nd6.c revision 1.128 1 /* $NetBSD: nd6.c,v 1.128 2008/05/15 01:33:28 dyoung Exp $ */
2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.128 2008/05/15 01:33:28 dyoung Exp $");
35
36 #include "opt_ipsec.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/callout.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/socket.h>
44 #include <sys/socketvar.h>
45 #include <sys/sockio.h>
46 #include <sys/time.h>
47 #include <sys/kernel.h>
48 #include <sys/protosw.h>
49 #include <sys/errno.h>
50 #include <sys/ioctl.h>
51 #include <sys/syslog.h>
52 #include <sys/queue.h>
53
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_types.h>
57 #include <net/route.h>
58 #include <net/if_ether.h>
59 #include <net/if_fddi.h>
60 #include <net/if_arc.h>
61
62 #include <netinet/in.h>
63 #include <netinet6/in6_var.h>
64 #include <netinet/ip6.h>
65 #include <netinet6/ip6_var.h>
66 #include <netinet6/scope6_var.h>
67 #include <netinet6/nd6.h>
68 #include <netinet/icmp6.h>
69 #include <netinet6/icmp6_private.h>
70
71 #ifdef IPSEC
72 #include <netinet6/ipsec.h>
73 #endif
74
75 #include <net/net_osdep.h>
76
77 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
78 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
79
80 /* timer values */
81 int nd6_prune = 1; /* walk list every 1 seconds */
82 int nd6_delay = 5; /* delay first probe time 5 second */
83 int nd6_umaxtries = 3; /* maximum unicast query */
84 int nd6_mmaxtries = 3; /* maximum multicast query */
85 int nd6_useloopback = 1; /* use loopback interface for local traffic */
86 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
87
88 /* preventing too many loops in ND option parsing */
89 int nd6_maxndopt = 10; /* max # of ND options allowed */
90
91 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
92
93 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
94
95 #ifdef ND6_DEBUG
96 int nd6_debug = 1;
97 #else
98 int nd6_debug = 0;
99 #endif
100
101 /* for debugging? */
102 static int nd6_inuse, nd6_allocated;
103
104 struct llinfo_nd6 llinfo_nd6 = {
105 .ln_prev = &llinfo_nd6,
106 .ln_next = &llinfo_nd6,
107 };
108 struct nd_drhead nd_defrouter;
109 struct nd_prhead nd_prefix = { 0 };
110
111 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
112 static const struct sockaddr_in6 all1_sa = {
113 .sin6_family = AF_INET6
114 , .sin6_len = sizeof(struct sockaddr_in6)
115 , .sin6_addr = {.s6_addr = {0xff, 0xff, 0xff, 0xff,
116 0xff, 0xff, 0xff, 0xff,
117 0xff, 0xff, 0xff, 0xff,
118 0xff, 0xff, 0xff, 0xff}}
119 };
120
121 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
122 static void nd6_slowtimo(void *);
123 static int regen_tmpaddr(struct in6_ifaddr *);
124 static struct llinfo_nd6 *nd6_free(struct rtentry *, int);
125 static void nd6_llinfo_timer(void *);
126 static void clear_llinfo_pqueue(struct llinfo_nd6 *);
127
128 callout_t nd6_slowtimo_ch;
129 callout_t nd6_timer_ch;
130 extern callout_t in6_tmpaddrtimer_ch;
131
132 static int fill_drlist(void *, size_t *, size_t);
133 static int fill_prlist(void *, size_t *, size_t);
134
135 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
136
137 void
138 nd6_init(void)
139 {
140 static int nd6_init_done = 0;
141
142 if (nd6_init_done) {
143 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
144 return;
145 }
146
147 /* initialization of the default router list */
148 TAILQ_INIT(&nd_defrouter);
149
150 nd6_init_done = 1;
151
152 callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE);
153 callout_init(&nd6_timer_ch, CALLOUT_MPSAFE);
154
155 /* start timer */
156 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
157 nd6_slowtimo, NULL);
158 }
159
160 struct nd_ifinfo *
161 nd6_ifattach(struct ifnet *ifp)
162 {
163 struct nd_ifinfo *nd;
164
165 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
166 bzero(nd, sizeof(*nd));
167
168 nd->initialized = 1;
169
170 nd->chlim = IPV6_DEFHLIM;
171 nd->basereachable = REACHABLE_TIME;
172 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
173 nd->retrans = RETRANS_TIMER;
174 /*
175 * Note that the default value of ip6_accept_rtadv is 0, which means
176 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
177 * here.
178 */
179 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
180
181 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
182 nd6_setmtu0(ifp, nd);
183
184 return nd;
185 }
186
187 void
188 nd6_ifdetach(struct nd_ifinfo *nd)
189 {
190
191 free(nd, M_IP6NDP);
192 }
193
194 void
195 nd6_setmtu(struct ifnet *ifp)
196 {
197 nd6_setmtu0(ifp, ND_IFINFO(ifp));
198 }
199
200 void
201 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
202 {
203 u_int32_t omaxmtu;
204
205 omaxmtu = ndi->maxmtu;
206
207 switch (ifp->if_type) {
208 case IFT_ARCNET:
209 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
210 break;
211 case IFT_FDDI:
212 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
213 break;
214 default:
215 ndi->maxmtu = ifp->if_mtu;
216 break;
217 }
218
219 /*
220 * Decreasing the interface MTU under IPV6 minimum MTU may cause
221 * undesirable situation. We thus notify the operator of the change
222 * explicitly. The check for omaxmtu is necessary to restrict the
223 * log to the case of changing the MTU, not initializing it.
224 */
225 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
226 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
227 " small for IPv6 which needs %lu\n",
228 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
229 IPV6_MMTU);
230 }
231
232 if (ndi->maxmtu > in6_maxmtu)
233 in6_setmaxmtu(); /* check all interfaces just in case */
234 }
235
236 void
237 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
238 {
239
240 bzero(ndopts, sizeof(*ndopts));
241 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
242 ndopts->nd_opts_last
243 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
244
245 if (icmp6len == 0) {
246 ndopts->nd_opts_done = 1;
247 ndopts->nd_opts_search = NULL;
248 }
249 }
250
251 /*
252 * Take one ND option.
253 */
254 struct nd_opt_hdr *
255 nd6_option(union nd_opts *ndopts)
256 {
257 struct nd_opt_hdr *nd_opt;
258 int olen;
259
260 if (ndopts == NULL)
261 panic("ndopts == NULL in nd6_option");
262 if (ndopts->nd_opts_last == NULL)
263 panic("uninitialized ndopts in nd6_option");
264 if (ndopts->nd_opts_search == NULL)
265 return NULL;
266 if (ndopts->nd_opts_done)
267 return NULL;
268
269 nd_opt = ndopts->nd_opts_search;
270
271 /* make sure nd_opt_len is inside the buffer */
272 if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) {
273 bzero(ndopts, sizeof(*ndopts));
274 return NULL;
275 }
276
277 olen = nd_opt->nd_opt_len << 3;
278 if (olen == 0) {
279 /*
280 * Message validation requires that all included
281 * options have a length that is greater than zero.
282 */
283 bzero(ndopts, sizeof(*ndopts));
284 return NULL;
285 }
286
287 ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen);
288 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
289 /* option overruns the end of buffer, invalid */
290 bzero(ndopts, sizeof(*ndopts));
291 return NULL;
292 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
293 /* reached the end of options chain */
294 ndopts->nd_opts_done = 1;
295 ndopts->nd_opts_search = NULL;
296 }
297 return nd_opt;
298 }
299
300 /*
301 * Parse multiple ND options.
302 * This function is much easier to use, for ND routines that do not need
303 * multiple options of the same type.
304 */
305 int
306 nd6_options(union nd_opts *ndopts)
307 {
308 struct nd_opt_hdr *nd_opt;
309 int i = 0;
310
311 if (ndopts == NULL)
312 panic("ndopts == NULL in nd6_options");
313 if (ndopts->nd_opts_last == NULL)
314 panic("uninitialized ndopts in nd6_options");
315 if (ndopts->nd_opts_search == NULL)
316 return 0;
317
318 while (1) {
319 nd_opt = nd6_option(ndopts);
320 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
321 /*
322 * Message validation requires that all included
323 * options have a length that is greater than zero.
324 */
325 ICMP6_STATINC(ICMP6_STAT_ND_BADOPT);
326 bzero(ndopts, sizeof(*ndopts));
327 return -1;
328 }
329
330 if (nd_opt == NULL)
331 goto skip1;
332
333 switch (nd_opt->nd_opt_type) {
334 case ND_OPT_SOURCE_LINKADDR:
335 case ND_OPT_TARGET_LINKADDR:
336 case ND_OPT_MTU:
337 case ND_OPT_REDIRECTED_HEADER:
338 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
339 nd6log((LOG_INFO,
340 "duplicated ND6 option found (type=%d)\n",
341 nd_opt->nd_opt_type));
342 /* XXX bark? */
343 } else {
344 ndopts->nd_opt_array[nd_opt->nd_opt_type]
345 = nd_opt;
346 }
347 break;
348 case ND_OPT_PREFIX_INFORMATION:
349 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
350 ndopts->nd_opt_array[nd_opt->nd_opt_type]
351 = nd_opt;
352 }
353 ndopts->nd_opts_pi_end =
354 (struct nd_opt_prefix_info *)nd_opt;
355 break;
356 default:
357 /*
358 * Unknown options must be silently ignored,
359 * to accommodate future extension to the protocol.
