prefix *pr;
1402 struct rtentry *rt;
1403 int i = 0, error = 0;
1404 int s;
1405
1406 switch (cmd) {
1407 case SIOCGDRLST_IN6:
1408 /*
1409 * obsolete API, use sysctl under net.inet6.icmp6
1410 */
1411 bzero(drl, sizeof(*drl));
1412 s = splsoftnet();
1413 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
1414 if (i >= DRLSTSIZ)
1415 break;
1416 drl->defrouter[i].rtaddr = dr->rtaddr;
1417 in6_clearscope(&drl->defrouter[i].rtaddr);
1418
1419 drl->defrouter[i].flags = dr->flags;
1420 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1421 drl->defrouter[i].expire = dr->expire;
1422 drl->defrouter[i].if_index = dr->ifp->if_index;
1423 i++;
1424 }
1425 splx(s);
1426 break;
1427 case SIOCGPRLST_IN6:
1428 /*
1429 * obsolete API, use sysctl under net.inet6.icmp6
1430 *
1431 * XXX the structure in6_prlist was changed in backward-
1432 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1433 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1434 */
1435 /*
1436 * XXX meaning of fields, especialy "raflags", is very
1437 * differnet between RA prefix list and RR/static prefix list.
1438 * how about separating ioctls into two?
1439 */
1440 bzero(oprl, sizeof(*oprl));
1441 s = splsoftnet();
1442 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
1443 struct nd_pfxrouter *pfr;
1444 int j;
1445
1446 if (i >= PRLSTSIZ)
1447 break;
1448 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1449 oprl->prefix[i].raflags = pr->ndpr_raf;
1450 oprl->prefix[i].prefixlen = pr->ndpr_plen;
1451 oprl->prefix[i].vltime = pr->ndpr_vltime;
1452 oprl->prefix[i].pltime = pr->ndpr_pltime;
1453 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1454 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1455 oprl->prefix[i].expire = 0;
1456 else {
1457 time_t maxexpire;
1458
1459 /* XXX: we assume time_t is signed. */
1460 maxexpire = (-1) &
1461 ~((time_t)1 <<
1462 ((sizeof(maxexpire) * 8) - 1));
1463 if (pr->ndpr_vltime <
1464 maxexpire - pr->ndpr_lastupdate) {
1465 oprl->prefix[i].expire =
1466 pr->ndpr_lastupdate +
1467 pr->ndpr_vltime;
1468 } else
1469 oprl->prefix[i].expire = maxexpire;
1470 }
1471
1472 j = 0;
1473 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
1474 if (j < DRLSTSIZ) {
1475 #define RTRADDR oprl->prefix[i].advrtr[j]
1476 RTRADDR = pfr->router->rtaddr;
1477 in6_clearscope(&RTRADDR);
1478 #undef RTRADDR
1479 }
1480 j++;
1481 }
1482 oprl->prefix[i].advrtrs = j;
1483 oprl->prefix[i].origin = PR_ORIG_RA;
1484
1485 i++;
1486 }
1487 splx(s);
1488
1489 break;
1490 case OSIOCGIFINFO_IN6:
1491 #define ND ndi->ndi
1492 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1493 memset(&ND, 0, sizeof(ND));
1494 ND.linkmtu = IN6_LINKMTU(ifp);
1495 ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1496 ND.basereachable = ND_IFINFO(ifp)->basereachable;
1497 ND.reachable = ND_IFINFO(ifp)->reachable;
1498 ND.retrans = ND_IFINFO(ifp)->retrans;
1499 ND.flags = ND_IFINFO(ifp)->flags;
1500 ND.recalctm = ND_IFINFO(ifp)->recalctm;
1501 ND.chlim = ND_IFINFO(ifp)->chlim;
1502 break;
1503 case SIOCGIFINFO_IN6:
1504 ND = *ND_IFINFO(ifp);
1505 break;
1506 case SIOCSIFINFO_IN6:
1507 /*
1508 * used to change host variables from userland.
1509 * intented for a use on router to reflect RA configurations.
