nd6.c revision 1.141 1 /* $NetBSD: nd6.c,v 1.141 2012/02/03 03:32:45 christos Exp $ */
2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.141 2012/02/03 03:32:45 christos Exp $");
35
36 #include "opt_ipsec.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/callout.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/socket.h>
44 #include <sys/socketvar.h>
45 #include <sys/sockio.h>
46 #include <sys/time.h>
47 #include <sys/kernel.h>
48 #include <sys/protosw.h>
49 #include <sys/errno.h>
50 #include <sys/ioctl.h>
51 #include <sys/syslog.h>
52 #include <sys/queue.h>
53 #include <sys/cprng.h>
54
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_types.h>
58 #include <net/route.h>
59 #include <net/if_ether.h>
60 #include <net/if_fddi.h>
61 #include <net/if_arc.h>
62
63 #include <netinet/in.h>
64 #include <netinet6/in6_var.h>
65 #include <netinet/ip6.h>
66 #include <netinet6/ip6_var.h>
67 #include <netinet6/scope6_var.h>
68 #include <netinet6/nd6.h>
69 #include <netinet/icmp6.h>
70 #include <netinet6/icmp6_private.h>
71
72 #ifdef KAME_IPSEC
73 #include <netinet6/ipsec.h>
74 #endif
75
76 #include <net/net_osdep.h>
77
78 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
79 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
80
81 /* timer values */
82 int nd6_prune = 1; /* walk list every 1 seconds */
83 int nd6_delay = 5; /* delay first probe time 5 second */
84 int nd6_umaxtries = 3; /* maximum unicast query */
85 int nd6_mmaxtries = 3; /* maximum multicast query */
86 int nd6_useloopback = 1; /* use loopback interface for local traffic */
87 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
88
89 /* preventing too many loops in ND option parsing */
90 int nd6_maxndopt = 10; /* max # of ND options allowed */
91
92 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
93
94 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
95
96 #ifdef ND6_DEBUG
97 int nd6_debug = 1;
98 #else
99 int nd6_debug = 0;
100 #endif
101
102 /* for debugging? */
103 static int nd6_inuse, nd6_allocated;
104
105 struct llinfo_nd6 llinfo_nd6 = {
106 .ln_prev = &llinfo_nd6,
107 .ln_next = &llinfo_nd6,
108 };
109 struct nd_drhead nd_defrouter;
110 struct nd_prhead nd_prefix = { 0 };
111
112 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
113 static const struct sockaddr_in6 all1_sa = {
114 .sin6_family = AF_INET6
115 , .sin6_len = sizeof(struct sockaddr_in6)
116 , .sin6_addr = {.s6_addr = {0xff, 0xff, 0xff, 0xff,
117 0xff, 0xff, 0xff, 0xff,
118 0xff, 0xff, 0xff, 0xff,
119 0xff, 0xff, 0xff, 0xff}}
120 };
121
122 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
123 static void nd6_slowtimo(void *);
124 static int regen_tmpaddr(struct in6_ifaddr *);
125 static struct llinfo_nd6 *nd6_free(struct rtentry *, int);
126 static void nd6_llinfo_timer(void *);
127 static void clear_llinfo_pqueue(struct llinfo_nd6 *);
128
129 callout_t nd6_slowtimo_ch;
130 callout_t nd6_timer_ch;
131 extern callout_t in6_tmpaddrtimer_ch;
132
133 static int fill_drlist(void *, size_t *, size_t);
134 static int fill_prlist(void *, size_t *, size_t);
135
136 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
137
138 void
139 nd6_init(void)
140 {
141 static int nd6_init_done = 0;
142
143 if (nd6_init_done) {
144 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
145 return;
146 }
147
148 /* initialization of the default router list */
149 TAILQ_INIT(&nd_defrouter);
150
151 nd6_init_done = 1;
152
153 callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE);
154 callout_init(&nd6_timer_ch, CALLOUT_MPSAFE);
155
156 /* start timer */
157 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
158 nd6_slowtimo, NULL);
159 }
160
161 struct nd_ifinfo *
162 nd6_ifattach(struct ifnet *ifp)
163 {
164 struct nd_ifinfo *nd;
165
166 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO);
167
168 nd->initialized = 1;
169
170 nd->chlim = IPV6_DEFHLIM;
171 nd->basereachable = REACHABLE_TIME;
172 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
173 nd->retrans = RETRANS_TIMER;
174 /*
175 * Note that the default value of ip6_accept_rtadv is 0.
176 * Because we do not set ND6_IFF_OVERRIDE_RTADV here, we won't
177 * accept RAs by default.
178 */
179 nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV;
180
181 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
182 nd6_setmtu0(ifp, nd);
183
184 return nd;
185 }
186
187 void
188 nd6_ifdetach(struct nd_ifinfo *nd)
189 {
190
191 free(nd, M_IP6NDP);
192 }
193
194 void
195 nd6_setmtu(struct ifnet *ifp)
196 {
197 nd6_setmtu0(ifp, ND_IFINFO(ifp));
198 }
199
200 void
201 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
202 {
203 u_int32_t omaxmtu;
204
205 omaxmtu = ndi->maxmtu;
206
207 switch (ifp->if_type) {
208 case IFT_ARCNET:
209 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
210 break;
211 case IFT_FDDI:
212 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
213 break;
214 default:
215 ndi->maxmtu = ifp->if_mtu;
216 break;
217 }
218
219 /*
220 * Decreasing the interface MTU under IPV6 minimum MTU may cause
221 * undesirable situation. We thus notify the operator of the change
222 * explicitly. The check for omaxmtu is necessary to restrict the
223 * log to the case of changing the MTU, not initializing it.
224 */
225 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
226 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
227 " small for IPv6 which needs %lu\n",
228 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
229 IPV6_MMTU);
230 }
231
232 if (ndi->maxmtu > in6_maxmtu)
233 in6_setmaxmtu(); /* check all interfaces just in case */
234 }
235
236 void
237 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
238 {
239
240 memset(ndopts, 0, sizeof(*ndopts));
241 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
242 ndopts->nd_opts_last
243 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
244
245 if (icmp6len == 0) {
246 ndopts->nd_opts_done = 1;
247 ndopts->nd_opts_search = NULL;
248 }
249 }
250
251 /*
252 * Take one ND option.
253 */
254 struct nd_opt_hdr *
255 nd6_option(union nd_opts *ndopts)
256 {
257 struct nd_opt_hdr *nd_opt;
258 int olen;
259
260 if (ndopts == NULL)
261 panic("ndopts == NULL in nd6_option");
262 if (ndopts->nd_opts_last == NULL)
263 panic("uninitialized ndopts in nd6_option");
264 if (ndopts->nd_opts_search == NULL)
265 return NULL;
266 if (ndopts->nd_opts_done)
267 return NULL;
268
269 nd_opt = ndopts->nd_opts_search;
270
271 /* make sure nd_opt_len is inside the buffer */
272 if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) {
273 memset(ndopts, 0, sizeof(*ndopts));
274 return NULL;
275 }
276
277 olen = nd_opt->nd_opt_len << 3;
278 if (olen == 0) {
279 /*
280 * Message validation requires that all included
281 * options have a length that is greater than zero.
282 */
283 memset(ndopts, 0, sizeof(*ndopts));
284 return NULL;
285 }
286
287 ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen);
288 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
289 /* option overruns the end of buffer, invalid */
290 memset(ndopts, 0, sizeof(*ndopts));
291 return NULL;
292 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
293 /* reached the end of options chain */
294 ndopts->nd_opts_done = 1;
295 ndopts->nd_opts_search = NULL;
296 }
297 return nd_opt;
298 }
299
300 /*
301 * Parse multiple ND options.
302 * This function is much easier to use, for ND routines that do not need
303 * multiple options of the same type.
304 */
305 int
306 nd6_options(union nd_opts *ndopts)
307 {
308 struct nd_opt_hdr *nd_opt;
309 int i = 0;
310
311 if (ndopts == NULL)
312 panic("ndopts == NULL in nd6_options");
313 if (ndopts->nd_opts_last == NULL)
314 panic("uninitialized ndopts in nd6_options");
315 if (ndopts->nd_opts_search == NULL)
316 return 0;
317
318 while (1) {
319 nd_opt = nd6_option(ndopts);
320 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
321 /*
322 * Message validation requires that all included
323 * options have a length that is greater than zero.
324 */
325 ICMP6_STATINC(ICMP6_STAT_ND_BADOPT);
326 memset(ndopts, 0, sizeof(*ndopts));
327 return -1;
328 }
329
330 if (nd_opt == NULL)
331 goto skip1;
332
333 switch (nd_opt->nd_opt_type) {
334 case ND_OPT_SOURCE_LINKADDR:
335 case ND_OPT_TARGET_LINKADDR:
336 case ND_OPT_MTU:
337 case ND_OPT_REDIRECTED_HEADER:
338 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
339 nd6log((LOG_INFO,
340 "duplicated ND6 option found (type=%d)\n",
341 nd_opt->nd_opt_type));
342 /* XXX bark? */
343 } else {
344 ndopts->nd_opt_array[nd_opt->nd_opt_type]
345 = nd_opt;
346 }
347 break;
348 case ND_OPT_PREFIX_INFORMATION:
349 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
350 ndopts->nd_opt_array[nd_opt->nd_opt_type]
351 = nd_opt;
352 }
353 ndopts->nd_opts_pi_end =
354 (struct nd_opt_prefix_info *)nd_opt;
355 break;
356 default:
357 /*
358 * Unknown options must be silently ignored,
359 * to accommodate future extension to the protocol.