360 */
361 nd6log((LOG_DEBUG,
362 "nd6_options: unsupported option %d - "
363 "option ignored\n", nd_opt->nd_opt_type));
364 }
365
366 skip1:
367 i++;
368 if (i > nd6_maxndopt) {
369 ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT);
370 nd6log((LOG_INFO, "too many loop in nd opt\n"));
371 break;
372 }
373
374 if (ndopts->nd_opts_done)
375 break;
376 }
377
378 return 0;
379 }
380
381 /*
382 * ND6 timer routine to handle ND6 entries
383 */
384 void
385 nd6_llinfo_settimer(struct llinfo_nd6 *ln, long xtick)
386 {
387 int s;
388
389 s = splsoftnet();
390
391 if (xtick < 0) {
392 ln->ln_expire = 0;
393 ln->ln_ntick = 0;
394 callout_stop(&ln->ln_timer_ch);
395 } else {
396 ln->ln_expire = time_second + xtick / hz;
397 if (xtick > INT_MAX) {
398 ln->ln_ntick = xtick - INT_MAX;
399 callout_reset(&ln->ln_timer_ch, INT_MAX,
400 nd6_llinfo_timer, ln);
401 } else {
402 ln->ln_ntick = 0;
403 callout_reset(&ln->ln_timer_ch, xtick,
404 nd6_llinfo_timer, ln);
405 }
406 }
407
408 splx(s);
409 }
410
411 static void
412 nd6_llinfo_timer(void *arg)
413 {
414 struct llinfo_nd6 *ln;
415 struct rtentry *rt;
416 const struct sockaddr_in6 *dst;
417 struct ifnet *ifp;
418 struct nd_ifinfo *ndi = NULL;
419
420 mutex_enter(softnet_lock);
421 KERNEL_LOCK(1, NULL);
422
423 ln = (struct llinfo_nd6 *)arg;
424
425 if (ln->ln_ntick > 0) {
426 nd6_llinfo_settimer(ln, ln->ln_ntick);
427 KERNEL_UNLOCK_ONE(NULL);
428 mutex_exit(softnet_lock);
429 return;
430 }
431
432 if ((rt = ln->ln_rt) == NULL)
433 panic("ln->ln_rt == NULL");
434 if ((ifp = rt->rt_ifp) == NULL)
435 panic("ln->ln_rt->rt_ifp == NULL");
436 ndi = ND_IFINFO(ifp);
437 dst = satocsin6(rt_getkey(rt));
438
439 /* sanity check */
440 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
441 panic("rt_llinfo(%p) is not equal to ln(%p)",
442 rt->rt_llinfo, ln);
443 if (!dst)
444 panic("dst=0 in nd6_timer(ln=%p)", ln);
445
446 switch (ln->ln_state) {
447 case ND6_LLINFO_INCOMPLETE:
448 if (ln->ln_asked < nd6_mmaxtries) {
449 ln->ln_asked++;
450 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
451 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
452 } else {
453 struct mbuf *m = ln->ln_hold;
454 if (m) {
455 struct mbuf *m0;
456
457 /*
458 * assuming every packet in ln_hold has
459 * the same IP header
460 */
461 m0 = m->m_nextpkt;
462 m->m_nextpkt = NULL;
463 icmp6_error2(m, ICMP6_DST_UNREACH,
464 ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
465
466 ln->ln_hold = m0;
467 clear_llinfo_pqueue(ln);
468 }
469 (void)nd6_free(rt, 0);
470 ln = NULL;
471 }
472 break;
473 case ND6_LLINFO_REACHABLE:
474 if (!ND6_LLINFO_PERMANENT(ln)) {
475 ln->ln_state = ND6_LLINFO_STALE;
476 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
477 }
478 break;
479
480 case ND6_LLINFO_STALE:
481 /* Garbage Collection(RFC 2461 5.3) */
482 if (!ND6_LLINFO_PERMANENT(ln)) {
483 (void)nd6_free(rt, 1);
484 ln = NULL;
485 }
486 break;
487
488 case ND6_LLINFO_DELAY:
489 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
490 /* We need NUD */
491 ln->ln_asked = 1;
492 ln->ln_state = ND6_LLINFO_PROBE;
493 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
494 nd6_ns_output(ifp, &dst->sin6_addr,
495 &dst->sin6_addr, ln, 0);
496 } else {
497 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
498 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
499 }
500 break;
501 case ND6_LLINFO_PROBE:
502 if (ln->ln_asked < nd6_umaxtries) {
503 ln->ln_asked++;
504 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
505 nd6_ns_output(ifp, &dst->sin6_addr,
506 &dst->sin6_addr, ln, 0);
507 } else {
508 (void)nd6_free(rt, 0);
509 ln = NULL;
510 }
511 break;
512 }
513
514 KERNEL_UNLOCK_ONE(NULL);
515 mutex_exit(softnet_lock);
516 }
517
518 /*
519 * ND6 timer routine to expire default route list and prefix list
520 */
521 void
522 nd6_timer(void *ignored_arg)
523 {
524 struct nd_defrouter *next_dr, *dr;
525 struct nd_prefix *next_pr, *pr;
526 struct in6_ifaddr *ia6, *nia6;
527 struct in6_addrlifetime *lt6;
528
529 callout_reset(&nd6_timer_ch, nd6_prune * hz,
530 nd6_timer, NULL);
531
532 mutex_enter(softnet_lock);
533 KERNEL_LOCK(1, NULL);
534
535 /* expire default router list */
536
537 for (dr = TAILQ_FIRST(&nd_defrouter); dr != NULL; dr = next_dr) {
538 next_dr = TAILQ_NEXT(dr, dr_entry);
539 if (dr->expire && dr->expire < time_second) {
540 defrtrlist_del(dr);
541 }
542 }
543
544 /*
545 * expire interface addresses.
546 * in the past the loop was inside prefix expiry processing.
547 * However, from a stricter speci-confrmance standpoint, we should
548 * rather separate address lifetimes and prefix lifetimes.
549 */
550 addrloop:
551 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
552 nia6 = ia6->ia_next;
553 /* check address lifetime */
554 lt6 = &ia6->ia6_lifetime;
555 if (IFA6_IS_INVALID(ia6)) {
556 int regen = 0;
557
558 /*
559 * If the expiring address is temporary, try
560 * regenerating a new one. This would be useful when
561 * we suspended a laptop PC, then turned it on after a
562 * period that could invalidate all temporary
563 * addresses. Although we may have to restart the
564 * loop (see below), it must be after purging the
565 * address. Otherwise, we'd see an infinite loop of
566 * regeneration.
567 */
568 if (ip6_use_tempaddr &&
569 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
570 if (regen_tmpaddr(ia6) == 0)
571 regen = 1;
572 }
573
574 in6_purgeaddr(&ia6->ia_ifa);
575
576 if (regen)
577 goto addrloop; /* XXX: see below */
578 } else if (IFA6_IS_DEPRECATED(ia6)) {
579 int oldflags = ia6->ia6_flags;
580
581 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
582
583 /*
584 * If a temporary address has just become deprecated,
585 * regenerate a new one if possible.
586 */
587 if (ip6_use_tempaddr &&
588 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
589 (oldflags & IN6_IFF_DEPRECATED) == 0) {
590
591 if (regen_tmpaddr(ia6) == 0) {
592 /*
593 * A new temporary address is
594 * generated.
595 * XXX: this means the address chain
596 * has changed while we are still in
597 * the loop. Although the change
598 * would not cause disaster (because
599 * it's not a deletion, but an
600 * addition,) we'd rather restart the
601 * loop just for safety. Or does this
602 * significantly reduce performance??
603 */
604 goto addrloop;
605 }
606 }
607 } else {
608 /*
609 * A new RA might have made a deprecated address
610 * preferred.
611 */
612 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
613 }
614 }
615
616 /* expire prefix list */
617 for (pr = LIST_FIRST(&nd_prefix); pr != NULL; pr = next_pr) {
618 next_pr = LIST_NEXT(pr, ndpr_entry);
619 /*
620 * check prefix lifetime.
621 * since pltime is just for autoconf, pltime processing for
622 * prefix is not necessary.
623 */
624 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
625 time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
626
627 /*
628 * address expiration and prefix expiration are
629 * separate. NEVER perform in6_purgeaddr here.
630 */
631
632 prelist_remove(pr);
633 }
634 }
635
636 KERNEL_UNLOCK_ONE(NULL);
637 mutex_exit(softnet_lock);
638 }
639
640 /* ia6: deprecated/invalidated temporary address */
641 static int
642 regen_tmpaddr(struct in6_ifaddr *ia6)
643 {
644 struct ifaddr *ifa;
645 struct ifnet *ifp;
646 struct in6_ifaddr *public_ifa6 = NULL;
647
648 ifp = ia6->ia_ifa.ifa_ifp;
649 IFADDR_FOREACH(ifa, ifp) {
650 struct in6_ifaddr *it6;
651
652 if (ifa->ifa_addr->sa_family != AF_INET6)
653 continue;
654
655 it6 = (struct in6_ifaddr *)ifa;
656
657 /* ignore no autoconf addresses. */
658 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
659 continue;
660
661 /* ignore autoconf addresses with different prefixes. */
662 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
663 continue;
664
665 /*
666 * Now we are looking at an autoconf address with the same
667 * prefix as ours. If the address is temporary and is still
668 * preferred, do not create another one. It would be rare, but
669 * could happen, for example, when we resume a laptop PC after
670 * a long period.
