nd6.c revision 1.131 1 /* $NetBSD: nd6.c,v 1.131 2008/11/07 00:20:18 dyoung Exp $ */
2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.131 2008/11/07 00:20:18 dyoung Exp $");
35
36 #include "opt_ipsec.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/callout.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/socket.h>
44 #include <sys/socketvar.h>
45 #include <sys/sockio.h>
46 #include <sys/time.h>
47 #include <sys/kernel.h>
48 #include <sys/protosw.h>
49 #include <sys/errno.h>
50 #include <sys/ioctl.h>
51 #include <sys/syslog.h>
52 #include <sys/queue.h>
53
54 #include <net/if.h>
55 #include <net/if_dl.h>
56 #include <net/if_types.h>
57 #include <net/route.h>
58 #include <net/if_ether.h>
59 #include <net/if_fddi.h>
60 #include <net/if_arc.h>
61
62 #include <netinet/in.h>
63 #include <netinet6/in6_var.h>
64 #include <netinet/ip6.h>
65 #include <netinet6/ip6_var.h>
66 #include <netinet6/scope6_var.h>
67 #include <netinet6/nd6.h>
68 #include <netinet/icmp6.h>
69 #include <netinet6/icmp6_private.h>
70
71 #ifdef IPSEC
72 #include <netinet6/ipsec.h>
73 #endif
74
75 #include <net/net_osdep.h>
76
77 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
78 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
79
80 /* timer values */
81 int nd6_prune = 1; /* walk list every 1 seconds */
82 int nd6_delay = 5; /* delay first probe time 5 second */
83 int nd6_umaxtries = 3; /* maximum unicast query */
84 int nd6_mmaxtries = 3; /* maximum multicast query */
85 int nd6_useloopback = 1; /* use loopback interface for local traffic */
86 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
87
88 /* preventing too many loops in ND option parsing */
89 int nd6_maxndopt = 10; /* max # of ND options allowed */
90
91 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
92
93 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
94
95 #ifdef ND6_DEBUG
96 int nd6_debug = 1;
97 #else
98 int nd6_debug = 0;
99 #endif
100
101 /* for debugging? */
102 static int nd6_inuse, nd6_allocated;
103
104 struct llinfo_nd6 llinfo_nd6 = {
105 .ln_prev = &llinfo_nd6,
106 .ln_next = &llinfo_nd6,
107 };
108 struct nd_drhead nd_defrouter;
109 struct nd_prhead nd_prefix = { 0 };
110
111 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
112 static const struct sockaddr_in6 all1_sa = {
113 .sin6_family = AF_INET6
114 , .sin6_len = sizeof(struct sockaddr_in6)
115 , .sin6_addr = {.s6_addr = {0xff, 0xff, 0xff, 0xff,
116 0xff, 0xff, 0xff, 0xff,
117 0xff, 0xff, 0xff, 0xff,
118 0xff, 0xff, 0xff, 0xff}}
119 };
120
121 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
122 static void nd6_slowtimo(void *);
123 static int regen_tmpaddr(struct in6_ifaddr *);
124 static struct llinfo_nd6 *nd6_free(struct rtentry *, int);
125 static void nd6_llinfo_timer(void *);
126 static void clear_llinfo_pqueue(struct llinfo_nd6 *);
127
128 callout_t nd6_slowtimo_ch;
129 callout_t nd6_timer_ch;
130 extern callout_t in6_tmpaddrtimer_ch;
131
132 static int fill_drlist(void *, size_t *, size_t);
133 static int fill_prlist(void *, size_t *, size_t);
134
135 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
136
137 void
138 nd6_init(void)
139 {
140 static int nd6_init_done = 0;
141
142 if (nd6_init_done) {
143 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
144 return;
145 }
146
147 /* initialization of the default router list */
148 TAILQ_INIT(&nd_defrouter);
149
150 nd6_init_done = 1;
151
152 callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE);
153 callout_init(&nd6_timer_ch, CALLOUT_MPSAFE);
154
155 /* start timer */
156 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
157 nd6_slowtimo, NULL);
158 }
159
160 struct nd_ifinfo *
161 nd6_ifattach(struct ifnet *ifp)
162 {
163 struct nd_ifinfo *nd;
164
165 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
166 memset(nd, 0, sizeof(*nd));
167
168 nd->initialized = 1;
169
170 nd->chlim = IPV6_DEFHLIM;
171 nd->basereachable = REACHABLE_TIME;
172 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
173 nd->retrans = RETRANS_TIMER;
174 /*
175 * Note that the default value of ip6_accept_rtadv is 0, which means
176 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
177 * here.
178 */
179 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
180
181 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
182 nd6_setmtu0(ifp, nd);
183
184 return nd;
185 }
186
187 void
188 nd6_ifdetach(struct nd_ifinfo *nd)
189 {
190
191 free(nd, M_IP6NDP);
192 }
193
194 void
195 nd6_setmtu(struct ifnet *ifp)
196 {
197 nd6_setmtu0(ifp, ND_IFINFO(ifp));
198 }
199
200 void
201 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
202 {
203 u_int32_t omaxmtu;
204
205 omaxmtu = ndi->maxmtu;
206
207 switch (ifp->if_type) {
208 case IFT_ARCNET:
209 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
210 break;
211 case IFT_FDDI:
212 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
213 break;
214 default:
215 ndi->maxmtu = ifp->if_mtu;
216 break;
217 }
218
219 /*
220 * Decreasing the interface MTU under IPV6 minimum MTU may cause
221 * undesirable situation. We thus notify the operator of the change
222 * explicitly. The check for omaxmtu is necessary to restrict the
223 * log to the case of changing the MTU, not initializing it.
224 */
225 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
226 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
227 " small for IPv6 which needs %lu\n",
228 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
229 IPV6_MMTU);
230 }
231
232 if (ndi->maxmtu > in6_maxmtu)
233 in6_setmaxmtu(); /* check all interfaces just in case */
234 }
235
236 void
237 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
238 {
239
240 memset(ndopts, 0, sizeof(*ndopts));
241 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
242 ndopts->nd_opts_last
243 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
244
245 if (icmp6len == 0) {
246 ndopts->nd_opts_done = 1;
247 ndopts->nd_opts_search = NULL;
248 }
249 }
250
251 /*
252 * Take one ND option.
253 */
254 struct nd_opt_hdr *
255 nd6_option(union nd_opts *ndopts)
256 {
257 struct nd_opt_hdr *nd_opt;
258 int olen;
259
260 if (ndopts == NULL)
261 panic("ndopts == NULL in nd6_option");
262 if (ndopts->nd_opts_last == NULL)
263 panic("uninitialized ndopts in nd6_option");
264 if (ndopts->nd_opts_search == NULL)
265 return NULL;
266 if (ndopts->nd_opts_done)
267 return NULL;
268
269 nd_opt = ndopts->nd_opts_search;
270
271 /* make sure nd_opt_len is inside the buffer */
272 if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) {
273 memset(ndopts, 0, sizeof(*ndopts));
274 return NULL;
275 }
276
277 olen = nd_opt->nd_opt_len << 3;
278 if (olen == 0) {
279 /*
280 * Message validation requires that all included
281 * options have a length that is greater than zero.
282 */
283 memset(ndopts, 0, sizeof(*ndopts));
284 return NULL;
285 }
286
287 ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen);
288 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
289 /* option overruns the end of buffer, invalid */
290 memset(ndopts, 0, sizeof(*ndopts));
291 return NULL;
292 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
293 /* reached the end of options chain */
294 ndopts->nd_opts_done = 1;
295 ndopts->nd_opts_search = NULL;
296 }
297 return nd_opt;
298 }
299
300 /*
301 * Parse multiple ND options.
302 * This function is much easier to use, for ND routines that do not need
303 * multiple options of the same type.
304 */
305 int
306 nd6_options(union nd_opts *ndopts)
307 {
308 struct nd_opt_hdr *nd_opt;
309 int i = 0;
310
311 if (ndopts == NULL)
312 panic("ndopts == NULL in nd6_options");
313 if (ndopts->nd_opts_last == NULL)
314 panic("uninitialized ndopts in nd6_options");
315 if (ndopts->nd_opts_search == NULL)
316 return 0;
317
318 while (1) {
319 nd_opt = nd6_option(ndopts);
320 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
321 /*
322 * Message validation requires that all included
323 * options have a length that is greater than zero.
324 */
325 ICMP6_STATINC(ICMP6_STAT_ND_BADOPT);
326 memset(ndopts, 0, sizeof(*ndopts));
327 return -1;
328 }
329
330 if (nd_opt == NULL)
331 goto skip1;
332
333 switch (nd_opt->nd_opt_type) {
334 case ND_OPT_SOURCE_LINKADDR:
335 case ND_OPT_TARGET_LINKADDR:
336 case ND_OPT_MTU:
337 case ND_OPT_REDIRECTED_HEADER:
338 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
339 nd6log((LOG_INFO,
340 "duplicated ND6 option found (type=%d)\n",
341 nd_opt->nd_opt_type));
342 /* XXX bark? */
343 } else {
344 ndopts->nd_opt_array[nd_opt->nd_opt_type]
345 = nd_opt;
346 }
347 break;
348 case ND_OPT_PREFIX_INFORMATION:
349 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
350 ndopts->nd_opt_array[nd_opt->nd_opt_type]
351 = nd_opt;
352 }
353 ndopts->nd_opts_pi_end =
354 (struct nd_opt_prefix_info *)nd_opt;
355 break;
356 default:
357 /*
358 * Unknown options must be silently ignored,
359 * to accommodate future extension to the protocol.
