nd6.c revision 1.141.8.2 1 /* $NetBSD: nd6.c,v 1.141.8.2 2013/12/17 20:47:49 bouyer Exp $ */
2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.141.8.2 2013/12/17 20:47:49 bouyer Exp $");
35
36 #include "opt_ipsec.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/callout.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/socket.h>
44 #include <sys/socketvar.h>
45 #include <sys/sockio.h>
46 #include <sys/time.h>
47 #include <sys/kernel.h>
48 #include <sys/protosw.h>
49 #include <sys/errno.h>
50 #include <sys/ioctl.h>
51 #include <sys/syslog.h>
52 #include <sys/queue.h>
53 #include <sys/cprng.h>
54
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_types.h>
58 #include <net/route.h>
59 #include <net/if_ether.h>
60 #include <net/if_fddi.h>
61 #include <net/if_arc.h>
62
63 #include <netinet/in.h>
64 #include <netinet6/in6_var.h>
65 #include <netinet/ip6.h>
66 #include <netinet6/ip6_var.h>
67 #include <netinet6/scope6_var.h>
68 #include <netinet6/nd6.h>
69 #include <netinet/icmp6.h>
70 #include <netinet6/icmp6_private.h>
71
72 #ifdef KAME_IPSEC
73 #include <netinet6/ipsec.h>
74 #endif
75
76 #include <net/net_osdep.h>
77
78 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
79 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
80
81 /* timer values */
82 int nd6_prune = 1; /* walk list every 1 seconds */
83 int nd6_delay = 5; /* delay first probe time 5 second */
84 int nd6_umaxtries = 3; /* maximum unicast query */
85 int nd6_mmaxtries = 3; /* maximum multicast query */
86 int nd6_useloopback = 1; /* use loopback interface for local traffic */
87 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
88
89 /* preventing too many loops in ND option parsing */
90 int nd6_maxndopt = 10; /* max # of ND options allowed */
91
92 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
93
94 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
95
96 #ifdef ND6_DEBUG
97 int nd6_debug = 1;
98 #else
99 int nd6_debug = 0;
100 #endif
101
102 /* for debugging? */
103 static int nd6_inuse, nd6_allocated;
104
105 struct llinfo_nd6 llinfo_nd6 = {
106 .ln_prev = &llinfo_nd6,
107 .ln_next = &llinfo_nd6,
108 };
109 struct nd_drhead nd_defrouter;
110 struct nd_prhead nd_prefix = { 0 };
111
112 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
113 static const struct sockaddr_in6 all1_sa = {
114 .sin6_family = AF_INET6
115 , .sin6_len = sizeof(struct sockaddr_in6)
116 , .sin6_addr = {.s6_addr = {0xff, 0xff, 0xff, 0xff,
117 0xff, 0xff, 0xff, 0xff,
118 0xff, 0xff, 0xff, 0xff,
119 0xff, 0xff, 0xff, 0xff}}
120 };
121
122 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
123 static void nd6_slowtimo(void *);
124 static int regen_tmpaddr(struct in6_ifaddr *);
125 static struct llinfo_nd6 *nd6_free(struct rtentry *, int);
126 static void nd6_llinfo_timer(void *);
127 static void clear_llinfo_pqueue(struct llinfo_nd6 *);
128
129 callout_t nd6_slowtimo_ch;
130 callout_t nd6_timer_ch;
131 extern callout_t in6_tmpaddrtimer_ch;
132
133 static int fill_drlist(void *, size_t *, size_t);
134 static int fill_prlist(void *, size_t *, size_t);
135
136 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
137
138 #define LN_DEQUEUE(ln) do { \
139 (ln)->ln_next->ln_prev = (ln)->ln_prev; \
140 (ln)->ln_prev->ln_next = (ln)->ln_next; \
141 } while (/*CONSTCOND*/0)
142 #define LN_INSERTHEAD(ln) do { \
143 (ln)->ln_next = llinfo_nd6.ln_next; \
144 llinfo_nd6.ln_next = (ln); \
145 (ln)->ln_prev = &llinfo_nd6; \
146 (ln)->ln_next->ln_prev = (ln); \
147 } while (/*CONSTCOND*/0)
148
149 void
150 nd6_init(void)
151 {
152 static int nd6_init_done = 0;
153
154 if (nd6_init_done) {
155 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
156 return;
157 }
158
159 /* initialization of the default router list */
160 TAILQ_INIT(&nd_defrouter);
161
162 nd6_init_done = 1;
163
164 callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE);
165 callout_init(&nd6_timer_ch, CALLOUT_MPSAFE);
166
167 /* start timer */
168 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
169 nd6_slowtimo, NULL);
170 }
171
172 struct nd_ifinfo *
173 nd6_ifattach(struct ifnet *ifp)
174 {
175 struct nd_ifinfo *nd;
176
177 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO);
178
179 nd->initialized = 1;
180
181 nd->chlim = IPV6_DEFHLIM;
182 nd->basereachable = REACHABLE_TIME;
183 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
184 nd->retrans = RETRANS_TIMER;
185 /*
186 * Note that the default value of ip6_accept_rtadv is 0.
187 * Because we do not set ND6_IFF_OVERRIDE_RTADV here, we won't
188 * accept RAs by default.
189 */
190 nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV;
191
192 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
193 nd6_setmtu0(ifp, nd);
194
195 return nd;
196 }
197
198 void
199 nd6_ifdetach(struct nd_ifinfo *nd)
200 {
201
202 free(nd, M_IP6NDP);
203 }
204
205 void
206 nd6_setmtu(struct ifnet *ifp)
207 {
208 nd6_setmtu0(ifp, ND_IFINFO(ifp));
209 }
210
211 void
212 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
213 {
214 u_int32_t omaxmtu;
215
216 omaxmtu = ndi->maxmtu;
217
218 switch (ifp->if_type) {
219 case IFT_ARCNET:
220 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
221 break;
222 case IFT_FDDI:
223 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
224 break;
225 default:
226 ndi->maxmtu = ifp->if_mtu;
227 break;
228 }
229
230 /*
231 * Decreasing the interface MTU under IPV6 minimum MTU may cause
232 * undesirable situation. We thus notify the operator of the change
233 * explicitly. The check for omaxmtu is necessary to restrict the
234 * log to the case of changing the MTU, not initializing it.
235 */
236 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
237 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
238 " small for IPv6 which needs %lu\n",
239 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
240 IPV6_MMTU);
241 }
242
243 if (ndi->maxmtu > in6_maxmtu)
244 in6_setmaxmtu(); /* check all interfaces just in case */
245 }
246
247 void
248 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
249 {
250
251 memset(ndopts, 0, sizeof(*ndopts));
252 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
253 ndopts->nd_opts_last
254 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
255
256 if (icmp6len == 0) {
257 ndopts->nd_opts_done = 1;
258 ndopts->nd_opts_search = NULL;
259 }
260 }
261
262 /*
263 * Take one ND option.
264 */
265 struct nd_opt_hdr *
266 nd6_option(union nd_opts *ndopts)
267 {
268 struct nd_opt_hdr *nd_opt;
269 int olen;
270
271 if (ndopts == NULL)
272 panic("ndopts == NULL in nd6_option");
273 if (ndopts->nd_opts_last == NULL)
274 panic("uninitialized ndopts in nd6_option");
275 if (ndopts->nd_opts_search == NULL)
276 return NULL;
277 if (ndopts->nd_opts_done)
278 return NULL;
279
280 nd_opt = ndopts->nd_opts_search;
281
282 /* make sure nd_opt_len is inside the buffer */
283 if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) {
284 memset(ndopts, 0, sizeof(*ndopts));
285 return NULL;
286 }
287
288 olen = nd_opt->nd_opt_len << 3;
289 if (olen == 0) {
290 /*
291 * Message validation requires that all included
292 * options have a length that is greater than zero.
293 */
294 memset(ndopts, 0, sizeof(*ndopts));
295 return NULL;
296 }
297
298 ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen);
299 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
300 /* option overruns the end of buffer, invalid */
301 memset(ndopts, 0, sizeof(*ndopts));
302 return NULL;
303 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
304 /* reached the end of options chain */
305 ndopts->nd_opts_done = 1;
306 ndopts->nd_opts_search = NULL;
307 }
308 return nd_opt;
309 }
310
311 /*
312 * Parse multiple ND options.
313 * This function is much easier to use, for ND routines that do not need
314 * multiple options of the same type.
315 */
316 int
317 nd6_options(union nd_opts *ndopts)
318 {
319 struct nd_opt_hdr *nd_opt;
320 int i = 0;
321
322 if (ndopts == NULL)
323 panic("ndopts == NULL in nd6_options");
324 if (ndopts->nd_opts_last == NULL)
325 panic("uninitialized ndopts in nd6_options");
326 if (ndopts->nd_opts_search == NULL)
327 return 0;
328
329 while (1) {
330 nd_opt = nd6_option(ndopts);
331 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
332 /*
333 * Message validation requires that all included
334 * options have a length that is greater than zero.
335 */
336 ICMP6_STATINC(ICMP6_STAT_ND_BADOPT);
337 memset(ndopts, 0, sizeof(*ndopts));
338 return -1;
339 }
340
341 if (nd_opt == NULL)
342 goto skip1;
343
344 switch (nd_opt->nd_opt_type) {
345 case ND_OPT_SOURCE_LINKADDR:
346 case ND_OPT_TARGET_LINKADDR:
347 case ND_OPT_MTU:
348 case ND_OPT_REDIRECTED_HEADER:
349 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
350 nd6log((LOG_INFO,
351 "duplicated ND6 option found (type=%d)\n",
352 nd_opt->nd_opt_type));
353 /* XXX bark? */
354 } else {
355 ndopts->nd_opt_array[nd_opt->nd_opt_type]
356 = nd_opt;
357 }
358 break;
359 case ND_OPT_PREFIX_INFORMATION:
360 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
361 ndopts->nd_opt_array[nd_opt->nd_opt_type]
362 = nd_opt;
363 }
364 ndopts->nd_opts_pi_end =
365 (struct nd_opt_prefix_info *)nd_opt;
366 break;
367 default:
368 /*
369 * Unknown options must be silently ignored,
370 * to accommodate future extension to the protocol.
