nd6.c revision 1.152 1 /* $NetBSD: nd6.c,v 1.152 2014/06/06 01:02:47 rmind Exp $ */
2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.152 2014/06/06 01:02:47 rmind Exp $");
35
36 #include "opt_ipsec.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/callout.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/socket.h>
44 #include <sys/socketvar.h>
45 #include <sys/sockio.h>
46 #include <sys/time.h>
47 #include <sys/kernel.h>
48 #include <sys/protosw.h>
49 #include <sys/errno.h>
50 #include <sys/ioctl.h>
51 #include <sys/syslog.h>
52 #include <sys/queue.h>
53 #include <sys/cprng.h>
54
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_types.h>
58 #include <net/route.h>
59 #include <net/if_ether.h>
60 #include <net/if_fddi.h>
61 #include <net/if_arc.h>
62
63 #include <netinet/in.h>
64 #include <netinet6/in6_var.h>
65 #include <netinet/ip6.h>
66 #include <netinet6/ip6_var.h>
67 #include <netinet6/scope6_var.h>
68 #include <netinet6/nd6.h>
69 #include <netinet6/in6_ifattach.h>
70 #include <netinet/icmp6.h>
71 #include <netinet6/icmp6_private.h>
72
73 #include <net/net_osdep.h>
74
75 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
76 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
77
78 /* timer values */
79 int nd6_prune = 1; /* walk list every 1 seconds */
80 int nd6_delay = 5; /* delay first probe time 5 second */
81 int nd6_umaxtries = 3; /* maximum unicast query */
82 int nd6_mmaxtries = 3; /* maximum multicast query */
83 int nd6_useloopback = 1; /* use loopback interface for local traffic */
84 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
85
86 /* preventing too many loops in ND option parsing */
87 int nd6_maxndopt = 10; /* max # of ND options allowed */
88
89 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
90
91 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
92
93 #ifdef ND6_DEBUG
94 int nd6_debug = 1;
95 #else
96 int nd6_debug = 0;
97 #endif
98
99 /* for debugging? */
100 static int nd6_inuse, nd6_allocated;
101
102 struct llinfo_nd6 llinfo_nd6 = {
103 .ln_prev = &llinfo_nd6,
104 .ln_next = &llinfo_nd6,
105 };
106 struct nd_drhead nd_defrouter;
107 struct nd_prhead nd_prefix = { 0 };
108
109 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
110 static const struct sockaddr_in6 all1_sa = {
111 .sin6_family = AF_INET6
112 , .sin6_len = sizeof(struct sockaddr_in6)
113 , .sin6_addr = {.s6_addr = {0xff, 0xff, 0xff, 0xff,
114 0xff, 0xff, 0xff, 0xff,
115 0xff, 0xff, 0xff, 0xff,
116 0xff, 0xff, 0xff, 0xff}}
117 };
118
119 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
120 static void nd6_slowtimo(void *);
121 static int regen_tmpaddr(struct in6_ifaddr *);
122 static struct llinfo_nd6 *nd6_free(struct rtentry *, int);
123 static void nd6_llinfo_timer(void *);
124 static void clear_llinfo_pqueue(struct llinfo_nd6 *);
125
126 callout_t nd6_slowtimo_ch;
127 callout_t nd6_timer_ch;
128 extern callout_t in6_tmpaddrtimer_ch;
129
130 static int fill_drlist(void *, size_t *, size_t);
131 static int fill_prlist(void *, size_t *, size_t);
132
133 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
134
135 #define LN_DEQUEUE(ln) do { \
136 (ln)->ln_next->ln_prev = (ln)->ln_prev; \
137 (ln)->ln_prev->ln_next = (ln)->ln_next; \
138 } while (/*CONSTCOND*/0)
139 #define LN_INSERTHEAD(ln) do { \
140 (ln)->ln_next = llinfo_nd6.ln_next; \
141 llinfo_nd6.ln_next = (ln); \
142 (ln)->ln_prev = &llinfo_nd6; \
143 (ln)->ln_next->ln_prev = (ln); \
144 } while (/*CONSTCOND*/0)
145 void
146 nd6_init(void)
147 {
148 static int nd6_init_done = 0;
149
150 if (nd6_init_done) {
151 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
152 return;
153 }
154
155 /* initialization of the default router list */
156 TAILQ_INIT(&nd_defrouter);
157
158 nd6_init_done = 1;
159
160 callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE);
161 callout_init(&nd6_timer_ch, CALLOUT_MPSAFE);
162
163 /* start timer */
164 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
165 nd6_slowtimo, NULL);
166 }
167
168 struct nd_ifinfo *
169 nd6_ifattach(struct ifnet *ifp)
170 {
171 struct nd_ifinfo *nd;
172
173 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO);
174
175 nd->initialized = 1;
176
177 nd->chlim = IPV6_DEFHLIM;
178 nd->basereachable = REACHABLE_TIME;
179 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
180 nd->retrans = RETRANS_TIMER;
181
182 nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV;
183
184 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
185 * A bridge interface should not have ND6_IFF_AUTO_LINKLOCAL
186 * because one of it's members should. */
187 if ((ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
188 (ifp->if_flags & IFF_LOOPBACK))
189 nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
190
191 /* A loopback interface does not need to accept RTADV.
192 * A bridge interface should not accept RTADV
193 * because one of it's members should. */
194 if (ip6_accept_rtadv &&
195 !(ifp->if_flags & IFF_LOOPBACK) &&
196 !(ifp->if_type != IFT_BRIDGE))
197 nd->flags |= ND6_IFF_ACCEPT_RTADV;
198
199 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
200 nd6_setmtu0(ifp, nd);
201
202 return nd;
203 }
204
205 void
206 nd6_ifdetach(struct nd_ifinfo *nd)
207 {
208
209 free(nd, M_IP6NDP);
210 }
211
212 void
213 nd6_setmtu(struct ifnet *ifp)
214 {
215 nd6_setmtu0(ifp, ND_IFINFO(ifp));
216 }
217
218 void
219 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
220 {
221 u_int32_t omaxmtu;
222
223 omaxmtu = ndi->maxmtu;
224
225 switch (ifp->if_type) {
226 case IFT_ARCNET:
227 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
228 break;
229 case IFT_FDDI:
230 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
231 break;
232 default:
233 ndi->maxmtu = ifp->if_mtu;
234 break;
235 }
236
237 /*
238 * Decreasing the interface MTU under IPV6 minimum MTU may cause
239 * undesirable situation. We thus notify the operator of the change
240 * explicitly. The check for omaxmtu is necessary to restrict the
241 * log to the case of changing the MTU, not initializing it.
242 */
243 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
244 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
245 " small for IPv6 which needs %lu\n",
246 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
247 IPV6_MMTU);
248 }
249
250 if (ndi->maxmtu > in6_maxmtu)
251 in6_setmaxmtu(); /* check all interfaces just in case */
252 }
253
254 void
255 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
256 {
257
258 memset(ndopts, 0, sizeof(*ndopts));
259 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
260 ndopts->nd_opts_last
261 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
262
263 if (icmp6len == 0) {
264 ndopts->nd_opts_done = 1;
265 ndopts->nd_opts_search = NULL;
266 }
267 }
268
269 /*
270 * Take one ND option.
271 */
272 struct nd_opt_hdr *
273 nd6_option(union nd_opts *ndopts)
274 {
275 struct nd_opt_hdr *nd_opt;
276 int olen;
277
278 if (ndopts == NULL)
279 panic("ndopts == NULL in nd6_option");
280 if (ndopts->nd_opts_last == NULL)
281 panic("uninitialized ndopts in nd6_option");
282 if (ndopts->nd_opts_search == NULL)
283 return NULL;
284 if (ndopts->nd_opts_done)
285 return NULL;
286
287 nd_opt = ndopts->nd_opts_search;
288
289 /* make sure nd_opt_len is inside the buffer */
290 if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) {
291 memset(ndopts, 0, sizeof(*ndopts));
292 return NULL;
293 }
294
295 olen = nd_opt->nd_opt_len << 3;
296 if (olen == 0) {
297 /*
298 * Message validation requires that all included
299 * options have a length that is greater than zero.
300 */
301 memset(ndopts, 0, sizeof(*ndopts));
302 return NULL;
303 }
304
305 ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen);
306 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
307 /* option overruns the end of buffer, invalid */
308 memset(ndopts, 0, sizeof(*ndopts));
309 return NULL;
310 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
311 /* reached the end of options chain */
312 ndopts->nd_opts_done = 1;
313 ndopts->nd_opts_search = NULL;
314 }
315 return nd_opt;
316 }
317
318 /*
319 * Parse multiple ND options.
320 * This function is much easier to use, for ND routines that do not need
321 * multiple options of the same type.
322 */
323 int
324 nd6_options(union nd_opts *ndopts)
325 {
326 struct nd_opt_hdr *nd_opt;
327 int i = 0;
328
329 if (ndopts == NULL)
330 panic("ndopts == NULL in nd6_options");
331 if (ndopts->nd_opts_last == NULL)
332 panic("uninitialized ndopts in nd6_options");
333 if (ndopts->nd_opts_search == NULL)
334 return 0;
335
336 while (1) {
337 nd_opt = nd6_option(ndopts);
338 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
339 /*
340 * Message validation requires that all included
341 * options have a length that is greater than zero.