360 */
361 nd6log((LOG_DEBUG,
362 "nd6_options: unsupported option %d - "
363 "option ignored\n", nd_opt->nd_opt_type));
364 }
365
366 skip1:
367 i++;
368 if (i > nd6_maxndopt) {
369 ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT);
370 nd6log((LOG_INFO, "too many loop in nd opt\n"));
371 break;
372 }
373
374 if (ndopts->nd_opts_done)
375 break;
376 }
377
378 return 0;
379 }
380
381 /*
382 * ND6 timer routine to handle ND6 entries
383 */
384 void
385 nd6_llinfo_settimer(struct llinfo_nd6 *ln, long xtick)
386 {
387 int s;
388
389 s = splsoftnet();
390
391 if (xtick < 0) {
392 ln->ln_expire = 0;
393 ln->ln_ntick = 0;
394 callout_stop(&ln->ln_timer_ch);
395 } else {
396 ln->ln_expire = time_second + xtick / hz;
397 if (xtick > INT_MAX) {
398 ln->ln_ntick = xtick - INT_MAX;
399 callout_reset(&ln->ln_timer_ch, INT_MAX,
400 nd6_llinfo_timer, ln);
401 } else {
402 ln->ln_ntick = 0;
403 callout_reset(&ln->ln_timer_ch, xtick,
404 nd6_llinfo_timer, ln);
405 }
406 }
407
408 splx(s);
409 }
410
411 static void
412 nd6_llinfo_timer(void *arg)
413 {
414 struct llinfo_nd6 *ln;
415 struct rtentry *rt;
416 const struct sockaddr_in6 *dst;
417 struct ifnet *ifp;
418 struct nd_ifinfo *ndi = NULL;
419
420 mutex_enter(softnet_lock);
421 KERNEL_LOCK(1, NULL);
422
423 ln = (struct llinfo_nd6 *)arg;
424
425 if (ln->ln_ntick > 0) {
426 nd6_llinfo_settimer(ln, ln->ln_ntick);
427 KERNEL_UNLOCK_ONE(NULL);
428 mutex_exit(softnet_lock);
429 return;
430 }
431
432 if ((rt = ln->ln_rt) == NULL)
433 panic("ln->ln_rt == NULL");
434 if ((ifp = rt->rt_ifp) == NULL)
435 panic("ln->ln_rt->rt_ifp == NULL");
436 ndi = ND_IFINFO(ifp);
437 dst = satocsin6(rt_getkey(rt));
438
439 /* sanity check */
440 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
441 panic("rt_llinfo(%p) is not equal to ln(%p)",
442 rt->rt_llinfo, ln);
443 if (!dst)
444 panic("dst=0 in nd6_timer(ln=%p)", ln);
445
446 switch (ln->ln_state) {
447 case ND6_LLINFO_INCOMPLETE:
448 if (ln->ln_asked < nd6_mmaxtries) {
449 ln->ln_asked++;
450 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
451 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
452 } else {
453 struct mbuf *m = ln->ln_hold;
454 if (m) {
455 struct mbuf *m0;
456
457 /*
458 * assuming every packet in ln_hold has
459 * the same IP header
460 */
461 m0 = m->m_nextpkt;
462 m->m_nextpkt = NULL;
463 icmp6_error2(m, ICMP6_DST_UNREACH,
464 ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
465
466 ln->ln_hold = m0;
467 clear_llinfo_pqueue(ln);
468 }
469 (void)nd6_free(rt, 0);
470 ln = NULL;
471 }
472 break;
473 case ND6_LLINFO_REACHABLE:
474 if (!ND6_LLINFO_PERMANENT(ln)) {
475 ln->ln_state = ND6_LLINFO_STALE;
476 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
477 }
478 break;
479
480 case ND6_LLINFO_STALE:
481 /* Garbage Collection(RFC 2461 5.3) */
482 if (!ND6_LLINFO_PERMANENT(ln)) {
483 (void)nd6_free(rt, 1);
484 ln = NULL;
485 }
486 break;
487
488 case ND6_LLINFO_DELAY:
489 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
490 /* We need NUD */
491 ln->ln_asked = 1;
492 ln->ln_state = ND6_LLINFO_PROBE;
493 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
494 nd6_ns_output(ifp, &dst->sin6_addr,
495 &dst->sin6_addr, ln, 0);
496 } else {
497 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
498 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
499 }
500 break;
501 case ND6_LLINFO_PROBE:
502 if (ln->ln_asked < nd6_umaxtries) {
503 ln->ln_asked++;
504 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
505 nd6_ns_output(ifp, &dst->sin6_addr,
506 &dst->sin6_addr, ln, 0);
507 } else {
508 (void)nd6_free(rt, 0);
509 ln = NULL;
510 }
511 break;
512 }
513
514 KERNEL_UNLOCK_ONE(NULL);
515 mutex_exit(softnet_lock);
516 }
517
518 /*
519 * ND6 timer routine to expire default route list and prefix list
520 */
521 void
522 nd6_timer(void *ignored_arg)
523 {
524 struct nd_defrouter *next_dr, *dr;
525 struct nd_prefix *next_pr, *pr;
526 struct in6_ifaddr *ia6, *nia6;
527
528 callout_reset(&nd6_timer_ch, nd6_prune * hz,
529 nd6_timer, NULL);
530
531 mutex_enter(softnet_lock);
532 KERNEL_LOCK(1, NULL);
533
534 /* expire default router list */
535
536 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, next_dr) {
537 if (dr->expire && dr->expire < time_second) {
538 defrtrlist_del(dr);
539 }
540 }
541
542 /*
543 * expire interface addresses.
544 * in the past the loop was inside prefix expiry processing.
545 * However, from a stricter speci-confrmance standpoint, we should
546 * rather separate address lifetimes and prefix lifetimes.
547 */
548 addrloop:
549 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
550 nia6 = ia6->ia_next;
551 /* check address lifetime */
552 if (IFA6_IS_INVALID(ia6)) {
553 int regen = 0;
554
555 /*
556 * If the expiring address is temporary, try
557 * regenerating a new one. This would be useful when
558 * we suspended a laptop PC, then turned it on after a
559 * period that could invalidate all temporary
560 * addresses. Although we may have to restart the
561 * loop (see below), it must be after purging the
562 * address. Otherwise, we'd see an infinite loop of
563 * regeneration.
564 */
565 if (ip6_use_tempaddr &&
566 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
567 if (regen_tmpaddr(ia6) == 0)
568 regen = 1;
569 }
570
571 in6_purgeaddr(&ia6->ia_ifa);
572
573 if (regen)
574 goto addrloop; /* XXX: see below */
575 } else if (IFA6_IS_DEPRECATED(ia6)) {
576 int oldflags = ia6->ia6_flags;
577
578 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
579
580 /*
581 * If a temporary address has just become deprecated,
582 * regenerate a new one if possible.
583 */
584 if (ip6_use_tempaddr &&
585 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
586 (oldflags & IN6_IFF_DEPRECATED) == 0) {
587
588 if (regen_tmpaddr(ia6) == 0) {
589 /*
590 * A new temporary address is
591 * generated.
592 * XXX: this means the address chain
593 * has changed while we are still in
594 * the loop. Although the change
595 * would not cause disaster (because
596 * it's not a deletion, but an
597 * addition,) we'd rather restart the
598 * loop just for safety. Or does this
599 * significantly reduce performance??
600 */
601 goto addrloop;
602 }
603 }
604 } else {
605 /*
606 * A new RA might have made a deprecated address
607 * preferred.
608 */
609 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
610 }
611 }
612
613 /* expire prefix list */
614 LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, next_pr) {
615 /*
616 * check prefix lifetime.
617 * since pltime is just for autoconf, pltime processing for
618 * prefix is not necessary.
619 */
620 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
621 time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
622
623 /*
624 * address expiration and prefix expiration are
625 * separate. NEVER perform in6_purgeaddr here.
626 */
627
628 prelist_remove(pr);
629 }
630 }
631
632 KERNEL_UNLOCK_ONE(NULL);
633 mutex_exit(softnet_lock);
634 }
635
636 /* ia6: deprecated/invalidated temporary address */
637 static int
638 regen_tmpaddr(struct in6_ifaddr *ia6)
639 {
640 struct ifaddr *ifa;
641 struct ifnet *ifp;
642 struct in6_ifaddr *public_ifa6 = NULL;
643
644 ifp = ia6->ia_ifa.ifa_ifp;
645 IFADDR_FOREACH(ifa, ifp) {
646 struct in6_ifaddr *it6;
647
648 if (ifa->ifa_addr->sa_family != AF_INET6)
649 continue;
650
651 it6 = (struct in6_ifaddr *)ifa;
652
653 /* ignore no autoconf addresses. */
654 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
655 continue;
656
657 /* ignore autoconf addresses with different prefixes. */
658 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
659 continue;
660
661 /*
662 * Now we are looking at an autoconf address with the same
663 * prefix as ours. If the address is temporary and is still
664 * preferred, do not create another one. It would be rare, but
665 * could happen, for example, when we resume a laptop PC after
666 * a long period.
667 */
668 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
669 !IFA6_IS_DEPRECATED(it6)) {
670 public_ifa6 = NULL;
671 break;
672 }
673
674 /*
675 * This is a public autoconf address that has the same prefix
676 * as ours. If it is preferred, keep it. We can't break the
677 * loop here, because there may be a still-preferred temporary
678 * address with the prefix.
679 */
680 if (!IFA6_IS_DEPRECATED(it6))
681 public_ifa6 = it6;
682 }
683
684 if (public_ifa6 != NULL) {
685 int e;
686
687 /*
688 * Random factor is introduced in the preferred lifetime, so
689 * we do not need additional delay (3rd arg to in6_tmpifadd).