371 */
372 nd6log((LOG_DEBUG,
373 "nd6_options: unsupported option %d - "
374 "option ignored\n", nd_opt->nd_opt_type));
375 }
376
377 skip1:
378 i++;
379 if (i > nd6_maxndopt) {
380 ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT);
381 nd6log((LOG_INFO, "too many loop in nd opt\n"));
382 break;
383 }
384
385 if (ndopts->nd_opts_done)
386 break;
387 }
388
389 return 0;
390 }
391
392 /*
393 * ND6 timer routine to handle ND6 entries
394 */
395 void
396 nd6_llinfo_settimer(struct llinfo_nd6 *ln, long xtick)
397 {
398 int s;
399
400 s = splsoftnet();
401
402 if (xtick < 0) {
403 ln->ln_expire = 0;
404 ln->ln_ntick = 0;
405 callout_stop(&ln->ln_timer_ch);
406 } else {
407 ln->ln_expire = time_second + xtick / hz;
408 if (xtick > INT_MAX) {
409 ln->ln_ntick = xtick - INT_MAX;
410 callout_reset(&ln->ln_timer_ch, INT_MAX,
411 nd6_llinfo_timer, ln);
412 } else {
413 ln->ln_ntick = 0;
414 callout_reset(&ln->ln_timer_ch, xtick,
415 nd6_llinfo_timer, ln);
416 }
417 }
418
419 splx(s);
420 }
421
422 static void
423 nd6_llinfo_timer(void *arg)
424 {
425 struct llinfo_nd6 *ln;
426 struct rtentry *rt;
427 const struct sockaddr_in6 *dst;
428 struct ifnet *ifp;
429 struct nd_ifinfo *ndi = NULL;
430
431 mutex_enter(softnet_lock);
432 KERNEL_LOCK(1, NULL);
433
434 ln = (struct llinfo_nd6 *)arg;
435
436 if (ln->ln_ntick > 0) {
437 nd6_llinfo_settimer(ln, ln->ln_ntick);
438 KERNEL_UNLOCK_ONE(NULL);
439 mutex_exit(softnet_lock);
440 return;
441 }
442
443 if ((rt = ln->ln_rt) == NULL)
444 panic("ln->ln_rt == NULL");
445 if ((ifp = rt->rt_ifp) == NULL)
446 panic("ln->ln_rt->rt_ifp == NULL");
447 ndi = ND_IFINFO(ifp);
448 dst = satocsin6(rt_getkey(rt));
449
450 /* sanity check */
451 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
452 panic("rt_llinfo(%p) is not equal to ln(%p)",
453 rt->rt_llinfo, ln);
454 if (!dst)
455 panic("dst=0 in nd6_timer(ln=%p)", ln);
456
457 switch (ln->ln_state) {
458 case ND6_LLINFO_INCOMPLETE:
459 if (ln->ln_asked < nd6_mmaxtries) {
460 ln->ln_asked++;
461 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
462 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
463 } else {
464 struct mbuf *m = ln->ln_hold;
465 if (m) {
466 struct mbuf *m0;
467
468 /*
469 * assuming every packet in ln_hold has
470 * the same IP header
471 */
472 m0 = m->m_nextpkt;
473 m->m_nextpkt = NULL;
474 icmp6_error2(m, ICMP6_DST_UNREACH,
475 ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
476
477 ln->ln_hold = m0;
478 clear_llinfo_pqueue(ln);
479 }
480 (void)nd6_free(rt, 0);
481 ln = NULL;
482 }
483 break;
484 case ND6_LLINFO_REACHABLE:
485 if (!ND6_LLINFO_PERMANENT(ln)) {
486 ln->ln_state = ND6_LLINFO_STALE;
487 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
488 }
489 break;
490 case ND6_LLINFO_PURGE:
491 case ND6_LLINFO_STALE:
492 /* Garbage Collection(RFC 2461 5.3) */
493 if (!ND6_LLINFO_PERMANENT(ln)) {
494 (void)nd6_free(rt, 1);
495 ln = NULL;
496 }
497 break;
498
499 case ND6_LLINFO_DELAY:
500 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
501 /* We need NUD */
502 ln->ln_asked = 1;
503 ln->ln_state = ND6_LLINFO_PROBE;
504 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
505 nd6_ns_output(ifp, &dst->sin6_addr,
506 &dst->sin6_addr, ln, 0);
507 } else {
508 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
509 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
510 }
511 break;
512 case ND6_LLINFO_PROBE:
513 if (ln->ln_asked < nd6_umaxtries) {
514 ln->ln_asked++;
515 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
516 nd6_ns_output(ifp, &dst->sin6_addr,
517 &dst->sin6_addr, ln, 0);
518 } else {
519 (void)nd6_free(rt, 0);
520 ln = NULL;
521 }
522 break;
523 }
524
525 KERNEL_UNLOCK_ONE(NULL);
526 mutex_exit(softnet_lock);
527 }
528
529 /*
530 * ND6 timer routine to expire default route list and prefix list
531 */
532 void
533 nd6_timer(void *ignored_arg)
534 {
535 struct nd_defrouter *next_dr, *dr;
536 struct nd_prefix *next_pr, *pr;
537 struct in6_ifaddr *ia6, *nia6;
538
539 callout_reset(&nd6_timer_ch, nd6_prune * hz,
540 nd6_timer, NULL);
541
542 mutex_enter(softnet_lock);
543 KERNEL_LOCK(1, NULL);
544
545 /* expire default router list */
546
547 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, next_dr) {
548 if (dr->expire && dr->expire < time_second) {
549 defrtrlist_del(dr);
550 }
551 }
552
553 /*
554 * expire interface addresses.
555 * in the past the loop was inside prefix expiry processing.
556 * However, from a stricter speci-confrmance standpoint, we should
557 * rather separate address lifetimes and prefix lifetimes.
558 */
559 addrloop:
560 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
561 nia6 = ia6->ia_next;
562 /* check address lifetime */
563 if (IFA6_IS_INVALID(ia6)) {
564 int regen = 0;
565
566 /*
567 * If the expiring address is temporary, try
568 * regenerating a new one. This would be useful when
569 * we suspended a laptop PC, then turned it on after a
570 * period that could invalidate all temporary
571 * addresses. Although we may have to restart the
572 * loop (see below), it must be after purging the
573 * address. Otherwise, we'd see an infinite loop of
574 * regeneration.
575 */
576 if (ip6_use_tempaddr &&
577 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
578 if (regen_tmpaddr(ia6) == 0)
579 regen = 1;
580 }
581
582 in6_purgeaddr(&ia6->ia_ifa);
583
584 if (regen)
585 goto addrloop; /* XXX: see below */
586 } else if (IFA6_IS_DEPRECATED(ia6)) {
587 int oldflags = ia6->ia6_flags;
588
589 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
590
591 /*
592 * If a temporary address has just become deprecated,
593 * regenerate a new one if possible.
594 */
595 if (ip6_use_tempaddr &&
596 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
597 (oldflags & IN6_IFF_DEPRECATED) == 0) {
598
599 if (regen_tmpaddr(ia6) == 0) {
600 /*
601 * A new temporary address is
602 * generated.
603 * XXX: this means the address chain
604 * has changed while we are still in
605 * the loop. Although the change
606 * would not cause disaster (because
607 * it's not a deletion, but an
608 * addition,) we'd rather restart the
609 * loop just for safety. Or does this
610 * significantly reduce performance??
611 */
612 goto addrloop;
613 }
614 }
615 } else {
616 /*
617 * A new RA might have made a deprecated address
618 * preferred.
619 */
620 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
621 }
622 }
623
624 /* expire prefix list */
625 LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, next_pr) {
626 /*
627 * check prefix lifetime.
628 * since pltime is just for autoconf, pltime processing for
629 * prefix is not necessary.
630 */
631 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
632 time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
633
634 /*
635 * address expiration and prefix expiration are
636 * separate. NEVER perform in6_purgeaddr here.
637 */
638
639 prelist_remove(pr);
640 }
641 }
642
643 KERNEL_UNLOCK_ONE(NULL);
644 mutex_exit(softnet_lock);
645 }
646
647 /* ia6: deprecated/invalidated temporary address */
648 static int
649 regen_tmpaddr(struct in6_ifaddr *ia6)
650 {
651 struct ifaddr *ifa;
652 struct ifnet *ifp;
653 struct in6_ifaddr *public_ifa6 = NULL;
654
655 ifp = ia6->ia_ifa.ifa_ifp;
656 IFADDR_FOREACH(ifa, ifp) {
657 struct in6_ifaddr *it6;
658
659 if (ifa->ifa_addr->sa_family != AF_INET6)
660 continue;
661
662 it6 = (struct in6_ifaddr *)ifa;
663
664 /* ignore no autoconf addresses. */
665 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
666 continue;
667
668 /* ignore autoconf addresses with different prefixes. */
669 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
670 continue;
671
672 /*
673 * Now we are looking at an autoconf address with the same
674 * prefix as ours. If the address is temporary and is still
675 * preferred, do not create another one. It would be rare, but
676 * could happen, for example, when we resume a laptop PC after
677 * a long period.
678 */
679 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
680 !IFA6_IS_DEPRECATED(it6)) {
681 public_ifa6 = NULL;
682 break;
683 }
684
685 /*
686 * This is a public autoconf address that has the same prefix
687 * as ours. If it is preferred, keep it. We can't break the
688 * loop here, because there may be a still-preferred temporary
689 * address with the prefix.
690 */
691 if (!IFA6_IS_DEPRECATED(it6))
692 public_ifa6 = it6;
693 }
694
695 if (public_ifa6 != NULL) {
696 int e;
697
698 /*
699 * Random factor is introduced in the preferred lifetime, so
700 * we do not need additional delay (3rd arg to in6_tmpifadd).