1510 */
1511 /* 0 means 'unspecified' */
1512 if (ND.linkmtu != 0) {
1513 if (ND.linkmtu < IPV6_MMTU ||
1514 ND.linkmtu > IN6_LINKMTU(ifp)) {
1515 error = EINVAL;
1516 break;
1517 }
1518 ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1519 }
1520
1521 if (ND.basereachable != 0) {
1522 int obasereachable = ND_IFINFO(ifp)->basereachable;
1523
1524 ND_IFINFO(ifp)->basereachable = ND.basereachable;
1525 if (ND.basereachable != obasereachable)
1526 ND_IFINFO(ifp)->reachable =
1527 ND_COMPUTE_RTIME(ND.basereachable);
1528 }
1529 if (ND.retrans != 0)
1530 ND_IFINFO(ifp)->retrans = ND.retrans;
1531 if (ND.chlim != 0)
1532 ND_IFINFO(ifp)->chlim = ND.chlim;
1533 /* FALLTHROUGH */
1534 case SIOCSIFINFO_FLAGS:
1535 ND_IFINFO(ifp)->flags = ND.flags;
1536 break;
1537 #undef ND
1538 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1539 /* sync kernel routing table with the default router list */
1540 defrouter_reset();
1541 defrouter_select();
1542 break;
1543 case SIOCSPFXFLUSH_IN6:
1544 {
1545 /* flush all the prefix advertised by routers */
1546 struct nd_prefix *pfx, *next;
1547
1548 s = splsoftnet();
1549 for (pfx = LIST_FIRST(&nd_prefix); pfx; pfx = next) {
1550 struct in6_ifaddr *ia, *ia_next;
1551
1552 next = LIST_NEXT(pfx, ndpr_entry);
1553
1554 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
1555 continue; /* XXX */
1556
1557 /* do we really have to remove addresses as well? */
1558 for (ia = in6_ifaddr; ia; ia = ia_next) {
1559 /* ia might be removed. keep the next ptr. */
1560 ia_next = ia->ia_next;
1561
1562 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1563 continue;
1564
1565 if (ia->ia6_ndpr == pfx)
1566 in6_purgeaddr(&ia->ia_ifa);
1567 }
1568 prelist_remove(pfx);
1569 }
1570 splx(s);
1571 break;
1572 }
1573 case SIOCSRTRFLUSH_IN6:
1574 {
1575 /* flush all the default routers */
1576 struct nd_defrouter *drtr, *next;
1577
1578 s = splsoftnet();
1579 defrouter_reset();
1580 for (drtr = TAILQ_FIRST(&nd_defrouter); drtr; drtr = next) {
1581 next = TAILQ_NEXT(drtr, dr_entry);
1582 defrtrlist_del(drtr);
1583 }
1584 defrouter_select();
1585 splx(s);
1586 break;
1587 }
1588 case SIOCGNBRINFO_IN6:
1589 {
1590 struct llinfo_nd6 *ln;
1591 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1592
1593 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1594 return error;
1595
1596 s = splsoftnet();
1597 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL ||
1598 (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) {
1599 error = EINVAL;
1600 splx(s);
1601 break;
1602 }
1603 nbi->state = ln->ln_state;
1604 nbi->asked = ln->ln_asked;
1605 nbi->isrouter = ln->ln_router;
1606 nbi->expire = ln->ln_expire;
1607 splx(s);
1608
1609 break;
1610 }
1611 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1612 ndif->ifindex = nd6_defifindex;
1613 break;
1614 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1615 return nd6_setdefaultiface(ndif->ifindex);
1616 }
1617 return error;
1618 }
1619
1620 void
1621 nd6_llinfo_release_pkts(struct llinfo_nd6 *ln, struct ifnet *ifp,
1622 struct rtentry *rt)
1623 {
1624 struct mbuf *m_hold, *m_hold_next;
1625
1626 for (m_hold = ln->ln_hold, ln->ln_hold = NULL;
1627 m_hold != NULL;
1628 m_hold = m_hold_next) {
1629 m_hold_next = m_hold->m_nextpkt;
1630 m_hold->m_nextpkt = NULL;
1631
1632 /*
1633 * we assume ifp is not a p2p here, so
1634 * just set the 2nd argument as the
1635 * 1st one.