360 */
361 nd6log((LOG_DEBUG,
362 "nd6_options: unsupported option %d - "
363 "option ignored\n", nd_opt->nd_opt_type));
364 }
365
366 skip1:
367 i++;
368 if (i > nd6_maxndopt) {
369 ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT);
370 nd6log((LOG_INFO, "too many loop in nd opt\n"));
371 break;
372 }
373
374 if (ndopts->nd_opts_done)
375 break;
376 }
377
378 return 0;
379 }
380
381 /*
382 * ND6 timer routine to handle ND6 entries
383 */
384 void
385 nd6_llinfo_settimer(struct llinfo_nd6 *ln, long xtick)
386 {
387 int s;
388
389 s = splsoftnet();
390
391 if (xtick < 0) {
392 ln->ln_expire = 0;
393 ln->ln_ntick = 0;
394 callout_stop(&ln->ln_timer_ch);
395 } else {
396 ln->ln_expire = time_second + xtick / hz;
397 if (xtick > INT_MAX) {
398 ln->ln_ntick = xtick - INT_MAX;
399 callout_reset(&ln->ln_timer_ch, INT_MAX,
400 nd6_llinfo_timer, ln);
401 } else {
402 ln->ln_ntick = 0;
403 callout_reset(&ln->ln_timer_ch, xtick,
404 nd6_llinfo_timer, ln);
405 }
406 }
407
408 splx(s);
409 }
410
411 static void
412 nd6_llinfo_timer(void *arg)
413 {
414 struct llinfo_nd6 *ln;
415 struct rtentry *rt;
416 const struct sockaddr_in6 *dst;
417 struct ifnet *ifp;
418 struct nd_ifinfo *ndi = NULL;
419
420 mutex_enter(softnet_lock);
421 KERNEL_LOCK(1, NULL);
422
423 ln = (struct llinfo_nd6 *)arg;
424
425 if (ln->ln_ntick > 0) {
426 nd6_llinfo_settimer(ln, ln->ln_ntick);
427 KERNEL_UNLOCK_ONE(NULL);
428 mutex_exit(softnet_lock);
429 return;
430 }
431
432 if ((rt = ln->ln_rt) == NULL)
433 panic("ln->ln_rt == NULL");
434 if ((ifp = rt->rt_ifp) == NULL)
435 panic("ln->ln_rt->rt_ifp == NULL");
436 ndi = ND_IFINFO(ifp);
437 dst = satocsin6(rt_getkey(rt));
438
439 /* sanity check */
440 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
441 panic("rt_llinfo(%p) is not equal to ln(%p)",
442 rt->rt_llinfo, ln);
443 if (!dst)
444 panic("dst=0 in nd6_timer(ln=%p)", ln);
445
446 switch (ln->ln_state) {
447 case ND6_LLINFO_INCOMPLETE:
448 if (ln->ln_asked < nd6_mmaxtries) {
449 ln->ln_asked++;
450 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
451 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
452 } else {
453 struct mbuf *m = ln->ln_hold;
454 if (m) {
455 struct mbuf *m0;
456
457 /*
458 * assuming every packet in ln_hold has
459 * the same IP header
460 */
461 m0 = m->m_nextpkt;
462 m->m_nextpkt = NULL;
463 icmp6_error2(m, ICMP6_DST_UNREACH,
464 ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
465
466 ln->ln_hold = m0;
467 clear_llinfo_pqueue(ln);
468 }
469 (void)nd6_free(rt, 0);
470 ln = NULL;
471 }
472 break;
473 case ND6_LLINFO_REACHABLE:
474 if (!ND6_LLINFO_PERMANENT(ln)) {
475 ln->ln_state = ND6_LLINFO_STALE;
476 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
477 }
478 break;
479
480 case ND6_LLINFO_STALE:
481 /* Garbage Collection(RFC 2461 5.3) */
482 if (!ND6_LLINFO_PERMANENT(ln)) {
483 (void)nd6_free(rt, 1);
484 ln = NULL;
485 }
486 break;
487
488 case ND6_LLINFO_DELAY:
489 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
490 /* We need NUD */
491 ln->ln_asked = 1;
492 ln->ln_state = ND6_LLINFO_PROBE;
493 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
494 nd6_ns_output(ifp, &dst->sin6_addr,
495 &dst->sin6_addr, ln, 0);
496 } else {
497 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
498 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
499 }
500 break;
501 case ND6_LLINFO_PROBE:
502 if (ln->ln_asked < nd6_umaxtries) {
503 ln->ln_asked++;
504 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
505 nd6_ns_output(ifp, &dst->sin6_addr,
506 &dst->sin6_addr, ln, 0);
507 } else {
508 (void)nd6_free(rt, 0);
509 ln = NULL;
510 }
511 break;
512 }
513
514 KERNEL_UNLOCK_ONE(NULL);
515 mutex_exit(softnet_lock);
516 }
517
518 /*
519 * ND6 timer routine to expire default route list and prefix list
520 */
521 void
522 nd6_timer(void *ignored_arg)
523 {
524 struct nd_defrouter *next_dr, *dr;
525 struct nd_prefix *next_pr, *pr;
526 struct in6_ifaddr *ia6, *nia6;
527 struct in6_addrlifetime *lt6;
528
529 callout_reset(&nd6_timer_ch, nd6_prune * hz,
530 nd6_timer, NULL);
531
532 mutex_enter(softnet_lock);
533 KERNEL_LOCK(1, NULL);
534
535 /* expire default router list */
536
537 for (dr = TAILQ_FIRST(&nd_defrouter); dr != NULL; dr = next_dr) {
538 next_dr = TAILQ_NEXT(dr, dr_entry);
539 if (dr->expire && dr->expire < time_second) {
540 defrtrlist_del(dr);
541 }
542 }
543
544 /*
545 * expire interface addresses.
546 * in the past the loop was inside prefix expiry processing.
547 * However, from a stricter speci-confrmance standpoint, we should
548 * rather separate address lifetimes and prefix lifetimes.
549 */
550 addrloop:
551 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
552 nia6 = ia6->ia_next;
553 /* check address lifetime */
554 lt6 = &ia6->ia6_lifetime;
555 if (IFA6_IS_INVALID(ia6)) {
556 int regen = 0;
557
558 /*
559 * If the expiring address is temporary, try
560 * regenerating a new one. This would be useful when
561 * we suspended a laptop PC, then turned it on after a
562 * period that could invalidate all temporary
563 * addresses. Although we may have to restart the
564 * loop (see below), it must be after purging the
565 * address. Otherwise, we'd see an infinite loop of
566 * regeneration.
567 */
568 if (ip6_use_tempaddr &&
569 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
570 if (regen_tmpaddr(ia6) == 0)
571 regen = 1;
572 }
573
574 in6_purgeaddr(&ia6->ia_ifa);
575
576 if (regen)
577 goto addrloop; /* XXX: see below */
578 } else if (IFA6_IS_DEPRECATED(ia6)) {
579 int oldflags = ia6->ia6_flags;
580
581 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
582
583 /*
584 * If a temporary address has just become deprecated,
585 * regenerate a new one if possible.
586 */
587 if (ip6_use_tempaddr &&
588 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
589 (oldflags & IN6_IFF_DEPRECATED) == 0) {
590
591 if (regen_tmpaddr(ia6) == 0) {
592 /*
593 * A new temporary address is
594 * generated.
595 * XXX: this means the address chain
596 * has changed while we are still in
597 * the loop. Although the change
598 * would not cause disaster (because
599 * it's not a deletion, but an
600 * addition,) we'd rather restart the
601 * loop just for safety. Or does this
602 * significantly reduce performance??
603 */
604 goto addrloop;
605 }
606 }
607 } else {
608 /*
609 * A new RA might have made a deprecated address
610 * preferred.
611 */
612 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
613 }
614 }
615
616 /* expire prefix list */
617 for (pr = LIST_FIRST(&nd_prefix); pr != NULL; pr = next_pr) {
618 next_pr = LIST_NEXT(pr, ndpr_entry);
619 /*
620 * check prefix lifetime.
621 * since pltime is just for autoconf, pltime processing for
622 * prefix is not necessary.
623 */
624 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
625 time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
626
627 /*
628 * address expiration and prefix expiration are
629 * separate. NEVER perform in6_purgeaddr here.
630 */
631
632 prelist_remove(pr);
633 }
634 }
635
636 KERNEL_UNLOCK_ONE(NULL);
637 mutex_exit(softnet_lock);
638 }
639
640 /* ia6: deprecated/invalidated temporary address */
641 static int
642 regen_tmpaddr(struct in6_ifaddr *ia6)
643 {
644 struct ifaddr *ifa;
645 struct ifnet *ifp;
646 struct in6_ifaddr *public_ifa6 = NULL;
647
648 ifp = ia6->ia_ifa.ifa_ifp;
649 IFADDR_FOREACH(ifa, ifp) {
650 struct in6_ifaddr *it6;
651
652 if (ifa->ifa_addr->sa_family != AF_INET6)
653 continue;
654
655 it6 = (struct in6_ifaddr *)ifa;
656
657 /* ignore no autoconf addresses. */
658 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
659 continue;
660
661 /* ignore autoconf addresses with different prefixes. */
662 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
663 continue;
664
665 /*
666 * Now we are looking at an autoconf address with the same
667 * prefix as ours. If the address is temporary and is still
668 * preferred, do not create another one. It would be rare, but
669 * could happen, for example, when we resume a laptop PC after
670 * a long period.