701 */
702 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
703 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
704 " tmp addr, errno=%d\n", e);
705 return -1;
706 }
707 return 0;
708 }
709
710 return -1;
711 }
712
713 bool
714 nd6_accepts_rtadv(const struct nd_ifinfo *ndi)
715 {
716 switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) {
717 case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV:
718 return true;
719 case ND6_IFF_ACCEPT_RTADV:
720 return ip6_accept_rtadv != 0;
721 case ND6_IFF_OVERRIDE_RTADV:
722 case 0:
723 default:
724 return false;
725 }
726 }
727
728 /*
729 * Nuke neighbor cache/prefix/default router management table, right before
730 * ifp goes away.
731 */
732 void
733 nd6_purge(struct ifnet *ifp)
734 {
735 struct llinfo_nd6 *ln, *nln;
736 struct nd_defrouter *dr, *ndr;
737 struct nd_prefix *pr, *npr;
738
739 /*
740 * Nuke default router list entries toward ifp.
741 * We defer removal of default router list entries that is installed
742 * in the routing table, in order to keep additional side effects as
743 * small as possible.
744 */
745 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
746 if (dr->installed)
747 continue;
748
749 if (dr->ifp == ifp)
750 defrtrlist_del(dr);
751 }
752
753 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
754 if (!dr->installed)
755 continue;
756
757 if (dr->ifp == ifp)
758 defrtrlist_del(dr);
759 }
760
761 /* Nuke prefix list entries toward ifp */
762 LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, npr) {
763 if (pr->ndpr_ifp == ifp) {
764 /*
765 * Because if_detach() does *not* release prefixes
766 * while purging addresses the reference count will
767 * still be above zero. We therefore reset it to
768 * make sure that the prefix really gets purged.
769 */
770 pr->ndpr_refcnt = 0;
771 /*
772 * Previously, pr->ndpr_addr is removed as well,
773 * but I strongly believe we don't have to do it.
774 * nd6_purge() is only called from in6_ifdetach(),
775 * which removes all the associated interface addresses
776 * by itself.
777 * (jinmei (at) kame.net 20010129)
778 */
779 prelist_remove(pr);
780 }
781 }
782
783 /* cancel default outgoing interface setting */
784 if (nd6_defifindex == ifp->if_index)
785 nd6_setdefaultiface(0);
786
787 /* XXX: too restrictive? */
788 if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) {
789 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
790 if (ndi && nd6_accepts_rtadv(ndi)) {
791 /* refresh default router list */
792 defrouter_select();
793 }
794 }
795
796 /*
797 * Nuke neighbor cache entries for the ifp.
798 * Note that rt->rt_ifp may not be the same as ifp,
799 * due to KAME goto ours hack. See RTM_RESOLVE case in
800 * nd6_rtrequest(), and ip6_input().
801 */
802 ln = llinfo_nd6.ln_next;
803 while (ln != NULL && ln != &llinfo_nd6) {
804 struct rtentry *rt;
805 const struct sockaddr_dl *sdl;
806
807 nln = ln->ln_next;
808 rt = ln->ln_rt;
809 if (rt && rt->rt_gateway &&
810 rt->rt_gateway->sa_family == AF_LINK) {
811 sdl = satocsdl(rt->rt_gateway);
812 if (sdl->sdl_index == ifp->if_index)
813 nln = nd6_free(rt, 0);
814 }
815 ln = nln;
816 }
817 }
818
819 struct rtentry *
820 nd6_lookup(const struct in6_addr *addr6, int create, struct ifnet *ifp)
821 {
822 struct rtentry *rt;
823 struct sockaddr_in6 sin6;
824
825 sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
826 rt = rtalloc1((struct sockaddr *)&sin6, create);
827 if (rt != NULL && (rt->rt_flags & RTF_LLINFO) == 0) {
828 /*
829 * This is the case for the default route.
830 * If we want to create a neighbor cache for the address, we
831 * should free the route for the destination and allocate an
832 * interface route.
833 */
834 if (create) {
835 RTFREE(rt);
836 rt = NULL;
837 }
838 }
839 if (rt != NULL)
840 ;
841 else if (create && ifp) {
842 int e;
843
844 /*
845 * If no route is available and create is set,
846 * we allocate a host route for the destination
847 * and treat it like an interface route.
848 * This hack is necessary for a neighbor which can't
849 * be covered by our own prefix.
850 */
851 struct ifaddr *ifa =
852 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
853 if (ifa == NULL)
854 return NULL;
855
856 /*
857 * Create a new route. RTF_LLINFO is necessary
858 * to create a Neighbor Cache entry for the
859 * destination in nd6_rtrequest which will be
860 * called in rtrequest via ifa->ifa_rtrequest.
861 */
862 if ((e = rtrequest(RTM_ADD, (const struct sockaddr *)&sin6,
863 ifa->ifa_addr, (const struct sockaddr *)&all1_sa,
864 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
865 ~RTF_CLONING, &rt)) != 0) {
866 #if 0
867 log(LOG_ERR,
868 "nd6_lookup: failed to add route for a "
869 "neighbor(%s), errno=%d\n",
870 ip6_sprintf(addr6), e);
871 #endif
872 return NULL;
873 }
874 if (rt == NULL)
875 return NULL;
876 if (rt->rt_llinfo) {
877 struct llinfo_nd6 *ln =
878 (struct llinfo_nd6 *)rt->rt_llinfo;
879 ln->ln_state = ND6_LLINFO_NOSTATE;
880 }
881 } else
882 return NULL;
883 rt->rt_refcnt--;
884 /*
885 * Validation for the entry.
886 * Note that the check for rt_llinfo is necessary because a cloned
887 * route from a parent route that has the L flag (e.g. the default
888 * route to a p2p interface) may have the flag, too, while the
889 * destination is not actually a neighbor.
890 * XXX: we can't use rt->rt_ifp to check for the interface, since
891 * it might be the loopback interface if the entry is for our
892 * own address on a non-loopback interface. Instead, we should
893 * use rt->rt_ifa->ifa_ifp, which would specify the REAL
894 * interface.
895 * Note also that ifa_ifp and ifp may differ when we connect two
896 * interfaces to a same link, install a link prefix to an interface,
897 * and try to install a neighbor cache on an interface that does not
898 * have a route to the prefix.
899 */
900 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
901 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
902 (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
903 if (create) {
904 nd6log((LOG_DEBUG,
905 "nd6_lookup: failed to lookup %s (if = %s)\n",
906 ip6_sprintf(addr6),
907 ifp ? if_name(ifp) : "unspec"));
908 }
909 return NULL;
910 }
911 return rt;
912 }
913
914 /*
915 * Detect if a given IPv6 address identifies a neighbor on a given link.
916 * XXX: should take care of the destination of a p2p link?
917 */
918 int
919 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
920 {
921 struct nd_prefix *pr;
922
923 /*
924 * A link-local address is always a neighbor.
925 * XXX: a link does not necessarily specify a single interface.
926 */
927 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
928 struct sockaddr_in6 sin6_copy;
929 u_int32_t zone;
930
931 /*
932 * We need sin6_copy since sa6_recoverscope() may modify the
933 * content (XXX).
934 */
935 sin6_copy = *addr;
936 if (sa6_recoverscope(&sin6_copy))
937 return 0; /* XXX: should be impossible */
938 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
939 return 0;
940 if (sin6_copy.sin6_scope_id == zone)
941 return 1;
942 else
943 return 0;
944 }
945
946 /*
947 * If the address matches one of our on-link prefixes, it should be a
948 * neighbor.
949 */
950 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
951 if (pr->ndpr_ifp != ifp)
952 continue;
953
954 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
955 continue;
956
957 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
958 &addr->sin6_addr, &pr->ndpr_mask))
959 return 1;
960 }
961
962 /*
963 * If the default router list is empty, all addresses are regarded
964 * as on-link, and thus, as a neighbor.
965 * XXX: we restrict the condition to hosts, because routers usually do
966 * not have the "default router list".
967 */
968 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
969 nd6_defifindex == ifp->if_index) {
970 return 1;
971 }
972
973 /*
974 * Even if the address matches none of our addresses, it might be
975 * in the neighbor cache.
976 */
977 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
978 return 1;
979
980 return 0;
981 }
982
983 /*
984 * Free an nd6 llinfo entry.
985 * Since the function would cause significant changes in the kernel, DO NOT
986 * make it global, unless you have a strong reason for the change, and are sure
987 * that the change is safe.
988 */
989 static struct llinfo_nd6 *
990 nd6_free(struct rtentry *rt, int gc)
991 {
992 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
993 struct in6_addr in6 = satocsin6(rt_getkey(rt))->sin6_addr;
994 struct nd_defrouter *dr;
995
996 /*
997 * we used to have pfctlinput(PRC_HOSTDEAD) here.
998 * even though it is not harmful, it was not really necessary.
999 */
1000
1001 /* cancel timer */
1002 nd6_llinfo_settimer(ln, -1);
1003
1004 if (!ip6_forwarding) {
1005 int s;
1006 s = splsoftnet();
1007 dr = defrouter_lookup(&satocsin6(rt_getkey(rt))->sin6_addr,
1008 rt->rt_ifp);
1009
1010 if (dr != NULL && dr->expire &&
1011 ln->ln_state == ND6_LLINFO_STALE && gc) {
1012 /*
1013 * If the reason for the deletion is just garbage
1014 * collection, and the neighbor is an active default
1015 * router, do not delete it. Instead, reset the GC
1016 * timer using the router's lifetime.
1017 * Simply deleting the entry would affect default
1018 * router selection, which is not necessarily a good
1019 * thing, especially when we're using router preference
1020 * values.
1021 * XXX: the check for ln_state would be redundant,
1022 * but we intentionally keep it just in case.