1636 */
1637 nd6_output(ifp, ifp, m_hold, satocsin6(rt_getkey(rt)), rt);
1638 }
1639 }
1640
1641 /*
1642 * Create neighbor cache entry and cache link-layer address,
1643 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1644 */
1645 struct rtentry *
1646 nd6_cache_lladdr(
1647 struct ifnet *ifp,
1648 struct in6_addr *from,
1649 char *lladdr,
1650 int lladdrlen,
1651 int type, /* ICMP6 type */
1652 int code /* type dependent information */
1653 )
1654 {
1655 struct rtentry *rt = NULL;
1656 struct llinfo_nd6 *ln = NULL;
1657 int is_newentry;
1658 struct sockaddr_dl *sdl = NULL;
1659 int do_update;
1660 int olladdr;
1661 int llchange;
1662 int newstate = 0;
1663
1664 if (ifp == NULL)
1665 panic("ifp == NULL in nd6_cache_lladdr");
1666 if (from == NULL)
1667 panic("from == NULL in nd6_cache_lladdr");
1668
1669 /* nothing must be updated for unspecified address */
1670 if (IN6_IS_ADDR_UNSPECIFIED(from))
1671 return NULL;
1672
1673 /*
1674 * Validation about ifp->if_addrlen and lladdrlen must be done in
1675 * the caller.
1676 *
1677 * XXX If the link does not have link-layer adderss, what should
1678 * we do? (ifp->if_addrlen == 0)
1679 * Spec says nothing in sections for RA, RS and NA. There's small
1680 * description on it in NS section (RFC 2461 7.2.3).
1681 */
1682
1683 rt = nd6_lookup(from, 0, ifp);
1684 if (rt == NULL) {
1685 #if 0
1686 /* nothing must be done if there's no lladdr */
1687 if (!lladdr || !lladdrlen)
1688 return NULL;
1689 #endif
1690
1691 rt = nd6_lookup(from, 1, ifp);
1692 is_newentry = 1;
1693 } else {
1694 /* do nothing if static ndp is set */
1695 if (rt->rt_flags & RTF_STATIC)
1696 return NULL;
1697 is_newentry = 0;
1698 }
1699
1700 if (rt == NULL)
1701 return NULL;
1702 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1703 fail:
1704 (void)nd6_free(rt, 0);
1705 return NULL;
1706 }
1707 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1708 if (ln == NULL)
1709 goto fail;
1710 if (rt->rt_gateway == NULL)
1711 goto fail;
1712 if (rt->rt_gateway->sa_family != AF_LINK)
1713 goto fail;
1714 sdl = satosdl(rt->rt_gateway);
1715
1716 olladdr = (sdl->sdl_alen) ? 1 : 0;
1717 if (olladdr && lladdr) {
1718 if (memcmp(lladdr, CLLADDR(sdl), ifp->if_addrlen))
1719 llchange = 1;
1720 else
1721 llchange = 0;
1722 } else
1723 llchange = 0;
1724
1725 /*
1726 * newentry olladdr lladdr llchange (*=record)
1727 * 0 n n -- (1)
1728 * 0 y n -- (2)
1729 * 0 n y -- (3) * STALE
1730 * 0 y y n (4) *
1731 * 0 y y y (5) * STALE
1732 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1733 * 1 -- y -- (7) * STALE
1734 */
1735
1736 if (lladdr) { /* (3-5) and (7) */
1737 /*
1738 * Record source link-layer address
1739 * XXX is it dependent to ifp->if_type?
1740 */
1741 /* XXX check for error */
1742 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lladdr,
1743 ifp->if_addrlen);
1744 }
1745
1746 if (!is_newentry) {
1747 if ((!olladdr && lladdr) || /* (3) */
1748 (olladdr && lladdr && llchange)) { /* (5) */
1749 do_update = 1;
1750 newstate = ND6_LLINFO_STALE;
1751 } else /* (1-2,4) */
1752 do_update = 0;
1753 } else {
1754 do_update = 1;
1755 if (lladdr == NULL) /* (6) */
1756 newstate = ND6_LLINFO_NOSTATE;
1757 else /* (7) */
1758 newstate = ND6_LLINFO_STALE;
1759 }
1760
1761 if (do_update) {
1762 /*
1763 * Update the state of the neighbor cache.