671 */
672 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
673 !IFA6_IS_DEPRECATED(it6)) {
674 public_ifa6 = NULL;
675 break;
676 }
677
678 /*
679 * This is a public autoconf address that has the same prefix
680 * as ours. If it is preferred, keep it. We can't break the
681 * loop here, because there may be a still-preferred temporary
682 * address with the prefix.
683 */
684 if (!IFA6_IS_DEPRECATED(it6))
685 public_ifa6 = it6;
686 }
687
688 if (public_ifa6 != NULL) {
689 int e;
690
691 /*
692 * Random factor is introduced in the preferred lifetime, so
693 * we do not need additional delay (3rd arg to in6_tmpifadd).
694 */
695 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
696 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
697 " tmp addr, errno=%d\n", e);
698 return -1;
699 }
700 return 0;
701 }
702
703 return -1;
704 }
705
706 /*
707 * Nuke neighbor cache/prefix/default router management table, right before
708 * ifp goes away.
709 */
710 void
711 nd6_purge(struct ifnet *ifp)
712 {
713 struct llinfo_nd6 *ln, *nln;
714 struct nd_defrouter *dr, *ndr;
715 struct nd_prefix *pr, *npr;
716
717 /*
718 * Nuke default router list entries toward ifp.
719 * We defer removal of default router list entries that is installed
720 * in the routing table, in order to keep additional side effects as
721 * small as possible.
722 */
723 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
724 ndr = TAILQ_NEXT(dr, dr_entry);
725 if (dr->installed)
726 continue;
727
728 if (dr->ifp == ifp)
729 defrtrlist_del(dr);
730 }
731 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
732 ndr = TAILQ_NEXT(dr, dr_entry);
733 if (!dr->installed)
734 continue;
735
736 if (dr->ifp == ifp)
737 defrtrlist_del(dr);
738 }
739
740 /* Nuke prefix list entries toward ifp */
741 for (pr = LIST_FIRST(&nd_prefix); pr != NULL; pr = npr) {
742 npr = LIST_NEXT(pr, ndpr_entry);
743 if (pr->ndpr_ifp == ifp) {
744 /*
745 * Because if_detach() does *not* release prefixes
746 * while purging addresses the reference count will
747 * still be above zero. We therefore reset it to
748 * make sure that the prefix really gets purged.
749 */
750 pr->ndpr_refcnt = 0;
751 /*
752 * Previously, pr->ndpr_addr is removed as well,
753 * but I strongly believe we don't have to do it.
754 * nd6_purge() is only called from in6_ifdetach(),
755 * which removes all the associated interface addresses
756 * by itself.
757 * (jinmei (at) kame.net 20010129)
758 */
759 prelist_remove(pr);
760 }
761 }
762
763 /* cancel default outgoing interface setting */
764 if (nd6_defifindex == ifp->if_index)
765 nd6_setdefaultiface(0);
766
767 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
768 /* refresh default router list */
769 defrouter_select();
770 }
771
772 /*
773 * Nuke neighbor cache entries for the ifp.
774 * Note that rt->rt_ifp may not be the same as ifp,
775 * due to KAME goto ours hack. See RTM_RESOLVE case in
776 * nd6_rtrequest(), and ip6_input().
777 */
778 ln = llinfo_nd6.ln_next;
779 while (ln && ln != &llinfo_nd6) {
780 struct rtentry *rt;
781 const struct sockaddr_dl *sdl;
782
783 nln = ln->ln_next;
784 rt = ln->ln_rt;
785 if (rt && rt->rt_gateway &&
786 rt->rt_gateway->sa_family == AF_LINK) {
787 sdl = satocsdl(rt->rt_gateway);
788 if (sdl->sdl_index == ifp->if_index)
789 nln = nd6_free(rt, 0);
790 }
791 ln = nln;
792 }
793 }
794
795 struct rtentry *
796 nd6_lookup(const struct in6_addr *addr6, int create, struct ifnet *ifp)
797 {
798 struct rtentry *rt;
799 struct sockaddr_in6 sin6;
800
801 sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
802 rt = rtalloc1((struct sockaddr *)&sin6, create);
803 if (rt && (rt->rt_flags & RTF_LLINFO) == 0) {
804 /*
805 * This is the case for the default route.
806 * If we want to create a neighbor cache for the address, we
807 * should free the route for the destination and allocate an
808 * interface route.
809 */
810 if (create) {
811 RTFREE(rt);
812 rt = NULL;
813 }
814 }
815 if (rt != NULL)
816 ;
817 else if (create && ifp) {
818 int e;
819
820 /*
821 * If no route is available and create is set,
822 * we allocate a host route for the destination
823 * and treat it like an interface route.
824 * This hack is necessary for a neighbor which can't
825 * be covered by our own prefix.
826 */
827 struct ifaddr *ifa =
828 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
829 if (ifa == NULL)
830 return NULL;
831
832 /*
833 * Create a new route. RTF_LLINFO is necessary
834 * to create a Neighbor Cache entry for the
835 * destination in nd6_rtrequest which will be
836 * called in rtrequest via ifa->ifa_rtrequest.
837 */
838 if ((e = rtrequest(RTM_ADD, (const struct sockaddr *)&sin6,
839 ifa->ifa_addr, (const struct sockaddr *)&all1_sa,
840 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
841 ~RTF_CLONING, &rt)) != 0) {
842 #if 0
843 log(LOG_ERR,
844 "nd6_lookup: failed to add route for a "
845 "neighbor(%s), errno=%d\n",
846 ip6_sprintf(addr6), e);
847 #endif
848 return NULL;
849 }
850 if (rt == NULL)
851 return NULL;
852 if (rt->rt_llinfo) {
853 struct llinfo_nd6 *ln =
854 (struct llinfo_nd6 *)rt->rt_llinfo;
855 ln->ln_state = ND6_LLINFO_NOSTATE;
856 }
857 } else
858 return NULL;
859 rt->rt_refcnt--;
860 /*
861 * Validation for the entry.
862 * Note that the check for rt_llinfo is necessary because a cloned
863 * route from a parent route that has the L flag (e.g. the default
864 * route to a p2p interface) may have the flag, too, while the
865 * destination is not actually a neighbor.
866 * XXX: we can't use rt->rt_ifp to check for the interface, since
867 * it might be the loopback interface if the entry is for our
868 * own address on a non-loopback interface. Instead, we should
869 * use rt->rt_ifa->ifa_ifp, which would specify the REAL
870 * interface.
871 * Note also that ifa_ifp and ifp may differ when we connect two
872 * interfaces to a same link, install a link prefix to an interface,
873 * and try to install a neighbor cache on an interface that does not
874 * have a route to the prefix.
875 */
876 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
877 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
878 (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
879 if (create) {
880 nd6log((LOG_DEBUG,
881 "nd6_lookup: failed to lookup %s (if = %s)\n",
882 ip6_sprintf(addr6),
883 ifp ? if_name(ifp) : "unspec"));
884 }
885 return NULL;
886 }
887 return rt;
888 }
889
890 /*
891 * Detect if a given IPv6 address identifies a neighbor on a given link.
892 * XXX: should take care of the destination of a p2p link?
893 */
894 int
895 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
896 {
897 struct nd_prefix *pr;
898
899 /*
900 * A link-local address is always a neighbor.
901 * XXX: a link does not necessarily specify a single interface.
902 */
903 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
904 struct sockaddr_in6 sin6_copy;
905 u_int32_t zone;
906
907 /*
908 * We need sin6_copy since sa6_recoverscope() may modify the
909 * content (XXX).
910 */
911 sin6_copy = *addr;
912 if (sa6_recoverscope(&sin6_copy))
913 return 0; /* XXX: should be impossible */
914 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
915 return 0;
916 if (sin6_copy.sin6_scope_id == zone)
917 return 1;
918 else
919 return 0;
920 }
921
922 /*
923 * If the address matches one of our on-link prefixes, it should be a
924 * neighbor.
925 */
926 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
927 if (pr->ndpr_ifp != ifp)
928 continue;
929
930 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
931 continue;
932
933 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
934 &addr->sin6_addr, &pr->ndpr_mask))
935 return 1;
936 }
937
938 /*
939 * If the default router list is empty, all addresses are regarded
940 * as on-link, and thus, as a neighbor.
941 * XXX: we restrict the condition to hosts, because routers usually do
942 * not have the "default router list".
943 */
944 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
945 nd6_defifindex == ifp->if_index) {
946 return 1;
947 }
948
949 /*
950 * Even if the address matches none of our addresses, it might be
951 * in the neighbor cache.
952 */
953 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
954 return 1;
955
956 return 0;
957 }
958
959 /*
960 * Free an nd6 llinfo entry.
961 * Since the function would cause significant changes in the kernel, DO NOT
962 * make it global, unless you have a strong reason for the change, and are sure
963 * that the change is safe.
964 */
965 static struct llinfo_nd6 *
966 nd6_free(struct rtentry *rt, int gc)
967 {
968 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
969 struct in6_addr in6 = satocsin6(rt_getkey(rt))->sin6_addr;
970 struct nd_defrouter *dr;
971
972 /*
973 * we used to have pfctlinput(PRC_HOSTDEAD) here.
974 * even though it is not harmful, it was not really necessary.