342 */
343 ICMP6_STATINC(ICMP6_STAT_ND_BADOPT);
344 memset(ndopts, 0, sizeof(*ndopts));
345 return -1;
346 }
347
348 if (nd_opt == NULL)
349 goto skip1;
350
351 switch (nd_opt->nd_opt_type) {
352 case ND_OPT_SOURCE_LINKADDR:
353 case ND_OPT_TARGET_LINKADDR:
354 case ND_OPT_MTU:
355 case ND_OPT_REDIRECTED_HEADER:
356 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
357 nd6log((LOG_INFO,
358 "duplicated ND6 option found (type=%d)\n",
359 nd_opt->nd_opt_type));
360 /* XXX bark? */
361 } else {
362 ndopts->nd_opt_array[nd_opt->nd_opt_type]
363 = nd_opt;
364 }
365 break;
366 case ND_OPT_PREFIX_INFORMATION:
367 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
368 ndopts->nd_opt_array[nd_opt->nd_opt_type]
369 = nd_opt;
370 }
371 ndopts->nd_opts_pi_end =
372 (struct nd_opt_prefix_info *)nd_opt;
373 break;
374 default:
375 /*
376 * Unknown options must be silently ignored,
377 * to accommodate future extension to the protocol.
378 */
379 nd6log((LOG_DEBUG,
380 "nd6_options: unsupported option %d - "
381 "option ignored\n", nd_opt->nd_opt_type));
382 }
383
384 skip1:
385 i++;
386 if (i > nd6_maxndopt) {
387 ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT);
388 nd6log((LOG_INFO, "too many loop in nd opt\n"));
389 break;
390 }
391
392 if (ndopts->nd_opts_done)
393 break;
394 }
395
396 return 0;
397 }
398
399 /*
400 * ND6 timer routine to handle ND6 entries
401 */
402 void
403 nd6_llinfo_settimer(struct llinfo_nd6 *ln, long xtick)
404 {
405 int s;
406
407 s = splsoftnet();
408
409 if (xtick < 0) {
410 ln->ln_expire = 0;
411 ln->ln_ntick = 0;
412 callout_stop(&ln->ln_timer_ch);
413 } else {
414 ln->ln_expire = time_second + xtick / hz;
415 if (xtick > INT_MAX) {
416 ln->ln_ntick = xtick - INT_MAX;
417 callout_reset(&ln->ln_timer_ch, INT_MAX,
418 nd6_llinfo_timer, ln);
419 } else {
420 ln->ln_ntick = 0;
421 callout_reset(&ln->ln_timer_ch, xtick,
422 nd6_llinfo_timer, ln);
423 }
424 }
425
426 splx(s);
427 }
428
429 static void
430 nd6_llinfo_timer(void *arg)
431 {
432 struct llinfo_nd6 *ln;
433 struct rtentry *rt;
434 const struct sockaddr_in6 *dst;
435 struct ifnet *ifp;
436 struct nd_ifinfo *ndi = NULL;
437
438 mutex_enter(softnet_lock);
439 KERNEL_LOCK(1, NULL);
440
441 ln = (struct llinfo_nd6 *)arg;
442
443 if (ln->ln_ntick > 0) {
444 nd6_llinfo_settimer(ln, ln->ln_ntick);
445 KERNEL_UNLOCK_ONE(NULL);
446 mutex_exit(softnet_lock);
447 return;
448 }
449
450 if ((rt = ln->ln_rt) == NULL)
451 panic("ln->ln_rt == NULL");
452 if ((ifp = rt->rt_ifp) == NULL)
453 panic("ln->ln_rt->rt_ifp == NULL");
454 ndi = ND_IFINFO(ifp);
455 dst = satocsin6(rt_getkey(rt));
456
457 /* sanity check */
458 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
459 panic("rt_llinfo(%p) is not equal to ln(%p)",
460 rt->rt_llinfo, ln);
461 if (!dst)
462 panic("dst=0 in nd6_timer(ln=%p)", ln);
463
464 switch (ln->ln_state) {
465 case ND6_LLINFO_INCOMPLETE:
466 if (ln->ln_asked < nd6_mmaxtries) {
467 ln->ln_asked++;
468 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
469 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
470 } else {
471 struct mbuf *m = ln->ln_hold;
472 if (m) {
473 struct mbuf *m0;
474
475 /*
476 * assuming every packet in ln_hold has
477 * the same IP header
478 */
479 m0 = m->m_nextpkt;
480 m->m_nextpkt = NULL;
481 icmp6_error2(m, ICMP6_DST_UNREACH,
482 ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
483
484 ln->ln_hold = m0;
485 clear_llinfo_pqueue(ln);
486 }
487 (void)nd6_free(rt, 0);
488 ln = NULL;
489 }
490 break;
491 case ND6_LLINFO_REACHABLE:
492 if (!ND6_LLINFO_PERMANENT(ln)) {
493 ln->ln_state = ND6_LLINFO_STALE;
494 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
495 }
496 break;
497
498 case ND6_LLINFO_PURGE:
499 case ND6_LLINFO_STALE:
500 /* Garbage Collection(RFC 2461 5.3) */
501 if (!ND6_LLINFO_PERMANENT(ln)) {
502 (void)nd6_free(rt, 1);
503 ln = NULL;
504 }
505 break;
506
507 case ND6_LLINFO_DELAY:
508 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
509 /* We need NUD */
510 ln->ln_asked = 1;
511 ln->ln_state = ND6_LLINFO_PROBE;
512 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
513 nd6_ns_output(ifp, &dst->sin6_addr,
514 &dst->sin6_addr, ln, 0);
515 } else {
516 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
517 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
518 }
519 break;
520 case ND6_LLINFO_PROBE:
521 if (ln->ln_asked < nd6_umaxtries) {
522 ln->ln_asked++;
523 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
524 nd6_ns_output(ifp, &dst->sin6_addr,
525 &dst->sin6_addr, ln, 0);
526 } else {
527 (void)nd6_free(rt, 0);
528 ln = NULL;
529 }
530 break;
531 }
532
533 KERNEL_UNLOCK_ONE(NULL);
534 mutex_exit(softnet_lock);
535 }
536
537 /*
538 * ND6 timer routine to expire default route list and prefix list
539 */
540 void
541 nd6_timer(void *ignored_arg)
542 {
543 struct nd_defrouter *next_dr, *dr;
544 struct nd_prefix *next_pr, *pr;
545 struct in6_ifaddr *ia6, *nia6;
546
547 callout_reset(&nd6_timer_ch, nd6_prune * hz,
548 nd6_timer, NULL);
549
550 mutex_enter(softnet_lock);
551 KERNEL_LOCK(1, NULL);
552
553 /* expire default router list */
554
555 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, next_dr) {
556 if (dr->expire && dr->expire < time_second) {
557 defrtrlist_del(dr);
558 }
559 }
560
561 /*
562 * expire interface addresses.
563 * in the past the loop was inside prefix expiry processing.
564 * However, from a stricter speci-confrmance standpoint, we should
565 * rather separate address lifetimes and prefix lifetimes.
566 */
567 addrloop:
568 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
569 nia6 = ia6->ia_next;
570 /* check address lifetime */
571 if (IFA6_IS_INVALID(ia6)) {
572 int regen = 0;
573
574 /*
575 * If the expiring address is temporary, try
576 * regenerating a new one. This would be useful when
577 * we suspended a laptop PC, then turned it on after a
578 * period that could invalidate all temporary
579 * addresses. Although we may have to restart the
580 * loop (see below), it must be after purging the
581 * address. Otherwise, we'd see an infinite loop of
582 * regeneration.
583 */
584 if (ip6_use_tempaddr &&
585 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
586 if (regen_tmpaddr(ia6) == 0)
587 regen = 1;
588 }
589
590 in6_purgeaddr(&ia6->ia_ifa);
591
592 if (regen)
593 goto addrloop; /* XXX: see below */
594 } else if (IFA6_IS_DEPRECATED(ia6)) {
595 int oldflags = ia6->ia6_flags;
596
597 if ((oldflags & IN6_IFF_DEPRECATED) == 0) {
598 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
599 nd6_newaddrmsg((struct ifaddr *)ia6);
600 }
601
602 /*
603 * If a temporary address has just become deprecated,
604 * regenerate a new one if possible.
605 */
606 if (ip6_use_tempaddr &&
607 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
608 (oldflags & IN6_IFF_DEPRECATED) == 0) {
609
610 if (regen_tmpaddr(ia6) == 0) {
611 /*
612 * A new temporary address is
613 * generated.
614 * XXX: this means the address chain
615 * has changed while we are still in
616 * the loop. Although the change
617 * would not cause disaster (because
618 * it's not a deletion, but an
619 * addition,) we'd rather restart the
620 * loop just for safety. Or does this
621 * significantly reduce performance??
622 */
623 goto addrloop;
624 }
625 }
626 } else {
627 /*
628 * A new RA might have made a deprecated address
629 * preferred.