671 */
672 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
673 !IFA6_IS_DEPRECATED(it6)) {
674 public_ifa6 = NULL;
675 break;
676 }
677
678 /*
679 * This is a public autoconf address that has the same prefix
680 * as ours. If it is preferred, keep it. We can't break the
681 * loop here, because there may be a still-preferred temporary
682 * address with the prefix.
683 */
684 if (!IFA6_IS_DEPRECATED(it6))
685 public_ifa6 = it6;
686 }
687
688 if (public_ifa6 != NULL) {
689 int e;
690
691 /*
692 * Random factor is introduced in the preferred lifetime, so
693 * we do not need additional delay (3rd arg to in6_tmpifadd).
694 */
695 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
696 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
697 " tmp addr, errno=%d\n", e);
698 return -1;
699 }
700 return 0;
701 }
702
703 return -1;
704 }
705
706 /*
707 * Nuke neighbor cache/prefix/default router management table, right before
708 * ifp goes away.
709 */
710 void
711 nd6_purge(struct ifnet *ifp)
712 {
713 struct llinfo_nd6 *ln, *nln;
714 struct nd_defrouter *dr, *ndr;
715 struct nd_prefix *pr, *npr;
716
717 /*
718 * Nuke default router list entries toward ifp.
719 * We defer removal of default router list entries that is installed
720 * in the routing table, in order to keep additional side effects as
721 * small as possible.
722 */
723 for (dr = TAILQ_FIRST(&nd_defrouter); dr != NULL; dr = ndr) {
724 ndr = TAILQ_NEXT(dr, dr_entry);
725 if (dr->installed)
726 continue;
727
728 if (dr->ifp == ifp)
729 defrtrlist_del(dr);
730 }
731 for (dr = TAILQ_FIRST(&nd_defrouter); dr != NULL; dr = ndr) {
732 ndr = TAILQ_NEXT(dr, dr_entry);
733 if (!dr->installed)
734 continue;
735
736 if (dr->ifp == ifp)
737 defrtrlist_del(dr);
738 }
739
740 /* Nuke prefix list entries toward ifp */
741 for (pr = LIST_FIRST(&nd_prefix); pr != NULL; pr = npr) {
742 npr = LIST_NEXT(pr, ndpr_entry);
743 if (pr->ndpr_ifp == ifp) {
744 /*
745 * Because if_detach() does *not* release prefixes
746 * while purging addresses the reference count will
747 * still be above zero. We therefore reset it to
748 * make sure that the prefix really gets purged.
749 */
750 pr->ndpr_refcnt = 0;
751 /*
752 * Previously, pr->ndpr_addr is removed as well,
753 * but I strongly believe we don't have to do it.
754 * nd6_purge() is only called from in6_ifdetach(),
755 * which removes all the associated interface addresses
756 * by itself.
757 * (jinmei (at) kame.net 20010129)
758 */
759 prelist_remove(pr);
760 }
761 }
762
763 /* cancel default outgoing interface setting */
764 if (nd6_defifindex == ifp->if_index)
765 nd6_setdefaultiface(0);
766
767 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
768 /* refresh default router list */
769 defrouter_select();
770 }
771
772 /*
773 * Nuke neighbor cache entries for the ifp.
774 * Note that rt->rt_ifp may not be the same as ifp,
775 * due to KAME goto ours hack. See RTM_RESOLVE case in
776 * nd6_rtrequest(), and ip6_input().
777 */
778 ln = llinfo_nd6.ln_next;
779 while (ln != NULL && ln != &llinfo_nd6) {
780 struct rtentry *rt;
781 const struct sockaddr_dl *sdl;
782
783 nln = ln->ln_next;
784 rt = ln->ln_rt;
785 if (rt && rt->rt_gateway &&
786 rt->rt_gateway->sa_family == AF_LINK) {
787 sdl = satocsdl(rt->rt_gateway);
788 if (sdl->sdl_index == ifp->if_index)
789 nln = nd6_free(rt, 0);
790 }
791 ln = nln;
792 }
793 }
794
795 struct rtentry *
796 nd6_lookup(const struct in6_addr *addr6, int create, struct ifnet *ifp)
797 {
798 struct rtentry *rt;
799 struct sockaddr_in6 sin6;
800
801 sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
802 rt = rtalloc1((struct sockaddr *)&sin6, create);
803 if (rt != NULL && (rt->rt_flags & RTF_LLINFO) == 0) {
804 /*
805 * This is the case for the default route.
806 * If we want to create a neighbor cache for the address, we
807 * should free the route for the destination and allocate an
808 * interface route.
809 */
810 if (create) {
811 RTFREE(rt);
812 rt = NULL;
813 }
814 }
815 if (rt != NULL)
816 ;
817 else if (create && ifp) {
818 int e;
819
820 /*
821 * If no route is available and create is set,
822 * we allocate a host route for the destination
823 * and treat it like an interface route.
824 * This hack is necessary for a neighbor which can't
825 * be covered by our own prefix.
826 */
827 struct ifaddr *ifa =
828 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
829 if (ifa == NULL)
830 return NULL;
831
832 /*
833 * Create a new route. RTF_LLINFO is necessary
834 * to create a Neighbor Cache entry for the
835 * destination in nd6_rtrequest which will be
836 * called in rtrequest via ifa->ifa_rtrequest.
837 */
838 if ((e = rtrequest(RTM_ADD, (const struct sockaddr *)&sin6,
839 ifa->ifa_addr, (const struct sockaddr *)&all1_sa,
840 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
841 ~RTF_CLONING, &rt)) != 0) {
842 #if 0
843 log(LOG_ERR,
844 "nd6_lookup: failed to add route for a "
845 "neighbor(%s), errno=%d\n",
846 ip6_sprintf(addr6), e);
847 #endif
848 return NULL;
849 }
850 if (rt == NULL)
851 return NULL;
852 if (rt->rt_llinfo) {
853 struct llinfo_nd6 *ln =
854 (struct llinfo_nd6 *)rt->rt_llinfo;
855 ln->ln_state = ND6_LLINFO_NOSTATE;
856 }
857 } else
858 return NULL;
859 rt->rt_refcnt--;
860 /*
861 * Validation for the entry.
862 * Note that the check for rt_llinfo is necessary because a cloned
863 * route from a parent route that has the L flag (e.g. the default
864 * route to a p2p interface) may have the flag, too, while the
865 * destination is not actually a neighbor.
866 * XXX: we can't use rt->rt_ifp to check for the interface, since
867 * it might be the loopback interface if the entry is for our
868 * own address on a non-loopback interface. Instead, we should
869 * use rt->rt_ifa->ifa_ifp, which would specify the REAL
870 * interface.
871 * Note also that ifa_ifp and ifp may differ when we connect two
872 * interfaces to a same link, install a link prefix to an interface,
873 * and try to install a neighbor cache on an interface that does not
874 * have a route to the prefix.
875 */
876 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
877 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
878 (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
879 if (create) {
880 nd6log((LOG_DEBUG,
881 "nd6_lookup: failed to lookup %s (if = %s)\n",
882 ip6_sprintf(addr6),
883 ifp ? if_name(ifp) : "unspec"));
884 }
885 return NULL;
886 }
887 return rt;
888 }
889
890 /*
891 * Detect if a given IPv6 address identifies a neighbor on a given link.
892 * XXX: should take care of the destination of a p2p link?
893 */
894 int
895 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
896 {
897 struct nd_prefix *pr;
898
899 /*
900 * A link-local address is always a neighbor.
901 * XXX: a link does not necessarily specify a single interface.
902 */
903 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
904 struct sockaddr_in6 sin6_copy;
905 u_int32_t zone;
906
907 /*
908 * We need sin6_copy since sa6_recoverscope() may modify the
909 * content (XXX).
910 */
911 sin6_copy = *addr;
912 if (sa6_recoverscope(&sin6_copy))
913 return 0; /* XXX: should be impossible */
914 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
915 return 0;
916 if (sin6_copy.sin6_scope_id == zone)
917 return 1;
918 else
919 return 0;
920 }
921
922 /*
923 * If the address matches one of our on-link prefixes, it should be a
924 * neighbor.
925 */
926 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
927 if (pr->ndpr_ifp != ifp)
928 continue;
929
930 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
931 continue;
932
933 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
934 &addr->sin6_addr, &pr->ndpr_mask))
935 return 1;
936 }
937
938 /*
939 * If the default router list is empty, all addresses are regarded
940 * as on-link, and thus, as a neighbor.
941 * XXX: we restrict the condition to hosts, because routers usually do
942 * not have the "default router list".
943 */
944 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
945 nd6_defifindex == ifp->if_index) {
946 return 1;
947 }
948
949 /*
950 * Even if the address matches none of our addresses, it might be
951 * in the neighbor cache.
952 */
953 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
954 return 1;
955
956 return 0;
957 }
958
959 /*
960 * Free an nd6 llinfo entry.
961 * Since the function would cause significant changes in the kernel, DO NOT
962 * make it global, unless you have a strong reason for the change, and are sure
963 * that the change is safe.
964 */
965 static struct llinfo_nd6 *
966 nd6_free(struct rtentry *rt, int gc)
967 {
968 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
969 struct in6_addr in6 = satocsin6(rt_getkey(rt))->sin6_addr;
970 struct nd_defrouter *dr;
971
972 /*
973 * we used to have pfctlinput(PRC_HOSTDEAD) here.
974 * even though it is not harmful, it was not really necessary.