1023 */
1024 if (dr->expire > time_second)
1025 nd6_llinfo_settimer(ln,
1026 (dr->expire - time_second) * hz);
1027 else
1028 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1029 splx(s);
1030 return ln->ln_next;
1031 }
1032
1033 if (ln->ln_router || dr) {
1034 /*
1035 * rt6_flush must be called whether or not the neighbor
1036 * is in the Default Router List.
1037 * See a corresponding comment in nd6_na_input().
1038 */
1039 rt6_flush(&in6, rt->rt_ifp);
1040 }
1041
1042 if (dr) {
1043 /*
1044 * Unreachablity of a router might affect the default
1045 * router selection and on-link detection of advertised
1046 * prefixes.
1047 */
1048
1049 /*
1050 * Temporarily fake the state to choose a new default
1051 * router and to perform on-link determination of
1052 * prefixes correctly.
1053 * Below the state will be set correctly,
1054 * or the entry itself will be deleted.
1055 */
1056 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1057
1058 /*
1059 * Since defrouter_select() does not affect the
1060 * on-link determination and MIP6 needs the check
1061 * before the default router selection, we perform
1062 * the check now.
1063 */
1064 pfxlist_onlink_check();
1065
1066 /*
1067 * refresh default router list
1068 */
1069 defrouter_select();
1070 }
1071 splx(s);
1072 }
1073
1074 /*
1075 * Before deleting the entry, remember the next entry as the
1076 * return value. We need this because pfxlist_onlink_check() above
1077 * might have freed other entries (particularly the old next entry) as
1078 * a side effect (XXX).
1079 */
1080 next = ln->ln_next;
1081
1082 /*
1083 * Detach the route from the routing tree and the list of neighbor
1084 * caches, and disable the route entry not to be used in already
1085 * cached routes.
1086 */
1087 rtrequest(RTM_DELETE, rt_getkey(rt), NULL, rt_mask(rt), 0, NULL);
1088
1089 return next;
1090 }
1091
1092 /*
1093 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1094 *
1095 * XXX cost-effective methods?
1096 */
1097 void
1098 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1099 {
1100 struct llinfo_nd6 *ln;
1101
1102 /*
1103 * If the caller specified "rt", use that. Otherwise, resolve the
1104 * routing table by supplied "dst6".
1105 */
1106 if (rt == NULL) {
1107 if (dst6 == NULL)
1108 return;
1109 if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1110 return;
1111 }
1112
1113 if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1114 (rt->rt_flags & RTF_LLINFO) == 0 ||
1115 !rt->rt_llinfo || !rt->rt_gateway ||
1116 rt->rt_gateway->sa_family != AF_LINK) {
1117 /* This is not a host route. */
1118 return;
1119 }
1120
1121 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1122 if (ln->ln_state < ND6_LLINFO_REACHABLE)
1123 return;
1124
1125 /*
1126 * if we get upper-layer reachability confirmation many times,
1127 * it is possible we have false information.
1128 */
1129 if (!force) {
1130 ln->ln_byhint++;
1131 if (ln->ln_byhint > nd6_maxnudhint)
1132 return;
1133 }
1134
1135 ln->ln_state = ND6_LLINFO_REACHABLE;
1136 if (!ND6_LLINFO_PERMANENT(ln)) {
1137 nd6_llinfo_settimer(ln,
1138 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1139 }
1140 }
1141
1142 void
1143 nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
1144 {
1145 struct sockaddr *gate = rt->rt_gateway;
1146 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1147 struct ifnet *ifp = rt->rt_ifp;
1148 uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen;
1149 struct ifaddr *ifa;
1150
1151 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1152
1153 if (req == RTM_LLINFO_UPD) {
1154 int rc;
1155 struct in6_addr *in6;
1156 struct in6_addr in6_all;
1157 int anycast;
1158
1159 if ((ifa = info->rti_ifa) == NULL)
1160 return;
1161
1162 in6 = &ifatoia6(ifa)->ia_addr.sin6_addr;
1163 anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST;
1164
1165 in6_all = in6addr_linklocal_allnodes;
1166 if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) {
1167 log(LOG_ERR, "%s: failed to set scope %s "
1168 "(errno=%d)\n", __func__, if_name(ifp), rc);
1169 return;
1170 }
1171
1172 /* XXX don't set Override for proxy addresses */
1173 nd6_na_output(ifa->ifa_ifp, &in6_all, in6,
1174 (anycast ? 0 : ND_NA_FLAG_OVERRIDE)
1175 #if 0
1176 | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0)
1177 #endif
1178 , 1, NULL);
1179 return;
1180 }
1181
1182 if ((rt->rt_flags & RTF_GATEWAY) != 0)
1183 return;
1184
1185 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1186 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1187 /*
1188 * This is probably an interface direct route for a link
1189 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1190 * We do not need special treatment below for such a route.
1191 * Moreover, the RTF_LLINFO flag which would be set below
1192 * would annoy the ndp(8) command.
1193 */
1194 return;
1195 }
1196
1197 if (req == RTM_RESOLVE &&
1198 (nd6_need_cache(ifp) == 0 || /* stf case */
1199 !nd6_is_addr_neighbor(satocsin6(rt_getkey(rt)), ifp))) {
1200 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1201 /*
1202 * FreeBSD and BSD/OS often make a cloned host route based
1203 * on a less-specific route (e.g. the default route).
1204 * If the less specific route does not have a "gateway"
1205 * (this is the case when the route just goes to a p2p or an
1206 * stf interface), we'll mistakenly make a neighbor cache for
1207 * the host route, and will see strange neighbor solicitation
1208 * for the corresponding destination. In order to avoid the
1209 * confusion, we check if the destination of the route is
1210 * a neighbor in terms of neighbor discovery, and stop the
1211 * process if not. Additionally, we remove the LLINFO flag
1212 * so that ndp(8) will not try to get the neighbor information
1213 * of the destination.
1214 */
1215 rt->rt_flags &= ~RTF_LLINFO;
1216 return;
1217 }
1218
1219 switch (req) {
1220 case RTM_ADD:
1221 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1222 /*
1223 * There is no backward compatibility :)
1224 *
1225 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1226 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1227 * rt->rt_flags |= RTF_CLONING;
1228 */
1229 if ((rt->rt_flags & RTF_CLONING) ||
1230 ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1231 union {
1232 struct sockaddr sa;
1233 struct sockaddr_dl sdl;
1234 struct sockaddr_storage ss;
1235 } u;
1236 /*
1237 * Case 1: This route should come from a route to
1238 * interface (RTF_CLONING case) or the route should be
1239 * treated as on-link but is currently not
1240 * (RTF_LLINFO && ln == NULL case).
1241 */
1242 if (sockaddr_dl_init(&u.sdl, sizeof(u.ss),
1243 ifp->if_index, ifp->if_type,
1244 NULL, namelen, NULL, addrlen) == NULL) {
1245 printf("%s.%d: sockaddr_dl_init(, %zu, ) "
1246 "failed on %s\n", __func__, __LINE__,
1247 sizeof(u.ss), if_name(ifp));
1248 }
1249 rt_setgate(rt, &u.sa);
1250 gate = rt->rt_gateway;
1251 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1252 if (ln != NULL)
1253 nd6_llinfo_settimer(ln, 0);
1254 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1255 if ((rt->rt_flags & RTF_CLONING) != 0)
1256 break;
1257 }
1258 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1259 /*
1260 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1261 * We don't do that here since llinfo is not ready yet.
1262 *
1263 * There are also couple of other things to be discussed:
1264 * - unsolicited NA code needs improvement beforehand
1265 * - RFC2461 says we MAY send multicast unsolicited NA
1266 * (7.2.6 paragraph 4), however, it also says that we
1267 * SHOULD provide a mechanism to prevent multicast NA storm.
1268 * we don't have anything like it right now.
1269 * note that the mechanism needs a mutual agreement
1270 * between proxies, which means that we need to implement
1271 * a new protocol, or a new kludge.
1272 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1273 * we need to check ip6forwarding before sending it.
1274 * (or should we allow proxy ND configuration only for
1275 * routers? there's no mention about proxy ND from hosts)
1276 */
1277 #if 0
1278 /* XXX it does not work */
1279 if (rt->rt_flags & RTF_ANNOUNCE)
1280 nd6_na_output(ifp,
1281 &satocsin6(rt_getkey(rt))->sin6_addr,
1282 &satocsin6(rt_getkey(rt))->sin6_addr,
1283 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1284 1, NULL);
1285 #endif
1286 /* FALLTHROUGH */
1287 case RTM_RESOLVE:
1288 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1289 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1290 /*
1291 * Address resolution isn't necessary for a point to
1292 * point link, so we can skip this test for a p2p link.
1293 */
1294 if (gate->sa_family != AF_LINK ||
1295 gate->sa_len <
1296 sockaddr_dl_measure(namelen, addrlen)) {
1297 log(LOG_DEBUG,
1298 "nd6_rtrequest: bad gateway value: %s\n",
1299 if_name(ifp));
1300 break;
1301 }
1302 satosdl(gate)->sdl_type = ifp->if_type;
1303 satosdl(gate)->sdl_index = ifp->if_index;
1304 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1305 }
1306 if (ln != NULL)
1307 break; /* This happens on a route change */
1308 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1309 /*
1310 * Case 2: This route may come from cloning, or a manual route
1311 * add with a LL address.
1312 */
1313 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1314 rt->rt_llinfo = ln;
1315 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1316 if (ln == NULL) {
1317 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1318 break;
1319 }
1320 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1321 nd6_inuse++;
1322 nd6_allocated++;
1323 memset(ln, 0, sizeof(*ln));
1324 ln->ln_rt = rt;
1325 callout_init(&ln->ln_timer_ch, CALLOUT_MPSAFE);
1326 /* this is required for "ndp" command. - shin */
1327 if (req == RTM_ADD) {
1328 /*
1329 * gate should have some valid AF_LINK entry,
1330 * and ln->ln_expire should have some lifetime
1331 * which is specified by ndp command.