975 */
976
977 /* cancel timer */
978 nd6_llinfo_settimer(ln, -1);
979
980 if (!ip6_forwarding) {
981 int s;
982 s = splsoftnet();
983 dr = defrouter_lookup(&satocsin6(rt_getkey(rt))->sin6_addr,
984 rt->rt_ifp);
985
986 if (dr != NULL && dr->expire &&
987 ln->ln_state == ND6_LLINFO_STALE && gc) {
988 /*
989 * If the reason for the deletion is just garbage
990 * collection, and the neighbor is an active default
991 * router, do not delete it. Instead, reset the GC
992 * timer using the router's lifetime.
993 * Simply deleting the entry would affect default
994 * router selection, which is not necessarily a good
995 * thing, especially when we're using router preference
996 * values.
997 * XXX: the check for ln_state would be redundant,
998 * but we intentionally keep it just in case.
999 */
1000 if (dr->expire > time_second)
1001 nd6_llinfo_settimer(ln,
1002 (dr->expire - time_second) * hz);
1003 else
1004 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1005 splx(s);
1006 return ln->ln_next;
1007 }
1008
1009 if (ln->ln_router || dr) {
1010 /*
1011 * rt6_flush must be called whether or not the neighbor
1012 * is in the Default Router List.
1013 * See a corresponding comment in nd6_na_input().
1014 */
1015 rt6_flush(&in6, rt->rt_ifp);
1016 }
1017
1018 if (dr) {
1019 /*
1020 * Unreachablity of a router might affect the default
1021 * router selection and on-link detection of advertised
1022 * prefixes.
1023 */
1024
1025 /*
1026 * Temporarily fake the state to choose a new default
1027 * router and to perform on-link determination of
1028 * prefixes correctly.
1029 * Below the state will be set correctly,
1030 * or the entry itself will be deleted.
1031 */
1032 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1033
1034 /*
1035 * Since defrouter_select() does not affect the
1036 * on-link determination and MIP6 needs the check
1037 * before the default router selection, we perform
1038 * the check now.
1039 */
1040 pfxlist_onlink_check();
1041
1042 /*
1043 * refresh default router list
1044 */
1045 defrouter_select();
1046 }
1047 splx(s);
1048 }
1049
1050 /*
1051 * Before deleting the entry, remember the next entry as the
1052 * return value. We need this because pfxlist_onlink_check() above
1053 * might have freed other entries (particularly the old next entry) as
1054 * a side effect (XXX).
1055 */
1056 next = ln->ln_next;
1057
1058 /*
1059 * Detach the route from the routing tree and the list of neighbor
1060 * caches, and disable the route entry not to be used in already
1061 * cached routes.
1062 */
1063 rtrequest(RTM_DELETE, rt_getkey(rt), (struct sockaddr *)0,
1064 rt_mask(rt), 0, (struct rtentry **)0);
1065
1066 return next;
1067 }
1068
1069 /*
1070 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1071 *
1072 * XXX cost-effective methods?
1073 */
1074 void
1075 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1076 {
1077 struct llinfo_nd6 *ln;
1078
1079 /*
1080 * If the caller specified "rt", use that. Otherwise, resolve the
1081 * routing table by supplied "dst6".
1082 */
1083 if (rt == NULL) {
1084 if (dst6 == NULL)
1085 return;
1086 if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1087 return;
1088 }
1089
1090 if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1091 (rt->rt_flags & RTF_LLINFO) == 0 ||
1092 !rt->rt_llinfo || !rt->rt_gateway ||
1093 rt->rt_gateway->sa_family != AF_LINK) {
1094 /* This is not a host route. */
1095 return;
1096 }
1097
1098 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1099 if (ln->ln_state < ND6_LLINFO_REACHABLE)
1100 return;
1101
1102 /*
1103 * if we get upper-layer reachability confirmation many times,
1104 * it is possible we have false information.
1105 */
1106 if (!force) {
1107 ln->ln_byhint++;
1108 if (ln->ln_byhint > nd6_maxnudhint)
1109 return;
1110 }
1111
1112 ln->ln_state = ND6_LLINFO_REACHABLE;
1113 if (!ND6_LLINFO_PERMANENT(ln)) {
1114 nd6_llinfo_settimer(ln,
1115 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1116 }
1117 }
1118
1119 void
1120 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info)
1121 {
1122 struct sockaddr *gate = rt->rt_gateway;
1123 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1124 struct ifnet *ifp = rt->rt_ifp;
1125 uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen;
1126 struct ifaddr *ifa;
1127
1128 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1129
1130 if ((rt->rt_flags & RTF_GATEWAY) != 0)
1131 return;
1132
1133 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1134 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1135 /*
1136 * This is probably an interface direct route for a link
1137 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1138 * We do not need special treatment below for such a route.
1139 * Moreover, the RTF_LLINFO flag which would be set below
1140 * would annoy the ndp(8) command.
1141 */
1142 return;
1143 }
1144
1145 if (req == RTM_RESOLVE &&
1146 (nd6_need_cache(ifp) == 0 || /* stf case */
1147 !nd6_is_addr_neighbor(satocsin6(rt_getkey(rt)), ifp))) {
1148 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1149 /*
1150 * FreeBSD and BSD/OS often make a cloned host route based
1151 * on a less-specific route (e.g. the default route).
1152 * If the less specific route does not have a "gateway"
1153 * (this is the case when the route just goes to a p2p or an
1154 * stf interface), we'll mistakenly make a neighbor cache for
1155 * the host route, and will see strange neighbor solicitation
1156 * for the corresponding destination. In order to avoid the
1157 * confusion, we check if the destination of the route is
1158 * a neighbor in terms of neighbor discovery, and stop the
1159 * process if not. Additionally, we remove the LLINFO flag
1160 * so that ndp(8) will not try to get the neighbor information
1161 * of the destination.
1162 */
1163 rt->rt_flags &= ~RTF_LLINFO;
1164 return;
1165 }
1166
1167 switch (req) {
1168 case RTM_ADD:
1169 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1170 /*
1171 * There is no backward compatibility :)
1172 *
1173 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1174 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1175 * rt->rt_flags |= RTF_CLONING;
1176 */
1177 if ((rt->rt_flags & RTF_CLONING) ||
1178 ((rt->rt_flags & RTF_LLINFO) && !ln)) {
1179 union {
1180 struct sockaddr sa;
1181 struct sockaddr_dl sdl;
1182 struct sockaddr_storage ss;
1183 } u;
1184 /*
1185 * Case 1: This route should come from a route to
1186 * interface (RTF_CLONING case) or the route should be
1187 * treated as on-link but is currently not
1188 * (RTF_LLINFO && !ln case).
1189 */
1190 sockaddr_dl_init(&u.sdl, sizeof(u.ss),
1191 ifp->if_index, ifp->if_type,
1192 NULL, namelen, NULL, addrlen);
1193 rt_setgate(rt, &u.sa);
1194 gate = rt->rt_gateway;
1195 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1196 if (ln)
1197 nd6_llinfo_settimer(ln, 0);
1198 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1199 if ((rt->rt_flags & RTF_CLONING) != 0)
1200 break;
1201 }
1202 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1203 /*
1204 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1205 * We don't do that here since llinfo is not ready yet.
1206 *
1207 * There are also couple of other things to be discussed:
1208 * - unsolicited NA code needs improvement beforehand
1209 * - RFC2461 says we MAY send multicast unsolicited NA
1210 * (7.2.6 paragraph 4), however, it also says that we
1211 * SHOULD provide a mechanism to prevent multicast NA storm.
1212 * we don't have anything like it right now.
1213 * note that the mechanism needs a mutual agreement
1214 * between proxies, which means that we need to implement
1215 * a new protocol, or a new kludge.
1216 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1217 * we need to check ip6forwarding before sending it.
1218 * (or should we allow proxy ND configuration only for
1219 * routers? there's no mention about proxy ND from hosts)
1220 */
1221 #if 0
1222 /* XXX it does not work */
1223 if (rt->rt_flags & RTF_ANNOUNCE)
1224 nd6_na_output(ifp,
1225 &satocsin6(rt_getkey(rt))->sin6_addr,
1226 &satocsin6(rt_getkey(rt))->sin6_addr,
1227 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1228 1, NULL);
1229 #endif
1230 /* FALLTHROUGH */
1231 case RTM_RESOLVE:
1232 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1233 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1234 /*
1235 * Address resolution isn't necessary for a point to
1236 * point link, so we can skip this test for a p2p link.
1237 */
1238 if (gate->sa_family != AF_LINK ||
1239 gate->sa_len <
1240 sockaddr_dl_measure(namelen, addrlen)) {
1241 log(LOG_DEBUG,
1242 "nd6_rtrequest: bad gateway value: %s\n",
1243 if_name(ifp));
1244 break;
1245 }
1246 satosdl(gate)->sdl_type = ifp->if_type;
1247 satosdl(gate)->sdl_index = ifp->if_index;
1248 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1249 }
1250 if (ln != NULL)
1251 break; /* This happens on a route change */
1252 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1253 /*
1254 * Case 2: This route may come from cloning, or a manual route
1255 * add with a LL address.
1256 */
1257 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1258 rt->rt_llinfo = (void *)ln;
1259 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1260 if (ln == NULL) {
1261 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1262 break;
1263 }
1264 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1265 nd6_inuse++;
1266 nd6_allocated++;
1267 bzero(ln, sizeof(*ln));
1268 ln->ln_rt = rt;
1269 callout_init(&ln->ln_timer_ch, CALLOUT_MPSAFE);
1270 /* this is required for "ndp" command. - shin */
1271 if (req == RTM_ADD) {
1272 /*
1273 * gate should have some valid AF_LINK entry,
1274 * and ln->ln_expire should have some lifetime
1275 * which is specified by ndp command.