690 */
691 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
692 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
693 " tmp addr, errno=%d\n", e);
694 return -1;
695 }
696 return 0;
697 }
698
699 return -1;
700 }
701
702 bool
703 nd6_accepts_rtadv(const struct nd_ifinfo *ndi)
704 {
705 switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) {
706 case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV:
707 return true;
708 case ND6_IFF_ACCEPT_RTADV:
709 return ip6_accept_rtadv != 0;
710 case ND6_IFF_OVERRIDE_RTADV:
711 case 0:
712 default:
713 return false;
714 }
715 }
716
717 /*
718 * Nuke neighbor cache/prefix/default router management table, right before
719 * ifp goes away.
720 */
721 void
722 nd6_purge(struct ifnet *ifp)
723 {
724 struct llinfo_nd6 *ln, *nln;
725 struct nd_defrouter *dr, *ndr;
726 struct nd_prefix *pr, *npr;
727
728 /*
729 * Nuke default router list entries toward ifp.
730 * We defer removal of default router list entries that is installed
731 * in the routing table, in order to keep additional side effects as
732 * small as possible.
733 */
734 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
735 if (dr->installed)
736 continue;
737
738 if (dr->ifp == ifp)
739 defrtrlist_del(dr);
740 }
741
742 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
743 if (!dr->installed)
744 continue;
745
746 if (dr->ifp == ifp)
747 defrtrlist_del(dr);
748 }
749
750 /* Nuke prefix list entries toward ifp */
751 LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, npr) {
752 if (pr->ndpr_ifp == ifp) {
753 /*
754 * Because if_detach() does *not* release prefixes
755 * while purging addresses the reference count will
756 * still be above zero. We therefore reset it to
757 * make sure that the prefix really gets purged.
758 */
759 pr->ndpr_refcnt = 0;
760 /*
761 * Previously, pr->ndpr_addr is removed as well,
762 * but I strongly believe we don't have to do it.
763 * nd6_purge() is only called from in6_ifdetach(),
764 * which removes all the associated interface addresses
765 * by itself.
766 * (jinmei (at) kame.net 20010129)
767 */
768 prelist_remove(pr);
769 }
770 }
771
772 /* cancel default outgoing interface setting */
773 if (nd6_defifindex == ifp->if_index)
774 nd6_setdefaultiface(0);
775
776 /* XXX: too restrictive? */
777 if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) {
778 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
779 if (ndi && nd6_accepts_rtadv(ndi)) {
780 /* refresh default router list */
781 defrouter_select();
782 }
783 }
784
785 /*
786 * Nuke neighbor cache entries for the ifp.
787 * Note that rt->rt_ifp may not be the same as ifp,
788 * due to KAME goto ours hack. See RTM_RESOLVE case in
789 * nd6_rtrequest(), and ip6_input().
790 */
791 ln = llinfo_nd6.ln_next;
792 while (ln != NULL && ln != &llinfo_nd6) {
793 struct rtentry *rt;
794 const struct sockaddr_dl *sdl;
795
796 nln = ln->ln_next;
797 rt = ln->ln_rt;
798 if (rt && rt->rt_gateway &&
799 rt->rt_gateway->sa_family == AF_LINK) {
800 sdl = satocsdl(rt->rt_gateway);
801 if (sdl->sdl_index == ifp->if_index)
802 nln = nd6_free(rt, 0);
803 }
804 ln = nln;
805 }
806 }
807
808 struct rtentry *
809 nd6_lookup(const struct in6_addr *addr6, int create, struct ifnet *ifp)
810 {
811 struct rtentry *rt;
812 struct sockaddr_in6 sin6;
813
814 sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
815 rt = rtalloc1((struct sockaddr *)&sin6, create);
816 if (rt != NULL && (rt->rt_flags & RTF_LLINFO) == 0) {
817 /*
818 * This is the case for the default route.
819 * If we want to create a neighbor cache for the address, we
820 * should free the route for the destination and allocate an
821 * interface route.
822 */
823 if (create) {
824 RTFREE(rt);
825 rt = NULL;
826 }
827 }
828 if (rt != NULL)
829 ;
830 else if (create && ifp) {
831 int e;
832
833 /*
834 * If no route is available and create is set,
835 * we allocate a host route for the destination
836 * and treat it like an interface route.
837 * This hack is necessary for a neighbor which can't
838 * be covered by our own prefix.
839 */
840 struct ifaddr *ifa =
841 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
842 if (ifa == NULL)
843 return NULL;
844
845 /*
846 * Create a new route. RTF_LLINFO is necessary
847 * to create a Neighbor Cache entry for the
848 * destination in nd6_rtrequest which will be
849 * called in rtrequest via ifa->ifa_rtrequest.
850 */
851 if ((e = rtrequest(RTM_ADD, (const struct sockaddr *)&sin6,
852 ifa->ifa_addr, (const struct sockaddr *)&all1_sa,
853 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
854 ~RTF_CLONING, &rt)) != 0) {
855 #if 0
856 log(LOG_ERR,
857 "nd6_lookup: failed to add route for a "
858 "neighbor(%s), errno=%d\n",
859 ip6_sprintf(addr6), e);
860 #endif
861 return NULL;
862 }
863 if (rt == NULL)
864 return NULL;
865 if (rt->rt_llinfo) {
866 struct llinfo_nd6 *ln =
867 (struct llinfo_nd6 *)rt->rt_llinfo;
868 ln->ln_state = ND6_LLINFO_NOSTATE;
869 }
870 } else
871 return NULL;
872 rt->rt_refcnt--;
873 /*
874 * Validation for the entry.
875 * Note that the check for rt_llinfo is necessary because a cloned
876 * route from a parent route that has the L flag (e.g. the default
877 * route to a p2p interface) may have the flag, too, while the
878 * destination is not actually a neighbor.
879 * XXX: we can't use rt->rt_ifp to check for the interface, since
880 * it might be the loopback interface if the entry is for our
881 * own address on a non-loopback interface. Instead, we should
882 * use rt->rt_ifa->ifa_ifp, which would specify the REAL
883 * interface.
884 * Note also that ifa_ifp and ifp may differ when we connect two
885 * interfaces to a same link, install a link prefix to an interface,
886 * and try to install a neighbor cache on an interface that does not
887 * have a route to the prefix.
888 */
889 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
890 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
891 (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
892 if (create) {
893 nd6log((LOG_DEBUG,
894 "nd6_lookup: failed to lookup %s (if = %s)\n",
895 ip6_sprintf(addr6),
896 ifp ? if_name(ifp) : "unspec"));
897 }
898 return NULL;
899 }
900 return rt;
901 }
902
903 /*
904 * Detect if a given IPv6 address identifies a neighbor on a given link.
905 * XXX: should take care of the destination of a p2p link?
906 */
907 int
908 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
909 {
910 struct nd_prefix *pr;
911
912 /*
913 * A link-local address is always a neighbor.
914 * XXX: a link does not necessarily specify a single interface.
915 */
916 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
917 struct sockaddr_in6 sin6_copy;
918 u_int32_t zone;
919
920 /*
921 * We need sin6_copy since sa6_recoverscope() may modify the
922 * content (XXX).
923 */
924 sin6_copy = *addr;
925 if (sa6_recoverscope(&sin6_copy))
926 return 0; /* XXX: should be impossible */
927 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
928 return 0;
929 if (sin6_copy.sin6_scope_id == zone)
930 return 1;
931 else
932 return 0;
933 }
934
935 /*
936 * If the address matches one of our on-link prefixes, it should be a
937 * neighbor.
938 */
939 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
940 if (pr->ndpr_ifp != ifp)
941 continue;
942
943 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
944 continue;
945
946 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
947 &addr->sin6_addr, &pr->ndpr_mask))
948 return 1;
949 }
950
951 /*
952 * If the default router list is empty, all addresses are regarded
953 * as on-link, and thus, as a neighbor.
954 * XXX: we restrict the condition to hosts, because routers usually do
955 * not have the "default router list".
956 */
957 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
958 nd6_defifindex == ifp->if_index) {
959 return 1;
960 }
961
962 /*
963 * Even if the address matches none of our addresses, it might be
964 * in the neighbor cache.
965 */
966 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
967 return 1;
968
969 return 0;
970 }
971
972 /*
973 * Free an nd6 llinfo entry.
974 * Since the function would cause significant changes in the kernel, DO NOT
975 * make it global, unless you have a strong reason for the change, and are sure
976 * that the change is safe.
977 */
978 static struct llinfo_nd6 *
979 nd6_free(struct rtentry *rt, int gc)
980 {
981 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
982 struct in6_addr in6 = satocsin6(rt_getkey(rt))->sin6_addr;
983 struct nd_defrouter *dr;
984
985 /*
986 * we used to have pfctlinput(PRC_HOSTDEAD) here.
987 * even though it is not harmful, it was not really necessary.
988 */
989
990 /* cancel timer */
991 nd6_llinfo_settimer(ln, -1);
992
993 if (!ip6_forwarding) {
994 int s;
995 s = splsoftnet();
996 dr = defrouter_lookup(&satocsin6(rt_getkey(rt))->sin6_addr,
997 rt->rt_ifp);
998
999 if (dr != NULL && dr->expire &&
1000 ln->ln_state == ND6_LLINFO_STALE && gc) {
1001 /*
1002 * If the reason for the deletion is just garbage
1003 * collection, and the neighbor is an active default
1004 * router, do not delete it. Instead, reset the GC
1005 * timer using the router's lifetime.
1006 * Simply deleting the entry would affect default
1007 * router selection, which is not necessarily a good
1008 * thing, especially when we're using router preference
1009 * values.