1332 */
1333 ln->ln_state = ND6_LLINFO_REACHABLE;
1334 ln->ln_byhint = 0;
1335 } else {
1336 /*
1337 * When req == RTM_RESOLVE, rt is created and
1338 * initialized in rtrequest(), so rt_expire is 0.
1339 */
1340 ln->ln_state = ND6_LLINFO_NOSTATE;
1341 nd6_llinfo_settimer(ln, 0);
1342 }
1343 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1344 rt->rt_flags |= RTF_LLINFO;
1345 ln->ln_next = llinfo_nd6.ln_next;
1346 llinfo_nd6.ln_next = ln;
1347 ln->ln_prev = &llinfo_nd6;
1348 ln->ln_next->ln_prev = ln;
1349
1350 /*
1351 * If we have too many cache entries, initiate immediate
1352 * purging for some "less recently used" entries. Note that
1353 * we cannot directly call nd6_free() here because it would
1354 * cause re-entering rtable related routines triggering an LOR
1355 * problem for FreeBSD.
1356 */
1357 if (ip6_neighborgcthresh >= 0 &&
1358 nd6_inuse >= ip6_neighborgcthresh) {
1359 int i;
1360
1361 for (i = 0; i < 10 && llinfo_nd6.ln_prev != ln; i++) {
1362 struct llinfo_nd6 *ln_end = llinfo_nd6.ln_prev;
1363
1364 /* Move this entry to the head */
1365 LN_DEQUEUE(ln_end);
1366 LN_INSERTHEAD(ln_end);
1367
1368 if (ND6_LLINFO_PERMANENT(ln_end))
1369 continue;
1370
1371 if (ln_end->ln_state > ND6_LLINFO_INCOMPLETE)
1372 ln_end->ln_state = ND6_LLINFO_STALE;
1373 else
1374 ln_end->ln_state = ND6_LLINFO_PURGE;
1375 nd6_llinfo_settimer(ln_end, 0);
1376 }
1377 }
1378
1379 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1380 /*
1381 * check if rt_getkey(rt) is an address assigned
1382 * to the interface.
1383 */
1384 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp,
1385 &satocsin6(rt_getkey(rt))->sin6_addr);
1386 RT_DPRINTF("rt->_rt_key = %p\n", (void *)rt->_rt_key);
1387 if (ifa != NULL) {
1388 const void *mac;
1389 nd6_llinfo_settimer(ln, -1);
1390 ln->ln_state = ND6_LLINFO_REACHABLE;
1391 ln->ln_byhint = 0;
1392 if ((mac = nd6_ifptomac(ifp)) != NULL) {
1393 /* XXX check for error */
1394 if (sockaddr_dl_setaddr(satosdl(gate),
1395 gate->sa_len, mac,
1396 ifp->if_addrlen) == NULL) {
1397 printf("%s.%d: "
1398 "sockaddr_dl_setaddr(, %d, ) "
1399 "failed on %s\n", __func__,
1400 __LINE__, gate->sa_len,
1401 if_name(ifp));
1402 }
1403 }
1404 if (nd6_useloopback) {
1405 ifp = rt->rt_ifp = lo0ifp; /* XXX */
1406 /*
1407 * Make sure rt_ifa be equal to the ifaddr
1408 * corresponding to the address.
1409 * We need this because when we refer
1410 * rt_ifa->ia6_flags in ip6_input, we assume
1411 * that the rt_ifa points to the address instead
1412 * of the loopback address.
1413 */
1414 if (ifa != rt->rt_ifa)
1415 rt_replace_ifa(rt, ifa);
1416 rt->rt_flags &= ~RTF_CLONED;
1417 }
1418 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1419 nd6_llinfo_settimer(ln, -1);
1420 ln->ln_state = ND6_LLINFO_REACHABLE;
1421 ln->ln_byhint = 0;
1422
1423 /* join solicited node multicast for proxy ND */
1424 if (ifp->if_flags & IFF_MULTICAST) {
1425 struct in6_addr llsol;
1426 int error;
1427
1428 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1429 llsol.s6_addr32[0] = htonl(0xff020000);
1430 llsol.s6_addr32[1] = 0;
1431 llsol.s6_addr32[2] = htonl(1);
1432 llsol.s6_addr8[12] = 0xff;
1433 if (in6_setscope(&llsol, ifp, NULL))
1434 break;
1435 if (!in6_addmulti(&llsol, ifp, &error, 0)) {
1436 nd6log((LOG_ERR, "%s: failed to join "
1437 "%s (errno=%d)\n", if_name(ifp),
1438 ip6_sprintf(&llsol), error));
1439 }
1440 }
1441 }
1442 break;
1443
1444 case RTM_DELETE:
1445 if (ln == NULL)
1446 break;
1447 /* leave from solicited node multicast for proxy ND */
1448 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1449 (ifp->if_flags & IFF_MULTICAST) != 0) {
1450 struct in6_addr llsol;
1451 struct in6_multi *in6m;
1452
1453 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1454 llsol.s6_addr32[0] = htonl(0xff020000);
1455 llsol.s6_addr32[1] = 0;
1456 llsol.s6_addr32[2] = htonl(1);
1457 llsol.s6_addr8[12] = 0xff;
1458 if (in6_setscope(&llsol, ifp, NULL) == 0) {
1459 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1460 if (in6m)
1461 in6_delmulti(in6m);
1462 }
1463 }
1464 nd6_inuse--;
1465 ln->ln_next->ln_prev = ln->ln_prev;
1466 ln->ln_prev->ln_next = ln->ln_next;
1467 ln->ln_prev = NULL;
1468 nd6_llinfo_settimer(ln, -1);
1469 rt->rt_llinfo = 0;
1470 rt->rt_flags &= ~RTF_LLINFO;
1471 clear_llinfo_pqueue(ln);
1472 Free(ln);
1473 }
1474 }
1475
1476 int
1477 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp)
1478 {
1479 struct in6_drlist *drl = (struct in6_drlist *)data;
1480 struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1481 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1482 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1483 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1484 struct nd_defrouter *dr;
1485 struct nd_prefix *pr;
1486 struct rtentry *rt;
1487 int i = 0, error = 0;
1488 int s;
1489
1490 switch (cmd) {
1491 case SIOCGDRLST_IN6:
1492 /*
1493 * obsolete API, use sysctl under net.inet6.icmp6
1494 */
1495 memset(drl, 0, sizeof(*drl));
1496 s = splsoftnet();
1497 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
1498 if (i >= DRLSTSIZ)
1499 break;
1500 drl->defrouter[i].rtaddr = dr->rtaddr;
1501 in6_clearscope(&drl->defrouter[i].rtaddr);
1502
1503 drl->defrouter[i].flags = dr->flags;
1504 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1505 drl->defrouter[i].expire = dr->expire;
1506 drl->defrouter[i].if_index = dr->ifp->if_index;
1507 i++;
1508 }
1509 splx(s);
1510 break;
1511 case SIOCGPRLST_IN6:
1512 /*
1513 * obsolete API, use sysctl under net.inet6.icmp6
1514 *
1515 * XXX the structure in6_prlist was changed in backward-
1516 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1517 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1518 */
1519 /*
1520 * XXX meaning of fields, especialy "raflags", is very
1521 * differnet between RA prefix list and RR/static prefix list.
1522 * how about separating ioctls into two?
1523 */
1524 memset(oprl, 0, sizeof(*oprl));
1525 s = splsoftnet();
1526 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
1527 struct nd_pfxrouter *pfr;
1528 int j;
1529
1530 if (i >= PRLSTSIZ)
1531 break;
1532 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1533 oprl->prefix[i].raflags = pr->ndpr_raf;
1534 oprl->prefix[i].prefixlen = pr->ndpr_plen;
1535 oprl->prefix[i].vltime = pr->ndpr_vltime;
1536 oprl->prefix[i].pltime = pr->ndpr_pltime;
1537 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1538 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1539 oprl->prefix[i].expire = 0;
1540 else {
1541 time_t maxexpire;
1542
1543 /* XXX: we assume time_t is signed. */
1544 maxexpire = (-1) &
1545 ~((time_t)1 <<
1546 ((sizeof(maxexpire) * 8) - 1));
1547 if (pr->ndpr_vltime <
1548 maxexpire - pr->ndpr_lastupdate) {
1549 oprl->prefix[i].expire =
1550 pr->ndpr_lastupdate +
1551 pr->ndpr_vltime;
1552 } else
1553 oprl->prefix[i].expire = maxexpire;
1554 }
1555
1556 j = 0;
1557 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
1558 if (j < DRLSTSIZ) {
1559 #define RTRADDR oprl->prefix[i].advrtr[j]
1560 RTRADDR = pfr->router->rtaddr;
1561 in6_clearscope(&RTRADDR);
1562 #undef RTRADDR
1563 }
1564 j++;
1565 }
1566 oprl->prefix[i].advrtrs = j;
1567 oprl->prefix[i].origin = PR_ORIG_RA;
1568
1569 i++;
1570 }
1571 splx(s);
1572
1573 break;
1574 case OSIOCGIFINFO_IN6:
1575 #define ND ndi->ndi
1576 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1577 memset(&ND, 0, sizeof(ND));
1578 ND.linkmtu = IN6_LINKMTU(ifp);
1579 ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1580 ND.basereachable = ND_IFINFO(ifp)->basereachable;
1581 ND.reachable = ND_IFINFO(ifp)->reachable;
1582 ND.retrans = ND_IFINFO(ifp)->retrans;
1583 ND.flags = ND_IFINFO(ifp)->flags;
1584 ND.recalctm = ND_IFINFO(ifp)->recalctm;
1585 ND.chlim = ND_IFINFO(ifp)->chlim;
1586 break;
1587 case SIOCGIFINFO_IN6:
1588 ND = *ND_IFINFO(ifp);
1589 break;
1590 case SIOCSIFINFO_IN6:
1591 /*
1592 * used to change host variables from userland.