630 */
631 if (ia6->ia6_flags & IN6_IFF_DEPRECATED) {
632 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
633 nd6_newaddrmsg((struct ifaddr *)ia6);
634 }
635 }
636 }
637
638 /* expire prefix list */
639 LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, next_pr) {
640 /*
641 * check prefix lifetime.
642 * since pltime is just for autoconf, pltime processing for
643 * prefix is not necessary.
644 */
645 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
646 time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
647
648 /*
649 * address expiration and prefix expiration are
650 * separate. NEVER perform in6_purgeaddr here.
651 */
652
653 prelist_remove(pr);
654 }
655 }
656
657 KERNEL_UNLOCK_ONE(NULL);
658 mutex_exit(softnet_lock);
659 }
660
661 /* ia6: deprecated/invalidated temporary address */
662 static int
663 regen_tmpaddr(struct in6_ifaddr *ia6)
664 {
665 struct ifaddr *ifa;
666 struct ifnet *ifp;
667 struct in6_ifaddr *public_ifa6 = NULL;
668
669 ifp = ia6->ia_ifa.ifa_ifp;
670 IFADDR_FOREACH(ifa, ifp) {
671 struct in6_ifaddr *it6;
672
673 if (ifa->ifa_addr->sa_family != AF_INET6)
674 continue;
675
676 it6 = (struct in6_ifaddr *)ifa;
677
678 /* ignore no autoconf addresses. */
679 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
680 continue;
681
682 /* ignore autoconf addresses with different prefixes. */
683 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
684 continue;
685
686 /*
687 * Now we are looking at an autoconf address with the same
688 * prefix as ours. If the address is temporary and is still
689 * preferred, do not create another one. It would be rare, but
690 * could happen, for example, when we resume a laptop PC after
691 * a long period.
692 */
693 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
694 !IFA6_IS_DEPRECATED(it6)) {
695 public_ifa6 = NULL;
696 break;
697 }
698
699 /*
700 * This is a public autoconf address that has the same prefix
701 * as ours. If it is preferred, keep it. We can't break the
702 * loop here, because there may be a still-preferred temporary
703 * address with the prefix.
704 */
705 if (!IFA6_IS_DEPRECATED(it6))
706 public_ifa6 = it6;
707 }
708
709 if (public_ifa6 != NULL) {
710 int e;
711
712 /*
713 * Random factor is introduced in the preferred lifetime, so
714 * we do not need additional delay (3rd arg to in6_tmpifadd).
715 */
716 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
717 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
718 " tmp addr, errno=%d\n", e);
719 return -1;
720 }
721 return 0;
722 }
723
724 return -1;
725 }
726
727 bool
728 nd6_accepts_rtadv(const struct nd_ifinfo *ndi)
729 {
730 switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) {
731 case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV:
732 return true;
733 case ND6_IFF_ACCEPT_RTADV:
734 return ip6_accept_rtadv != 0;
735 case ND6_IFF_OVERRIDE_RTADV:
736 case 0:
737 default:
738 return false;
739 }
740 }
741
742 /*
743 * Nuke neighbor cache/prefix/default router management table, right before
744 * ifp goes away.
745 */
746 void
747 nd6_purge(struct ifnet *ifp)
748 {
749 struct llinfo_nd6 *ln, *nln;
750 struct nd_defrouter *dr, *ndr;
751 struct nd_prefix *pr, *npr;
752
753 /*
754 * Nuke default router list entries toward ifp.
755 * We defer removal of default router list entries that is installed
756 * in the routing table, in order to keep additional side effects as
757 * small as possible.
758 */
759 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
760 if (dr->installed)
761 continue;
762
763 if (dr->ifp == ifp)
764 defrtrlist_del(dr);
765 }
766
767 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
768 if (!dr->installed)
769 continue;
770
771 if (dr->ifp == ifp)
772 defrtrlist_del(dr);
773 }
774
775 /* Nuke prefix list entries toward ifp */
776 LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, npr) {
777 if (pr->ndpr_ifp == ifp) {
778 /*
779 * Because if_detach() does *not* release prefixes
780 * while purging addresses the reference count will
781 * still be above zero. We therefore reset it to
782 * make sure that the prefix really gets purged.
783 */
784 pr->ndpr_refcnt = 0;
785 /*
786 * Previously, pr->ndpr_addr is removed as well,
787 * but I strongly believe we don't have to do it.
788 * nd6_purge() is only called from in6_ifdetach(),
789 * which removes all the associated interface addresses
790 * by itself.
791 * (jinmei (at) kame.net 20010129)
792 */
793 prelist_remove(pr);
794 }
795 }
796
797 /* cancel default outgoing interface setting */
798 if (nd6_defifindex == ifp->if_index)
799 nd6_setdefaultiface(0);
800
801 /* XXX: too restrictive? */
802 if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) {
803 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
804 if (ndi && nd6_accepts_rtadv(ndi)) {
805 /* refresh default router list */
806 defrouter_select();
807 }
808 }
809
810 /*
811 * Nuke neighbor cache entries for the ifp.
812 * Note that rt->rt_ifp may not be the same as ifp,
813 * due to KAME goto ours hack. See RTM_RESOLVE case in
814 * nd6_rtrequest(), and ip6_input().
815 */
816 ln = llinfo_nd6.ln_next;
817 while (ln != NULL && ln != &llinfo_nd6) {
818 struct rtentry *rt;
819 const struct sockaddr_dl *sdl;
820
821 nln = ln->ln_next;
822 rt = ln->ln_rt;
823 if (rt && rt->rt_gateway &&
824 rt->rt_gateway->sa_family == AF_LINK) {
825 sdl = satocsdl(rt->rt_gateway);
826 if (sdl->sdl_index == ifp->if_index)
827 nln = nd6_free(rt, 0);
828 }
829 ln = nln;
830 }
831 }
832
833 static struct rtentry *
834 nd6_lookup1(const struct in6_addr *addr6, int create, struct ifnet *ifp,
835 int cloning)
836 {
837 struct rtentry *rt;
838 struct sockaddr_in6 sin6;
839
840 sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
841 rt = rtalloc1((struct sockaddr *)&sin6, create);
842 if (rt != NULL && (rt->rt_flags & RTF_LLINFO) == 0) {
843 /*
844 * This is the case for the default route.
845 * If we want to create a neighbor cache for the address, we
846 * should free the route for the destination and allocate an
847 * interface route.
848 */
849 if (create) {
850 rtfree(rt);
851 rt = NULL;
852 }
853 }
854 if (rt != NULL)
855 ;
856 else if (create && ifp) {
857 int e;
858
859 /*
860 * If no route is available and create is set,
861 * we allocate a host route for the destination
862 * and treat it like an interface route.
863 * This hack is necessary for a neighbor which can't
864 * be covered by our own prefix.
865 */
866 struct ifaddr *ifa =
867 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
868 if (ifa == NULL)
869 return NULL;
870
871 /*
872 * Create a new route. RTF_LLINFO is necessary
873 * to create a Neighbor Cache entry for the
874 * destination in nd6_rtrequest which will be
875 * called in rtrequest via ifa->ifa_rtrequest.
876 */
877 if ((e = rtrequest(RTM_ADD, (const struct sockaddr *)&sin6,
878 ifa->ifa_addr, (const struct sockaddr *)&all1_sa,
879 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
880 ~RTF_CLONING, &rt)) != 0) {
881 #if 0
882 log(LOG_ERR,
883 "nd6_lookup: failed to add route for a "
884 "neighbor(%s), errno=%d\n",
885 ip6_sprintf(addr6), e);
886 #endif
887 return NULL;
888 }
889 if (rt == NULL)
890 return NULL;
891 if (rt->rt_llinfo) {
892 struct llinfo_nd6 *ln =
893 (struct llinfo_nd6 *)rt->rt_llinfo;
894 ln->ln_state = ND6_LLINFO_NOSTATE;
895 }
896 } else
897 return NULL;
898 rt->rt_refcnt--;
899
900 /*
901 * Check for a cloning route to match the address.
902 * This should only be set from in6_is_addr_neighbor so we avoid
903 * a potentially expensive second call to rtalloc1.
904 */
905 if (cloning &&
906 rt->rt_flags & (RTF_CLONING | RTF_CLONED) &&
907 (rt->rt_ifp == ifp
908 #if NBRIDGE > 0
909 || SAME_BRIDGE(rt->rt_ifp->if_bridgeport, ifp->if_bridgeport)
910 #endif
911 #if NCARP > 0
912 || (ifp->if_type == IFT_CARP && rt->rt_ifp == ifp->if_carpdev) ||
913 (rt->rt_ifp->if_type == IFT_CARP && rt->rt_ifp->if_carpdev == ifp)||
914 (ifp->if_type == IFT_CARP && rt->rt_ifp->if_type == IFT_CARP &&
915 rt->rt_ifp->if_carpdev == ifp->if_carpdev)
916 #endif
917 ))
918 return rt;
919
920 /*
921 * Validation for the entry.