1276 */
1277 ln->ln_state = ND6_LLINFO_REACHABLE;
1278 ln->ln_byhint = 0;
1279 } else {
1280 /*
1281 * When req == RTM_RESOLVE, rt is created and
1282 * initialized in rtrequest(), so rt_expire is 0.
1283 */
1284 ln->ln_state = ND6_LLINFO_NOSTATE;
1285 nd6_llinfo_settimer(ln, 0);
1286 }
1287 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1288 rt->rt_flags |= RTF_LLINFO;
1289 ln->ln_next = llinfo_nd6.ln_next;
1290 llinfo_nd6.ln_next = ln;
1291 ln->ln_prev = &llinfo_nd6;
1292 ln->ln_next->ln_prev = ln;
1293
1294 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1295 /*
1296 * check if rt_getkey(rt) is an address assigned
1297 * to the interface.
1298 */
1299 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp,
1300 &satocsin6(rt_getkey(rt))->sin6_addr);
1301 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1302 if (ifa) {
1303 const void *mac;
1304 nd6_llinfo_settimer(ln, -1);
1305 ln->ln_state = ND6_LLINFO_REACHABLE;
1306 ln->ln_byhint = 0;
1307 if ((mac = nd6_ifptomac(ifp)) != NULL) {
1308 /* XXX check for error */
1309 (void)sockaddr_dl_setaddr(satosdl(gate),
1310 gate->sa_len, mac, ifp->if_addrlen);
1311 }
1312 if (nd6_useloopback) {
1313 ifp = rt->rt_ifp = lo0ifp; /* XXX */
1314 /*
1315 * Make sure rt_ifa be equal to the ifaddr
1316 * corresponding to the address.
1317 * We need this because when we refer
1318 * rt_ifa->ia6_flags in ip6_input, we assume
1319 * that the rt_ifa points to the address instead
1320 * of the loopback address.
1321 */
1322 if (ifa != rt->rt_ifa)
1323 rt_replace_ifa(rt, ifa);
1324 rt->rt_flags &= ~RTF_CLONED;
1325 }
1326 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1327 nd6_llinfo_settimer(ln, -1);
1328 ln->ln_state = ND6_LLINFO_REACHABLE;
1329 ln->ln_byhint = 0;
1330
1331 /* join solicited node multicast for proxy ND */
1332 if (ifp->if_flags & IFF_MULTICAST) {
1333 struct in6_addr llsol;
1334 int error;
1335
1336 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1337 llsol.s6_addr32[0] = htonl(0xff020000);
1338 llsol.s6_addr32[1] = 0;
1339 llsol.s6_addr32[2] = htonl(1);
1340 llsol.s6_addr8[12] = 0xff;
1341 if (in6_setscope(&llsol, ifp, NULL))
1342 break;
1343 if (!in6_addmulti(&llsol, ifp, &error, 0)) {
1344 nd6log((LOG_ERR, "%s: failed to join "
1345 "%s (errno=%d)\n", if_name(ifp),
1346 ip6_sprintf(&llsol), error));
1347 }
1348 }
1349 }
1350 break;
1351
1352 case RTM_DELETE:
1353 if (ln == NULL)
1354 break;
1355 /* leave from solicited node multicast for proxy ND */
1356 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1357 (ifp->if_flags & IFF_MULTICAST) != 0) {
1358 struct in6_addr llsol;
1359 struct in6_multi *in6m;
1360
1361 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1362 llsol.s6_addr32[0] = htonl(0xff020000);
1363 llsol.s6_addr32[1] = 0;
1364 llsol.s6_addr32[2] = htonl(1);
1365 llsol.s6_addr8[12] = 0xff;
1366 if (in6_setscope(&llsol, ifp, NULL) == 0) {
1367 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1368 if (in6m)
1369 in6_delmulti(in6m);
1370 }
1371 }
1372 nd6_inuse--;
1373 ln->ln_next->ln_prev = ln->ln_prev;
1374 ln->ln_prev->ln_next = ln->ln_next;
1375 ln->ln_prev = NULL;
1376 nd6_llinfo_settimer(ln, -1);
1377 rt->rt_llinfo = 0;
1378 rt->rt_flags &= ~RTF_LLINFO;
1379 clear_llinfo_pqueue(ln);
1380 Free((void *)ln);
1381 }
1382 }
1383
1384 int
1385 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp)
1386 {
1387 struct in6_drlist *drl = (struct in6_drlist *)data;
1388 struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1389 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1390 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1391 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1392 struct nd_defrouter *dr;
1393 struct nd_prefix *pr;
1394 struct rtentry *rt;
1395 int i = 0, error = 0;
1396 int s;
1397
1398 switch (cmd) {
1399 case SIOCGDRLST_IN6:
1400 /*
1401 * obsolete API, use sysctl under net.inet6.icmp6
1402 */
1403 bzero(drl, sizeof(*drl));
1404 s = splsoftnet();
1405 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
1406 if (i >= DRLSTSIZ)
1407 break;
1408 drl->defrouter[i].rtaddr = dr->rtaddr;
1409 in6_clearscope(&drl->defrouter[i].rtaddr);
1410
1411 drl->defrouter[i].flags = dr->flags;
1412 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1413 drl->defrouter[i].expire = dr->expire;
1414 drl->defrouter[i].if_index = dr->ifp->if_index;
1415 i++;
1416 }
1417 splx(s);
1418 break;
1419 case SIOCGPRLST_IN6:
1420 /*
1421 * obsolete API, use sysctl under net.inet6.icmp6
1422 *
1423 * XXX the structure in6_prlist was changed in backward-
1424 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1425 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1426 */
1427 /*
1428 * XXX meaning of fields, especialy "raflags", is very
1429 * differnet between RA prefix list and RR/static prefix list.
1430 * how about separating ioctls into two?
1431 */
1432 bzero(oprl, sizeof(*oprl));
1433 s = splsoftnet();
1434 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
1435 struct nd_pfxrouter *pfr;
1436 int j;
1437
1438 if (i >= PRLSTSIZ)
1439 break;
1440 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1441 oprl->prefix[i].raflags = pr->ndpr_raf;
1442 oprl->prefix[i].prefixlen = pr->ndpr_plen;
1443 oprl->prefix[i].vltime = pr->ndpr_vltime;
1444 oprl->prefix[i].pltime = pr->ndpr_pltime;
1445 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1446 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1447 oprl->prefix[i].expire = 0;
1448 else {
1449 time_t maxexpire;
1450
1451 /* XXX: we assume time_t is signed. */
1452 maxexpire = (-1) &
1453 ~((time_t)1 <<
1454 ((sizeof(maxexpire) * 8) - 1));
1455 if (pr->ndpr_vltime <
1456 maxexpire - pr->ndpr_lastupdate) {
1457 oprl->prefix[i].expire =
1458 pr->ndpr_lastupdate +
1459 pr->ndpr_vltime;
1460 } else
1461 oprl->prefix[i].expire = maxexpire;
1462 }
1463
1464 j = 0;
1465 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
1466 if (j < DRLSTSIZ) {
1467 #define RTRADDR oprl->prefix[i].advrtr[j]
1468 RTRADDR = pfr->router->rtaddr;
1469 in6_clearscope(&RTRADDR);
1470 #undef RTRADDR
1471 }
1472 j++;
1473 }
1474 oprl->prefix[i].advrtrs = j;
1475 oprl->prefix[i].origin = PR_ORIG_RA;
1476
1477 i++;
1478 }
1479 splx(s);
1480
1481 break;
1482 case OSIOCGIFINFO_IN6:
1483 #define ND ndi->ndi
1484 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1485 memset(&ND, 0, sizeof(ND));
1486 ND.linkmtu = IN6_LINKMTU(ifp);
1487 ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1488 ND.basereachable = ND_IFINFO(ifp)->basereachable;
1489 ND.reachable = ND_IFINFO(ifp)->reachable;
1490 ND.retrans = ND_IFINFO(ifp)->retrans;
1491 ND.flags = ND_IFINFO(ifp)->flags;
1492 ND.recalctm = ND_IFINFO(ifp)->recalctm;
1493 ND.chlim = ND_IFINFO(ifp)->chlim;
1494 break;
1495 case SIOCGIFINFO_IN6:
1496 ND = *ND_IFINFO(ifp);
1497 break;
1498 case SIOCSIFINFO_IN6:
1499 /*
1500 * used to change host variables from userland.
1501 * intented for a use on router to reflect RA configurations.