975 */
976
977 /* cancel timer */
978 nd6_llinfo_settimer(ln, -1);
979
980 if (!ip6_forwarding) {
981 int s;
982 s = splsoftnet();
983 dr = defrouter_lookup(&satocsin6(rt_getkey(rt))->sin6_addr,
984 rt->rt_ifp);
985
986 if (dr != NULL && dr->expire &&
987 ln->ln_state == ND6_LLINFO_STALE && gc) {
988 /*
989 * If the reason for the deletion is just garbage
990 * collection, and the neighbor is an active default
991 * router, do not delete it. Instead, reset the GC
992 * timer using the router's lifetime.
993 * Simply deleting the entry would affect default
994 * router selection, which is not necessarily a good
995 * thing, especially when we're using router preference
996 * values.
997 * XXX: the check for ln_state would be redundant,
998 * but we intentionally keep it just in case.
999 */
1000 if (dr->expire > time_second)
1001 nd6_llinfo_settimer(ln,
1002 (dr->expire - time_second) * hz);
1003 else
1004 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1005 splx(s);
1006 return ln->ln_next;
1007 }
1008
1009 if (ln->ln_router || dr) {
1010 /*
1011 * rt6_flush must be called whether or not the neighbor
1012 * is in the Default Router List.
1013 * See a corresponding comment in nd6_na_input().
1014 */
1015 rt6_flush(&in6, rt->rt_ifp);
1016 }
1017
1018 if (dr) {
1019 /*
1020 * Unreachablity of a router might affect the default
1021 * router selection and on-link detection of advertised
1022 * prefixes.
1023 */
1024
1025 /*
1026 * Temporarily fake the state to choose a new default
1027 * router and to perform on-link determination of
1028 * prefixes correctly.
1029 * Below the state will be set correctly,
1030 * or the entry itself will be deleted.
1031 */
1032 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1033
1034 /*
1035 * Since defrouter_select() does not affect the
1036 * on-link determination and MIP6 needs the check
1037 * before the default router selection, we perform
1038 * the check now.
1039 */
1040 pfxlist_onlink_check();
1041
1042 /*
1043 * refresh default router list
1044 */
1045 defrouter_select();
1046 }
1047 splx(s);
1048 }
1049
1050 /*
1051 * Before deleting the entry, remember the next entry as the
1052 * return value. We need this because pfxlist_onlink_check() above
1053 * might have freed other entries (particularly the old next entry) as
1054 * a side effect (XXX).
1055 */
1056 next = ln->ln_next;
1057
1058 /*
1059 * Detach the route from the routing tree and the list of neighbor
1060 * caches, and disable the route entry not to be used in already
1061 * cached routes.
1062 */
1063 rtrequest(RTM_DELETE, rt_getkey(rt), NULL, rt_mask(rt), 0, NULL);
1064
1065 return next;
1066 }
1067
1068 /*
1069 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1070 *
1071 * XXX cost-effective methods?
1072 */
1073 void
1074 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1075 {
1076 struct llinfo_nd6 *ln;
1077
1078 /*
1079 * If the caller specified "rt", use that. Otherwise, resolve the
1080 * routing table by supplied "dst6".
1081 */
1082 if (rt == NULL) {
1083 if (dst6 == NULL)
1084 return;
1085 if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1086 return;
1087 }
1088
1089 if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1090 (rt->rt_flags & RTF_LLINFO) == 0 ||
1091 !rt->rt_llinfo || !rt->rt_gateway ||
1092 rt->rt_gateway->sa_family != AF_LINK) {
1093 /* This is not a host route. */
1094 return;
1095 }
1096
1097 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1098 if (ln->ln_state < ND6_LLINFO_REACHABLE)
1099 return;
1100
1101 /*
1102 * if we get upper-layer reachability confirmation many times,
1103 * it is possible we have false information.
1104 */
1105 if (!force) {
1106 ln->ln_byhint++;
1107 if (ln->ln_byhint > nd6_maxnudhint)
1108 return;
1109 }
1110
1111 ln->ln_state = ND6_LLINFO_REACHABLE;
1112 if (!ND6_LLINFO_PERMANENT(ln)) {
1113 nd6_llinfo_settimer(ln,
1114 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1115 }
1116 }
1117
1118 void
1119 nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
1120 {
1121 struct sockaddr *gate = rt->rt_gateway;
1122 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1123 struct ifnet *ifp = rt->rt_ifp;
1124 uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen;
1125 struct ifaddr *ifa;
1126
1127 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1128
1129 if (req == RTM_LLINFO_UPD) {
1130 int rc;
1131 struct in6_addr *in6;
1132 struct in6_addr in6_all;
1133 int anycast;
1134
1135 if ((ifa = info->rti_ifa) == NULL)
1136 return;
1137
1138 in6 = &ifatoia6(ifa)->ia_addr.sin6_addr;
1139 anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST;
1140
1141 in6_all = in6addr_linklocal_allnodes;
1142 if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) {
1143 log(LOG_ERR, "%s: failed to set scope %s "
1144 "(errno=%d)\n", __func__, if_name(ifp), rc);
1145 return;
1146 }
1147
1148 /* XXX don't set Override for proxy addresses */
1149 nd6_na_output(ifa->ifa_ifp, &in6_all, in6,
1150 (anycast ? 0 : ND_NA_FLAG_OVERRIDE)
1151 #if 0
1152 | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0)
1153 #endif
1154 , 1, NULL);
1155 return;
1156 }
1157
1158 if ((rt->rt_flags & RTF_GATEWAY) != 0)
1159 return;
1160
1161 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1162 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1163 /*
1164 * This is probably an interface direct route for a link
1165 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1166 * We do not need special treatment below for such a route.
1167 * Moreover, the RTF_LLINFO flag which would be set below
1168 * would annoy the ndp(8) command.
1169 */
1170 return;
1171 }
1172
1173 if (req == RTM_RESOLVE &&
1174 (nd6_need_cache(ifp) == 0 || /* stf case */
1175 !nd6_is_addr_neighbor(satocsin6(rt_getkey(rt)), ifp))) {
1176 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1177 /*
1178 * FreeBSD and BSD/OS often make a cloned host route based
1179 * on a less-specific route (e.g. the default route).
1180 * If the less specific route does not have a "gateway"
1181 * (this is the case when the route just goes to a p2p or an
1182 * stf interface), we'll mistakenly make a neighbor cache for
1183 * the host route, and will see strange neighbor solicitation
1184 * for the corresponding destination. In order to avoid the
1185 * confusion, we check if the destination of the route is
1186 * a neighbor in terms of neighbor discovery, and stop the
1187 * process if not. Additionally, we remove the LLINFO flag
1188 * so that ndp(8) will not try to get the neighbor information
1189 * of the destination.
1190 */
1191 rt->rt_flags &= ~RTF_LLINFO;
1192 return;
1193 }
1194
1195 switch (req) {
1196 case RTM_ADD:
1197 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1198 /*
1199 * There is no backward compatibility :)
1200 *
1201 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1202 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1203 * rt->rt_flags |= RTF_CLONING;
1204 */
1205 if ((rt->rt_flags & RTF_CLONING) ||
1206 ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1207 union {
1208 struct sockaddr sa;
1209 struct sockaddr_dl sdl;
1210 struct sockaddr_storage ss;
1211 } u;
1212 /*
1213 * Case 1: This route should come from a route to
1214 * interface (RTF_CLONING case) or the route should be
1215 * treated as on-link but is currently not
1216 * (RTF_LLINFO && ln == NULL case).
1217 */
1218 sockaddr_dl_init(&u.sdl, sizeof(u.ss),
1219 ifp->if_index, ifp->if_type,
1220 NULL, namelen, NULL, addrlen);
1221 rt_setgate(rt, &u.sa);
1222 gate = rt->rt_gateway;
1223 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1224 if (ln != NULL)
1225 nd6_llinfo_settimer(ln, 0);
1226 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1227 if ((rt->rt_flags & RTF_CLONING) != 0)
1228 break;
1229 }
1230 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1231 /*
1232 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1233 * We don't do that here since llinfo is not ready yet.
1234 *
1235 * There are also couple of other things to be discussed:
1236 * - unsolicited NA code needs improvement beforehand
1237 * - RFC2461 says we MAY send multicast unsolicited NA
1238 * (7.2.6 paragraph 4), however, it also says that we
1239 * SHOULD provide a mechanism to prevent multicast NA storm.
1240 * we don't have anything like it right now.
1241 * note that the mechanism needs a mutual agreement
1242 * between proxies, which means that we need to implement
1243 * a new protocol, or a new kludge.
1244 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1245 * we need to check ip6forwarding before sending it.
1246 * (or should we allow proxy ND configuration only for
1247 * routers? there's no mention about proxy ND from hosts)
1248 */
1249 #if 0
1250 /* XXX it does not work */
1251 if (rt->rt_flags & RTF_ANNOUNCE)
1252 nd6_na_output(ifp,
1253 &satocsin6(rt_getkey(rt))->sin6_addr,
1254 &satocsin6(rt_getkey(rt))->sin6_addr,
1255 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1256 1, NULL);
1257 #endif
1258 /* FALLTHROUGH */
1259 case RTM_RESOLVE:
1260 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1261 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1262 /*
1263 * Address resolution isn't necessary for a point to
1264 * point link, so we can skip this test for a p2p link.
1265 */
1266 if (gate->sa_family != AF_LINK ||
1267 gate->sa_len <
1268 sockaddr_dl_measure(namelen, addrlen)) {
1269 log(LOG_DEBUG,
1270 "nd6_rtrequest: bad gateway value: %s\n",
1271 if_name(ifp));
1272 break;
1273 }
1274 satosdl(gate)->sdl_type = ifp->if_type;
1275 satosdl(gate)->sdl_index = ifp->if_index;
1276 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1277 }
1278 if (ln != NULL)
1279 break; /* This happens on a route change */
1280 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1281 /*
1282 * Case 2: This route may come from cloning, or a manual route
1283 * add with a LL address.