922 * Note that the check for rt_llinfo is necessary because a cloned
923 * route from a parent route that has the L flag (e.g. the default
924 * route to a p2p interface) may have the flag, too, while the
925 * destination is not actually a neighbor.
926 * XXX: we can't use rt->rt_ifp to check for the interface, since
927 * it might be the loopback interface if the entry is for our
928 * own address on a non-loopback interface. Instead, we should
929 * use rt->rt_ifa->ifa_ifp, which would specify the REAL
930 * interface.
931 * Note also that ifa_ifp and ifp may differ when we connect two
932 * interfaces to a same link, install a link prefix to an interface,
933 * and try to install a neighbor cache on an interface that does not
934 * have a route to the prefix.
935 */
936 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
937 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
938 (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
939 if (create) {
940 nd6log((LOG_DEBUG,
941 "nd6_lookup: failed to lookup %s (if = %s)\n",
942 ip6_sprintf(addr6),
943 ifp ? if_name(ifp) : "unspec"));
944 }
945 return NULL;
946 }
947 return rt;
948 }
949
950 struct rtentry *
951 nd6_lookup(const struct in6_addr *addr6, int create, struct ifnet *ifp)
952 {
953
954 return nd6_lookup1(addr6, create, ifp, 0);
955 }
956
957 /*
958 * Detect if a given IPv6 address identifies a neighbor on a given link.
959 * XXX: should take care of the destination of a p2p link?
960 */
961 int
962 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
963 {
964 struct nd_prefix *pr;
965
966 /*
967 * A link-local address is always a neighbor.
968 * XXX: a link does not necessarily specify a single interface.
969 */
970 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
971 struct sockaddr_in6 sin6_copy;
972 u_int32_t zone;
973
974 /*
975 * We need sin6_copy since sa6_recoverscope() may modify the
976 * content (XXX).
977 */
978 sin6_copy = *addr;
979 if (sa6_recoverscope(&sin6_copy))
980 return 0; /* XXX: should be impossible */
981 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
982 return 0;
983 if (sin6_copy.sin6_scope_id == zone)
984 return 1;
985 else
986 return 0;
987 }
988
989 /*
990 * If the address matches one of our on-link prefixes, it should be a
991 * neighbor.
992 */
993 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
994 if (pr->ndpr_ifp != ifp)
995 continue;
996
997 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
998 continue;
999
1000 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1001 &addr->sin6_addr, &pr->ndpr_mask))
1002 return 1;
1003 }
1004
1005 /*
1006 * If the default router list is empty, all addresses are regarded
1007 * as on-link, and thus, as a neighbor.
1008 * XXX: we restrict the condition to hosts, because routers usually do
1009 * not have the "default router list".
1010 */
1011 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
1012 nd6_defifindex == ifp->if_index) {
1013 return 1;
1014 }
1015
1016 /*
1017 * Even if the address matches none of our addresses, it might match
1018 * a cloning route or be in the neighbor cache.
1019 */
1020 if (nd6_lookup1(&addr->sin6_addr, 0, ifp, 1) != NULL)
1021 return 1;
1022
1023 return 0;
1024 }
1025
1026 /*
1027 * Free an nd6 llinfo entry.
1028 * Since the function would cause significant changes in the kernel, DO NOT
1029 * make it global, unless you have a strong reason for the change, and are sure
1030 * that the change is safe.
1031 */
1032 static struct llinfo_nd6 *
1033 nd6_free(struct rtentry *rt, int gc)
1034 {
1035 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
1036 struct in6_addr in6 = satocsin6(rt_getkey(rt))->sin6_addr;
1037 struct nd_defrouter *dr;
1038
1039 /*
1040 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1041 * even though it is not harmful, it was not really necessary.
1042 */
1043
1044 /* cancel timer */
1045 nd6_llinfo_settimer(ln, -1);
1046
1047 if (!ip6_forwarding) {
1048 int s;
1049 s = splsoftnet();
1050 dr = defrouter_lookup(&satocsin6(rt_getkey(rt))->sin6_addr,
1051 rt->rt_ifp);
1052
1053 if (dr != NULL && dr->expire &&
1054 ln->ln_state == ND6_LLINFO_STALE && gc) {
1055 /*
1056 * If the reason for the deletion is just garbage
1057 * collection, and the neighbor is an active default
1058 * router, do not delete it. Instead, reset the GC
1059 * timer using the router's lifetime.
1060 * Simply deleting the entry would affect default
1061 * router selection, which is not necessarily a good
1062 * thing, especially when we're using router preference
1063 * values.
1064 * XXX: the check for ln_state would be redundant,
1065 * but we intentionally keep it just in case.
1066 */
1067 if (dr->expire > time_second)
1068 nd6_llinfo_settimer(ln,
1069 (dr->expire - time_second) * hz);
1070 else
1071 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1072 splx(s);
1073 return ln->ln_next;
1074 }
1075
1076 if (ln->ln_router || dr) {
1077 /*
1078 * rt6_flush must be called whether or not the neighbor
1079 * is in the Default Router List.
1080 * See a corresponding comment in nd6_na_input().
1081 */
1082 rt6_flush(&in6, rt->rt_ifp);
1083 }
1084
1085 if (dr) {
1086 /*
1087 * Unreachablity of a router might affect the default
1088 * router selection and on-link detection of advertised
1089 * prefixes.
1090 */
1091
1092 /*
1093 * Temporarily fake the state to choose a new default
1094 * router and to perform on-link determination of
1095 * prefixes correctly.
1096 * Below the state will be set correctly,
1097 * or the entry itself will be deleted.
1098 */
1099 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1100
1101 /*
1102 * Since defrouter_select() does not affect the
1103 * on-link determination and MIP6 needs the check
1104 * before the default router selection, we perform
1105 * the check now.
1106 */
1107 pfxlist_onlink_check();
1108
1109 /*
1110 * refresh default router list
1111 */
1112 defrouter_select();
1113 }
1114 splx(s);
1115 }
1116
1117 /*
1118 * Before deleting the entry, remember the next entry as the
1119 * return value. We need this because pfxlist_onlink_check() above
1120 * might have freed other entries (particularly the old next entry) as
1121 * a side effect (XXX).
1122 */
1123 next = ln->ln_next;
1124
1125 /*
1126 * Detach the route from the routing tree and the list of neighbor
1127 * caches, and disable the route entry not to be used in already
1128 * cached routes.
1129 */
1130 rtrequest(RTM_DELETE, rt_getkey(rt), NULL, rt_mask(rt), 0, NULL);
1131
1132 return next;
1133 }
1134
1135 /*
1136 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1137 *
1138 * XXX cost-effective methods?
1139 */
1140 void
1141 nd6_nud_hint(struct rtentry *rt, struct in6_addr *dst6, int force)
1142 {
1143 struct llinfo_nd6 *ln;
1144
1145 /*
1146 * If the caller specified "rt", use that. Otherwise, resolve the
1147 * routing table by supplied "dst6".
1148 */
1149 if (rt == NULL) {
1150 if (dst6 == NULL)
1151 return;
1152 if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1153 return;
1154 }
1155
1156 if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1157 (rt->rt_flags & RTF_LLINFO) == 0 ||
1158 !rt->rt_llinfo || !rt->rt_gateway ||
1159 rt->rt_gateway->sa_family != AF_LINK) {
1160 /* This is not a host route. */
1161 return;
1162 }
1163
1164 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1165 if (ln->ln_state < ND6_LLINFO_REACHABLE)
1166 return;
1167
1168 /*
1169 * if we get upper-layer reachability confirmation many times,
1170 * it is possible we have false information.
1171 */
1172 if (!force) {
1173 ln->ln_byhint++;
1174 if (ln->ln_byhint > nd6_maxnudhint)
1175 return;
1176 }
1177
1178 ln->ln_state = ND6_LLINFO_REACHABLE;
1179 if (!ND6_LLINFO_PERMANENT(ln)) {
1180 nd6_llinfo_settimer(ln,
1181 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1182 }
1183 }
1184
1185 void
1186 nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
1187 {
1188 struct sockaddr *gate = rt->rt_gateway;
1189 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1190 struct ifnet *ifp = rt->rt_ifp;
1191 uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen;
1192 struct ifaddr *ifa;
1193
1194 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1195
1196 if (req == RTM_LLINFO_UPD) {
1197 int rc;
1198 struct in6_addr *in6;
1199 struct in6_addr in6_all;
1200 int anycast;
1201
1202 if ((ifa = info->rti_ifa) == NULL)
1203 return;
1204
1205 in6 = &ifatoia6(ifa)->ia_addr.sin6_addr;
1206 anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST;
1207
1208 in6_all = in6addr_linklocal_allnodes;
1209 if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) {
1210 log(LOG_ERR, "%s: failed to set scope %s "
1211 "(errno=%d)\n", __func__, if_name(ifp), rc);
1212 return;
1213 }
1214
1215 /* XXX don't set Override for proxy addresses */
1216 nd6_na_output(ifa->ifa_ifp, &in6_all, in6,
1217 (anycast ? 0 : ND_NA_FLAG_OVERRIDE)
1218 #if 0
1219 | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0)
1220 #endif
1221 , 1, NULL);
1222 return;
1223 }
1224
1225 if ((rt->rt_flags & RTF_GATEWAY) != 0)
1226 return;
1227
1228 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1229 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1230 /*
1231 * This is probably an interface direct route for a link
1232 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1233 * We do not need special treatment below for such a route.