1764 */
1765 ln->ln_state = newstate;
1766
1767 if (ln->ln_state == ND6_LLINFO_STALE) {
1768 /*
1769 * XXX: since nd6_output() below will cause
1770 * state tansition to DELAY and reset the timer,
1771 * we must set the timer now, although it is actually
1772 * meaningless.
1773 */
1774 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1775
1776 nd6_llinfo_release_pkts(ln, ifp, rt);
1777 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1778 /* probe right away */
1779 nd6_llinfo_settimer((void *)ln, 0);
1780 }
1781 }
1782
1783 /*
1784 * ICMP6 type dependent behavior.
1785 *
1786 * NS: clear IsRouter if new entry
1787 * RS: clear IsRouter
1788 * RA: set IsRouter if there's lladdr
1789 * redir: clear IsRouter if new entry
1790 *
1791 * RA case, (1):
1792 * The spec says that we must set IsRouter in the following cases:
1793 * - If lladdr exist, set IsRouter. This means (1-5).
1794 * - If it is old entry (!newentry), set IsRouter. This means (7).
1795 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1796 * A quetion arises for (1) case. (1) case has no lladdr in the
1797 * neighbor cache, this is similar to (6).
1798 * This case is rare but we figured that we MUST NOT set IsRouter.
1799 *
1800 * newentry olladdr lladdr llchange NS RS RA redir
1801 * D R
1802 * 0 n n -- (1) c ? s
1803 * 0 y n -- (2) c s s
1804 * 0 n y -- (3) c s s
1805 * 0 y y n (4) c s s
1806 * 0 y y y (5) c s s
1807 * 1 -- n -- (6) c c c s
1808 * 1 -- y -- (7) c c s c s
1809 *
1810 * (c=clear s=set)
1811 */
1812 switch (type & 0xff) {
1813 case ND_NEIGHBOR_SOLICIT:
1814 /*
1815 * New entry must have is_router flag cleared.
1816 */
1817 if (is_newentry) /* (6-7) */
1818 ln->ln_router = 0;
1819 break;
1820 case ND_REDIRECT:
1821 /*
1822 * If the icmp is a redirect to a better router, always set the
1823 * is_router flag. Otherwise, if the entry is newly created,
1824 * clear the flag. [RFC 2461, sec 8.3]
1825 */
1826 if (code == ND_REDIRECT_ROUTER)
1827 ln->ln_router = 1;
1828 else if (is_newentry) /* (6-7) */
1829 ln->ln_router = 0;
1830 break;
1831 case ND_ROUTER_SOLICIT:
1832 /*
1833 * is_router flag must always be cleared.
1834 */
1835 ln->ln_router = 0;
1836 break;
1837 case ND_ROUTER_ADVERT:
1838 /*
1839 * Mark an entry with lladdr as a router.
1840 */
1841 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
1842 (is_newentry && lladdr)) { /* (7) */
1843 ln->ln_router = 1;
1844 }
1845 break;
1846 }
1847
1848 /*
1849 * When the link-layer address of a router changes, select the
1850 * best router again. In particular, when the neighbor entry is newly
1851 * created, it might affect the selection policy.
1852 * Question: can we restrict the first condition to the "is_newentry"
1853 * case?
1854 * XXX: when we hear an RA from a new router with the link-layer
1855 * address option, defrouter_select() is called twice, since
1856 * defrtrlist_update called the function as well. However, I believe
1857 * we can compromise the overhead, since it only happens the first
1858 * time.
1859 * XXX: although defrouter_select() should not have a bad effect
1860 * for those are not autoconfigured hosts, we explicitly avoid such
1861 * cases for safety.
1862 */
1863 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1864 defrouter_select();
1865
1866 return rt;
1867 }
1868
1869 static void
1870 nd6_slowtimo(void *ignored_arg)
1871 {
1872 int s = splsoftnet();
1873 struct nd_ifinfo *nd6if;
1874 struct ifnet *ifp;
1875
1876 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1877 nd6_slowtimo, NULL);
1878 TAILQ_FOREACH(ifp, &ifnet, if_list) {
1879 nd6if = ND_IFINFO(ifp);
1880 if (nd6if->basereachable && /* already initialized */
1881 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1882 /*
1883 * Since reachable time rarely changes by router
1884 * advertisements, we SHOULD insure that a new random
1885 * value gets recomputed at least once every few hours.