1502 */
1503 /* 0 means 'unspecified' */
1504 if (ND.linkmtu != 0) {
1505 if (ND.linkmtu < IPV6_MMTU ||
1506 ND.linkmtu > IN6_LINKMTU(ifp)) {
1507 error = EINVAL;
1508 break;
1509 }
1510 ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1511 }
1512
1513 if (ND.basereachable != 0) {
1514 int obasereachable = ND_IFINFO(ifp)->basereachable;
1515
1516 ND_IFINFO(ifp)->basereachable = ND.basereachable;
1517 if (ND.basereachable != obasereachable)
1518 ND_IFINFO(ifp)->reachable =
1519 ND_COMPUTE_RTIME(ND.basereachable);
1520 }
1521 if (ND.retrans != 0)
1522 ND_IFINFO(ifp)->retrans = ND.retrans;
1523 if (ND.chlim != 0)
1524 ND_IFINFO(ifp)->chlim = ND.chlim;
1525 /* FALLTHROUGH */
1526 case SIOCSIFINFO_FLAGS:
1527 ND_IFINFO(ifp)->flags = ND.flags;
1528 break;
1529 #undef ND
1530 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1531 /* sync kernel routing table with the default router list */
1532 defrouter_reset();
1533 defrouter_select();
1534 break;
1535 case SIOCSPFXFLUSH_IN6:
1536 {
1537 /* flush all the prefix advertised by routers */
1538 struct nd_prefix *pfx, *next;
1539
1540 s = splsoftnet();
1541 for (pfx = LIST_FIRST(&nd_prefix); pfx; pfx = next) {
1542 struct in6_ifaddr *ia, *ia_next;
1543
1544 next = LIST_NEXT(pfx, ndpr_entry);
1545
1546 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
1547 continue; /* XXX */
1548
1549 /* do we really have to remove addresses as well? */
1550 for (ia = in6_ifaddr; ia; ia = ia_next) {
1551 /* ia might be removed. keep the next ptr. */
1552 ia_next = ia->ia_next;
1553
1554 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1555 continue;
1556
1557 if (ia->ia6_ndpr == pfx)
1558 in6_purgeaddr(&ia->ia_ifa);
1559 }
1560 prelist_remove(pfx);
1561 }
1562 splx(s);
1563 break;
1564 }
1565 case SIOCSRTRFLUSH_IN6:
1566 {
1567 /* flush all the default routers */
1568 struct nd_defrouter *drtr, *next;
1569
1570 s = splsoftnet();
1571 defrouter_reset();
1572 for (drtr = TAILQ_FIRST(&nd_defrouter); drtr; drtr = next) {
1573 next = TAILQ_NEXT(drtr, dr_entry);
1574 defrtrlist_del(drtr);
1575 }
1576 defrouter_select();
1577 splx(s);
1578 break;
1579 }
1580 case SIOCGNBRINFO_IN6:
1581 {
1582 struct llinfo_nd6 *ln;
1583 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1584
1585 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1586 return error;
1587
1588 s = splsoftnet();
1589 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL ||
1590 (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) {
1591 error = EINVAL;
1592 splx(s);
1593 break;
1594 }
1595 nbi->state = ln->ln_state;
1596 nbi->asked = ln->ln_asked;
1597 nbi->isrouter = ln->ln_router;
1598 nbi->expire = ln->ln_expire;
1599 splx(s);
1600
1601 break;
1602 }
1603 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1604 ndif->ifindex = nd6_defifindex;
1605 break;
1606 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1607 return nd6_setdefaultiface(ndif->ifindex);
1608 }
1609 return error;
1610 }
1611
1612 void
1613 nd6_llinfo_release_pkts(struct llinfo_nd6 *ln, struct ifnet *ifp,
1614 struct rtentry *rt)
1615 {
1616 struct mbuf *m_hold, *m_hold_next;
1617
1618 for (m_hold = ln->ln_hold, ln->ln_hold = NULL;
1619 m_hold != NULL;
1620 m_hold = m_hold_next) {
1621 m_hold_next = m_hold->m_nextpkt;
1622 m_hold->m_nextpkt = NULL;
1623
1624 /*
1625 * we assume ifp is not a p2p here, so
1626 * just set the 2nd argument as the
1627 * 1st one.
1628 */
1629 nd6_output(ifp, ifp, m_hold, satocsin6(rt_getkey(rt)), rt);
1630 }
1631 }
1632
1633 /*
1634 * Create neighbor cache entry and cache link-layer address,
1635 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1636 */
1637 struct rtentry *
1638 nd6_cache_lladdr(
1639 struct ifnet *ifp,
1640 struct in6_addr *from,
1641 char *lladdr,
1642 int lladdrlen,
1643 int type, /* ICMP6 type */
1644 int code /* type dependent information */
1645 )
1646 {
1647 struct rtentry *rt = NULL;
1648 struct llinfo_nd6 *ln = NULL;
1649 int is_newentry;
1650 struct sockaddr_dl *sdl = NULL;
1651 int do_update;
1652 int olladdr;
1653 int llchange;
1654 int newstate = 0;
1655
1656 if (ifp == NULL)
1657 panic("ifp == NULL in nd6_cache_lladdr");
1658 if (from == NULL)
1659 panic("from == NULL in nd6_cache_lladdr");
1660
1661 /* nothing must be updated for unspecified address */
1662 if (IN6_IS_ADDR_UNSPECIFIED(from))
1663 return NULL;
1664
1665 /*
1666 * Validation about ifp->if_addrlen and lladdrlen must be done in
1667 * the caller.
1668 *
1669 * XXX If the link does not have link-layer adderss, what should
1670 * we do? (ifp->if_addrlen == 0)
1671 * Spec says nothing in sections for RA, RS and NA. There's small
1672 * description on it in NS section (RFC 2461 7.2.3).
1673 */
1674
1675 rt = nd6_lookup(from, 0, ifp);
1676 if (rt == NULL) {
1677 #if 0
1678 /* nothing must be done if there's no lladdr */
1679 if (!lladdr || !lladdrlen)
1680 return NULL;
1681 #endif
1682
1683 rt = nd6_lookup(from, 1, ifp);
1684 is_newentry = 1;
1685 } else {
1686 /* do nothing if static ndp is set */
1687 if (rt->rt_flags & RTF_STATIC)
1688 return NULL;
1689 is_newentry = 0;
1690 }
1691
1692 if (rt == NULL)
1693 return NULL;
1694 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1695 fail:
1696 (void)nd6_free(rt, 0);
1697 return NULL;
1698 }
1699 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1700 if (ln == NULL)
1701 goto fail;
1702 if (rt->rt_gateway == NULL)
1703 goto fail;
1704 if (rt->rt_gateway->sa_family != AF_LINK)
1705 goto fail;
1706 sdl = satosdl(rt->rt_gateway);
1707
1708 olladdr = (sdl->sdl_alen) ? 1 : 0;
1709 if (olladdr && lladdr) {
1710 if (memcmp(lladdr, CLLADDR(sdl), ifp->if_addrlen))
1711 llchange = 1;
1712 else
1713 llchange = 0;
1714 } else
1715 llchange = 0;
1716
1717 /*
1718 * newentry olladdr lladdr llchange (*=record)
1719 * 0 n n -- (1)
1720 * 0 y n -- (2)
1721 * 0 n y -- (3) * STALE
1722 * 0 y y n (4) *
1723 * 0 y y y (5) * STALE
1724 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1725 * 1 -- y -- (7) * STALE
1726 */
1727
1728 if (lladdr) { /* (3-5) and (7) */
1729 /*
1730 * Record source link-layer address
1731 * XXX is it dependent to ifp->if_type?
1732 */
1733 /* XXX check for error */
1734 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lladdr,
1735 ifp->if_addrlen);
1736 }
1737
1738 if (!is_newentry) {
1739 if ((!olladdr && lladdr) || /* (3) */
1740 (olladdr && lladdr && llchange)) { /* (5) */
1741 do_update = 1;
1742 newstate = ND6_LLINFO_STALE;
1743 } else /* (1-2,4) */
1744 do_update = 0;
1745 } else {
1746 do_update = 1;
1747 if (lladdr == NULL) /* (6) */
1748 newstate = ND6_LLINFO_NOSTATE;
1749 else /* (7) */
1750 newstate = ND6_LLINFO_STALE;
1751 }
1752
1753 if (do_update) {
1754 /*
1755 * Update the state of the neighbor cache.
1756 */
1757 ln->ln_state = newstate;
1758
1759 if (ln->ln_state == ND6_LLINFO_STALE) {
1760 /*
1761 * XXX: since nd6_output() below will cause
1762 * state tansition to DELAY and reset the timer,
1763 * we must set the timer now, although it is actually
1764 * meaningless.
1765 */
1766 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1767
1768 nd6_llinfo_release_pkts(ln, ifp, rt);
1769 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1770 /* probe right away */
1771 nd6_llinfo_settimer((void *)ln, 0);
1772 }
1773 }
1774
1775 /*
1776 * ICMP6 type dependent behavior.
1777 *
1778 * NS: clear IsRouter if new entry
1779 * RS: clear IsRouter
1780 * RA: set IsRouter if there's lladdr
1781 * redir: clear IsRouter if new entry
1782 *
1783 * RA case, (1):
1784 * The spec says that we must set IsRouter in the following cases:
1785 * - If lladdr exist, set IsRouter. This means (1-5).
1786 * - If it is old entry (!newentry), set IsRouter. This means (7).
1787 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1788 * A quetion arises for (1) case. (1) case has no lladdr in the
1789 * neighbor cache, this is similar to (6).
1790 * This case is rare but we figured that we MUST NOT set IsRouter.
1791 *
1792 * newentry olladdr lladdr llchange NS RS RA redir
1793 * D R
1794 * 0 n n -- (1) c ? s
1795 * 0 y n -- (2) c s s
1796 * 0 n y -- (3) c s s
1797 * 0 y y n (4) c s s
1798 * 0 y y y (5) c s s
1799 * 1 -- n -- (6) c c c s
1800 * 1 -- y -- (7) c c s c s
1801 *
1802 * (c=clear s=set)
1803 */
1804 switch (type & 0xff) {
1805 case ND_NEIGHBOR_SOLICIT:
1806 /*
1807 * New entry must have is_router flag cleared.