1234 * Moreover, the RTF_LLINFO flag which would be set below
1235 * would annoy the ndp(8) command.
1236 */
1237 return;
1238 }
1239
1240 if (req == RTM_RESOLVE &&
1241 (nd6_need_cache(ifp) == 0 || /* stf case */
1242 !nd6_is_addr_neighbor(satocsin6(rt_getkey(rt)), ifp))) {
1243 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1244 /*
1245 * FreeBSD and BSD/OS often make a cloned host route based
1246 * on a less-specific route (e.g. the default route).
1247 * If the less specific route does not have a "gateway"
1248 * (this is the case when the route just goes to a p2p or an
1249 * stf interface), we'll mistakenly make a neighbor cache for
1250 * the host route, and will see strange neighbor solicitation
1251 * for the corresponding destination. In order to avoid the
1252 * confusion, we check if the destination of the route is
1253 * a neighbor in terms of neighbor discovery, and stop the
1254 * process if not. Additionally, we remove the LLINFO flag
1255 * so that ndp(8) will not try to get the neighbor information
1256 * of the destination.
1257 */
1258 rt->rt_flags &= ~RTF_LLINFO;
1259 return;
1260 }
1261
1262 switch (req) {
1263 case RTM_ADD:
1264 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1265 /*
1266 * There is no backward compatibility :)
1267 *
1268 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1269 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1270 * rt->rt_flags |= RTF_CLONING;
1271 */
1272 if ((rt->rt_flags & RTF_CLONING) ||
1273 ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1274 union {
1275 struct sockaddr sa;
1276 struct sockaddr_dl sdl;
1277 struct sockaddr_storage ss;
1278 } u;
1279 /*
1280 * Case 1: This route should come from a route to
1281 * interface (RTF_CLONING case) or the route should be
1282 * treated as on-link but is currently not
1283 * (RTF_LLINFO && ln == NULL case).
1284 */
1285 if (sockaddr_dl_init(&u.sdl, sizeof(u.ss),
1286 ifp->if_index, ifp->if_type,
1287 NULL, namelen, NULL, addrlen) == NULL) {
1288 printf("%s.%d: sockaddr_dl_init(, %zu, ) "
1289 "failed on %s\n", __func__, __LINE__,
1290 sizeof(u.ss), if_name(ifp));
1291 }
1292 rt_setgate(rt, &u.sa);
1293 gate = rt->rt_gateway;
1294 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1295 if (ln != NULL)
1296 nd6_llinfo_settimer(ln, 0);
1297 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1298 if ((rt->rt_flags & RTF_CLONING) != 0)
1299 break;
1300 }
1301 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1302 /*
1303 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1304 * We don't do that here since llinfo is not ready yet.
1305 *
1306 * There are also couple of other things to be discussed:
1307 * - unsolicited NA code needs improvement beforehand
1308 * - RFC2461 says we MAY send multicast unsolicited NA
1309 * (7.2.6 paragraph 4), however, it also says that we
1310 * SHOULD provide a mechanism to prevent multicast NA storm.
1311 * we don't have anything like it right now.
1312 * note that the mechanism needs a mutual agreement
1313 * between proxies, which means that we need to implement
1314 * a new protocol, or a new kludge.
1315 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1316 * we need to check ip6forwarding before sending it.
1317 * (or should we allow proxy ND configuration only for
1318 * routers? there's no mention about proxy ND from hosts)
1319 */
1320 #if 0
1321 /* XXX it does not work */
1322 if (rt->rt_flags & RTF_ANNOUNCE)
1323 nd6_na_output(ifp,
1324 &satocsin6(rt_getkey(rt))->sin6_addr,
1325 &satocsin6(rt_getkey(rt))->sin6_addr,
1326 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1327 1, NULL);
1328 #endif
1329 /* FALLTHROUGH */
1330 case RTM_RESOLVE:
1331 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1332 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1333 /*
1334 * Address resolution isn't necessary for a point to
1335 * point link, so we can skip this test for a p2p link.
1336 */
1337 if (gate->sa_family != AF_LINK ||
1338 gate->sa_len <
1339 sockaddr_dl_measure(namelen, addrlen)) {
1340 log(LOG_DEBUG,
1341 "nd6_rtrequest: bad gateway value: %s\n",
1342 if_name(ifp));
1343 break;
1344 }
1345 satosdl(gate)->sdl_type = ifp->if_type;
1346 satosdl(gate)->sdl_index = ifp->if_index;
1347 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1348 }
1349 if (ln != NULL)
1350 break; /* This happens on a route change */
1351 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1352 /*
1353 * Case 2: This route may come from cloning, or a manual route
1354 * add with a LL address.
1355 */
1356 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1357 rt->rt_llinfo = ln;
1358 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1359 if (ln == NULL) {
1360 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1361 break;
1362 }
1363 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1364 nd6_inuse++;
1365 nd6_allocated++;
1366 memset(ln, 0, sizeof(*ln));
1367 ln->ln_rt = rt;
1368 callout_init(&ln->ln_timer_ch, CALLOUT_MPSAFE);
1369 /* this is required for "ndp" command. - shin */
1370 if (req == RTM_ADD) {
1371 /*
1372 * gate should have some valid AF_LINK entry,
1373 * and ln->ln_expire should have some lifetime
1374 * which is specified by ndp command.
1375 */
1376 ln->ln_state = ND6_LLINFO_REACHABLE;
1377 ln->ln_byhint = 0;
1378 } else {
1379 /*
1380 * When req == RTM_RESOLVE, rt is created and
1381 * initialized in rtrequest(), so rt_expire is 0.
1382 */
1383 ln->ln_state = ND6_LLINFO_NOSTATE;
1384 nd6_llinfo_settimer(ln, 0);
1385 }
1386 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1387 rt->rt_flags |= RTF_LLINFO;
1388 ln->ln_next = llinfo_nd6.ln_next;
1389 llinfo_nd6.ln_next = ln;
1390 ln->ln_prev = &llinfo_nd6;
1391 ln->ln_next->ln_prev = ln;
1392
1393 /*
1394 * If we have too many cache entries, initiate immediate
1395 * purging for some "less recently used" entries. Note that
1396 * we cannot directly call nd6_free() here because it would
1397 * cause re-entering rtable related routines triggering an LOR
1398 * problem for FreeBSD.
1399 */
1400 if (ip6_neighborgcthresh >= 0 &&
1401 nd6_inuse >= ip6_neighborgcthresh) {
1402 int i;
1403
1404 for (i = 0; i < 10 && llinfo_nd6.ln_prev != ln; i++) {
1405 struct llinfo_nd6 *ln_end = llinfo_nd6.ln_prev;
1406
1407 /* Move this entry to the head */
1408 LN_DEQUEUE(ln_end);
1409 LN_INSERTHEAD(ln_end);
1410
1411 if (ND6_LLINFO_PERMANENT(ln_end))
1412 continue;
1413
1414 if (ln_end->ln_state > ND6_LLINFO_INCOMPLETE)
1415 ln_end->ln_state = ND6_LLINFO_STALE;
1416 else
1417 ln_end->ln_state = ND6_LLINFO_PURGE;
1418 nd6_llinfo_settimer(ln_end, 0);
1419 }
1420 }
1421
1422 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1423 /*
1424 * check if rt_getkey(rt) is an address assigned
1425 * to the interface.
1426 */
1427 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp,
1428 &satocsin6(rt_getkey(rt))->sin6_addr);
1429 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1430 if (ifa != NULL) {
1431 const void *mac;
1432 nd6_llinfo_settimer(ln, -1);
1433 ln->ln_state = ND6_LLINFO_REACHABLE;
1434 ln->ln_byhint = 0;
1435 if ((mac = nd6_ifptomac(ifp)) != NULL) {
1436 /* XXX check for error */
1437 if (sockaddr_dl_setaddr(satosdl(gate),
1438 gate->sa_len, mac,
1439 ifp->if_addrlen) == NULL) {
1440 printf("%s.%d: "
1441 "sockaddr_dl_setaddr(, %d, ) "
1442 "failed on %s\n", __func__,
1443 __LINE__, gate->sa_len,
1444 if_name(ifp));
1445 }
1446 }
1447 if (nd6_useloopback) {
1448 ifp = rt->rt_ifp = lo0ifp; /* XXX */
1449 /*
1450 * Make sure rt_ifa be equal to the ifaddr
1451 * corresponding to the address.
1452 * We need this because when we refer
1453 * rt_ifa->ia6_flags in ip6_input, we assume
1454 * that the rt_ifa points to the address instead
1455 * of the loopback address.