1886 * (RFC 2461, 6.3.4)
1887 */
1888 nd6if->recalctm = nd6_recalc_reachtm_interval;
1889 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1890 }
1891 }
1892 splx(s);
1893 }
1894
1895 #define senderr(e) { error = (e); goto bad;}
1896 int
1897 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
1898 const struct sockaddr_in6 *dst, struct rtentry *rt0)
1899 {
1900 struct mbuf *m = m0;
1901 struct rtentry *rt = rt0;
1902 struct sockaddr_in6 *gw6 = NULL;
1903 struct llinfo_nd6 *ln = NULL;
1904 int error = 0;
1905
1906 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1907 goto sendpkt;
1908
1909 if (nd6_need_cache(ifp) == 0)
1910 goto sendpkt;
1911
1912 /*
1913 * next hop determination. This routine is derived from ether_output.
1914 */
1915 if (rt) {
1916 if ((rt->rt_flags & RTF_UP) == 0) {
1917 if ((rt0 = rt = rtalloc1(sin6tocsa(dst), 1)) != NULL) {
1918 rt->rt_refcnt--;
1919 if (rt->rt_ifp != ifp)
1920 senderr(EHOSTUNREACH);
1921 } else
1922 senderr(EHOSTUNREACH);
1923 }
1924
1925 if (rt->rt_flags & RTF_GATEWAY) {
1926 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1927
1928 /*
1929 * We skip link-layer address resolution and NUD
1930 * if the gateway is not a neighbor from ND point
1931 * of view, regardless of the value of nd_ifinfo.flags.
1932 * The second condition is a bit tricky; we skip
1933 * if the gateway is our own address, which is
1934 * sometimes used to install a route to a p2p link.
1935 */
1936 if (!nd6_is_addr_neighbor(gw6, ifp) ||
1937 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1938 /*
1939 * We allow this kind of tricky route only
1940 * when the outgoing interface is p2p.
1941 * XXX: we may need a more generic rule here.
1942 */
1943 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1944 senderr(EHOSTUNREACH);
1945
1946 goto sendpkt;
1947 }
1948
1949 if (rt->rt_gwroute == 0)
1950 goto lookup;
1951 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
1952 rtfree(rt); rt = rt0;
1953 lookup:
1954 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
1955 if ((rt = rt->rt_gwroute) == 0)
1956 senderr(EHOSTUNREACH);
1957 /* the "G" test below also prevents rt == rt0 */
1958 if ((rt->rt_flags & RTF_GATEWAY) ||
1959 (rt->rt_ifp != ifp)) {
1960 rt->rt_refcnt--;
1961 rt0->rt_gwroute = 0;
1962 senderr(EHOSTUNREACH);
1963 }
1964 }
1965 }
1966 }
1967
1968 /*
1969 * Address resolution or Neighbor Unreachability Detection
1970 * for the next hop.
1971 * At this point, the destination of the packet must be a unicast
1972 * or an anycast address(i.e. not a multicast).
1973 */
1974
1975 /* Look up the neighbor cache for the nexthop */
1976 if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
1977 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1978 else {
1979 /*
1980 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1981 * the condition below is not very efficient. But we believe
1982 * it is tolerable, because this should be a rare case.
1983 */
1984 if (nd6_is_addr_neighbor(dst, ifp) &&
1985 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
1986 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1987 }
1988 if (ln == NULL || rt == NULL) {
1989 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
1990 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
1991 log(LOG_DEBUG,
1992 "nd6_output: can't allocate llinfo for %s "
1993 "(ln=%p, rt=%p)\n",
1994 ip6_sprintf(&dst->sin6_addr), ln, rt);
1995 senderr(EIO); /* XXX: good error? */
1996 }
1997
1998 goto sendpkt; /* send anyway */
1999 }
2000
2001 /* We don't have to do link-layer address resolution on a p2p link. */
2002 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2003 ln->ln_state < ND6_LLINFO_REACHABLE) {
2004 ln->ln_state = ND6_LLINFO_STALE;
2005 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2006 }
2007
2008 /*
2009 * The first time we send a packet to a neighbor whose entry is
2010 * STALE, we have to change the state to DELAY and a sets a timer to
2011 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2012 * neighbor unreachability detection on expiration.