1284 */
1285 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1286 rt->rt_llinfo = ln;
1287 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1288 if (ln == NULL) {
1289 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1290 break;
1291 }
1292 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1293 nd6_inuse++;
1294 nd6_allocated++;
1295 memset(ln, 0, sizeof(*ln));
1296 ln->ln_rt = rt;
1297 callout_init(&ln->ln_timer_ch, CALLOUT_MPSAFE);
1298 /* this is required for "ndp" command. - shin */
1299 if (req == RTM_ADD) {
1300 /*
1301 * gate should have some valid AF_LINK entry,
1302 * and ln->ln_expire should have some lifetime
1303 * which is specified by ndp command.
1304 */
1305 ln->ln_state = ND6_LLINFO_REACHABLE;
1306 ln->ln_byhint = 0;
1307 } else {
1308 /*
1309 * When req == RTM_RESOLVE, rt is created and
1310 * initialized in rtrequest(), so rt_expire is 0.
1311 */
1312 ln->ln_state = ND6_LLINFO_NOSTATE;
1313 nd6_llinfo_settimer(ln, 0);
1314 }
1315 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1316 rt->rt_flags |= RTF_LLINFO;
1317 ln->ln_next = llinfo_nd6.ln_next;
1318 llinfo_nd6.ln_next = ln;
1319 ln->ln_prev = &llinfo_nd6;
1320 ln->ln_next->ln_prev = ln;
1321
1322 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1323 /*
1324 * check if rt_getkey(rt) is an address assigned
1325 * to the interface.
1326 */
1327 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp,
1328 &satocsin6(rt_getkey(rt))->sin6_addr);
1329 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1330 if (ifa != NULL) {
1331 const void *mac;
1332 nd6_llinfo_settimer(ln, -1);
1333 ln->ln_state = ND6_LLINFO_REACHABLE;
1334 ln->ln_byhint = 0;
1335 if ((mac = nd6_ifptomac(ifp)) != NULL) {
1336 /* XXX check for error */
1337 (void)sockaddr_dl_setaddr(satosdl(gate),
1338 gate->sa_len, mac, ifp->if_addrlen);
1339 }
1340 if (nd6_useloopback) {
1341 ifp = rt->rt_ifp = lo0ifp; /* XXX */
1342 /*
1343 * Make sure rt_ifa be equal to the ifaddr
1344 * corresponding to the address.
1345 * We need this because when we refer
1346 * rt_ifa->ia6_flags in ip6_input, we assume
1347 * that the rt_ifa points to the address instead
1348 * of the loopback address.
1349 */
1350 if (ifa != rt->rt_ifa)
1351 rt_replace_ifa(rt, ifa);
1352 rt->rt_flags &= ~RTF_CLONED;
1353 }
1354 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1355 nd6_llinfo_settimer(ln, -1);
1356 ln->ln_state = ND6_LLINFO_REACHABLE;
1357 ln->ln_byhint = 0;
1358
1359 /* join solicited node multicast for proxy ND */
1360 if (ifp->if_flags & IFF_MULTICAST) {
1361 struct in6_addr llsol;
1362 int error;
1363
1364 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1365 llsol.s6_addr32[0] = htonl(0xff020000);
1366 llsol.s6_addr32[1] = 0;
1367 llsol.s6_addr32[2] = htonl(1);
1368 llsol.s6_addr8[12] = 0xff;
1369 if (in6_setscope(&llsol, ifp, NULL))
1370 break;
1371 if (!in6_addmulti(&llsol, ifp, &error, 0)) {
1372 nd6log((LOG_ERR, "%s: failed to join "
1373 "%s (errno=%d)\n", if_name(ifp),
1374 ip6_sprintf(&llsol), error));
1375 }
1376 }
1377 }
1378 break;
1379
1380 case RTM_DELETE:
1381 if (ln == NULL)
1382 break;
1383 /* leave from solicited node multicast for proxy ND */
1384 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1385 (ifp->if_flags & IFF_MULTICAST) != 0) {
1386 struct in6_addr llsol;
1387 struct in6_multi *in6m;
1388
1389 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1390 llsol.s6_addr32[0] = htonl(0xff020000);
1391 llsol.s6_addr32[1] = 0;
1392 llsol.s6_addr32[2] = htonl(1);
1393 llsol.s6_addr8[12] = 0xff;
1394 if (in6_setscope(&llsol, ifp, NULL) == 0) {
1395 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1396 if (in6m)
1397 in6_delmulti(in6m);
1398 }
1399 }
1400 nd6_inuse--;
1401 ln->ln_next->ln_prev = ln->ln_prev;
1402 ln->ln_prev->ln_next = ln->ln_next;
1403 ln->ln_prev = NULL;
1404 nd6_llinfo_settimer(ln, -1);
1405 rt->rt_llinfo = 0;
1406 rt->rt_flags &= ~RTF_LLINFO;
1407 clear_llinfo_pqueue(ln);
1408 Free(ln);
1409 }
1410 }
1411
1412 int
1413 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp)
1414 {
1415 struct in6_drlist *drl = (struct in6_drlist *)data;
1416 struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1417 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1418 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1419 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1420 struct nd_defrouter *dr;
1421 struct nd_prefix *pr;
1422 struct rtentry *rt;
1423 int i = 0, error = 0;
1424 int s;
1425
1426 switch (cmd) {
1427 case SIOCGDRLST_IN6:
1428 /*
1429 * obsolete API, use sysctl under net.inet6.icmp6
1430 */
1431 memset(drl, 0, sizeof(*drl));
1432 s = splsoftnet();
1433 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
1434 if (i >= DRLSTSIZ)
1435 break;
1436 drl->defrouter[i].rtaddr = dr->rtaddr;
1437 in6_clearscope(&drl->defrouter[i].rtaddr);
1438
1439 drl->defrouter[i].flags = dr->flags;
1440 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1441 drl->defrouter[i].expire = dr->expire;
1442 drl->defrouter[i].if_index = dr->ifp->if_index;
1443 i++;
1444 }
1445 splx(s);
1446 break;
1447 case SIOCGPRLST_IN6:
1448 /*
1449 * obsolete API, use sysctl under net.inet6.icmp6
1450 *
1451 * XXX the structure in6_prlist was changed in backward-
1452 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1453 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1454 */
1455 /*
1456 * XXX meaning of fields, especialy "raflags", is very
1457 * differnet between RA prefix list and RR/static prefix list.
1458 * how about separating ioctls into two?
1459 */
1460 memset(oprl, 0, sizeof(*oprl));
1461 s = splsoftnet();
1462 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
1463 struct nd_pfxrouter *pfr;
1464 int j;
1465
1466 if (i >= PRLSTSIZ)
1467 break;
1468 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1469 oprl->prefix[i].raflags = pr->ndpr_raf;
1470 oprl->prefix[i].prefixlen = pr->ndpr_plen;
1471 oprl->prefix[i].vltime = pr->ndpr_vltime;
1472 oprl->prefix[i].pltime = pr->ndpr_pltime;
1473 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1474 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1475 oprl->prefix[i].expire = 0;
1476 else {
1477 time_t maxexpire;
1478
1479 /* XXX: we assume time_t is signed. */
1480 maxexpire = (-1) &
1481 ~((time_t)1 <<
1482 ((sizeof(maxexpire) * 8) - 1));
1483 if (pr->ndpr_vltime <
1484 maxexpire - pr->ndpr_lastupdate) {
1485 oprl->prefix[i].expire =
1486 pr->ndpr_lastupdate +
1487 pr->ndpr_vltime;
1488 } else
1489 oprl->prefix[i].expire = maxexpire;
1490 }
1491
1492 j = 0;
1493 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
1494 if (j < DRLSTSIZ) {
1495 #define RTRADDR oprl->prefix[i].advrtr[j]
1496 RTRADDR = pfr->router->rtaddr;
1497 in6_clearscope(&RTRADDR);
1498 #undef RTRADDR
1499 }
1500 j++;
1501 }
1502 oprl->prefix[i].advrtrs = j;
1503 oprl->prefix[i].origin = PR_ORIG_RA;
1504
1505 i++;
1506 }
1507 splx(s);
1508
1509 break;
1510 case OSIOCGIFINFO_IN6:
1511 #define ND ndi->ndi
1512 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1513 memset(&ND, 0, sizeof(ND));
1514 ND.linkmtu = IN6_LINKMTU(ifp);
1515 ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1516 ND.basereachable = ND_IFINFO(ifp)->basereachable;
1517 ND.reachable = ND_IFINFO(ifp)->reachable;
1518 ND.retrans = ND_IFINFO(ifp)->retrans;
1519 ND.flags = ND_IFINFO(ifp)->flags;
1520 ND.recalctm = ND_IFINFO(ifp)->recalctm;
1521 ND.chlim = ND_IFINFO(ifp)->chlim;
1522 break;
1523 case SIOCGIFINFO_IN6:
1524 ND = *ND_IFINFO(ifp);
1525 break;
1526 case SIOCSIFINFO_IN6:
1527 /*
1528 * used to change host variables from userland.
1529 * intented for a use on router to reflect RA configurations.