1456 */
1457 if (ifa != rt->rt_ifa)
1458 rt_replace_ifa(rt, ifa);
1459 rt->rt_flags &= ~RTF_CLONED;
1460 }
1461 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1462 nd6_llinfo_settimer(ln, -1);
1463 ln->ln_state = ND6_LLINFO_REACHABLE;
1464 ln->ln_byhint = 0;
1465
1466 /* join solicited node multicast for proxy ND */
1467 if (ifp->if_flags & IFF_MULTICAST) {
1468 struct in6_addr llsol;
1469 int error;
1470
1471 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1472 llsol.s6_addr32[0] = htonl(0xff020000);
1473 llsol.s6_addr32[1] = 0;
1474 llsol.s6_addr32[2] = htonl(1);
1475 llsol.s6_addr8[12] = 0xff;
1476 if (in6_setscope(&llsol, ifp, NULL))
1477 break;
1478 if (!in6_addmulti(&llsol, ifp, &error, 0)) {
1479 nd6log((LOG_ERR, "%s: failed to join "
1480 "%s (errno=%d)\n", if_name(ifp),
1481 ip6_sprintf(&llsol), error));
1482 }
1483 }
1484 }
1485 break;
1486
1487 case RTM_DELETE:
1488 if (ln == NULL)
1489 break;
1490 /* leave from solicited node multicast for proxy ND */
1491 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1492 (ifp->if_flags & IFF_MULTICAST) != 0) {
1493 struct in6_addr llsol;
1494 struct in6_multi *in6m;
1495
1496 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1497 llsol.s6_addr32[0] = htonl(0xff020000);
1498 llsol.s6_addr32[1] = 0;
1499 llsol.s6_addr32[2] = htonl(1);
1500 llsol.s6_addr8[12] = 0xff;
1501 if (in6_setscope(&llsol, ifp, NULL) == 0) {
1502 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1503 if (in6m)
1504 in6_delmulti(in6m);
1505 }
1506 }
1507 nd6_inuse--;
1508 ln->ln_next->ln_prev = ln->ln_prev;
1509 ln->ln_prev->ln_next = ln->ln_next;
1510 ln->ln_prev = NULL;
1511 nd6_llinfo_settimer(ln, -1);
1512 rt->rt_llinfo = 0;
1513 rt->rt_flags &= ~RTF_LLINFO;
1514 clear_llinfo_pqueue(ln);
1515 Free(ln);
1516 }
1517 }
1518
1519 int
1520 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp)
1521 {
1522 struct in6_drlist *drl = (struct in6_drlist *)data;
1523 struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1524 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1525 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1526 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1527 struct nd_defrouter *dr;
1528 struct nd_prefix *pr;
1529 struct rtentry *rt;
1530 int i = 0, error = 0;
1531 int s;
1532
1533 switch (cmd) {
1534 case SIOCGDRLST_IN6:
1535 /*
1536 * obsolete API, use sysctl under net.inet6.icmp6
1537 */
1538 memset(drl, 0, sizeof(*drl));
1539 s = splsoftnet();
1540 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
1541 if (i >= DRLSTSIZ)
1542 break;
1543 drl->defrouter[i].rtaddr = dr->rtaddr;
1544 in6_clearscope(&drl->defrouter[i].rtaddr);
1545
1546 drl->defrouter[i].flags = dr->flags;
1547 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1548 drl->defrouter[i].expire = dr->expire;
1549 drl->defrouter[i].if_index = dr->ifp->if_index;
1550 i++;
1551 }
1552 splx(s);
1553 break;
1554 case SIOCGPRLST_IN6:
1555 /*
1556 * obsolete API, use sysctl under net.inet6.icmp6
1557 *
1558 * XXX the structure in6_prlist was changed in backward-
1559 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1560 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1561 */
1562 /*
1563 * XXX meaning of fields, especialy "raflags", is very
1564 * differnet between RA prefix list and RR/static prefix list.
1565 * how about separating ioctls into two?
1566 */
1567 memset(oprl, 0, sizeof(*oprl));
1568 s = splsoftnet();
1569 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
1570 struct nd_pfxrouter *pfr;
1571 int j;
1572
1573 if (i >= PRLSTSIZ)
1574 break;
1575 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1576 oprl->prefix[i].raflags = pr->ndpr_raf;
1577 oprl->prefix[i].prefixlen = pr->ndpr_plen;
1578 oprl->prefix[i].vltime = pr->ndpr_vltime;
1579 oprl->prefix[i].pltime = pr->ndpr_pltime;
1580 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1581 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1582 oprl->prefix[i].expire = 0;
1583 else {
1584 time_t maxexpire;
1585
1586 /* XXX: we assume time_t is signed. */
1587 maxexpire = (-1) &
1588 ~((time_t)1 <<
1589 ((sizeof(maxexpire) * 8) - 1));
1590 if (pr->ndpr_vltime <
1591 maxexpire - pr->ndpr_lastupdate) {
1592 oprl->prefix[i].expire =
1593 pr->ndpr_lastupdate +
1594 pr->ndpr_vltime;
1595 } else
1596 oprl->prefix[i].expire = maxexpire;
1597 }
1598
1599 j = 0;
1600 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
1601 if (j < DRLSTSIZ) {
1602 #define RTRADDR oprl->prefix[i].advrtr[j]
1603 RTRADDR = pfr->router->rtaddr;
1604 in6_clearscope(&RTRADDR);
1605 #undef RTRADDR
1606 }
1607 j++;
1608 }
1609 oprl->prefix[i].advrtrs = j;
1610 oprl->prefix[i].origin = PR_ORIG_RA;
1611
1612 i++;
1613 }
1614 splx(s);
1615
1616 break;
1617 case OSIOCGIFINFO_IN6:
1618 #define ND ndi->ndi
1619 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1620 memset(&ND, 0, sizeof(ND));
1621 ND.linkmtu = IN6_LINKMTU(ifp);
1622 ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1623 ND.basereachable = ND_IFINFO(ifp)->basereachable;
1624 ND.reachable = ND_IFINFO(ifp)->reachable;
1625 ND.retrans = ND_IFINFO(ifp)->retrans;
1626 ND.flags = ND_IFINFO(ifp)->flags;
1627 ND.recalctm = ND_IFINFO(ifp)->recalctm;
1628 ND.chlim = ND_IFINFO(ifp)->chlim;
1629 break;
1630 case SIOCGIFINFO_IN6:
1631 ND = *ND_IFINFO(ifp);
1632 break;
1633 case SIOCSIFINFO_IN6:
1634 /*
1635 * used to change host variables from userland.
1636 * intented for a use on router to reflect RA configurations.
1637 */
1638 /* 0 means 'unspecified' */
1639 if (ND.linkmtu != 0) {
1640 if (ND.linkmtu < IPV6_MMTU ||
1641 ND.linkmtu > IN6_LINKMTU(ifp)) {
1642 error = EINVAL;
1643 break;
1644 }
1645 ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1646 }
1647
1648 if (ND.basereachable != 0) {
1649 int obasereachable = ND_IFINFO(ifp)->basereachable;
1650
1651 ND_IFINFO(ifp)->basereachable = ND.basereachable;
1652 if (ND.basereachable != obasereachable)
1653 ND_IFINFO(ifp)->reachable =
1654 ND_COMPUTE_RTIME(ND.basereachable);
1655 }
1656 if (ND.retrans != 0)
1657 ND_IFINFO(ifp)->retrans = ND.retrans;
1658 if (ND.chlim != 0)
1659 ND_IFINFO(ifp)->chlim = ND.chlim;
1660 /* FALLTHROUGH */
1661 case SIOCSIFINFO_FLAGS:
1662 {
1663 struct ifaddr *ifa;
1664 struct in6_ifaddr *ia;
1665
1666 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1667 !(ND.flags & ND6_IFF_IFDISABLED))
1668 {
1669 /*
1670 * If the interface is marked as ND6_IFF_IFDISABLED and
1671 * has a link-local address with IN6_IFF_DUPLICATED,
1672 * do not clear ND6_IFF_IFDISABLED.
1673 * See RFC 4862, section 5.4.5.
1674 */
1675 int duplicated_linklocal = 0;
1676
1677 IFADDR_FOREACH(ifa, ifp) {
1678 if (ifa->ifa_addr->sa_family != AF_INET6)
1679 continue;
1680 ia = (struct in6_ifaddr *)ifa;
1681 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1682 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1683 {
1684 duplicated_linklocal = 1;
1685 break;
1686 }
1687 }
1688
1689 if (duplicated_linklocal) {
1690 ND.flags |= ND6_IFF_IFDISABLED;
1691 log(LOG_ERR, "Cannot enable an interface"
1692 " with a link-local address marked"
1693 " duplicate.\n");
1694 } else {
1695 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1696 if (ifp->if_flags & IFF_UP)
1697 in6_if_up(ifp);
1698 }
1699 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1700 (ND.flags & ND6_IFF_IFDISABLED))
1701 {
1702 /* Mark all IPv6 addresses as tentative. */
1703
1704 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1705 IFADDR_FOREACH(ifa, ifp) {
1706 if (ifa->ifa_addr->sa_family != AF_INET6)
1707 continue;
1708 nd6_dad_stop(ifa);
1709 ia = (struct in6_ifaddr *)ifa;
1710 ia->ia6_flags |= IN6_IFF_TENTATIVE;
1711 }
1712 }
1713
1714 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1715 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1716 /* auto_linklocal 0->1 transition */
1717
1718 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1719 in6_ifattach(ifp, NULL);
1720 } else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1721 ifp->if_flags & IFF_UP)
1722 {
1723 /*
1724 * When the IF already has
1725 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1726 * address is assigned, and IFF_UP, try to
1727 * assign one.