2013 * (RFC 2461 7.3.3)
2014 */
2015 if (ln->ln_state == ND6_LLINFO_STALE) {
2016 ln->ln_asked = 0;
2017 ln->ln_state = ND6_LLINFO_DELAY;
2018 nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2019 }
2020
2021 /*
2022 * If the neighbor cache entry has a state other than INCOMPLETE
2023 * (i.e. its link-layer address is already resolved), just
2024 * send the packet.
2025 */
2026 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2027 goto sendpkt;
2028
2029 /*
2030 * There is a neighbor cache entry, but no ethernet address
2031 * response yet. Append this latest packet to the end of the
2032 * packet queue in the mbuf, unless the number of the packet
2033 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen,
2034 * the oldest packet in the queue will be removed.
2035 */
2036 if (ln->ln_state == ND6_LLINFO_NOSTATE)
2037 ln->ln_state = ND6_LLINFO_INCOMPLETE;
2038 if (ln->ln_hold) {
2039 struct mbuf *m_hold;
2040 int i;
2041
2042 i = 0;
2043 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2044 i++;
2045 if (m_hold->m_nextpkt == NULL) {
2046 m_hold->m_nextpkt = m;
2047 break;
2048 }
2049 }
2050 while (i >= nd6_maxqueuelen) {
2051 m_hold = ln->ln_hold;
2052 ln->ln_hold = ln->ln_hold->m_nextpkt;
2053 m_freem(m_hold);
2054 i--;
2055 }
2056 } else {
2057 ln->ln_hold = m;
2058 }
2059
2060 /*
2061 * If there has been no NS for the neighbor after entering the
2062 * INCOMPLETE state, send the first solicitation.
2063 */
2064 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2065 ln->ln_asked++;
2066 nd6_llinfo_settimer(ln,
2067 (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2068 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2069 }
2070 return 0;
2071
2072 sendpkt:
2073 /* discard the packet if IPv6 operation is disabled on the interface */
2074 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2075 error = ENETDOWN; /* better error? */
2076 goto bad;
2077 }
2078
2079 #ifdef IPSEC
2080 /* clean ipsec history once it goes out of the node */
2081 ipsec_delaux(m);
2082 #endif
2083 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
2084 return (*ifp->if_output)(origifp, m, sin6tocsa(dst), rt);
2085 }
2086 return (*ifp->if_output)(ifp, m, sin6tocsa(dst), rt);
2087
2088 bad:
2089 if (m != NULL)
2090 m_freem(m);
2091 return error;
2092 }
2093 #undef senderr
2094
2095 int
2096 nd6_need_cache(struct ifnet *ifp)
2097 {
2098 /*
2099 * XXX: we currently do not make neighbor cache on any interface
2100 * other than ARCnet, Ethernet, FDDI and GIF.