1010 * XXX: the check for ln_state would be redundant,
1011 * but we intentionally keep it just in case.
1012 */
1013 if (dr->expire > time_second)
1014 nd6_llinfo_settimer(ln,
1015 (dr->expire - time_second) * hz);
1016 else
1017 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1018 splx(s);
1019 return ln->ln_next;
1020 }
1021
1022 if (ln->ln_router || dr) {
1023 /*
1024 * rt6_flush must be called whether or not the neighbor
1025 * is in the Default Router List.
1026 * See a corresponding comment in nd6_na_input().
1027 */
1028 rt6_flush(&in6, rt->rt_ifp);
1029 }
1030
1031 if (dr) {
1032 /*
1033 * Unreachablity of a router might affect the default
1034 * router selection and on-link detection of advertised
1035 * prefixes.
1036 */
1037
1038 /*
1039 * Temporarily fake the state to choose a new default
1040 * router and to perform on-link determination of
1041 * prefixes correctly.
1042 * Below the state will be set correctly,
1043 * or the entry itself will be deleted.
1044 */
1045 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1046
1047 /*
1048 * Since defrouter_select() does not affect the
1049 * on-link determination and MIP6 needs the check
1050 * before the default router selection, we perform
1051 * the check now.
1052 */
1053 pfxlist_onlink_check();
1054
1055 /*
1056 * refresh default router list
1057 */
1058 defrouter_select();
1059 }
1060 splx(s);
1061 }
1062
1063 /*
1064 * Before deleting the entry, remember the next entry as the
1065 * return value. We need this because pfxlist_onlink_check() above
1066 * might have freed other entries (particularly the old next entry) as
1067 * a side effect (XXX).
1068 */
1069 next = ln->ln_next;
1070
1071 /*
1072 * Detach the route from the routing tree and the list of neighbor
1073 * caches, and disable the route entry not to be used in already
1074 * cached routes.
1075 */
1076 rtrequest(RTM_DELETE, rt_getkey(rt), NULL, rt_mask(rt), 0, NULL);
1077
1078 return next;
1079 }
1080
1081 /*
1082 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1083 *
1084 * XXX cost-effective methods?
1085 */
1086 void
1087 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1088 {
1089 struct llinfo_nd6 *ln;
1090
1091 /*
1092 * If the caller specified "rt", use that. Otherwise, resolve the
1093 * routing table by supplied "dst6".
1094 */
1095 if (rt == NULL) {
1096 if (dst6 == NULL)
1097 return;
1098 if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1099 return;
1100 }
1101
1102 if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1103 (rt->rt_flags & RTF_LLINFO) == 0 ||
1104 !rt->rt_llinfo || !rt->rt_gateway ||
1105 rt->rt_gateway->sa_family != AF_LINK) {
1106 /* This is not a host route. */
1107 return;
1108 }
1109
1110 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1111 if (ln->ln_state < ND6_LLINFO_REACHABLE)
1112 return;
1113
1114 /*
1115 * if we get upper-layer reachability confirmation many times,
1116 * it is possible we have false information.
1117 */
1118 if (!force) {
1119 ln->ln_byhint++;
1120 if (ln->ln_byhint > nd6_maxnudhint)
1121 return;
1122 }
1123
1124 ln->ln_state = ND6_LLINFO_REACHABLE;
1125 if (!ND6_LLINFO_PERMANENT(ln)) {
1126 nd6_llinfo_settimer(ln,
1127 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1128 }
1129 }
1130
1131 void
1132 nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
1133 {
1134 struct sockaddr *gate = rt->rt_gateway;
1135 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1136 struct ifnet *ifp = rt->rt_ifp;
1137 uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen;
1138 struct ifaddr *ifa;
1139
1140 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1141
1142 if (req == RTM_LLINFO_UPD) {
1143 int rc;
1144 struct in6_addr *in6;
1145 struct in6_addr in6_all;
1146 int anycast;
1147
1148 if ((ifa = info->rti_ifa) == NULL)
1149 return;
1150
1151 in6 = &ifatoia6(ifa)->ia_addr.sin6_addr;
1152 anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST;
1153
1154 in6_all = in6addr_linklocal_allnodes;
1155 if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) {
1156 log(LOG_ERR, "%s: failed to set scope %s "
1157 "(errno=%d)\n", __func__, if_name(ifp), rc);
1158 return;
1159 }
1160
1161 /* XXX don't set Override for proxy addresses */
1162 nd6_na_output(ifa->ifa_ifp, &in6_all, in6,
1163 (anycast ? 0 : ND_NA_FLAG_OVERRIDE)
1164 #if 0
1165 | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0)
1166 #endif
1167 , 1, NULL);
1168 return;
1169 }
1170
1171 if ((rt->rt_flags & RTF_GATEWAY) != 0)
1172 return;
1173
1174 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1175 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1176 /*
1177 * This is probably an interface direct route for a link
1178 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1179 * We do not need special treatment below for such a route.
1180 * Moreover, the RTF_LLINFO flag which would be set below
1181 * would annoy the ndp(8) command.
1182 */
1183 return;
1184 }
1185
1186 if (req == RTM_RESOLVE &&
1187 (nd6_need_cache(ifp) == 0 || /* stf case */
1188 !nd6_is_addr_neighbor(satocsin6(rt_getkey(rt)), ifp))) {
1189 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1190 /*
1191 * FreeBSD and BSD/OS often make a cloned host route based
1192 * on a less-specific route (e.g. the default route).
1193 * If the less specific route does not have a "gateway"
1194 * (this is the case when the route just goes to a p2p or an
1195 * stf interface), we'll mistakenly make a neighbor cache for
1196 * the host route, and will see strange neighbor solicitation
1197 * for the corresponding destination. In order to avoid the
1198 * confusion, we check if the destination of the route is
1199 * a neighbor in terms of neighbor discovery, and stop the
1200 * process if not. Additionally, we remove the LLINFO flag
1201 * so that ndp(8) will not try to get the neighbor information
1202 * of the destination.
1203 */
1204 rt->rt_flags &= ~RTF_LLINFO;
1205 return;
1206 }
1207
1208 switch (req) {
1209 case RTM_ADD:
1210 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1211 /*
1212 * There is no backward compatibility :)
1213 *
1214 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1215 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1216 * rt->rt_flags |= RTF_CLONING;
1217 */
1218 if ((rt->rt_flags & RTF_CLONING) ||
1219 ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1220 union {
1221 struct sockaddr sa;
1222 struct sockaddr_dl sdl;
1223 struct sockaddr_storage ss;
1224 } u;
1225 /*
1226 * Case 1: This route should come from a route to
1227 * interface (RTF_CLONING case) or the route should be
1228 * treated as on-link but is currently not
1229 * (RTF_LLINFO && ln == NULL case).
1230 */
1231 if (sockaddr_dl_init(&u.sdl, sizeof(u.ss),
1232 ifp->if_index, ifp->if_type,
1233 NULL, namelen, NULL, addrlen) == NULL) {
1234 printf("%s.%d: sockaddr_dl_init(, %zu, ) "
1235 "failed on %s\n", __func__, __LINE__,
1236 sizeof(u.ss), if_name(ifp));
1237 }
1238 rt_setgate(rt, &u.sa);
1239 gate = rt->rt_gateway;
1240 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1241 if (ln != NULL)
1242 nd6_llinfo_settimer(ln, 0);
1243 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1244 if ((rt->rt_flags & RTF_CLONING) != 0)
1245 break;
1246 }
1247 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1248 /*
1249 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1250 * We don't do that here since llinfo is not ready yet.
1251 *
1252 * There are also couple of other things to be discussed:
1253 * - unsolicited NA code needs improvement beforehand
1254 * - RFC2461 says we MAY send multicast unsolicited NA
1255 * (7.2.6 paragraph 4), however, it also says that we
1256 * SHOULD provide a mechanism to prevent multicast NA storm.
1257 * we don't have anything like it right now.
1258 * note that the mechanism needs a mutual agreement
1259 * between proxies, which means that we need to implement
1260 * a new protocol, or a new kludge.
1261 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1262 * we need to check ip6forwarding before sending it.
1263 * (or should we allow proxy ND configuration only for
1264 * routers? there's no mention about proxy ND from hosts)
1265 */
1266 #if 0
1267 /* XXX it does not work */
1268 if (rt->rt_flags & RTF_ANNOUNCE)
1269 nd6_na_output(ifp,
1270 &satocsin6(rt_getkey(rt))->sin6_addr,
1271 &satocsin6(rt_getkey(rt))->sin6_addr,
1272 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1273 1, NULL);
1274 #endif
1275 /* FALLTHROUGH */
1276 case RTM_RESOLVE:
1277 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1278 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1279 /*
1280 * Address resolution isn't necessary for a point to
1281 * point link, so we can skip this test for a p2p link.
1282 */
1283 if (gate->sa_family != AF_LINK ||
1284 gate->sa_len <
1285 sockaddr_dl_measure(namelen, addrlen)) {
1286 log(LOG_DEBUG,
1287 "nd6_rtrequest: bad gateway value: %s\n",
1288 if_name(ifp));
1289 break;
1290 }
1291 satosdl(gate)->sdl_type = ifp->if_type;
1292 satosdl(gate)->sdl_index = ifp->if_index;
1293 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1294 }
1295 if (ln != NULL)
1296 break; /* This happens on a route change */
1297 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1298 /*
1299 * Case 2: This route may come from cloning, or a manual route
1300 * add with a LL address.