1593 * intented for a use on router to reflect RA configurations.
1594 */
1595 /* 0 means 'unspecified' */
1596 if (ND.linkmtu != 0) {
1597 if (ND.linkmtu < IPV6_MMTU ||
1598 ND.linkmtu > IN6_LINKMTU(ifp)) {
1599 error = EINVAL;
1600 break;
1601 }
1602 ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1603 }
1604
1605 if (ND.basereachable != 0) {
1606 int obasereachable = ND_IFINFO(ifp)->basereachable;
1607
1608 ND_IFINFO(ifp)->basereachable = ND.basereachable;
1609 if (ND.basereachable != obasereachable)
1610 ND_IFINFO(ifp)->reachable =
1611 ND_COMPUTE_RTIME(ND.basereachable);
1612 }
1613 if (ND.retrans != 0)
1614 ND_IFINFO(ifp)->retrans = ND.retrans;
1615 if (ND.chlim != 0)
1616 ND_IFINFO(ifp)->chlim = ND.chlim;
1617 /* FALLTHROUGH */
1618 case SIOCSIFINFO_FLAGS:
1619 ND_IFINFO(ifp)->flags = ND.flags;
1620 break;
1621 #undef ND
1622 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1623 /* sync kernel routing table with the default router list */
1624 defrouter_reset();
1625 defrouter_select();
1626 break;
1627 case SIOCSPFXFLUSH_IN6:
1628 {
1629 /* flush all the prefix advertised by routers */
1630 struct nd_prefix *pfx, *next;
1631
1632 s = splsoftnet();
1633 LIST_FOREACH_SAFE(pfx, &nd_prefix, ndpr_entry, next) {
1634 struct in6_ifaddr *ia, *ia_next;
1635
1636 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
1637 continue; /* XXX */
1638
1639 /* do we really have to remove addresses as well? */
1640 for (ia = in6_ifaddr; ia; ia = ia_next) {
1641 /* ia might be removed. keep the next ptr. */
1642 ia_next = ia->ia_next;
1643
1644 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1645 continue;
1646
1647 if (ia->ia6_ndpr == pfx)
1648 in6_purgeaddr(&ia->ia_ifa);
1649 }
1650 prelist_remove(pfx);
1651 }
1652 splx(s);
1653 break;
1654 }
1655 case SIOCSRTRFLUSH_IN6:
1656 {
1657 /* flush all the default routers */
1658 struct nd_defrouter *drtr, *next;
1659
1660 s = splsoftnet();
1661 defrouter_reset();
1662 TAILQ_FOREACH_SAFE(drtr, &nd_defrouter, dr_entry, next) {
1663 defrtrlist_del(drtr);
1664 }
1665 defrouter_select();
1666 splx(s);
1667 break;
1668 }
1669 case SIOCGNBRINFO_IN6:
1670 {
1671 struct llinfo_nd6 *ln;
1672 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1673
1674 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1675 return error;
1676
1677 s = splsoftnet();
1678 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL ||
1679 (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) {
1680 error = EINVAL;
1681 splx(s);
1682 break;
1683 }
1684 nbi->state = ln->ln_state;
1685 nbi->asked = ln->ln_asked;
1686 nbi->isrouter = ln->ln_router;
1687 nbi->expire = ln->ln_expire;
1688 splx(s);
1689
1690 break;
1691 }
1692 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1693 ndif->ifindex = nd6_defifindex;
1694 break;
1695 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1696 return nd6_setdefaultiface(ndif->ifindex);
1697 }
1698 return error;
1699 }
1700
1701 void
1702 nd6_llinfo_release_pkts(struct llinfo_nd6 *ln, struct ifnet *ifp,
1703 struct rtentry *rt)
1704 {
1705 struct mbuf *m_hold, *m_hold_next;
1706
1707 for (m_hold = ln->ln_hold, ln->ln_hold = NULL;
1708 m_hold != NULL;
1709 m_hold = m_hold_next) {
1710 m_hold_next = m_hold->m_nextpkt;
1711 m_hold->m_nextpkt = NULL;
1712
1713 /*
1714 * we assume ifp is not a p2p here, so
1715 * just set the 2nd argument as the
1716 * 1st one.
1717 */
1718 nd6_output(ifp, ifp, m_hold, satocsin6(rt_getkey(rt)), rt);
1719 }
1720 }
1721
1722 /*
1723 * Create neighbor cache entry and cache link-layer address,
1724 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1725 */
1726 struct rtentry *
1727 nd6_cache_lladdr(
1728 struct ifnet *ifp,
1729 struct in6_addr *from,
1730 char *lladdr,
1731 int lladdrlen,
1732 int type, /* ICMP6 type */
1733 int code /* type dependent information */
1734 )
1735 {
1736 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
1737 struct rtentry *rt = NULL;
1738 struct llinfo_nd6 *ln = NULL;
1739 int is_newentry;
1740 struct sockaddr_dl *sdl = NULL;
1741 int do_update;
1742 int olladdr;
1743 int llchange;
1744 int newstate = 0;
1745
1746 if (ifp == NULL)
1747 panic("ifp == NULL in nd6_cache_lladdr");
1748 if (from == NULL)
1749 panic("from == NULL in nd6_cache_lladdr");
1750
1751 /* nothing must be updated for unspecified address */
1752 if (IN6_IS_ADDR_UNSPECIFIED(from))
1753 return NULL;
1754
1755 /*
1756 * Validation about ifp->if_addrlen and lladdrlen must be done in
1757 * the caller.
1758 *
1759 * XXX If the link does not have link-layer adderss, what should
1760 * we do? (ifp->if_addrlen == 0)
1761 * Spec says nothing in sections for RA, RS and NA. There's small
1762 * description on it in NS section (RFC 2461 7.2.3).
1763 */
1764
1765 rt = nd6_lookup(from, 0, ifp);
1766 if (rt == NULL) {
1767 #if 0
1768 /* nothing must be done if there's no lladdr */
1769 if (!lladdr || !lladdrlen)
1770 return NULL;
1771 #endif
1772
1773 rt = nd6_lookup(from, 1, ifp);
1774 is_newentry = 1;
1775 } else {
1776 /* do nothing if static ndp is set */
1777 if (rt->rt_flags & RTF_STATIC)
1778 return NULL;
1779 is_newentry = 0;
1780 }
1781
1782 if (rt == NULL)
1783 return NULL;
1784 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1785 fail:
1786 (void)nd6_free(rt, 0);
1787 return NULL;
1788 }
1789 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1790 if (ln == NULL)
1791 goto fail;
1792 if (rt->rt_gateway == NULL)
1793 goto fail;
1794 if (rt->rt_gateway->sa_family != AF_LINK)
1795 goto fail;
1796 sdl = satosdl(rt->rt_gateway);
1797
1798 olladdr = (sdl->sdl_alen) ? 1 : 0;
1799 if (olladdr && lladdr) {
1800 if (memcmp(lladdr, CLLADDR(sdl), ifp->if_addrlen))
1801 llchange = 1;
1802 else
1803 llchange = 0;
1804 } else
1805 llchange = 0;
1806
1807 /*
1808 * newentry olladdr lladdr llchange (*=record)
1809 * 0 n n -- (1)
1810 * 0 y n -- (2)
1811 * 0 n y -- (3) * STALE
1812 * 0 y y n (4) *
1813 * 0 y y y (5) * STALE
1814 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1815 * 1 -- y -- (7) * STALE
1816 */
1817
1818 if (lladdr) { /* (3-5) and (7) */
1819 /*
1820 * Record source link-layer address
1821 * XXX is it dependent to ifp->if_type?
1822 */
1823 /* XXX check for error */
1824 if (sockaddr_dl_setaddr(sdl, sdl->sdl_len, lladdr,
1825 ifp->if_addrlen) == NULL) {
1826 printf("%s.%d: sockaddr_dl_setaddr(, %d, ) "
1827 "failed on %s\n", __func__, __LINE__,
1828 sdl->sdl_len, if_name(ifp));
1829 }
1830 }
1831
1832 if (!is_newentry) {
1833 if ((!olladdr && lladdr) || /* (3) */
1834 (olladdr && lladdr && llchange)) { /* (5) */
1835 do_update = 1;
1836 newstate = ND6_LLINFO_STALE;
1837 } else /* (1-2,4) */
1838 do_update = 0;
1839 } else {
1840 do_update = 1;
1841 if (lladdr == NULL) /* (6) */
1842 newstate = ND6_LLINFO_NOSTATE;
1843 else /* (7) */
1844 newstate = ND6_LLINFO_STALE;
1845 }
1846
1847 if (do_update) {
1848 /*
1849 * Update the state of the neighbor cache.
1850 */
1851 ln->ln_state = newstate;
1852
1853 if (ln->ln_state == ND6_LLINFO_STALE) {
1854 /*
1855 * XXX: since nd6_output() below will cause
1856 * state tansition to DELAY and reset the timer,
1857 * we must set the timer now, although it is actually
1858 * meaningless.
1859 */
1860 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1861
1862 nd6_llinfo_release_pkts(ln, ifp, rt);
1863 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1864 /* probe right away */
1865 nd6_llinfo_settimer((void *)ln, 0);
1866 }
1867 }
1868
1869 /*
1870 * ICMP6 type dependent behavior.
1871 *
1872 * NS: clear IsRouter if new entry
1873 * RS: clear IsRouter
1874 * RA: set IsRouter if there's lladdr
1875 * redir: clear IsRouter if new entry
1876 *
1877 * RA case, (1):
1878 * The spec says that we must set IsRouter in the following cases:
1879 * - If lladdr exist, set IsRouter. This means (1-5).
1880 * - If it is old entry (!newentry), set IsRouter. This means (7).
1881 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1882 * A quetion arises for (1) case. (1) case has no lladdr in the
1883 * neighbor cache, this is similar to (6).
1884 * This case is rare but we figured that we MUST NOT set IsRouter.