1530 */
1531 /* 0 means 'unspecified' */
1532 if (ND.linkmtu != 0) {
1533 if (ND.linkmtu < IPV6_MMTU ||
1534 ND.linkmtu > IN6_LINKMTU(ifp)) {
1535 error = EINVAL;
1536 break;
1537 }
1538 ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1539 }
1540
1541 if (ND.basereachable != 0) {
1542 int obasereachable = ND_IFINFO(ifp)->basereachable;
1543
1544 ND_IFINFO(ifp)->basereachable = ND.basereachable;
1545 if (ND.basereachable != obasereachable)
1546 ND_IFINFO(ifp)->reachable =
1547 ND_COMPUTE_RTIME(ND.basereachable);
1548 }
1549 if (ND.retrans != 0)
1550 ND_IFINFO(ifp)->retrans = ND.retrans;
1551 if (ND.chlim != 0)
1552 ND_IFINFO(ifp)->chlim = ND.chlim;
1553 /* FALLTHROUGH */
1554 case SIOCSIFINFO_FLAGS:
1555 ND_IFINFO(ifp)->flags = ND.flags;
1556 break;
1557 #undef ND
1558 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1559 /* sync kernel routing table with the default router list */
1560 defrouter_reset();
1561 defrouter_select();
1562 break;
1563 case SIOCSPFXFLUSH_IN6:
1564 {
1565 /* flush all the prefix advertised by routers */
1566 struct nd_prefix *pfx, *next;
1567
1568 s = splsoftnet();
1569 for (pfx = LIST_FIRST(&nd_prefix); pfx; pfx = next) {
1570 struct in6_ifaddr *ia, *ia_next;
1571
1572 next = LIST_NEXT(pfx, ndpr_entry);
1573
1574 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
1575 continue; /* XXX */
1576
1577 /* do we really have to remove addresses as well? */
1578 for (ia = in6_ifaddr; ia; ia = ia_next) {
1579 /* ia might be removed. keep the next ptr. */
1580 ia_next = ia->ia_next;
1581
1582 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1583 continue;
1584
1585 if (ia->ia6_ndpr == pfx)
1586 in6_purgeaddr(&ia->ia_ifa);
1587 }
1588 prelist_remove(pfx);
1589 }
1590 splx(s);
1591 break;
1592 }
1593 case SIOCSRTRFLUSH_IN6:
1594 {
1595 /* flush all the default routers */
1596 struct nd_defrouter *drtr, *next;
1597
1598 s = splsoftnet();
1599 defrouter_reset();
1600 for (drtr = TAILQ_FIRST(&nd_defrouter); drtr; drtr = next) {
1601 next = TAILQ_NEXT(drtr, dr_entry);
1602 defrtrlist_del(drtr);
1603 }
1604 defrouter_select();
1605 splx(s);
1606 break;
1607 }
1608 case SIOCGNBRINFO_IN6:
1609 {
1610 struct llinfo_nd6 *ln;
1611 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1612
1613 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1614 return error;
1615
1616 s = splsoftnet();
1617 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL ||
1618 (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) {
1619 error = EINVAL;
1620 splx(s);
1621 break;
1622 }
1623 nbi->state = ln->ln_state;
1624 nbi->asked = ln->ln_asked;
1625 nbi->isrouter = ln->ln_router;
1626 nbi->expire = ln->ln_expire;
1627 splx(s);
1628
1629 break;
1630 }
1631 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1632 ndif->ifindex = nd6_defifindex;
1633 break;
1634 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1635 return nd6_setdefaultiface(ndif->ifindex);
1636 }
1637 return error;
1638 }
1639
1640 void
1641 nd6_llinfo_release_pkts(struct llinfo_nd6 *ln, struct ifnet *ifp,
1642 struct rtentry *rt)
1643 {
1644 struct mbuf *m_hold, *m_hold_next;
1645
1646 for (m_hold = ln->ln_hold, ln->ln_hold = NULL;
1647 m_hold != NULL;
1648 m_hold = m_hold_next) {
1649 m_hold_next = m_hold->m_nextpkt;
1650 m_hold->m_nextpkt = NULL;
1651
1652 /*
1653 * we assume ifp is not a p2p here, so
1654 * just set the 2nd argument as the
1655 * 1st one.
1656 */
1657 nd6_output(ifp, ifp, m_hold, satocsin6(rt_getkey(rt)), rt);
1658 }
1659 }
1660
1661 /*
1662 * Create neighbor cache entry and cache link-layer address,
1663 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1664 */
1665 struct rtentry *
1666 nd6_cache_lladdr(
1667 struct ifnet *ifp,
1668 struct in6_addr *from,
1669 char *lladdr,
1670 int lladdrlen,
1671 int type, /* ICMP6 type */
1672 int code /* type dependent information */
1673 )
1674 {
1675 struct rtentry *rt = NULL;
1676 struct llinfo_nd6 *ln = NULL;
1677 int is_newentry;
1678 struct sockaddr_dl *sdl = NULL;
1679 int do_update;
1680 int olladdr;
1681 int llchange;
1682 int newstate = 0;
1683
1684 if (ifp == NULL)
1685 panic("ifp == NULL in nd6_cache_lladdr");
1686 if (from == NULL)
1687 panic("from == NULL in nd6_cache_lladdr");
1688
1689 /* nothing must be updated for unspecified address */
1690 if (IN6_IS_ADDR_UNSPECIFIED(from))
1691 return NULL;
1692
1693 /*
1694 * Validation about ifp->if_addrlen and lladdrlen must be done in
1695 * the caller.
1696 *
1697 * XXX If the link does not have link-layer adderss, what should
1698 * we do? (ifp->if_addrlen == 0)
1699 * Spec says nothing in sections for RA, RS and NA. There's small
1700 * description on it in NS section (RFC 2461 7.2.3).
1701 */
1702
1703 rt = nd6_lookup(from, 0, ifp);
1704 if (rt == NULL) {
1705 #if 0
1706 /* nothing must be done if there's no lladdr */
1707 if (!lladdr || !lladdrlen)
1708 return NULL;
1709 #endif
1710
1711 rt = nd6_lookup(from, 1, ifp);
1712 is_newentry = 1;
1713 } else {
1714 /* do nothing if static ndp is set */
1715 if (rt->rt_flags & RTF_STATIC)
1716 return NULL;
1717 is_newentry = 0;
1718 }
1719
1720 if (rt == NULL)
1721 return NULL;
1722 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1723 fail:
1724 (void)nd6_free(rt, 0);
1725 return NULL;
1726 }
1727 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1728 if (ln == NULL)
1729 goto fail;
1730 if (rt->rt_gateway == NULL)
1731 goto fail;
1732 if (rt->rt_gateway->sa_family != AF_LINK)
1733 goto fail;
1734 sdl = satosdl(rt->rt_gateway);
1735
1736 olladdr = (sdl->sdl_alen) ? 1 : 0;
1737 if (olladdr && lladdr) {
1738 if (memcmp(lladdr, CLLADDR(sdl), ifp->if_addrlen))
1739 llchange = 1;
1740 else
1741 llchange = 0;
1742 } else
1743 llchange = 0;
1744
1745 /*
1746 * newentry olladdr lladdr llchange (*=record)
1747 * 0 n n -- (1)
1748 * 0 y n -- (2)
1749 * 0 n y -- (3) * STALE
1750 * 0 y y n (4) *
1751 * 0 y y y (5) * STALE
1752 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1753 * 1 -- y -- (7) * STALE
1754 */
1755
1756 if (lladdr) { /* (3-5) and (7) */
1757 /*
1758 * Record source link-layer address
1759 * XXX is it dependent to ifp->if_type?
1760 */
1761 /* XXX check for error */
1762 (void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, lladdr,
1763 ifp->if_addrlen);
1764 }
1765
1766 if (!is_newentry) {
1767 if ((!olladdr && lladdr) || /* (3) */
1768 (olladdr && lladdr && llchange)) { /* (5) */
1769 do_update = 1;
1770 newstate = ND6_LLINFO_STALE;
1771 } else /* (1-2,4) */
1772 do_update = 0;
1773 } else {
1774 do_update = 1;
1775 if (lladdr == NULL) /* (6) */
1776 newstate = ND6_LLINFO_NOSTATE;
1777 else /* (7) */
1778 newstate = ND6_LLINFO_STALE;
1779 }
1780
1781 if (do_update) {
1782 /*
1783 * Update the state of the neighbor cache.
1784 */
1785 ln->ln_state = newstate;
1786
1787 if (ln->ln_state == ND6_LLINFO_STALE) {
1788 /*
1789 * XXX: since nd6_output() below will cause
1790 * state tansition to DELAY and reset the timer,
1791 * we must set the timer now, although it is actually
1792 * meaningless.
1793 */
1794 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1795
1796 nd6_llinfo_release_pkts(ln, ifp, rt);
1797 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1798 /* probe right away */
1799 nd6_llinfo_settimer((void *)ln, 0);
1800 }
1801 }
1802
1803 /*
1804 * ICMP6 type dependent behavior.
1805 *
1806 * NS: clear IsRouter if new entry
1807 * RS: clear IsRouter
1808 * RA: set IsRouter if there's lladdr
1809 * redir: clear IsRouter if new entry
1810 *
1811 * RA case, (1):
1812 * The spec says that we must set IsRouter in the following cases:
1813 * - If lladdr exist, set IsRouter. This means (1-5).
1814 * - If it is old entry (!newentry), set IsRouter. This means (7).
1815 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1816 * A quetion arises for (1) case. (1) case has no lladdr in the
1817 * neighbor cache, this is similar to (6).
1818 * This case is rare but we figured that we MUST NOT set IsRouter.