1301 */
1302 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1303 rt->rt_llinfo = ln;
1304 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1305 if (ln == NULL) {
1306 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1307 break;
1308 }
1309 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1310 nd6_inuse++;
1311 nd6_allocated++;
1312 memset(ln, 0, sizeof(*ln));
1313 ln->ln_rt = rt;
1314 callout_init(&ln->ln_timer_ch, CALLOUT_MPSAFE);
1315 /* this is required for "ndp" command. - shin */
1316 if (req == RTM_ADD) {
1317 /*
1318 * gate should have some valid AF_LINK entry,
1319 * and ln->ln_expire should have some lifetime
1320 * which is specified by ndp command.
1321 */
1322 ln->ln_state = ND6_LLINFO_REACHABLE;
1323 ln->ln_byhint = 0;
1324 } else {
1325 /*
1326 * When req == RTM_RESOLVE, rt is created and
1327 * initialized in rtrequest(), so rt_expire is 0.
1328 */
1329 ln->ln_state = ND6_LLINFO_NOSTATE;
1330 nd6_llinfo_settimer(ln, 0);
1331 }
1332 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1333 rt->rt_flags |= RTF_LLINFO;
1334 ln->ln_next = llinfo_nd6.ln_next;
1335 llinfo_nd6.ln_next = ln;
1336 ln->ln_prev = &llinfo_nd6;
1337 ln->ln_next->ln_prev = ln;
1338
1339 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1340 /*
1341 * check if rt_getkey(rt) is an address assigned
1342 * to the interface.
1343 */
1344 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp,
1345 &satocsin6(rt_getkey(rt))->sin6_addr);
1346 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1347 if (ifa != NULL) {
1348 const void *mac;
1349 nd6_llinfo_settimer(ln, -1);
1350 ln->ln_state = ND6_LLINFO_REACHABLE;
1351 ln->ln_byhint = 0;
1352 if ((mac = nd6_ifptomac(ifp)) != NULL) {
1353 /* XXX check for error */
1354 if (sockaddr_dl_setaddr(satosdl(gate),
1355 gate->sa_len, mac,
1356 ifp->if_addrlen) == NULL) {
1357 printf("%s.%d: "
1358 "sockaddr_dl_setaddr(, %d, ) "
1359 "failed on %s\n", __func__,
1360 __LINE__, gate->sa_len,
1361 if_name(ifp));
1362 }
1363 }
1364 if (nd6_useloopback) {
1365 ifp = rt->rt_ifp = lo0ifp; /* XXX */
1366 /*
1367 * Make sure rt_ifa be equal to the ifaddr
1368 * corresponding to the address.
1369 * We need this because when we refer
1370 * rt_ifa->ia6_flags in ip6_input, we assume
1371 * that the rt_ifa points to the address instead
1372 * of the loopback address.
1373 */
1374 if (ifa != rt->rt_ifa)
1375 rt_replace_ifa(rt, ifa);
1376 rt->rt_flags &= ~RTF_CLONED;
1377 }
1378 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1379 nd6_llinfo_settimer(ln, -1);
1380 ln->ln_state = ND6_LLINFO_REACHABLE;
1381 ln->ln_byhint = 0;
1382
1383 /* join solicited node multicast for proxy ND */
1384 if (ifp->if_flags & IFF_MULTICAST) {
1385 struct in6_addr llsol;
1386 int error;
1387
1388 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1389 llsol.s6_addr32[0] = htonl(0xff020000);
1390 llsol.s6_addr32[1] = 0;
1391 llsol.s6_addr32[2] = htonl(1);
1392 llsol.s6_addr8[12] = 0xff;
1393 if (in6_setscope(&llsol, ifp, NULL))
1394 break;
1395 if (!in6_addmulti(&llsol, ifp, &error, 0)) {
1396 nd6log((LOG_ERR, "%s: failed to join "
1397 "%s (errno=%d)\n", if_name(ifp),
1398 ip6_sprintf(&llsol), error));
1399 }
1400 }
1401 }
1402 break;
1403
1404 case RTM_DELETE:
1405 if (ln == NULL)
1406 break;
1407 /* leave from solicited node multicast for proxy ND */
1408 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1409 (ifp->if_flags & IFF_MULTICAST) != 0) {
1410 struct in6_addr llsol;
1411 struct in6_multi *in6m;
1412
1413 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1414 llsol.s6_addr32[0] = htonl(0xff020000);
1415 llsol.s6_addr32[1] = 0;
1416 llsol.s6_addr32[2] = htonl(1);
1417 llsol.s6_addr8[12] = 0xff;
1418 if (in6_setscope(&llsol, ifp, NULL) == 0) {
1419 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1420 if (in6m)
1421 in6_delmulti(in6m);
1422 }
1423 }
1424 nd6_inuse--;
1425 ln->ln_next->ln_prev = ln->ln_prev;
1426 ln->ln_prev->ln_next = ln->ln_next;
1427 ln->ln_prev = NULL;
1428 nd6_llinfo_settimer(ln, -1);
1429 rt->rt_llinfo = 0;
1430 rt->rt_flags &= ~RTF_LLINFO;
1431 clear_llinfo_pqueue(ln);
1432 Free(ln);
1433 }
1434 }
1435
1436 int
1437 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp)
1438 {
1439 struct in6_drlist *drl = (struct in6_drlist *)data;
1440 struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1441 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1442 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1443 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1444 struct nd_defrouter *dr;
1445 struct nd_prefix *pr;
1446 struct rtentry *rt;
1447 int i = 0, error = 0;
1448 int s;
1449
1450 switch (cmd) {
1451 case SIOCGDRLST_IN6:
1452 /*
1453 * obsolete API, use sysctl under net.inet6.icmp6
1454 */
1455 memset(drl, 0, sizeof(*drl));
1456 s = splsoftnet();
1457 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
1458 if (i >= DRLSTSIZ)
1459 break;
1460 drl->defrouter[i].rtaddr = dr->rtaddr;
1461 in6_clearscope(&drl->defrouter[i].rtaddr);
1462
1463 drl->defrouter[i].flags = dr->flags;
1464 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1465 drl->defrouter[i].expire = dr->expire;
1466 drl->defrouter[i].if_index = dr->ifp->if_index;
1467 i++;
1468 }
1469 splx(s);
1470 break;
1471 case SIOCGPRLST_IN6:
1472 /*
1473 * obsolete API, use sysctl under net.inet6.icmp6
1474 *
1475 * XXX the structure in6_prlist was changed in backward-
1476 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1477 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1478 */
1479 /*
1480 * XXX meaning of fields, especialy "raflags", is very
1481 * differnet between RA prefix list and RR/static prefix list.
1482 * how about separating ioctls into two?
1483 */
1484 memset(oprl, 0, sizeof(*oprl));
1485 s = splsoftnet();
1486 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
1487 struct nd_pfxrouter *pfr;
1488 int j;
1489
1490 if (i >= PRLSTSIZ)
1491 break;
1492 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1493 oprl->prefix[i].raflags = pr->ndpr_raf;
1494 oprl->prefix[i].prefixlen = pr->ndpr_plen;
1495 oprl->prefix[i].vltime = pr->ndpr_vltime;
1496 oprl->prefix[i].pltime = pr->ndpr_pltime;
1497 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1498 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1499 oprl->prefix[i].expire = 0;
1500 else {
1501 time_t maxexpire;
1502
1503 /* XXX: we assume time_t is signed. */
1504 maxexpire = (-1) &
1505 ~((time_t)1 <<
1506 ((sizeof(maxexpire) * 8) - 1));
1507 if (pr->ndpr_vltime <
1508 maxexpire - pr->ndpr_lastupdate) {
1509 oprl->prefix[i].expire =
1510 pr->ndpr_lastupdate +
1511 pr->ndpr_vltime;
1512 } else
1513 oprl->prefix[i].expire = maxexpire;
1514 }
1515
1516 j = 0;
1517 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
1518 if (j < DRLSTSIZ) {
1519 #define RTRADDR oprl->prefix[i].advrtr[j]
1520 RTRADDR = pfr->router->rtaddr;
1521 in6_clearscope(&RTRADDR);
1522 #undef RTRADDR
1523 }
1524 j++;
1525 }
1526 oprl->prefix[i].advrtrs = j;
1527 oprl->prefix[i].origin = PR_ORIG_RA;
1528
1529 i++;
1530 }
1531 splx(s);
1532
1533 break;
1534 case OSIOCGIFINFO_IN6:
1535 #define ND ndi->ndi
1536 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1537 memset(&ND, 0, sizeof(ND));
1538 ND.linkmtu = IN6_LINKMTU(ifp);
1539 ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1540 ND.basereachable = ND_IFINFO(ifp)->basereachable;
1541 ND.reachable = ND_IFINFO(ifp)->reachable;
1542 ND.retrans = ND_IFINFO(ifp)->retrans;
1543 ND.flags = ND_IFINFO(ifp)->flags;
1544 ND.recalctm = ND_IFINFO(ifp)->recalctm;
1545 ND.chlim = ND_IFINFO(ifp)->chlim;
1546 break;
1547 case SIOCGIFINFO_IN6:
1548 ND = *ND_IFINFO(ifp);
1549 break;
1550 case SIOCSIFINFO_IN6:
1551 /*
1552 * used to change host variables from userland.
1553 * intented for a use on router to reflect RA configurations.