2101 *
2102 * RFC2893 says:
2103 * - unidirectional tunnels needs no ND
2104 */
2105 switch (ifp->if_type) {
2106 case IFT_ARCNET:
2107 case IFT_ETHER:
2108 case IFT_FDDI:
2109 case IFT_IEEE1394:
2110 case IFT_CARP:
2111 case IFT_GIF: /* XXX need more cases? */
2112 case IFT_PPP:
2113 case IFT_TUNNEL:
2114 return 1;
2115 default:
2116 return 0;
2117 }
2118 }
2119
2120 int
2121 nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt,
2122 struct mbuf *m, const struct sockaddr *dst, u_char *lldst,
2123 size_t dstsize)
2124 {
2125 const struct sockaddr_dl *sdl;
2126
2127 if (m->m_flags & M_MCAST) {
2128 switch (ifp->if_type) {
2129 case IFT_ETHER:
2130 case IFT_FDDI:
2131 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
2132 lldst);
2133 return 1;
2134 case IFT_IEEE1394:
2135 memcpy(lldst, ifp->if_broadcastaddr,
2136 MIN(dstsize, ifp->if_addrlen));
2137 return 1;
2138 case IFT_ARCNET:
2139 *lldst = 0;
2140 return 1;
2141 default:
2142 m_freem(m);
2143 return 0;
2144 }
2145 }
2146
2147 if (rt == NULL) {
2148 /* this could happen, if we could not allocate memory */
2149 m_freem(m);
2150 return 0;
2151 }
2152 if (rt->rt_gateway->sa_family != AF_LINK) {
2153 printf("%s: something odd happens\n", __func__);
2154 m_freem(m);
2155 return 0;
2156 }
2157 sdl = satocsdl(rt->rt_gateway);
2158 if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) {
2159 /* this should be impossible, but we bark here for debugging */
2160 printf("%s: sdl_alen == 0, dst=%s, if=%s\n", __func__,
2161 ip6_sprintf(&satocsin6(dst)->sin6_addr), if_name(ifp));
2162 m_freem(m);
2163 return 0;
2164 }
2165
2166 memcpy(lldst, CLLADDR(sdl), MIN(dstsize, sdl->sdl_alen));
2167 return 1;
2168 }
2169
2170 static void
2171 clear_llinfo_pqueue(struct llinfo_nd6 *ln)
2172 {
2173 struct mbuf *m_hold, *m_hold_next;
2174
2175 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2176 m_hold_next = m_hold->m_nextpkt;
2177 m_hold->m_nextpkt = NULL;
2178 m_freem(m_hold);
2179 }
2180
2181 ln->ln_hold = NULL;
2182 return;
2183 }
2184
2185 int
2186 nd6_sysctl(
2187 int name,
2188 void *oldp, /* syscall arg, need copyout */
2189 size_t *oldlenp,
2190 void *newp, /* syscall arg, need copyin */
2191 size_t newlen
2192 )
2193 {
2194 void *p;
2195 size_t ol;
2196 int error;
2197
2198 error = 0;
2199
2200 if (newp)
2201 return EPERM;
2202 if (oldp && !oldlenp)
2203 return EINVAL;
2204 ol = oldlenp ? *oldlenp : 0;
2205
2206 if (oldp) {
2207 p = malloc(*oldlenp, M_TEMP, M_WAITOK);
2208 if (p == NULL)
2209 return ENOMEM;
2210 } else
2211 p = NULL;
2212 switch (name) {
2213 case ICMPV6CTL_ND6_DRLIST:
2214 error = fill_drlist(p, oldlenp, ol);
2215 if (!error && p != NULL && oldp != NULL)
2216 error = copyout(p, oldp, *oldlenp);
2217 break;
2218
2219 case ICMPV6CTL_ND6_PRLIST:
2220 error = fill_prlist(p, oldlenp, ol);
2221 if (!error && p != NULL && oldp != NULL)
2222 error = copyout(p, oldp, *oldlenp);
2223 break;
2224
2225 case ICMPV6CTL_ND6_MAXQLEN:
2226 break;
2227
2228 default:
2229 error = ENOPROTOOPT;
2230 break;
2231 }
2232 if (p)
2233 free(p, M_TEMP);
2234
2235 return error;
2236 }
2237
2238 static int
2239 fill_drlist(void *oldp, size_t *oldlenp, size_t ol)
2240 {
2241 int error = 0, s;
2242 struct in6_defrouter *d = NULL, *de = NULL;
2243 struct nd_defrouter *dr;
2244 size_t l;
2245
2246 s = splsoftnet();
2247
2248 if (oldp) {
2249 d = (struct in6_defrouter *)oldp;