1885 *
1886 * newentry olladdr lladdr llchange NS RS RA redir
1887 * D R
1888 * 0 n n -- (1) c ? s
1889 * 0 y n -- (2) c s s
1890 * 0 n y -- (3) c s s
1891 * 0 y y n (4) c s s
1892 * 0 y y y (5) c s s
1893 * 1 -- n -- (6) c c c s
1894 * 1 -- y -- (7) c c s c s
1895 *
1896 * (c=clear s=set)
1897 */
1898 switch (type & 0xff) {
1899 case ND_NEIGHBOR_SOLICIT:
1900 /*
1901 * New entry must have is_router flag cleared.
1902 */
1903 if (is_newentry) /* (6-7) */
1904 ln->ln_router = 0;
1905 break;
1906 case ND_REDIRECT:
1907 /*
1908 * If the icmp is a redirect to a better router, always set the
1909 * is_router flag. Otherwise, if the entry is newly created,
1910 * clear the flag. [RFC 2461, sec 8.3]
1911 */
1912 if (code == ND_REDIRECT_ROUTER)
1913 ln->ln_router = 1;
1914 else if (is_newentry) /* (6-7) */
1915 ln->ln_router = 0;
1916 break;
1917 case ND_ROUTER_SOLICIT:
1918 /*
1919 * is_router flag must always be cleared.
1920 */
1921 ln->ln_router = 0;
1922 break;
1923 case ND_ROUTER_ADVERT:
1924 /*
1925 * Mark an entry with lladdr as a router.
1926 */
1927 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
1928 (is_newentry && lladdr)) { /* (7) */
1929 ln->ln_router = 1;
1930 }
1931 break;
1932 }
1933
1934 /*
1935 * When the link-layer address of a router changes, select the
1936 * best router again. In particular, when the neighbor entry is newly
1937 * created, it might affect the selection policy.
1938 * Question: can we restrict the first condition to the "is_newentry"
1939 * case?
1940 * XXX: when we hear an RA from a new router with the link-layer
1941 * address option, defrouter_select() is called twice, since
1942 * defrtrlist_update called the function as well. However, I believe
1943 * we can compromise the overhead, since it only happens the first
1944 * time.
1945 * XXX: although defrouter_select() should not have a bad effect
1946 * for those are not autoconfigured hosts, we explicitly avoid such
1947 * cases for safety.
1948 */
1949 if (do_update && ln->ln_router && !ip6_forwarding &&
1950 nd6_accepts_rtadv(ndi))
1951 defrouter_select();
1952
1953 return rt;
1954 }
1955
1956 static void
1957 nd6_slowtimo(void *ignored_arg)
1958 {
1959 struct nd_ifinfo *nd6if;
1960 struct ifnet *ifp;
1961
1962 mutex_enter(softnet_lock);
1963 KERNEL_LOCK(1, NULL);
1964 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1965 nd6_slowtimo, NULL);
1966 TAILQ_FOREACH(ifp, &ifnet, if_list) {
1967 nd6if = ND_IFINFO(ifp);
1968 if (nd6if->basereachable && /* already initialized */
1969 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1970 /*
1971 * Since reachable time rarely changes by router
1972 * advertisements, we SHOULD insure that a new random
1973 * value gets recomputed at least once every few hours.
1974 * (RFC 2461, 6.3.4)
1975 */
1976 nd6if->recalctm = nd6_recalc_reachtm_interval;
1977 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1978 }
1979 }
1980 KERNEL_UNLOCK_ONE(NULL);
1981 mutex_exit(softnet_lock);
1982 }
1983
1984 #define senderr(e) { error = (e); goto bad;}
1985 int
1986 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
1987 const struct sockaddr_in6 *dst, struct rtentry *rt0)
1988 {
1989 struct mbuf *m = m0;
1990 struct rtentry *rt = rt0;
1991 struct sockaddr_in6 *gw6 = NULL;
1992 struct llinfo_nd6 *ln = NULL;
1993 int error = 0;
1994
1995 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1996 goto sendpkt;
1997
1998 if (nd6_need_cache(ifp) == 0)
1999 goto sendpkt;
2000
2001 /*
2002 * next hop determination. This routine is derived from ether_output.
2003 */
2004 if (rt) {
2005 if ((rt->rt_flags & RTF_UP) == 0) {
2006 if ((rt0 = rt = rtalloc1(sin6tocsa(dst), 1)) != NULL) {
2007 rt->rt_refcnt--;
2008 if (rt->rt_ifp != ifp)
2009 senderr(EHOSTUNREACH);
2010 } else
2011 senderr(EHOSTUNREACH);
2012 }
2013
2014 if (rt->rt_flags & RTF_GATEWAY) {
2015 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
2016
2017 /*
2018 * We skip link-layer address resolution and NUD
2019 * if the gateway is not a neighbor from ND point
2020 * of view, regardless of the value of nd_ifinfo.flags.
2021 * The second condition is a bit tricky; we skip
2022 * if the gateway is our own address, which is
2023 * sometimes used to install a route to a p2p link.
2024 */
2025 if (!nd6_is_addr_neighbor(gw6, ifp) ||
2026 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
2027 /*
2028 * We allow this kind of tricky route only
2029 * when the outgoing interface is p2p.
2030 * XXX: we may need a more generic rule here.
2031 */
2032 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
2033 senderr(EHOSTUNREACH);
2034
2035 goto sendpkt;
2036 }
2037
2038 if (rt->rt_gwroute == NULL)
2039 goto lookup;
2040 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
2041 rtfree(rt); rt = rt0;
2042 lookup:
2043 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
2044 if ((rt = rt->rt_gwroute) == NULL)
2045 senderr(EHOSTUNREACH);
2046 /* the "G" test below also prevents rt == rt0 */
2047 if ((rt->rt_flags & RTF_GATEWAY) ||
2048 (rt->rt_ifp != ifp)) {
2049 rt->rt_refcnt--;
2050 rt0->rt_gwroute = NULL;
2051 senderr(EHOSTUNREACH);
2052 }
2053 }
2054 }
2055 }
2056
2057 /*
2058 * Address resolution or Neighbor Unreachability Detection
2059 * for the next hop.
2060 * At this point, the destination of the packet must be a unicast
2061 * or an anycast address(i.e. not a multicast).
2062 */
2063
2064 /* Look up the neighbor cache for the nexthop */
2065 if (rt != NULL && (rt->rt_flags & RTF_LLINFO) != 0)
2066 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2067 else {
2068 /*
2069 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2070 * the condition below is not very efficient. But we believe
2071 * it is tolerable, because this should be a rare case.
2072 */
2073 if (nd6_is_addr_neighbor(dst, ifp) &&
2074 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
2075 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2076 }
2077 if (ln == NULL || rt == NULL) {
2078 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2079 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2080 log(LOG_DEBUG,
2081 "nd6_output: can't allocate llinfo for %s "
2082 "(ln=%p, rt=%p)\n",
2083 ip6_sprintf(&dst->sin6_addr), ln, rt);
2084 senderr(EIO); /* XXX: good error? */
2085 }
2086
2087 goto sendpkt; /* send anyway */
2088 }
2089
2090 /*
2091 * Move this entry to the head of the queue so that it is less likely
2092 * for this entry to be a target of forced garbage collection (see
2093 * nd6_rtrequest()).
2094 */
2095 LN_DEQUEUE(ln);
2096 LN_INSERTHEAD(ln);
2097
2098 /* We don't have to do link-layer address resolution on a p2p link. */
2099 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2100 ln->ln_state < ND6_LLINFO_REACHABLE) {
2101 ln->ln_state = ND6_LLINFO_STALE;
2102 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2103 }
2104
2105 /*
2106 * The first time we send a packet to a neighbor whose entry is
2107 * STALE, we have to change the state to DELAY and a sets a timer to
2108 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2109 * neighbor unreachability detection on expiration.
2110 * (RFC 2461 7.3.3)
2111 */
2112 if (ln->ln_state == ND6_LLINFO_STALE) {
2113 ln->ln_asked = 0;
2114 ln->ln_state = ND6_LLINFO_DELAY;
2115 nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2116 }
2117
2118 /*
2119 * If the neighbor cache entry has a state other than INCOMPLETE
2120 * (i.e. its link-layer address is already resolved), just
2121 * send the packet.
2122 */
2123 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2124 goto sendpkt;
2125
2126 /*
2127 * There is a neighbor cache entry, but no ethernet address
2128 * response yet. Append this latest packet to the end of the
2129 * packet queue in the mbuf, unless the number of the packet
2130 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen,
2131 * the oldest packet in the queue will be removed.
2132 */
2133 if (ln->ln_state == ND6_LLINFO_NOSTATE)
2134 ln->ln_state = ND6_LLINFO_INCOMPLETE;
2135 if (ln->ln_hold) {
2136 struct mbuf *m_hold;
2137 int i;
2138
2139 i = 0;
2140 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2141 i++;
2142 if (m_hold->m_nextpkt == NULL) {
2143 m_hold->m_nextpkt = m;
2144 break;
2145 }
2146 }
2147 while (i >= nd6_maxqueuelen) {
2148 m_hold = ln->ln_hold;
2149 ln->ln_hold = ln->ln_hold->m_nextpkt;
2150 m_freem(m_hold);
2151 i--;
2152 }
2153 } else {
2154 ln->ln_hold = m;
2155 }
2156
2157 /*
2158 * If there has been no NS for the neighbor after entering the
2159 * INCOMPLETE state, send the first solicitation.