1554 */
1555 /* 0 means 'unspecified' */
1556 if (ND.linkmtu != 0) {
1557 if (ND.linkmtu < IPV6_MMTU ||
1558 ND.linkmtu > IN6_LINKMTU(ifp)) {
1559 error = EINVAL;
1560 break;
1561 }
1562 ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1563 }
1564
1565 if (ND.basereachable != 0) {
1566 int obasereachable = ND_IFINFO(ifp)->basereachable;
1567
1568 ND_IFINFO(ifp)->basereachable = ND.basereachable;
1569 if (ND.basereachable != obasereachable)
1570 ND_IFINFO(ifp)->reachable =
1571 ND_COMPUTE_RTIME(ND.basereachable);
1572 }
1573 if (ND.retrans != 0)
1574 ND_IFINFO(ifp)->retrans = ND.retrans;
1575 if (ND.chlim != 0)
1576 ND_IFINFO(ifp)->chlim = ND.chlim;
1577 /* FALLTHROUGH */
1578 case SIOCSIFINFO_FLAGS:
1579 ND_IFINFO(ifp)->flags = ND.flags;
1580 break;
1581 #undef ND
1582 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1583 /* sync kernel routing table with the default router list */
1584 defrouter_reset();
1585 defrouter_select();
1586 break;
1587 case SIOCSPFXFLUSH_IN6:
1588 {
1589 /* flush all the prefix advertised by routers */
1590 struct nd_prefix *pfx, *next;
1591
1592 s = splsoftnet();
1593 LIST_FOREACH_SAFE(pfx, &nd_prefix, ndpr_entry, next) {
1594 struct in6_ifaddr *ia, *ia_next;
1595
1596 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
1597 continue; /* XXX */
1598
1599 /* do we really have to remove addresses as well? */
1600 for (ia = in6_ifaddr; ia; ia = ia_next) {
1601 /* ia might be removed. keep the next ptr. */
1602 ia_next = ia->ia_next;
1603
1604 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1605 continue;
1606
1607 if (ia->ia6_ndpr == pfx)
1608 in6_purgeaddr(&ia->ia_ifa);
1609 }
1610 prelist_remove(pfx);
1611 }
1612 splx(s);
1613 break;
1614 }
1615 case SIOCSRTRFLUSH_IN6:
1616 {
1617 /* flush all the default routers */
1618 struct nd_defrouter *drtr, *next;
1619
1620 s = splsoftnet();
1621 defrouter_reset();
1622 TAILQ_FOREACH_SAFE(drtr, &nd_defrouter, dr_entry, next) {
1623 defrtrlist_del(drtr);
1624 }
1625 defrouter_select();
1626 splx(s);
1627 break;
1628 }
1629 case SIOCGNBRINFO_IN6:
1630 {
1631 struct llinfo_nd6 *ln;
1632 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1633
1634 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1635 return error;
1636
1637 s = splsoftnet();
1638 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL ||
1639 (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) {
1640 error = EINVAL;
1641 splx(s);
1642 break;
1643 }
1644 nbi->state = ln->ln_state;
1645 nbi->asked = ln->ln_asked;
1646 nbi->isrouter = ln->ln_router;
1647 nbi->expire = ln->ln_expire;
1648 splx(s);
1649
1650 break;
1651 }
1652 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1653 ndif->ifindex = nd6_defifindex;
1654 break;
1655 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1656 return nd6_setdefaultiface(ndif->ifindex);
1657 }
1658 return error;
1659 }
1660
1661 void
1662 nd6_llinfo_release_pkts(struct llinfo_nd6 *ln, struct ifnet *ifp,
1663 struct rtentry *rt)
1664 {
1665 struct mbuf *m_hold, *m_hold_next;
1666
1667 for (m_hold = ln->ln_hold, ln->ln_hold = NULL;
1668 m_hold != NULL;
1669 m_hold = m_hold_next) {
1670 m_hold_next = m_hold->m_nextpkt;
1671 m_hold->m_nextpkt = NULL;
1672
1673 /*
1674 * we assume ifp is not a p2p here, so
1675 * just set the 2nd argument as the
1676 * 1st one.
1677 */
1678 nd6_output(ifp, ifp, m_hold, satocsin6(rt_getkey(rt)), rt);
1679 }
1680 }
1681
1682 /*
1683 * Create neighbor cache entry and cache link-layer address,
1684 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1685 */
1686 struct rtentry *
1687 nd6_cache_lladdr(
1688 struct ifnet *ifp,
1689 struct in6_addr *from,
1690 char *lladdr,
1691 int lladdrlen,
1692 int type, /* ICMP6 type */
1693 int code /* type dependent information */
1694 )
1695 {
1696 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
1697 struct rtentry *rt = NULL;
1698 struct llinfo_nd6 *ln = NULL;
1699 int is_newentry;
1700 struct sockaddr_dl *sdl = NULL;
1701 int do_update;
1702 int olladdr;
1703 int llchange;
1704 int newstate = 0;
1705
1706 if (ifp == NULL)
1707 panic("ifp == NULL in nd6_cache_lladdr");
1708 if (from == NULL)
1709 panic("from == NULL in nd6_cache_lladdr");
1710
1711 /* nothing must be updated for unspecified address */
1712 if (IN6_IS_ADDR_UNSPECIFIED(from))
1713 return NULL;
1714
1715 /*
1716 * Validation about ifp->if_addrlen and lladdrlen must be done in
1717 * the caller.
1718 *
1719 * XXX If the link does not have link-layer adderss, what should
1720 * we do? (ifp->if_addrlen == 0)
1721 * Spec says nothing in sections for RA, RS and NA. There's small
1722 * description on it in NS section (RFC 2461 7.2.3).
1723 */
1724
1725 rt = nd6_lookup(from, 0, ifp);
1726 if (rt == NULL) {
1727 #if 0
1728 /* nothing must be done if there's no lladdr */
1729 if (!lladdr || !lladdrlen)
1730 return NULL;
1731 #endif
1732
1733 rt = nd6_lookup(from, 1, ifp);
1734 is_newentry = 1;
1735 } else {
1736 /* do nothing if static ndp is set */
1737 if (rt->rt_flags & RTF_STATIC)
1738 return NULL;
1739 is_newentry = 0;
1740 }
1741
1742 if (rt == NULL)
1743 return NULL;
1744 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1745 fail:
1746 (void)nd6_free(rt, 0);
1747 return NULL;
1748 }
1749 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1750 if (ln == NULL)
1751 goto fail;
1752 if (rt->rt_gateway == NULL)
1753 goto fail;
1754 if (rt->rt_gateway->sa_family != AF_LINK)
1755 goto fail;
1756 sdl = satosdl(rt->rt_gateway);
1757
1758 olladdr = (sdl->sdl_alen) ? 1 : 0;
1759 if (olladdr && lladdr) {
1760 if (memcmp(lladdr, CLLADDR(sdl), ifp->if_addrlen))
1761 llchange = 1;
1762 else
1763 llchange = 0;
1764 } else
1765 llchange = 0;
1766
1767 /*
1768 * newentry olladdr lladdr llchange (*=record)
1769 * 0 n n -- (1)
1770 * 0 y n -- (2)
1771 * 0 n y -- (3) * STALE
1772 * 0 y y n (4) *
1773 * 0 y y y (5) * STALE
1774 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1775 * 1 -- y -- (7) * STALE
1776 */
1777
1778 if (lladdr) { /* (3-5) and (7) */
1779 /*
1780 * Record source link-layer address
1781 * XXX is it dependent to ifp->if_type?
1782 */
1783 /* XXX check for error */
1784 if (sockaddr_dl_setaddr(sdl, sdl->sdl_len, lladdr,
1785 ifp->if_addrlen) == NULL) {
1786 printf("%s.%d: sockaddr_dl_setaddr(, %d, ) "
1787 "failed on %s\n", __func__, __LINE__,
1788 sdl->sdl_len, if_name(ifp));
1789 }
1790 }
1791
1792 if (!is_newentry) {
1793 if ((!olladdr && lladdr) || /* (3) */
1794 (olladdr && lladdr && llchange)) { /* (5) */
1795 do_update = 1;
1796 newstate = ND6_LLINFO_STALE;
1797 } else /* (1-2,4) */
1798 do_update = 0;
1799 } else {
1800 do_update = 1;
1801 if (lladdr == NULL) /* (6) */
1802 newstate = ND6_LLINFO_NOSTATE;
1803 else /* (7) */
1804 newstate = ND6_LLINFO_STALE;
1805 }
1806
1807 if (do_update) {
1808 /*
1809 * Update the state of the neighbor cache.
1810 */
1811 ln->ln_state = newstate;
1812
1813 if (ln->ln_state == ND6_LLINFO_STALE) {
1814 /*
1815 * XXX: since nd6_output() below will cause
1816 * state tansition to DELAY and reset the timer,
1817 * we must set the timer now, although it is actually
1818 * meaningless.
1819 */
1820 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1821
1822 nd6_llinfo_release_pkts(ln, ifp, rt);
1823 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1824 /* probe right away */
1825 nd6_llinfo_settimer((void *)ln, 0);
1826 }
1827 }
1828
1829 /*
1830 * ICMP6 type dependent behavior.
1831 *
1832 * NS: clear IsRouter if new entry
1833 * RS: clear IsRouter
1834 * RA: set IsRouter if there's lladdr
1835 * redir: clear IsRouter if new entry
1836 *
1837 * RA case, (1):
1838 * The spec says that we must set IsRouter in the following cases:
1839 * - If lladdr exist, set IsRouter. This means (1-5).
1840 * - If it is old entry (!newentry), set IsRouter. This means (7).
1841 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1842 * A quetion arises for (1) case. (1) case has no lladdr in the
1843 * neighbor cache, this is similar to (6).
1844 * This case is rare but we figured that we MUST NOT set IsRouter.