1819 *
1820 * newentry olladdr lladdr llchange NS RS RA redir
1821 * D R
1822 * 0 n n -- (1) c ? s
1823 * 0 y n -- (2) c s s
1824 * 0 n y -- (3) c s s
1825 * 0 y y n (4) c s s
1826 * 0 y y y (5) c s s
1827 * 1 -- n -- (6) c c c s
1828 * 1 -- y -- (7) c c s c s
1829 *
1830 * (c=clear s=set)
1831 */
1832 switch (type & 0xff) {
1833 case ND_NEIGHBOR_SOLICIT:
1834 /*
1835 * New entry must have is_router flag cleared.
1836 */
1837 if (is_newentry) /* (6-7) */
1838 ln->ln_router = 0;
1839 break;
1840 case ND_REDIRECT:
1841 /*
1842 * If the icmp is a redirect to a better router, always set the
1843 * is_router flag. Otherwise, if the entry is newly created,
1844 * clear the flag. [RFC 2461, sec 8.3]
1845 */
1846 if (code == ND_REDIRECT_ROUTER)
1847 ln->ln_router = 1;
1848 else if (is_newentry) /* (6-7) */
1849 ln->ln_router = 0;
1850 break;
1851 case ND_ROUTER_SOLICIT:
1852 /*
1853 * is_router flag must always be cleared.
1854 */
1855 ln->ln_router = 0;
1856 break;
1857 case ND_ROUTER_ADVERT:
1858 /*
1859 * Mark an entry with lladdr as a router.
1860 */
1861 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
1862 (is_newentry && lladdr)) { /* (7) */
1863 ln->ln_router = 1;
1864 }
1865 break;
1866 }
1867
1868 /*
1869 * When the link-layer address of a router changes, select the
1870 * best router again. In particular, when the neighbor entry is newly
1871 * created, it might affect the selection policy.
1872 * Question: can we restrict the first condition to the "is_newentry"
1873 * case?
1874 * XXX: when we hear an RA from a new router with the link-layer
1875 * address option, defrouter_select() is called twice, since
1876 * defrtrlist_update called the function as well. However, I believe
1877 * we can compromise the overhead, since it only happens the first
1878 * time.
1879 * XXX: although defrouter_select() should not have a bad effect
1880 * for those are not autoconfigured hosts, we explicitly avoid such
1881 * cases for safety.
1882 */
1883 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1884 defrouter_select();
1885
1886 return rt;
1887 }
1888
1889 static void
1890 nd6_slowtimo(void *ignored_arg)
1891 {
1892 struct nd_ifinfo *nd6if;
1893 struct ifnet *ifp;
1894
1895 mutex_enter(softnet_lock);
1896 KERNEL_LOCK(1, NULL);
1897 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1898 nd6_slowtimo, NULL);
1899 TAILQ_FOREACH(ifp, &ifnet, if_list) {
1900 nd6if = ND_IFINFO(ifp);
1901 if (nd6if->basereachable && /* already initialized */
1902 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1903 /*
1904 * Since reachable time rarely changes by router
1905 * advertisements, we SHOULD insure that a new random
1906 * value gets recomputed at least once every few hours.
1907 * (RFC 2461, 6.3.4)
1908 */
1909 nd6if->recalctm = nd6_recalc_reachtm_interval;
1910 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1911 }
1912 }
1913 KERNEL_UNLOCK_ONE(NULL);
1914 mutex_exit(softnet_lock);
1915 }
1916
1917 #define senderr(e) { error = (e); goto bad;}
1918 int
1919 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
1920 const struct sockaddr_in6 *dst, struct rtentry *rt0)
1921 {
1922 struct mbuf *m = m0;
1923 struct rtentry *rt = rt0;
1924 struct sockaddr_in6 *gw6 = NULL;
1925 struct llinfo_nd6 *ln = NULL;
1926 int error = 0;
1927
1928 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1929 goto sendpkt;
1930
1931 if (nd6_need_cache(ifp) == 0)
1932 goto sendpkt;
1933
1934 /*
1935 * next hop determination. This routine is derived from ether_output.
1936 */
1937 if (rt) {
1938 if ((rt->rt_flags & RTF_UP) == 0) {
1939 if ((rt0 = rt = rtalloc1(sin6tocsa(dst), 1)) != NULL) {
1940 rt->rt_refcnt--;
1941 if (rt->rt_ifp != ifp)
1942 senderr(EHOSTUNREACH);
1943 } else
1944 senderr(EHOSTUNREACH);
1945 }
1946
1947 if (rt->rt_flags & RTF_GATEWAY) {
1948 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1949
1950 /*
1951 * We skip link-layer address resolution and NUD
1952 * if the gateway is not a neighbor from ND point
1953 * of view, regardless of the value of nd_ifinfo.flags.
1954 * The second condition is a bit tricky; we skip
1955 * if the gateway is our own address, which is
1956 * sometimes used to install a route to a p2p link.
1957 */
1958 if (!nd6_is_addr_neighbor(gw6, ifp) ||
1959 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1960 /*
1961 * We allow this kind of tricky route only
1962 * when the outgoing interface is p2p.
1963 * XXX: we may need a more generic rule here.
1964 */
1965 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1966 senderr(EHOSTUNREACH);
1967
1968 goto sendpkt;
1969 }
1970
1971 if (rt->rt_gwroute == NULL)
1972 goto lookup;
1973 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
1974 rtfree(rt); rt = rt0;
1975 lookup:
1976 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
1977 if ((rt = rt->rt_gwroute) == NULL)
1978 senderr(EHOSTUNREACH);
1979 /* the "G" test below also prevents rt == rt0 */
1980 if ((rt->rt_flags & RTF_GATEWAY) ||
1981 (rt->rt_ifp != ifp)) {
1982 rt->rt_refcnt--;
1983 rt0->rt_gwroute = NULL;
1984 senderr(EHOSTUNREACH);
1985 }
1986 }
1987 }
1988 }
1989
1990 /*
1991 * Address resolution or Neighbor Unreachability Detection
1992 * for the next hop.
1993 * At this point, the destination of the packet must be a unicast
1994 * or an anycast address(i.e. not a multicast).
1995 */
1996
1997 /* Look up the neighbor cache for the nexthop */
1998 if (rt != NULL && (rt->rt_flags & RTF_LLINFO) != 0)
1999 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2000 else {
2001 /*
2002 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2003 * the condition below is not very efficient. But we believe
2004 * it is tolerable, because this should be a rare case.
2005 */
2006 if (nd6_is_addr_neighbor(dst, ifp) &&
2007 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
2008 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2009 }
2010 if (ln == NULL || rt == NULL) {
2011 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2012 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2013 log(LOG_DEBUG,
2014 "nd6_output: can't allocate llinfo for %s "
2015 "(ln=%p, rt=%p)\n",
2016 ip6_sprintf(&dst->sin6_addr), ln, rt);
2017 senderr(EIO); /* XXX: good error? */
2018 }
2019
2020 goto sendpkt; /* send anyway */
2021 }
2022
2023 /* We don't have to do link-layer address resolution on a p2p link. */
2024 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2025 ln->ln_state < ND6_LLINFO_REACHABLE) {
2026 ln->ln_state = ND6_LLINFO_STALE;
2027 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2028 }
2029
2030 /*
2031 * The first time we send a packet to a neighbor whose entry is
2032 * STALE, we have to change the state to DELAY and a sets a timer to
2033 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2034 * neighbor unreachability detection on expiration.
2035 * (RFC 2461 7.3.3)
2036 */
2037 if (ln->ln_state == ND6_LLINFO_STALE) {
2038 ln->ln_asked = 0;
2039 ln->ln_state = ND6_LLINFO_DELAY;
2040 nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2041 }
2042
2043 /*
2044 * If the neighbor cache entry has a state other than INCOMPLETE
2045 * (i.e. its link-layer address is already resolved), just
2046 * send the packet.
2047 */
2048 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2049 goto sendpkt;
2050
2051 /*
2052 * There is a neighbor cache entry, but no ethernet address
2053 * response yet. Append this latest packet to the end of the
2054 * packet queue in the mbuf, unless the number of the packet
2055 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen,
2056 * the oldest packet in the queue will be removed.
2057 */
2058 if (ln->ln_state == ND6_LLINFO_NOSTATE)
2059 ln->ln_state = ND6_LLINFO_INCOMPLETE;
2060 if (ln->ln_hold) {
2061 struct mbuf *m_hold;
2062 int i;
2063
2064 i = 0;
2065 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2066 i++;
2067 if (m_hold->m_nextpkt == NULL) {
2068 m_hold->m_nextpkt = m;
2069 break;
2070 }
2071 }
2072 while (i >= nd6_maxqueuelen) {
2073 m_hold = ln->ln_hold;
2074 ln->ln_hold = ln->ln_hold->m_nextpkt;
2075 m_freem(m_hold);
2076 i--;
2077 }
2078 } else {
2079 ln->ln_hold = m;
2080 }
2081
2082 /*
2083 * If there has been no NS for the neighbor after entering the
2084 * INCOMPLETE state, send the first solicitation.
2085 */
2086 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2087 ln->ln_asked++;
2088 nd6_llinfo_settimer(ln,
2089 (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2090 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2091 }
2092 return 0;
2093
2094 sendpkt:
2095 /* discard the packet if IPv6 operation is disabled on the interface */
2096 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2097 error = ENETDOWN; /* better error? */
2098 goto bad;
2099 }
2100
2101 #ifdef IPSEC
2102 /* clean ipsec history once it goes out of the node */
2103 ipsec_delaux(m);
2104 #endif
2105 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2106 return (*ifp->if_output)(origifp, m, sin6tocsa(dst), rt);
2107 return (*ifp->if_output)(ifp, m, sin6tocsa(dst), rt);
2108
2109 bad:
2110 if (m != NULL)
2111 m_freem(m);
2112 return error;
2113 }
2114 #undef senderr
2115
2116 int
2117 nd6_need_cache(struct ifnet *ifp)
2118 {
2119 /*
2120 * XXX: we currently do not make neighbor cache on any interface
2121 * other than ARCnet, Ethernet, FDDI and GIF.