1728 */
1729 int haslinklocal = 0;
1730
1731 IFADDR_FOREACH(ifa, ifp) {
1732 if (ifa->ifa_addr->sa_family !=AF_INET6)
1733 continue;
1734 ia = (struct in6_ifaddr *)ifa;
1735 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))){
1736 haslinklocal = 1;
1737 break;
1738 }
1739 }
1740 if (!haslinklocal)
1741 in6_ifattach(ifp, NULL);
1742 }
1743 }
1744 }
1745 ND_IFINFO(ifp)->flags = ND.flags;
1746 break;
1747 #undef ND
1748 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1749 /* sync kernel routing table with the default router list */
1750 defrouter_reset();
1751 defrouter_select();
1752 break;
1753 case SIOCSPFXFLUSH_IN6:
1754 {
1755 /* flush all the prefix advertised by routers */
1756 struct nd_prefix *pfx, *next;
1757
1758 s = splsoftnet();
1759 LIST_FOREACH_SAFE(pfx, &nd_prefix, ndpr_entry, next) {
1760 struct in6_ifaddr *ia, *ia_next;
1761
1762 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
1763 continue; /* XXX */
1764
1765 /* do we really have to remove addresses as well? */
1766 for (ia = in6_ifaddr; ia; ia = ia_next) {
1767 /* ia might be removed. keep the next ptr. */
1768 ia_next = ia->ia_next;
1769
1770 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1771 continue;
1772
1773 if (ia->ia6_ndpr == pfx)
1774 in6_purgeaddr(&ia->ia_ifa);
1775 }
1776 prelist_remove(pfx);
1777 }
1778 splx(s);
1779 break;
1780 }
1781 case SIOCSRTRFLUSH_IN6:
1782 {
1783 /* flush all the default routers */
1784 struct nd_defrouter *drtr, *next;
1785
1786 s = splsoftnet();
1787 defrouter_reset();
1788 TAILQ_FOREACH_SAFE(drtr, &nd_defrouter, dr_entry, next) {
1789 defrtrlist_del(drtr);
1790 }
1791 defrouter_select();
1792 splx(s);
1793 break;
1794 }
1795 case SIOCGNBRINFO_IN6:
1796 {
1797 struct llinfo_nd6 *ln;
1798 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1799
1800 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1801 return error;
1802
1803 s = splsoftnet();
1804 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL ||
1805 (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) {
1806 error = EINVAL;
1807 splx(s);
1808 break;
1809 }
1810 nbi->state = ln->ln_state;
1811 nbi->asked = ln->ln_asked;
1812 nbi->isrouter = ln->ln_router;
1813 nbi->expire = ln->ln_expire;
1814 splx(s);
1815
1816 break;
1817 }
1818 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1819 ndif->ifindex = nd6_defifindex;
1820 break;
1821 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1822 return nd6_setdefaultiface(ndif->ifindex);
1823 }
1824 return error;
1825 }
1826
1827 void
1828 nd6_llinfo_release_pkts(struct llinfo_nd6 *ln, struct ifnet *ifp,
1829 struct rtentry *rt)
1830 {
1831 struct mbuf *m_hold, *m_hold_next;
1832
1833 for (m_hold = ln->ln_hold, ln->ln_hold = NULL;
1834 m_hold != NULL;
1835 m_hold = m_hold_next) {
1836 m_hold_next = m_hold->m_nextpkt;
1837 m_hold->m_nextpkt = NULL;
1838
1839 /*
1840 * we assume ifp is not a p2p here, so
1841 * just set the 2nd argument as the
1842 * 1st one.
1843 */
1844 nd6_output(ifp, ifp, m_hold, satocsin6(rt_getkey(rt)), rt);
1845 }
1846 }
1847
1848 /*
1849 * Create neighbor cache entry and cache link-layer address,
1850 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1851 */
1852 struct rtentry *
1853 nd6_cache_lladdr(
1854 struct ifnet *ifp,
1855 struct in6_addr *from,
1856 char *lladdr,
1857 int lladdrlen,
1858 int type, /* ICMP6 type */
1859 int code /* type dependent information */
1860 )
1861 {
1862 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
1863 struct rtentry *rt = NULL;
1864 struct llinfo_nd6 *ln = NULL;
1865 int is_newentry;
1866 struct sockaddr_dl *sdl = NULL;
1867 int do_update;
1868 int olladdr;
1869 int llchange;
1870 int newstate = 0;
1871
1872 if (ifp == NULL)
1873 panic("ifp == NULL in nd6_cache_lladdr");
1874 if (from == NULL)
1875 panic("from == NULL in nd6_cache_lladdr");
1876
1877 /* nothing must be updated for unspecified address */
1878 if (IN6_IS_ADDR_UNSPECIFIED(from))
1879 return NULL;
1880
1881 /*
1882 * Validation about ifp->if_addrlen and lladdrlen must be done in
1883 * the caller.
1884 *
1885 * XXX If the link does not have link-layer adderss, what should
1886 * we do? (ifp->if_addrlen == 0)
1887 * Spec says nothing in sections for RA, RS and NA. There's small
1888 * description on it in NS section (RFC 2461 7.2.3).
1889 */
1890
1891 rt = nd6_lookup(from, 0, ifp);
1892 if (rt == NULL) {
1893 #if 0
1894 /* nothing must be done if there's no lladdr */
1895 if (!lladdr || !lladdrlen)
1896 return NULL;
1897 #endif
1898
1899 rt = nd6_lookup(from, 1, ifp);
1900 is_newentry = 1;
1901 } else {
1902 /* do nothing if static ndp is set */
1903 if (rt->rt_flags & RTF_STATIC)
1904 return NULL;
1905 is_newentry = 0;
1906 }
1907
1908 if (rt == NULL)
1909 return NULL;
1910 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1911 fail:
1912 (void)nd6_free(rt, 0);
1913 return NULL;
1914 }
1915 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1916 if (ln == NULL)
1917 goto fail;
1918 if (rt->rt_gateway == NULL)
1919 goto fail;
1920 if (rt->rt_gateway->sa_family != AF_LINK)
1921 goto fail;
1922 sdl = satosdl(rt->rt_gateway);
1923
1924 olladdr = (sdl->sdl_alen) ? 1 : 0;
1925 if (olladdr && lladdr) {
1926 if (memcmp(lladdr, CLLADDR(sdl), ifp->if_addrlen))
1927 llchange = 1;
1928 else
1929 llchange = 0;
1930 } else
1931 llchange = 0;
1932
1933 /*
1934 * newentry olladdr lladdr llchange (*=record)
1935 * 0 n n -- (1)
1936 * 0 y n -- (2)
1937 * 0 n y -- (3) * STALE
1938 * 0 y y n (4) *
1939 * 0 y y y (5) * STALE
1940 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1941 * 1 -- y -- (7) * STALE
1942 */
1943
1944 if (lladdr) { /* (3-5) and (7) */
1945 /*
1946 * Record source link-layer address
1947 * XXX is it dependent to ifp->if_type?
1948 */
1949 /* XXX check for error */
1950 if (sockaddr_dl_setaddr(sdl, sdl->sdl_len, lladdr,
1951 ifp->if_addrlen) == NULL) {
1952 printf("%s.%d: sockaddr_dl_setaddr(, %d, ) "
1953 "failed on %s\n", __func__, __LINE__,
1954 sdl->sdl_len, if_name(ifp));
1955 }
1956 }
1957
1958 if (!is_newentry) {
1959 if ((!olladdr && lladdr) || /* (3) */
1960 (olladdr && lladdr && llchange)) { /* (5) */
1961 do_update = 1;
1962 newstate = ND6_LLINFO_STALE;
1963 } else /* (1-2,4) */
1964 do_update = 0;
1965 } else {
1966 do_update = 1;
1967 if (lladdr == NULL) /* (6) */
1968 newstate = ND6_LLINFO_NOSTATE;
1969 else /* (7) */
1970 newstate = ND6_LLINFO_STALE;
1971 }
1972
1973 if (do_update) {
1974 /*
1975 * Update the state of the neighbor cache.
1976 */
1977 ln->ln_state = newstate;
1978
1979 if (ln->ln_state == ND6_LLINFO_STALE) {
1980 /*
1981 * XXX: since nd6_output() below will cause
1982 * state tansition to DELAY and reset the timer,
1983 * we must set the timer now, although it is actually
1984 * meaningless.
1985 */
1986 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1987
1988 nd6_llinfo_release_pkts(ln, ifp, rt);
1989 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1990 /* probe right away */
1991 nd6_llinfo_settimer((void *)ln, 0);
1992 }
1993 }
1994
1995 /*
1996 * ICMP6 type dependent behavior.