1845 *
1846 * newentry olladdr lladdr llchange NS RS RA redir
1847 * D R
1848 * 0 n n -- (1) c ? s
1849 * 0 y n -- (2) c s s
1850 * 0 n y -- (3) c s s
1851 * 0 y y n (4) c s s
1852 * 0 y y y (5) c s s
1853 * 1 -- n -- (6) c c c s
1854 * 1 -- y -- (7) c c s c s
1855 *
1856 * (c=clear s=set)
1857 */
1858 switch (type & 0xff) {
1859 case ND_NEIGHBOR_SOLICIT:
1860 /*
1861 * New entry must have is_router flag cleared.
1862 */
1863 if (is_newentry) /* (6-7) */
1864 ln->ln_router = 0;
1865 break;
1866 case ND_REDIRECT:
1867 /*
1868 * If the icmp is a redirect to a better router, always set the
1869 * is_router flag. Otherwise, if the entry is newly created,
1870 * clear the flag. [RFC 2461, sec 8.3]
1871 */
1872 if (code == ND_REDIRECT_ROUTER)
1873 ln->ln_router = 1;
1874 else if (is_newentry) /* (6-7) */
1875 ln->ln_router = 0;
1876 break;
1877 case ND_ROUTER_SOLICIT:
1878 /*
1879 * is_router flag must always be cleared.
1880 */
1881 ln->ln_router = 0;
1882 break;
1883 case ND_ROUTER_ADVERT:
1884 /*
1885 * Mark an entry with lladdr as a router.
1886 */
1887 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
1888 (is_newentry && lladdr)) { /* (7) */
1889 ln->ln_router = 1;
1890 }
1891 break;
1892 }
1893
1894 /*
1895 * When the link-layer address of a router changes, select the
1896 * best router again. In particular, when the neighbor entry is newly
1897 * created, it might affect the selection policy.
1898 * Question: can we restrict the first condition to the "is_newentry"
1899 * case?
1900 * XXX: when we hear an RA from a new router with the link-layer
1901 * address option, defrouter_select() is called twice, since
1902 * defrtrlist_update called the function as well. However, I believe
1903 * we can compromise the overhead, since it only happens the first
1904 * time.
1905 * XXX: although defrouter_select() should not have a bad effect
1906 * for those are not autoconfigured hosts, we explicitly avoid such
1907 * cases for safety.
1908 */
1909 if (do_update && ln->ln_router && !ip6_forwarding &&
1910 nd6_accepts_rtadv(ndi))
1911 defrouter_select();
1912
1913 return rt;
1914 }
1915
1916 static void
1917 nd6_slowtimo(void *ignored_arg)
1918 {
1919 struct nd_ifinfo *nd6if;
1920 struct ifnet *ifp;
1921
1922 mutex_enter(softnet_lock);
1923 KERNEL_LOCK(1, NULL);
1924 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1925 nd6_slowtimo, NULL);
1926 TAILQ_FOREACH(ifp, &ifnet, if_list) {
1927 nd6if = ND_IFINFO(ifp);
1928 if (nd6if->basereachable && /* already initialized */
1929 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1930 /*
1931 * Since reachable time rarely changes by router
1932 * advertisements, we SHOULD insure that a new random
1933 * value gets recomputed at least once every few hours.
1934 * (RFC 2461, 6.3.4)
1935 */
1936 nd6if->recalctm = nd6_recalc_reachtm_interval;
1937 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1938 }
1939 }
1940 KERNEL_UNLOCK_ONE(NULL);
1941 mutex_exit(softnet_lock);
1942 }
1943
1944 #define senderr(e) { error = (e); goto bad;}
1945 int
1946 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
1947 const struct sockaddr_in6 *dst, struct rtentry *rt0)
1948 {
1949 struct mbuf *m = m0;
1950 struct rtentry *rt = rt0;
1951 struct sockaddr_in6 *gw6 = NULL;
1952 struct llinfo_nd6 *ln = NULL;
1953 int error = 0;
1954
1955 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1956 goto sendpkt;
1957
1958 if (nd6_need_cache(ifp) == 0)
1959 goto sendpkt;
1960
1961 /*
1962 * next hop determination. This routine is derived from ether_output.
1963 */
1964 if (rt) {
1965 if ((rt->rt_flags & RTF_UP) == 0) {
1966 if ((rt0 = rt = rtalloc1(sin6tocsa(dst), 1)) != NULL) {
1967 rt->rt_refcnt--;
1968 if (rt->rt_ifp != ifp)
1969 senderr(EHOSTUNREACH);
1970 } else
1971 senderr(EHOSTUNREACH);
1972 }
1973
1974 if (rt->rt_flags & RTF_GATEWAY) {
1975 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1976
1977 /*
1978 * We skip link-layer address resolution and NUD
1979 * if the gateway is not a neighbor from ND point
1980 * of view, regardless of the value of nd_ifinfo.flags.
1981 * The second condition is a bit tricky; we skip
1982 * if the gateway is our own address, which is
1983 * sometimes used to install a route to a p2p link.
1984 */
1985 if (!nd6_is_addr_neighbor(gw6, ifp) ||
1986 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1987 /*
1988 * We allow this kind of tricky route only
1989 * when the outgoing interface is p2p.
1990 * XXX: we may need a more generic rule here.
1991 */
1992 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1993 senderr(EHOSTUNREACH);
1994
1995 goto sendpkt;
1996 }
1997
1998 if (rt->rt_gwroute == NULL)
1999 goto lookup;
2000 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
2001 rtfree(rt); rt = rt0;
2002 lookup:
2003 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
2004 if ((rt = rt->rt_gwroute) == NULL)
2005 senderr(EHOSTUNREACH);
2006 /* the "G" test below also prevents rt == rt0 */
2007 if ((rt->rt_flags & RTF_GATEWAY) ||
2008 (rt->rt_ifp != ifp)) {
2009 rt->rt_refcnt--;
2010 rt0->rt_gwroute = NULL;
2011 senderr(EHOSTUNREACH);
2012 }
2013 }
2014 }
2015 }
2016
2017 /*
2018 * Address resolution or Neighbor Unreachability Detection
2019 * for the next hop.
2020 * At this point, the destination of the packet must be a unicast
2021 * or an anycast address(i.e. not a multicast).
2022 */
2023
2024 /* Look up the neighbor cache for the nexthop */
2025 if (rt != NULL && (rt->rt_flags & RTF_LLINFO) != 0)
2026 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2027 else {
2028 /*
2029 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2030 * the condition below is not very efficient. But we believe
2031 * it is tolerable, because this should be a rare case.
2032 */
2033 if (nd6_is_addr_neighbor(dst, ifp) &&
2034 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
2035 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2036 }
2037 if (ln == NULL || rt == NULL) {
2038 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2039 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2040 log(LOG_DEBUG,
2041 "nd6_output: can't allocate llinfo for %s "
2042 "(ln=%p, rt=%p)\n",
2043 ip6_sprintf(&dst->sin6_addr), ln, rt);
2044 senderr(EIO); /* XXX: good error? */
2045 }
2046
2047 goto sendpkt; /* send anyway */
2048 }
2049
2050 /* We don't have to do link-layer address resolution on a p2p link. */
2051 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2052 ln->ln_state < ND6_LLINFO_REACHABLE) {
2053 ln->ln_state = ND6_LLINFO_STALE;
2054 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2055 }
2056
2057 /*
2058 * The first time we send a packet to a neighbor whose entry is
2059 * STALE, we have to change the state to DELAY and a sets a timer to
2060 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2061 * neighbor unreachability detection on expiration.
2062 * (RFC 2461 7.3.3)
2063 */
2064 if (ln->ln_state == ND6_LLINFO_STALE) {
2065 ln->ln_asked = 0;
2066 ln->ln_state = ND6_LLINFO_DELAY;
2067 nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2068 }
2069
2070 /*
2071 * If the neighbor cache entry has a state other than INCOMPLETE
2072 * (i.e. its link-layer address is already resolved), just
2073 * send the packet.
2074 */
2075 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2076 goto sendpkt;
2077
2078 /*
2079 * There is a neighbor cache entry, but no ethernet address
2080 * response yet. Append this latest packet to the end of the
2081 * packet queue in the mbuf, unless the number of the packet
2082 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen,
2083 * the oldest packet in the queue will be removed.
2084 */
2085 if (ln->ln_state == ND6_LLINFO_NOSTATE)
2086 ln->ln_state = ND6_LLINFO_INCOMPLETE;
2087 if (ln->ln_hold) {
2088 struct mbuf *m_hold;
2089 int i;
2090
2091 i = 0;
2092 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2093 i++;
2094 if (m_hold->m_nextpkt == NULL) {
2095 m_hold->m_nextpkt = m;
2096 break;
2097 }
2098 }
2099 while (i >= nd6_maxqueuelen) {
2100 m_hold = ln->ln_hold;
2101 ln->ln_hold = ln->ln_hold->m_nextpkt;
2102 m_freem(m_hold);
2103 i--;
2104 }
2105 } else {
2106 ln->ln_hold = m;
2107 }
2108
2109 /*
2110 * If there has been no NS for the neighbor after entering the
2111 * INCOMPLETE state, send the first solicitation.
2112 */
2113 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2114 ln->ln_asked++;
2115 nd6_llinfo_settimer(ln,
2116 (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2117 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2118 }
2119 return 0;
2120
2121 sendpkt:
2122 /* discard the packet if IPv6 operation is disabled on the interface */
2123 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2124 error = ENETDOWN; /* better error? */
2125 goto bad;
2126 }
2127
2128 #ifdef KAME_IPSEC
2129 /* clean ipsec history once it goes out of the node */
2130 ipsec_delaux(m);
2131 #endif
2132 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2133 return (*ifp->if_output)(origifp, m, sin6tocsa(dst), rt);
2134 return (*ifp->if_output)(ifp, m, sin6tocsa(dst), rt);
2135
2136 bad:
2137 if (m != NULL)
2138 m_freem(m);
2139 return error;
2140 }
2141 #undef senderr
2142
2143 int
2144 nd6_need_cache(struct ifnet *ifp)
2145 {
2146 /*
2147 * XXX: we currently do not make neighbor cache on any interface
2148 * other than ARCnet, Ethernet, FDDI and GIF.