2250 de = (struct in6_defrouter *)((char *)oldp + *oldlenp);
2251 }
2252 l = 0;
2253
2254 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
2255
2256 if (oldp && d + 1 <= de) {
2257 memset(d, 0, sizeof(*d));
2258 sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0);
2259 if (sa6_recoverscope(&d->rtaddr)) {
2260 log(LOG_ERR,
2261 "scope error in router list (%s)\n",
2262 ip6_sprintf(&d->rtaddr.sin6_addr));
2263 /* XXX: press on... */
2264 }
2265 d->flags = dr->flags;
2266 d->rtlifetime = dr->rtlifetime;
2267 d->expire = dr->expire;
2268 d->if_index = dr->ifp->if_index;
2269 }
2270
2271 l += sizeof(*d);
2272 if (d)
2273 d++;
2274 }
2275
2276 if (oldp) {
2277 if (l > ol)
2278 error = ENOMEM;
2279 }
2280 if (oldlenp)
2281 *oldlenp = l; /* (void *)d - (void *)oldp */
2282
2283 splx(s);
2284
2285 return error;
2286 }
2287
2288 static int
2289 fill_prlist(void *oldp, size_t *oldlenp, size_t ol)
2290 {
2291 int error = 0, s;
2292 struct nd_prefix *pr;
2293 struct in6_prefix *p = NULL;
2294 struct in6_prefix *pe = NULL;
2295 size_t l;
2296
2297 s = splsoftnet();
2298
2299 if (oldp) {
2300 p = (struct in6_prefix *)oldp;
2301 pe = (struct in6_prefix *)((char *)oldp + *oldlenp);
2302 }
2303 l = 0;
2304
2305 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
2306 u_short advrtrs;
2307 size_t advance;
2308 struct sockaddr_in6 *sin6;
2309 struct sockaddr_in6 *s6;
2310 struct nd_pfxrouter *pfr;
2311
2312 if (oldp && p + 1 <= pe)
2313 {
2314 bzero(p, sizeof(*p));
2315 sin6 = (struct sockaddr_in6 *)(p + 1);
2316
2317 p->prefix = pr->ndpr_prefix;
2318 if (sa6_recoverscope(&p->prefix)) {
2319 log(LOG_ERR,
2320 "scope error in prefix list (%s)\n",
2321 ip6_sprintf(&p->prefix.sin6_addr));
2322 /* XXX: press on... */
2323 }
2324 p->raflags = pr->ndpr_raf;
2325 p->prefixlen = pr->ndpr_plen;
2326 p->vltime = pr->ndpr_vltime;
2327 p->pltime = pr->ndpr_pltime;
2328 p->if_index = pr->ndpr_ifp->if_index;
2329 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2330 p->expire = 0;
2331 else {
2332 time_t maxexpire;
2333
2334 /* XXX: we assume time_t is signed. */
2335 maxexpire = (-1) &
2336 ~((time_t)1 <<
2337 ((sizeof(maxexpire) * 8) - 1));
2338 if (pr->ndpr_vltime <
2339 maxexpire - pr->ndpr_lastupdate) {
2340 p->expire = pr->ndpr_lastupdate +
2341 pr->ndpr_vltime;
2342 } else
2343 p->expire = maxexpire;
2344 }
2345 p->refcnt = pr->ndpr_refcnt;
2346 p->flags = pr->ndpr_stateflags;
2347 p->origin = PR_ORIG_RA;
2348 advrtrs = 0;
2349 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2350 if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2351 advrtrs++;
2352 continue;
2353 }
2354 s6 = &sin6[advrtrs];
2355 sockaddr_in6_init(s6, &pfr->router->rtaddr,
2356 0, 0, 0);
2357 if (sa6_recoverscope(s6)) {
2358 log(LOG_ERR,
2359 "scope error in "
2360 "prefix list (%s)\n",
2361 ip6_sprintf(&pfr->router->rtaddr));
2362 }
2363 advrtrs++;
2364 }
2365 p->advrtrs = advrtrs;
2366 }
2367 else {
2368 advrtrs = 0;
2369 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
2370 advrtrs++;
2371 }
2372
2373 advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2374 l += advance;
2375 if (p)
2376 p = (struct in6_prefix *)((char *)p + advance);
2377 }
2378
2379 if (oldp) {
2380 *oldlenp = l; /* (void *)d - (void *)oldp */
2381 if (l > ol)
2382 error = ENOMEM;
2383 } else
2384 *oldlenp = l;
2385
2386 splx(s);
2387
2388 return error;
2389 }
2390