1808 */
1809 if (is_newentry) /* (6-7) */
1810 ln->ln_router = 0;
1811 break;
1812 case ND_REDIRECT:
1813 /*
1814 * If the icmp is a redirect to a better router, always set the
1815 * is_router flag. Otherwise, if the entry is newly created,
1816 * clear the flag. [RFC 2461, sec 8.3]
1817 */
1818 if (code == ND_REDIRECT_ROUTER)
1819 ln->ln_router = 1;
1820 else if (is_newentry) /* (6-7) */
1821 ln->ln_router = 0;
1822 break;
1823 case ND_ROUTER_SOLICIT:
1824 /*
1825 * is_router flag must always be cleared.
1826 */
1827 ln->ln_router = 0;
1828 break;
1829 case ND_ROUTER_ADVERT:
1830 /*
1831 * Mark an entry with lladdr as a router.
1832 */
1833 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
1834 (is_newentry && lladdr)) { /* (7) */
1835 ln->ln_router = 1;
1836 }
1837 break;
1838 }
1839
1840 /*
1841 * When the link-layer address of a router changes, select the
1842 * best router again. In particular, when the neighbor entry is newly
1843 * created, it might affect the selection policy.
1844 * Question: can we restrict the first condition to the "is_newentry"
1845 * case?
1846 * XXX: when we hear an RA from a new router with the link-layer
1847 * address option, defrouter_select() is called twice, since
1848 * defrtrlist_update called the function as well. However, I believe
1849 * we can compromise the overhead, since it only happens the first
1850 * time.
1851 * XXX: although defrouter_select() should not have a bad effect
1852 * for those are not autoconfigured hosts, we explicitly avoid such
1853 * cases for safety.
1854 */
1855 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1856 defrouter_select();
1857
1858 return rt;
1859 }
1860
1861 static void
1862 nd6_slowtimo(void *ignored_arg)
1863 {
1864 struct nd_ifinfo *nd6if;
1865 struct ifnet *ifp;
1866
1867 mutex_enter(softnet_lock);
1868 KERNEL_LOCK(1, NULL);
1869 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1870 nd6_slowtimo, NULL);
1871 TAILQ_FOREACH(ifp, &ifnet, if_list) {
1872 nd6if = ND_IFINFO(ifp);
1873 if (nd6if->basereachable && /* already initialized */
1874 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1875 /*
1876 * Since reachable time rarely changes by router
1877 * advertisements, we SHOULD insure that a new random
1878 * value gets recomputed at least once every few hours.
1879 * (RFC 2461, 6.3.4)
1880 */
1881 nd6if->recalctm = nd6_recalc_reachtm_interval;
1882 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1883 }
1884 }
1885 KERNEL_UNLOCK_ONE(NULL);
1886 mutex_exit(softnet_lock);
1887 }
1888
1889 #define senderr(e) { error = (e); goto bad;}
1890 int
1891 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
1892 const struct sockaddr_in6 *dst, struct rtentry *rt0)
1893 {
1894 struct mbuf *m = m0;
1895 struct rtentry *rt = rt0;
1896 struct sockaddr_in6 *gw6 = NULL;
1897 struct llinfo_nd6 *ln = NULL;
1898 int error = 0;
1899
1900 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1901 goto sendpkt;
1902
1903 if (nd6_need_cache(ifp) == 0)
1904 goto sendpkt;
1905
1906 /*
1907 * next hop determination. This routine is derived from ether_output.
1908 */
1909 if (rt) {
1910 if ((rt->rt_flags & RTF_UP) == 0) {
1911 if ((rt0 = rt = rtalloc1(sin6tocsa(dst), 1)) != NULL) {
1912 rt->rt_refcnt--;
1913 if (rt->rt_ifp != ifp)
1914 senderr(EHOSTUNREACH);
1915 } else
1916 senderr(EHOSTUNREACH);
1917 }
1918
1919 if (rt->rt_flags & RTF_GATEWAY) {
1920 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1921
1922 /*
1923 * We skip link-layer address resolution and NUD
1924 * if the gateway is not a neighbor from ND point
1925 * of view, regardless of the value of nd_ifinfo.flags.
1926 * The second condition is a bit tricky; we skip
1927 * if the gateway is our own address, which is
1928 * sometimes used to install a route to a p2p link.
1929 */
1930 if (!nd6_is_addr_neighbor(gw6, ifp) ||
1931 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1932 /*
1933 * We allow this kind of tricky route only
1934 * when the outgoing interface is p2p.
1935 * XXX: we may need a more generic rule here.
1936 */
1937 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1938 senderr(EHOSTUNREACH);
1939
1940 goto sendpkt;
1941 }
1942
1943 if (rt->rt_gwroute == NULL)
1944 goto lookup;
1945 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
1946 rtfree(rt); rt = rt0;
1947 lookup:
1948 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
1949 if ((rt = rt->rt_gwroute) == NULL)
1950 senderr(EHOSTUNREACH);
1951 /* the "G" test below also prevents rt == rt0 */
1952 if ((rt->rt_flags & RTF_GATEWAY) ||
1953 (rt->rt_ifp != ifp)) {
1954 rt->rt_refcnt--;
1955 rt0->rt_gwroute = NULL;
1956 senderr(EHOSTUNREACH);
1957 }
1958 }
1959 }
1960 }
1961
1962 /*
1963 * Address resolution or Neighbor Unreachability Detection
1964 * for the next hop.
1965 * At this point, the destination of the packet must be a unicast
1966 * or an anycast address(i.e. not a multicast).
1967 */
1968
1969 /* Look up the neighbor cache for the nexthop */
1970 if (rt != NULL && (rt->rt_flags & RTF_LLINFO) != 0)
1971 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1972 else {
1973 /*
1974 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1975 * the condition below is not very efficient. But we believe
1976 * it is tolerable, because this should be a rare case.
1977 */
1978 if (nd6_is_addr_neighbor(dst, ifp) &&
1979 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
1980 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1981 }
1982 if (ln == NULL || rt == NULL) {
1983 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
1984 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
1985 log(LOG_DEBUG,
1986 "nd6_output: can't allocate llinfo for %s "
1987 "(ln=%p, rt=%p)\n",
1988 ip6_sprintf(&dst->sin6_addr), ln, rt);
1989 senderr(EIO); /* XXX: good error? */
1990 }
1991
1992 goto sendpkt; /* send anyway */
1993 }
1994
1995 /* We don't have to do link-layer address resolution on a p2p link. */
1996 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
1997 ln->ln_state < ND6_LLINFO_REACHABLE) {
1998 ln->ln_state = ND6_LLINFO_STALE;
1999 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2000 }
2001
2002 /*
2003 * The first time we send a packet to a neighbor whose entry is
2004 * STALE, we have to change the state to DELAY and a sets a timer to
2005 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2006 * neighbor unreachability detection on expiration.
2007 * (RFC 2461 7.3.3)
2008 */
2009 if (ln->ln_state == ND6_LLINFO_STALE) {
2010 ln->ln_asked = 0;
2011 ln->ln_state = ND6_LLINFO_DELAY;
2012 nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2013 }
2014
2015 /*
2016 * If the neighbor cache entry has a state other than INCOMPLETE
2017 * (i.e. its link-layer address is already resolved), just
2018 * send the packet.
2019 */
2020 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2021 goto sendpkt;
2022
2023 /*
2024 * There is a neighbor cache entry, but no ethernet address
2025 * response yet. Append this latest packet to the end of the
2026 * packet queue in the mbuf, unless the number of the packet
2027 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen,
2028 * the oldest packet in the queue will be removed.
2029 */
2030 if (ln->ln_state == ND6_LLINFO_NOSTATE)
2031 ln->ln_state = ND6_LLINFO_INCOMPLETE;
2032 if (ln->ln_hold) {
2033 struct mbuf *m_hold;
2034 int i;
2035
2036 i = 0;
2037 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2038 i++;
2039 if (m_hold->m_nextpkt == NULL) {
2040 m_hold->m_nextpkt = m;
2041 break;
2042 }
2043 }
2044 while (i >= nd6_maxqueuelen) {
2045 m_hold = ln->ln_hold;
2046 ln->ln_hold = ln->ln_hold->m_nextpkt;
2047 m_freem(m_hold);
2048 i--;
2049 }
2050 } else {
2051 ln->ln_hold = m;
2052 }
2053
2054 /*
2055 * If there has been no NS for the neighbor after entering the
2056 * INCOMPLETE state, send the first solicitation.
2057 */
2058 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2059 ln->ln_asked++;
2060 nd6_llinfo_settimer(ln,
2061 (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2062 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2063 }
2064 return 0;
2065
2066 sendpkt:
2067 /* discard the packet if IPv6 operation is disabled on the interface */
2068 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2069 error = ENETDOWN; /* better error? */
2070 goto bad;
2071 }
2072
2073 #ifdef IPSEC
2074 /* clean ipsec history once it goes out of the node */
2075 ipsec_delaux(m);
2076 #endif
2077 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2078 return (*ifp->if_output)(origifp, m, sin6tocsa(dst), rt);
2079 return (*ifp->if_output)(ifp, m, sin6tocsa(dst), rt);
2080
2081 bad:
2082 if (m != NULL)
2083 m_freem(m);
2084 return error;
2085 }
2086 #undef senderr
2087
2088 int
2089 nd6_need_cache(struct ifnet *ifp)
2090 {
2091 /*
2092 * XXX: we currently do not make neighbor cache on any interface
2093 * other than ARCnet, Ethernet, FDDI and GIF.