2149 *
2150 * RFC2893 says:
2151 * - unidirectional tunnels needs no ND
2152 */
2153 switch (ifp->if_type) {
2154 case IFT_ARCNET:
2155 case IFT_ETHER:
2156 case IFT_FDDI:
2157 case IFT_IEEE1394:
2158 case IFT_CARP:
2159 case IFT_GIF: /* XXX need more cases? */
2160 case IFT_PPP:
2161 case IFT_TUNNEL:
2162 return 1;
2163 default:
2164 return 0;
2165 }
2166 }
2167
2168 int
2169 nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt,
2170 struct mbuf *m, const struct sockaddr *dst, uint8_t *lldst,
2171 size_t dstsize)
2172 {
2173 const struct sockaddr_dl *sdl;
2174
2175 if (m->m_flags & M_MCAST) {
2176 switch (ifp->if_type) {
2177 case IFT_ETHER:
2178 case IFT_FDDI:
2179 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
2180 lldst);
2181 return 1;
2182 case IFT_IEEE1394:
2183 memcpy(lldst, ifp->if_broadcastaddr,
2184 MIN(dstsize, ifp->if_addrlen));
2185 return 1;
2186 case IFT_ARCNET:
2187 *lldst = 0;
2188 return 1;
2189 default:
2190 m_freem(m);
2191 return 0;
2192 }
2193 }
2194
2195 if (rt == NULL) {
2196 /* this could happen, if we could not allocate memory */
2197 m_freem(m);
2198 return 0;
2199 }
2200 if (rt->rt_gateway->sa_family != AF_LINK) {
2201 printf("%s: something odd happens\n", __func__);
2202 m_freem(m);
2203 return 0;
2204 }
2205 sdl = satocsdl(rt->rt_gateway);
2206 if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) {
2207 /* this should be impossible, but we bark here for debugging */
2208 printf("%s: sdl_alen == %" PRIu8 ", dst=%s, if=%s\n", __func__,
2209 sdl->sdl_alen, ip6_sprintf(&satocsin6(dst)->sin6_addr),
2210 if_name(ifp));
2211 m_freem(m);
2212 return 0;
2213 }
2214
2215 memcpy(lldst, CLLADDR(sdl), MIN(dstsize, sdl->sdl_alen));
2216 return 1;
2217 }
2218
2219 static void
2220 clear_llinfo_pqueue(struct llinfo_nd6 *ln)
2221 {
2222 struct mbuf *m_hold, *m_hold_next;
2223
2224 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2225 m_hold_next = m_hold->m_nextpkt;
2226 m_hold->m_nextpkt = NULL;
2227 m_freem(m_hold);
2228 }
2229
2230 ln->ln_hold = NULL;
2231 return;
2232 }
2233
2234 int
2235 nd6_sysctl(
2236 int name,
2237 void *oldp, /* syscall arg, need copyout */
2238 size_t *oldlenp,
2239 void *newp, /* syscall arg, need copyin */
2240 size_t newlen
2241 )
2242 {
2243 void *p;
2244 size_t ol;
2245 int error;
2246
2247 error = 0;
2248
2249 if (newp)
2250 return EPERM;
2251 if (oldp && !oldlenp)
2252 return EINVAL;
2253 ol = oldlenp ? *oldlenp : 0;
2254
2255 if (oldp) {
2256 p = malloc(*oldlenp, M_TEMP, M_WAITOK);
2257 if (p == NULL)
2258 return ENOMEM;
2259 } else
2260 p = NULL;
2261 switch (name) {
2262 case ICMPV6CTL_ND6_DRLIST:
2263 error = fill_drlist(p, oldlenp, ol);
2264 if (!error && p != NULL && oldp != NULL)
2265 error = copyout(p, oldp, *oldlenp);
2266 break;
2267
2268 case ICMPV6CTL_ND6_PRLIST:
2269 error = fill_prlist(p, oldlenp, ol);
2270 if (!error && p != NULL && oldp != NULL)
2271 error = copyout(p, oldp, *oldlenp);
2272 break;
2273
2274 case ICMPV6CTL_ND6_MAXQLEN:
2275 break;
2276
2277 default:
2278 error = ENOPROTOOPT;
2279 break;
2280 }
2281 if (p)
2282 free(p, M_TEMP);
2283
2284 return error;
2285 }
2286
2287 static int
2288 fill_drlist(void *oldp, size_t *oldlenp, size_t ol)
2289 {
2290 int error = 0, s;
2291 struct in6_defrouter *d = NULL, *de = NULL;
2292 struct nd_defrouter *dr;
2293 size_t l;
2294
2295 s = splsoftnet();
2296
2297 if (oldp) {
2298 d = (struct in6_defrouter *)oldp;
2299 de = (struct in6_defrouter *)((char *)oldp + *oldlenp);
2300 }
2301 l = 0;
2302
2303 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
2304
2305 if (oldp && d + 1 <= de) {
2306 memset(d, 0, sizeof(*d));
2307 sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0);
2308 if (sa6_recoverscope(&d->rtaddr)) {
2309 log(LOG_ERR,
2310 "scope error in router list (%s)\n",
2311 ip6_sprintf(&d->rtaddr.sin6_addr));
2312 /* XXX: press on... */
2313 }
2314 d->flags = dr->flags;
2315 d->rtlifetime = dr->rtlifetime;
2316 d->expire = dr->expire;
2317 d->if_index = dr->ifp->if_index;
2318 }
2319
2320 l += sizeof(*d);
2321 if (d)
2322 d++;
2323 }
2324
2325 if (oldp) {
2326 if (l > ol)
2327 error = ENOMEM;
2328 }
2329 if (oldlenp)
2330 *oldlenp = l; /* (void *)d - (void *)oldp */
2331
2332 splx(s);
2333
2334 return error;
2335 }
2336
2337 static int
2338 fill_prlist(void *oldp, size_t *oldlenp, size_t ol)
2339 {
2340 int error = 0, s;
2341 struct nd_prefix *pr;
2342 struct in6_prefix *p = NULL;
2343 struct in6_prefix *pe = NULL;
2344 size_t l;
2345
2346 s = splsoftnet();
2347
2348 if (oldp) {
2349 p = (struct in6_prefix *)oldp;
2350 pe = (struct in6_prefix *)((char *)oldp + *oldlenp);
2351 }
2352 l = 0;
2353
2354 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
2355 u_short advrtrs;
2356 size_t advance;
2357 struct sockaddr_in6 *sin6;
2358 struct sockaddr_in6 *s6;
2359 struct nd_pfxrouter *pfr;
2360
2361 if (oldp && p + 1 <= pe)
2362 {
2363 memset(p, 0, sizeof(*p));
2364 sin6 = (struct sockaddr_in6 *)(p + 1);
2365
2366 p->prefix = pr->ndpr_prefix;
2367 if (sa6_recoverscope(&p->prefix)) {
2368 log(LOG_ERR,
2369 "scope error in prefix list (%s)\n",
2370 ip6_sprintf(&p->prefix.sin6_addr));
2371 /* XXX: press on... */
2372 }
2373 p->raflags = pr->ndpr_raf;
2374 p->prefixlen = pr->ndpr_plen;
2375 p->vltime = pr->ndpr_vltime;
2376 p->pltime = pr->ndpr_pltime;
2377 p->if_index = pr->ndpr_ifp->if_index;
2378 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2379 p->expire = 0;
2380 else {
2381 time_t maxexpire;
2382
2383 /* XXX: we assume time_t is signed. */
2384 maxexpire = (-1) &
2385 ~((time_t)1 <<
2386 ((sizeof(maxexpire) * 8) - 1));
2387 if (pr->ndpr_vltime <
2388 maxexpire - pr->ndpr_lastupdate) {
2389 p->expire = pr->ndpr_lastupdate +
2390 pr->ndpr_vltime;
2391 } else
2392 p->expire = maxexpire;
2393 }
2394 p->refcnt = pr->ndpr_refcnt;
2395 p->flags = pr->ndpr_stateflags;
2396 p->origin = PR_ORIG_RA;
2397 advrtrs = 0;
2398 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2399 if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2400 advrtrs++;
2401 continue;
2402 }
2403 s6 = &sin6[advrtrs];
2404 sockaddr_in6_init(s6, &pfr->router->rtaddr,
2405 0, 0, 0);
2406 if (sa6_recoverscope(s6)) {
2407 log(LOG_ERR,
2408 "scope error in "
2409 "prefix list (%s)\n",
2410 ip6_sprintf(&pfr->router->rtaddr));
2411 }
2412 advrtrs++;
2413 }
2414 p->advrtrs = advrtrs;
2415 }
2416 else {
2417 advrtrs = 0;
2418 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry)
2419 advrtrs++;
2420 }
2421
2422 advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2423 l += advance;
2424 if (p)
2425 p = (struct in6_prefix *)((char *)p + advance);
2426 }
2427
2428 if (oldp) {
2429 *oldlenp = l; /* (void *)d - (void *)oldp */
2430 if (l > ol)
2431 error = ENOMEM;
2432 } else
2433 *oldlenp = l;
2434
2435 splx(s);
2436
2437 return error;
2438 }
2439