2160 */
2161 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2162 ln->ln_asked++;
2163 nd6_llinfo_settimer(ln,
2164 (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2165 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2166 }
2167 return 0;
2168
2169 sendpkt:
2170 /* discard the packet if IPv6 operation is disabled on the interface */
2171 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2172 error = ENETDOWN; /* better error? */
2173 goto bad;
2174 }
2175
2176 #ifdef KAME_IPSEC
2177 /* clean ipsec history once it goes out of the node */
2178 ipsec_delaux(m);
2179 #endif
2180 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2181 return (*ifp->if_output)(origifp, m, sin6tocsa(dst), rt);
2182 return (*ifp->if_output)(ifp, m, sin6tocsa(dst), rt);
2183
2184 bad:
2185 if (m != NULL)
2186 m_freem(m);
2187 return error;
2188 }
2189 #undef senderr
2190
2191 int
2192 nd6_need_cache(struct ifnet *ifp)
2193 {
2194 /*
2195 * XXX: we currently do not make neighbor cache on any interface
2196 * other than ARCnet, Ethernet, FDDI and GIF.
2197 *
2198 * RFC2893 says:
2199 * - unidirectional tunnels needs no ND
2200 */
2201 switch (ifp->if_type) {
2202 case IFT_ARCNET:
2203 case IFT_ETHER:
2204 case IFT_FDDI:
2205 case IFT_IEEE1394:
2206 case IFT_CARP:
2207 case IFT_GIF: /* XXX need more cases? */
2208 case IFT_PPP:
2209 case IFT_TUNNEL:
2210 return 1;
2211 default:
2212 return 0;
2213 }
2214 }
2215
2216 int
2217 nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt,
2218 struct mbuf *m, const struct sockaddr *dst, uint8_t *lldst,
2219 size_t dstsize)
2220 {
2221 const struct sockaddr_dl *sdl;
2222
2223 if (m->m_flags & M_MCAST) {
2224 switch (ifp->if_type) {
2225 case IFT_ETHER:
2226 case IFT_FDDI:
2227 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
2228 lldst);
2229 return 1;
2230 case IFT_IEEE1394:
2231 memcpy(lldst, ifp->if_broadcastaddr,
2232 MIN(dstsize, ifp->if_addrlen));
2233 return 1;
2234 case IFT_ARCNET:
2235 *lldst = 0;
2236 return 1;
2237 default:
2238 m_freem(m);
2239 return 0;
2240 }
2241 }
2242
2243 if (rt == NULL) {
2244 /* this could happen, if we could not allocate memory */
2245 m_freem(m);
2246 return 0;
2247 }
2248 if (rt->rt_gateway->sa_family != AF_LINK) {
2249 printf("%s: something odd happens\n", __func__);
2250 m_freem(m);
2251 return 0;
2252 }
2253 sdl = satocsdl(rt->rt_gateway);
2254 if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) {
2255 /* this should be impossible, but we bark here for debugging */
2256 printf("%s: sdl_alen == %" PRIu8 ", dst=%s, if=%s\n", __func__,
2257 sdl->sdl_alen, ip6_sprintf(&satocsin6(dst)->sin6_addr),
2258 if_name(ifp));
2259 m_freem(m);
2260 return 0;
2261 }
2262
2263 memcpy(lldst, CLLADDR(sdl), MIN(dstsize, sdl->sdl_alen));
2264 return 1;
2265 }
2266
2267 static void
2268 clear_llinfo_pqueue(struct llinfo_nd6 *ln)
2269 {
2270 struct mbuf *m_hold, *m_hold_next;
2271
2272 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2273 m_hold_next = m_hold->m_nextpkt;
2274 m_hold->m_nextpkt = NULL;
2275 m_freem(m_hold);
2276 }
2277
2278 ln->ln_hold = NULL;
2279 return;
2280 }
2281
2282 int
2283 nd6_sysctl(
2284 int name,
2285 void *oldp, /* syscall arg, need copyout */
2286 size_t *oldlenp,
2287 void *newp, /* syscall arg, need copyin */
2288 size_t newlen
2289 )
2290 {
2291 void *p;
2292 size_t ol;
2293 int error;
2294
2295 error = 0;
2296
2297 if (newp)
2298 return EPERM;
2299 if (oldp && !oldlenp)
2300 return EINVAL;
2301 ol = oldlenp ? *oldlenp : 0;
2302
2303 if (oldp) {
2304 p = malloc(*oldlenp, M_TEMP, M_WAITOK);
2305 if (p == NULL)
2306 return ENOMEM;
2307 } else
2308 p = NULL;
2309 switch (name) {
2310 case ICMPV6CTL_ND6_DRLIST:
2311 error = fill_drlist(p, oldlenp, ol);
2312 if (!error && p != NULL && oldp != NULL)
2313 error = copyout(p, oldp, *oldlenp);
2314 break;
2315
2316 case ICMPV6CTL_ND6_PRLIST:
2317 error = fill_prlist(p, oldlenp, ol);
2318 if (!error && p != NULL && oldp != NULL)
2319 error = copyout(p, oldp, *oldlenp);
2320 break;
2321
2322 case ICMPV6CTL_ND6_MAXQLEN:
2323 break;
2324
2325 default:
2326 error = ENOPROTOOPT;
2327 break;
2328 }
2329 if (p)
2330 free(p, M_TEMP);
2331
2332 return error;
2333 }
2334
2335 static int
2336 fill_drlist(void *oldp, size_t *oldlenp, size_t ol)
2337 {
2338 int error = 0, s;
2339 struct in6_defrouter *d = NULL, *de = NULL;
2340 struct nd_defrouter *dr;
2341 size_t l;
2342
2343 s = splsoftnet();
2344
2345 if (oldp) {
2346 d = (struct in6_defrouter *)oldp;
2347 de = (struct in6_defrouter *)((char *)oldp + *oldlenp);
2348 }
2349 l = 0;
2350
2351 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
2352
2353 if (oldp && d + 1 <= de) {
2354 memset(d, 0, sizeof(*d));
2355 sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0);
2356 if (sa6_recoverscope(&d->rtaddr)) {
2357 log(LOG_ERR,
2358 "scope error in router list (%s)\n",
2359 ip6_sprintf(&d->rtaddr.sin6_addr));
2360 /* XXX: press on... */
2361 }
2362 d->flags = dr->flags;
2363 d->rtlifetime = dr->rtlifetime;
2364 d->expire = dr->expire;
2365 d->if_index = dr->ifp->if_index;
2366 }
2367
2368 l += sizeof(*d);
2369 if (d)
2370 d++;
2371 }
2372
2373 if (oldp) {
2374 if (l > ol)
2375 error = ENOMEM;
2376 }
2377 if (oldlenp)
2378 *oldlenp = l; /* (void *)d - (void *)oldp */
2379
2380 splx(s);
2381
2382 return error;
2383 }
2384
2385 static int
2386 fill_prlist(void *oldp, size_t *oldlenp, size_t ol)
2387 {
2388 int error = 0, s;
2389 struct nd_prefix *pr;
2390 uint8_t *p = NULL, *ps = NULL;
2391 uint8_t *pe = NULL;
2392 size_t l;
2393
2394 s = splsoftnet();
2395
2396 if (oldp) {
2397 ps = p = (uint8_t*)oldp;
2398 pe = (uint8_t*)oldp + *oldlenp;
2399 }
2400 l = 0;
2401
2402 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
2403 u_short advrtrs;
2404 struct sockaddr_in6 sin6;
2405 struct nd_pfxrouter *pfr;
2406 struct in6_prefix pfx;
2407
2408 if (oldp && p + sizeof(struct in6_prefix) <= pe)
2409 {
2410 memset(&pfx, 0, sizeof(pfx));
2411 ps = p;
2412 pfx.prefix = pr->ndpr_prefix;
2413
2414 if (sa6_recoverscope(&pfx.prefix)) {
2415 log(LOG_ERR,
2416 "scope error in prefix list (%s)\n",
2417 ip6_sprintf(&pfx.prefix.sin6_addr));
2418 /* XXX: press on... */
2419 }
2420 pfx.raflags = pr->ndpr_raf;
2421 pfx.prefixlen = pr->ndpr_plen;
2422 pfx.vltime = pr->ndpr_vltime;
2423 pfx.pltime = pr->ndpr_pltime;
2424 pfx.if_index = pr->ndpr_ifp->if_index;
2425 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2426 pfx.expire = 0;
2427 else {
2428 time_t maxexpire;
2429
2430 /* XXX: we assume time_t is signed. */
2431 maxexpire = (-1) &
2432 ~((time_t)1 <<
2433 ((sizeof(maxexpire) * 8) - 1));
2434 if (pr->ndpr_vltime <
2435 maxexpire - pr->ndpr_lastupdate) {
2436 pfx.expire = pr->ndpr_lastupdate +
2437 pr->ndpr_vltime;
2438 } else
2439 pfx.expire = maxexpire;
2440 }
2441 pfx.refcnt = pr->ndpr_refcnt;
2442 pfx.flags = pr->ndpr_stateflags;
2443 pfx.origin = PR_ORIG_RA;
2444
2445 p += sizeof(pfx); l += sizeof(pfx);
2446
2447 advrtrs = 0;
2448 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2449 if (p + sizeof(sin6) > pe) {
2450 advrtrs++;
2451 continue;
2452 }
2453
2454 sockaddr_in6_init(&sin6, &pfr->router->rtaddr,
2455 0, 0, 0);
2456 if (sa6_recoverscope(&sin6)) {
2457 log(LOG_ERR,
2458 "scope error in "
2459 "prefix list (%s)\n",
2460 ip6_sprintf(&pfr->router->rtaddr));
2461 }
2462 advrtrs++;
2463 memcpy(p, &sin6, sizeof(sin6));
2464 p += sizeof(sin6);
2465 l += sizeof(sin6);
2466 }
2467 pfx.advrtrs = advrtrs;
2468 memcpy(ps, &pfx, sizeof(pfx));
2469 }
2470 else {
2471 l += sizeof(pfx);
2472 advrtrs = 0;
2473 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2474 advrtrs++;
2475 l += sizeof(sin6);
2476 }
2477 }
2478 }
2479
2480 if (oldp) {
2481 *oldlenp = l; /* (void *)d - (void *)oldp */
2482 if (l > ol)
2483 error = ENOMEM;
2484 } else
2485 *oldlenp = l;
2486
2487 splx(s);
2488
2489 return error;
2490 }
2491