2122 *
2123 * RFC2893 says:
2124 * - unidirectional tunnels needs no ND
2125 */
2126 switch (ifp->if_type) {
2127 case IFT_ARCNET:
2128 case IFT_ETHER:
2129 case IFT_FDDI:
2130 case IFT_IEEE1394:
2131 case IFT_CARP:
2132 case IFT_GIF: /* XXX need more cases? */
2133 case IFT_PPP:
2134 case IFT_TUNNEL:
2135 return 1;
2136 default:
2137 return 0;
2138 }
2139 }
2140
2141 int
2142 nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt,
2143 struct mbuf *m, const struct sockaddr *dst, uint8_t *lldst,
2144 size_t dstsize)
2145 {
2146 const struct sockaddr_dl *sdl;
2147
2148 if (m->m_flags & M_MCAST) {
2149 switch (ifp->if_type) {
2150 case IFT_ETHER:
2151 case IFT_FDDI:
2152 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
2153 lldst);
2154 return 1;
2155 case IFT_IEEE1394:
2156 memcpy(lldst, ifp->if_broadcastaddr,
2157 MIN(dstsize, ifp->if_addrlen));
2158 return 1;
2159 case IFT_ARCNET:
2160 *lldst = 0;
2161 return 1;
2162 default:
2163 m_freem(m);
2164 return 0;
2165 }
2166 }
2167
2168 if (rt == NULL) {
2169 /* this could happen, if we could not allocate memory */
2170 m_freem(m);
2171 return 0;
2172 }
2173 if (rt->rt_gateway->sa_family != AF_LINK) {
2174 printf("%s: something odd happens\n", __func__);
2175 m_freem(m);
2176 return 0;
2177 }
2178 sdl = satocsdl(rt->rt_gateway);
2179 if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) {
2180 /* this should be impossible, but we bark here for debugging */
2181 printf("%s: sdl_alen == 0, dst=%s, if=%s\n", __func__,
2182 ip6_sprintf(&satocsin6(dst)->sin6_addr), if_name(ifp));
2183 m_freem(m);
2184 return 0;
2185 }
2186
2187 memcpy(lldst, CLLADDR(sdl), MIN(dstsize, sdl->sdl_alen));
2188 return 1;
2189 }
2190
2191 static void
2192 clear_llinfo_pqueue(struct llinfo_nd6 *ln)
2193 {
2194 struct mbuf *m_hold, *m_hold_next;
2195
2196 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2197 m_hold_next = m_hold->m_nextpkt;
2198 m_hold->m_nextpkt = NULL;
2199 m_freem(m_hold);
2200 }
2201
2202 ln->ln_hold = NULL;
2203 return;
2204 }
2205
2206 int
2207 nd6_sysctl(
2208 int name,
2209 void *oldp, /* syscall arg, need copyout */
2210 size_t *oldlenp,
2211 void *newp, /* syscall arg, need copyin */
2212 size_t newlen
2213 )
2214 {
2215 void *p;
2216 size_t ol;
2217 int error;
2218
2219 error = 0;
2220
2221 if (newp)
2222 return EPERM;
2223 if (oldp && !oldlenp)
2224 return EINVAL;
2225 ol = oldlenp ? *oldlenp : 0;
2226
2227 if (oldp) {
2228 p = malloc(*oldlenp, M_TEMP, M_WAITOK);
2229 if (p == NULL)
2230 return ENOMEM;
2231 } else
2232 p = NULL;
2233 switch (name) {
2234 case ICMPV6CTL_ND6_DRLIST:
2235 error = fill_drlist(p, oldlenp, ol);
2236 if (!error && p != NULL && oldp != NULL)
2237 error = copyout(p, oldp, *oldlenp);
2238 break;
2239
2240 case ICMPV6CTL_ND6_PRLIST:
2241 error = fill_prlist(p, oldlenp, ol);
2242 if (!error && p != NULL && oldp != NULL)
2243 error = copyout(p, oldp, *oldlenp);
2244 break;
2245
2246 case ICMPV6CTL_ND6_MAXQLEN:
2247 break;
2248
2249 default:
2250 error = ENOPROTOOPT;
2251 break;
2252 }
2253 if (p)
2254 free(p, M_TEMP);
2255
2256 return error;
2257 }
2258
2259 static int
2260 fill_drlist(void *oldp, size_t *oldlenp, size_t ol)
2261 {
2262 int error = 0, s;
2263 struct in6_defrouter *d = NULL, *de = NULL;
2264 struct nd_defrouter *dr;
2265 size_t l;
2266
2267 s = splsoftnet();
2268
2269 if (oldp) {
2270 d = (struct in6_defrouter *)oldp;
2271 de = (struct in6_defrouter *)((char *)oldp + *oldlenp);
2272 }
2273 l = 0;
2274
2275 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
2276
2277 if (oldp && d + 1 <= de) {
2278 memset(d, 0, sizeof(*d));
2279 sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0);
2280 if (sa6_recoverscope(&d->rtaddr)) {
2281 log(LOG_ERR,
2282 "scope error in router list (%s)\n",
2283 ip6_sprintf(&d->rtaddr.sin6_addr));
2284 /* XXX: press on... */
2285 }
2286 d->flags = dr->flags;
2287 d->rtlifetime = dr->rtlifetime;
2288 d->expire = dr->expire;
2289 d->if_index = dr->ifp->if_index;
2290 }
2291
2292 l += sizeof(*d);
2293 if (d)
2294 d++;
2295 }
2296
2297 if (oldp) {
2298 if (l > ol)
2299 error = ENOMEM;
2300 }
2301 if (oldlenp)
2302 *oldlenp = l; /* (void *)d - (void *)oldp */
2303
2304 splx(s);
2305
2306 return error;
2307 }
2308
2309 static int
2310 fill_prlist(void *oldp, size_t *oldlenp, size_t ol)
2311 {
2312 int error = 0, s;
2313 struct nd_prefix *pr;
2314 struct in6_prefix *p = NULL;
2315 struct in6_prefix *pe = NULL;
2316 size_t l;
2317
2318 s = splsoftnet();
2319
2320 if (oldp) {
2321 p = (struct in6_prefix *)oldp;
2322 pe = (struct in6_prefix *)((char *)oldp + *oldlenp);
2323 }
2324 l = 0;
2325
2326 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
2327 u_short advrtrs;
2328 size_t advance;
2329 struct sockaddr_in6 *sin6;
2330 struct sockaddr_in6 *s6;
2331 struct nd_pfxrouter *pfr;
2332
2333 if (oldp && p + 1 <= pe)
2334 {
2335 memset(p, 0, sizeof(*p));
2336 sin6 = (struct sockaddr_in6 *)(p + 1);
2337
2338 p->prefix = pr->ndpr_prefix;
2339 if (sa6_recoverscope(&p->prefix)) {
2340 log(LOG_ERR,
2341 "scope error in prefix list (%s)\n",
2342 ip6_sprintf(&p->prefix.sin6_addr));
2343 /* XXX: press on... */
2344 }
2345 p->raflags = pr->ndpr_raf;
2346 p->prefixlen = pr->ndpr_plen;
2347 p->vltime = pr->ndpr_vltime;
2348 p->pltime = pr->ndpr_pltime;
2349 p->if_index = pr->ndpr_ifp->if_index;
2350 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2351 p->expire = 0;
2352 else {
2353 time_t maxexpire;
2354
2355 /* XXX: we assume time_t is signed. */
2356 maxexpire = (-1) &
2357 ~((time_t)1 <<
2358 ((sizeof(maxexpire) * 8) - 1));
2359 if (pr->ndpr_vltime <
2360 maxexpire - pr->ndpr_lastupdate) {
2361 p->expire = pr->ndpr_lastupdate +
2362 pr->ndpr_vltime;
2363 } else
2364 p->expire = maxexpire;
2365 }
2366 p->refcnt = pr->ndpr_refcnt;
2367 p->flags = pr->ndpr_stateflags;
2368 p->origin = PR_ORIG_RA;
2369 advrtrs = 0;
2370 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2371 if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2372 advrtrs++;
2373 continue;
2374 }
2375 s6 = &sin6[advrtrs];
2376 sockaddr_in6_init(s6, &pfr->router->rtaddr,
2377 0, 0, 0);
2378 if (sa6_recoverscope(s6)) {
2379 log(LOG_ERR,
2380 "scope error in "
2381 "prefix list (%s)\n",
2382 ip6_sprintf(&pfr->router->rtaddr));
2383 }
2384 advrtrs++;
2385 }
2386 p->advrtrs = advrtrs;
2387 }
2388 else {
2389 advrtrs = 0;
2390 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
2391 advrtrs++;
2392 }
2393
2394 advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2395 l += advance;
2396 if (p)
2397 p = (struct in6_prefix *)((char *)p + advance);
2398 }
2399
2400 if (oldp) {
2401 *oldlenp = l; /* (void *)d - (void *)oldp */
2402 if (l > ol)
2403 error = ENOMEM;
2404 } else
2405 *oldlenp = l;
2406
2407 splx(s);
2408
2409 return error;
2410 }
2411