2094 *
2095 * RFC2893 says:
2096 * - unidirectional tunnels needs no ND
2097 */
2098 switch (ifp->if_type) {
2099 case IFT_ARCNET:
2100 case IFT_ETHER:
2101 case IFT_FDDI:
2102 case IFT_IEEE1394:
2103 case IFT_CARP:
2104 case IFT_GIF: /* XXX need more cases? */
2105 case IFT_PPP:
2106 case IFT_TUNNEL:
2107 return 1;
2108 default:
2109 return 0;
2110 }
2111 }
2112
2113 int
2114 nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt,
2115 struct mbuf *m, const struct sockaddr *dst, uint8_t *lldst,
2116 size_t dstsize)
2117 {
2118 const struct sockaddr_dl *sdl;
2119
2120 if (m->m_flags & M_MCAST) {
2121 switch (ifp->if_type) {
2122 case IFT_ETHER:
2123 case IFT_FDDI:
2124 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
2125 lldst);
2126 return 1;
2127 case IFT_IEEE1394:
2128 memcpy(lldst, ifp->if_broadcastaddr,
2129 MIN(dstsize, ifp->if_addrlen));
2130 return 1;
2131 case IFT_ARCNET:
2132 *lldst = 0;
2133 return 1;
2134 default:
2135 m_freem(m);
2136 return 0;
2137 }
2138 }
2139
2140 if (rt == NULL) {
2141 /* this could happen, if we could not allocate memory */
2142 m_freem(m);
2143 return 0;
2144 }
2145 if (rt->rt_gateway->sa_family != AF_LINK) {
2146 printf("%s: something odd happens\n", __func__);
2147 m_freem(m);
2148 return 0;
2149 }
2150 sdl = satocsdl(rt->rt_gateway);
2151 if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) {
2152 /* this should be impossible, but we bark here for debugging */
2153 printf("%s: sdl_alen == 0, dst=%s, if=%s\n", __func__,
2154 ip6_sprintf(&satocsin6(dst)->sin6_addr), if_name(ifp));
2155 m_freem(m);
2156 return 0;
2157 }
2158
2159 memcpy(lldst, CLLADDR(sdl), MIN(dstsize, sdl->sdl_alen));
2160 return 1;
2161 }
2162
2163 static void
2164 clear_llinfo_pqueue(struct llinfo_nd6 *ln)
2165 {
2166 struct mbuf *m_hold, *m_hold_next;
2167
2168 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2169 m_hold_next = m_hold->m_nextpkt;
2170 m_hold->m_nextpkt = NULL;
2171 m_freem(m_hold);
2172 }
2173
2174 ln->ln_hold = NULL;
2175 return;
2176 }
2177
2178 int
2179 nd6_sysctl(
2180 int name,
2181 void *oldp, /* syscall arg, need copyout */
2182 size_t *oldlenp,
2183 void *newp, /* syscall arg, need copyin */
2184 size_t newlen
2185 )
2186 {
2187 void *p;
2188 size_t ol;
2189 int error;
2190
2191 error = 0;
2192
2193 if (newp)
2194 return EPERM;
2195 if (oldp && !oldlenp)
2196 return EINVAL;
2197 ol = oldlenp ? *oldlenp : 0;
2198
2199 if (oldp) {
2200 p = malloc(*oldlenp, M_TEMP, M_WAITOK);
2201 if (p == NULL)
2202 return ENOMEM;
2203 } else
2204 p = NULL;
2205 switch (name) {
2206 case ICMPV6CTL_ND6_DRLIST:
2207 error = fill_drlist(p, oldlenp, ol);
2208 if (!error && p != NULL && oldp != NULL)
2209 error = copyout(p, oldp, *oldlenp);
2210 break;
2211
2212 case ICMPV6CTL_ND6_PRLIST:
2213 error = fill_prlist(p, oldlenp, ol);
2214 if (!error && p != NULL && oldp != NULL)
2215 error = copyout(p, oldp, *oldlenp);
2216 break;
2217
2218 case ICMPV6CTL_ND6_MAXQLEN:
2219 break;
2220
2221 default:
2222 error = ENOPROTOOPT;
2223 break;
2224 }
2225 if (p)
2226 free(p, M_TEMP);
2227
2228 return error;
2229 }
2230
2231 static int
2232 fill_drlist(void *oldp, size_t *oldlenp, size_t ol)
2233 {
2234 int error = 0, s;
2235 struct in6_defrouter *d = NULL, *de = NULL;
2236 struct nd_defrouter *dr;
2237 size_t l;
2238
2239 s = splsoftnet();
2240
2241 if (oldp) {
2242 d = (struct in6_defrouter *)oldp;
2243 de = (struct in6_defrouter *)((char *)oldp + *oldlenp);
2244 }
2245 l = 0;
2246
2247 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
2248
2249 if (oldp && d + 1 <= de) {
2250 memset(d, 0, sizeof(*d));
2251 sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0);
2252 if (sa6_recoverscope(&d->rtaddr)) {
2253 log(LOG_ERR,
2254 "scope error in router list (%s)\n",
2255 ip6_sprintf(&d->rtaddr.sin6_addr));
2256 /* XXX: press on... */
2257 }
2258 d->flags = dr->flags;
2259 d->rtlifetime = dr->rtlifetime;
2260 d->expire = dr->expire;
2261 d->if_index = dr->ifp->if_index;
2262 }
2263
2264 l += sizeof(*d);
2265 if (d)
2266 d++;
2267 }
2268
2269 if (oldp) {
2270 if (l > ol)
2271 error = ENOMEM;
2272 }
2273 if (oldlenp)
2274 *oldlenp = l; /* (void *)d - (void *)oldp */
2275
2276 splx(s);
2277
2278 return error;
2279 }
2280
2281 static int
2282 fill_prlist(void *oldp, size_t *oldlenp, size_t ol)
2283 {
2284 int error = 0, s;
2285 struct nd_prefix *pr;
2286 struct in6_prefix *p = NULL;
2287 struct in6_prefix *pe = NULL;
2288 size_t l;
2289
2290 s = splsoftnet();
2291
2292 if (oldp) {
2293 p = (struct in6_prefix *)oldp;
2294 pe = (struct in6_prefix *)((char *)oldp + *oldlenp);
2295 }
2296 l = 0;
2297
2298 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
2299 u_short advrtrs;
2300 size_t advance;
2301 struct sockaddr_in6 *sin6;
2302 struct sockaddr_in6 *s6;
2303 struct nd_pfxrouter *pfr;
2304
2305 if (oldp && p + 1 <= pe)
2306 {
2307 bzero(p, sizeof(*p));
2308 sin6 = (struct sockaddr_in6 *)(p + 1);
2309
2310 p->prefix = pr->ndpr_prefix;
2311 if (sa6_recoverscope(&p->prefix)) {
2312 log(LOG_ERR,
2313 "scope error in prefix list (%s)\n",
2314 ip6_sprintf(&p->prefix.sin6_addr));
2315 /* XXX: press on... */
2316 }
2317 p->raflags = pr->ndpr_raf;
2318 p->prefixlen = pr->ndpr_plen;
2319 p->vltime = pr->ndpr_vltime;
2320 p->pltime = pr->ndpr_pltime;
2321 p->if_index = pr->ndpr_ifp->if_index;
2322 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2323 p->expire = 0;
2324 else {
2325 time_t maxexpire;
2326
2327 /* XXX: we assume time_t is signed. */
2328 maxexpire = (-1) &
2329 ~((time_t)1 <<
2330 ((sizeof(maxexpire) * 8) - 1));
2331 if (pr->ndpr_vltime <
2332 maxexpire - pr->ndpr_lastupdate) {
2333 p->expire = pr->ndpr_lastupdate +
2334 pr->ndpr_vltime;
2335 } else
2336 p->expire = maxexpire;
2337 }
2338 p->refcnt = pr->ndpr_refcnt;
2339 p->flags = pr->ndpr_stateflags;
2340 p->origin = PR_ORIG_RA;
2341 advrtrs = 0;
2342 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2343 if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2344 advrtrs++;
2345 continue;
2346 }
2347 s6 = &sin6[advrtrs];
2348 sockaddr_in6_init(s6, &pfr->router->rtaddr,
2349 0, 0, 0);
2350 if (sa6_recoverscope(s6)) {
2351 log(LOG_ERR,
2352 "scope error in "
2353 "prefix list (%s)\n",
2354 ip6_sprintf(&pfr->router->rtaddr));
2355 }
2356 advrtrs++;
2357 }
2358 p->advrtrs = advrtrs;
2359 }
2360 else {
2361 advrtrs = 0;
2362 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
2363 advrtrs++;
2364 }
2365
2366 advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2367 l += advance;
2368 if (p)
2369 p = (struct in6_prefix *)((char *)p + advance);
2370 }
2371
2372 if (oldp) {
2373 *oldlenp = l; /* (void *)d - (void *)oldp */
2374 if (l > ol)
2375 error = ENOMEM;
2376 } else
2377 *oldlenp = l;
2378
2379 splx(s);
2380
2381 return error;
2382 }
2383