1997 *
1998 * NS: clear IsRouter if new entry
1999 * RS: clear IsRouter
2000 * RA: set IsRouter if there's lladdr
2001 * redir: clear IsRouter if new entry
2002 *
2003 * RA case, (1):
2004 * The spec says that we must set IsRouter in the following cases:
2005 * - If lladdr exist, set IsRouter. This means (1-5).
2006 * - If it is old entry (!newentry), set IsRouter. This means (7).
2007 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
2008 * A quetion arises for (1) case. (1) case has no lladdr in the
2009 * neighbor cache, this is similar to (6).
2010 * This case is rare but we figured that we MUST NOT set IsRouter.
2011 *
2012 * newentry olladdr lladdr llchange NS RS RA redir
2013 * D R
2014 * 0 n n -- (1) c ? s
2015 * 0 y n -- (2) c s s
2016 * 0 n y -- (3) c s s
2017 * 0 y y n (4) c s s
2018 * 0 y y y (5) c s s
2019 * 1 -- n -- (6) c c c s
2020 * 1 -- y -- (7) c c s c s
2021 *
2022 * (c=clear s=set)
2023 */
2024 switch (type & 0xff) {
2025 case ND_NEIGHBOR_SOLICIT:
2026 /*
2027 * New entry must have is_router flag cleared.
2028 */
2029 if (is_newentry) /* (6-7) */
2030 ln->ln_router = 0;
2031 break;
2032 case ND_REDIRECT:
2033 /*
2034 * If the icmp is a redirect to a better router, always set the
2035 * is_router flag. Otherwise, if the entry is newly created,
2036 * clear the flag. [RFC 2461, sec 8.3]
2037 */
2038 if (code == ND_REDIRECT_ROUTER)
2039 ln->ln_router = 1;
2040 else if (is_newentry) /* (6-7) */
2041 ln->ln_router = 0;
2042 break;
2043 case ND_ROUTER_SOLICIT:
2044 /*
2045 * is_router flag must always be cleared.
2046 */
2047 ln->ln_router = 0;
2048 break;
2049 case ND_ROUTER_ADVERT:
2050 /*
2051 * Mark an entry with lladdr as a router.
2052 */
2053 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
2054 (is_newentry && lladdr)) { /* (7) */
2055 ln->ln_router = 1;
2056 }
2057 break;
2058 }
2059
2060 /*
2061 * When the link-layer address of a router changes, select the
2062 * best router again. In particular, when the neighbor entry is newly
2063 * created, it might affect the selection policy.
2064 * Question: can we restrict the first condition to the "is_newentry"
2065 * case?
2066 * XXX: when we hear an RA from a new router with the link-layer
2067 * address option, defrouter_select() is called twice, since
2068 * defrtrlist_update called the function as well. However, I believe
2069 * we can compromise the overhead, since it only happens the first
2070 * time.
2071 * XXX: although defrouter_select() should not have a bad effect
2072 * for those are not autoconfigured hosts, we explicitly avoid such
2073 * cases for safety.
2074 */
2075 if (do_update && ln->ln_router && !ip6_forwarding &&
2076 nd6_accepts_rtadv(ndi))
2077 defrouter_select();
2078
2079 return rt;
2080 }
2081
2082 static void
2083 nd6_slowtimo(void *ignored_arg)
2084 {
2085 struct nd_ifinfo *nd6if;
2086 struct ifnet *ifp;
2087
2088 mutex_enter(softnet_lock);
2089 KERNEL_LOCK(1, NULL);
2090 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
2091 nd6_slowtimo, NULL);
2092 IFNET_FOREACH(ifp) {
2093 nd6if = ND_IFINFO(ifp);
2094 if (nd6if->basereachable && /* already initialized */
2095 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
2096 /*
2097 * Since reachable time rarely changes by router
2098 * advertisements, we SHOULD insure that a new random
2099 * value gets recomputed at least once every few hours.
2100 * (RFC 2461, 6.3.4)
2101 */
2102 nd6if->recalctm = nd6_recalc_reachtm_interval;
2103 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
2104 }
2105 }
2106 KERNEL_UNLOCK_ONE(NULL);
2107 mutex_exit(softnet_lock);
2108 }
2109
2110 #define senderr(e) { error = (e); goto bad;}
2111 int
2112 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
2113 const struct sockaddr_in6 *dst, struct rtentry *rt0)
2114 {
2115 struct mbuf *m = m0;
2116 struct rtentry *rt = rt0;
2117 struct sockaddr_in6 *gw6 = NULL;
2118 struct llinfo_nd6 *ln = NULL;
2119 int error = 0;
2120
2121 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
2122 goto sendpkt;
2123
2124 if (nd6_need_cache(ifp) == 0)
2125 goto sendpkt;
2126
2127 /*
2128 * next hop determination. This routine is derived from ether_output.
2129 */
2130 if (rt) {
2131 if ((rt->rt_flags & RTF_UP) == 0) {
2132 if ((rt0 = rt = rtalloc1(sin6tocsa(dst), 1)) != NULL) {
2133 rt->rt_refcnt--;
2134 if (rt->rt_ifp != ifp)
2135 senderr(EHOSTUNREACH);
2136 } else
2137 senderr(EHOSTUNREACH);
2138 }
2139
2140 if (rt->rt_flags & RTF_GATEWAY) {
2141 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
2142
2143 /*
2144 * We skip link-layer address resolution and NUD
2145 * if the gateway is not a neighbor from ND point
2146 * of view, regardless of the value of nd_ifinfo.flags.
2147 * The second condition is a bit tricky; we skip
2148 * if the gateway is our own address, which is
2149 * sometimes used to install a route to a p2p link.
2150 */
2151 if (!nd6_is_addr_neighbor(gw6, ifp) ||
2152 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
2153 /*
2154 * We allow this kind of tricky route only
2155 * when the outgoing interface is p2p.
2156 * XXX: we may need a more generic rule here.
2157 */
2158 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
2159 senderr(EHOSTUNREACH);
2160
2161 goto sendpkt;
2162 }
2163
2164 if (rt->rt_gwroute == NULL)
2165 goto lookup;
2166 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
2167 rtfree(rt); rt = rt0;
2168 lookup:
2169 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
2170 if ((rt = rt->rt_gwroute) == NULL)
2171 senderr(EHOSTUNREACH);
2172 /* the "G" test below also prevents rt == rt0 */
2173 if ((rt->rt_flags & RTF_GATEWAY) ||
2174 (rt->rt_ifp != ifp)) {
2175 rt->rt_refcnt--;
2176 rt0->rt_gwroute = NULL;
2177 senderr(EHOSTUNREACH);
2178 }
2179 }
2180 }
2181 }
2182
2183 /*
2184 * Address resolution or Neighbor Unreachability Detection
2185 * for the next hop.
2186 * At this point, the destination of the packet must be a unicast
2187 * or an anycast address(i.e. not a multicast).
2188 */
2189
2190 /* Look up the neighbor cache for the nexthop */
2191 if (rt != NULL && (rt->rt_flags & RTF_LLINFO) != 0)
2192 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2193 else {
2194 /*
2195 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2196 * the condition below is not very efficient. But we believe
2197 * it is tolerable, because this should be a rare case.
2198 */
2199 if (nd6_is_addr_neighbor(dst, ifp) &&
2200 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
2201 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2202 }
2203 if (ln == NULL || rt == NULL) {
2204 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2205 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2206 log(LOG_DEBUG,
2207 "nd6_output: can't allocate llinfo for %s "
2208 "(ln=%p, rt=%p)\n",
2209 ip6_sprintf(&dst->sin6_addr), ln, rt);
2210 senderr(EIO); /* XXX: good error? */
2211 }
2212
2213 goto sendpkt; /* send anyway */
2214 }
2215
2216 /*
2217 * Move this entry to the head of the queue so that it is less likely
2218 * for this entry to be a target of forced garbage collection (see
2219 * nd6_rtrequest()).
2220 */
2221 LN_DEQUEUE(ln);
2222 LN_INSERTHEAD(ln);
2223
2224 /* We don't have to do link-layer address resolution on a p2p link. */
2225 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2226 ln->ln_state < ND6_LLINFO_REACHABLE) {
2227 ln->ln_state = ND6_LLINFO_STALE;
2228 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2229 }
2230
2231 /*
2232 * The first time we send a packet to a neighbor whose entry is
2233 * STALE, we have to change the state to DELAY and a sets a timer to
2234 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2235 * neighbor unreachability detection on expiration.
2236 * (RFC 2461 7.3.3)
2237 */
2238 if (ln->ln_state == ND6_LLINFO_STALE) {
2239 ln->ln_asked = 0;
2240 ln->ln_state = ND6_LLINFO_DELAY;
2241 nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2242 }
2243
2244 /*
2245 * If the neighbor cache entry has a state other than INCOMPLETE
2246 * (i.e. its link-layer address is already resolved), just
2247 * send the packet.
2248 */
2249 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2250 goto sendpkt;
2251
2252 /*
2253 * There is a neighbor cache entry, but no ethernet address
2254 * response yet. Append this latest packet to the end of the
2255 * packet queue in the mbuf, unless the number of the packet
2256 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen,
2257 * the oldest packet in the queue will be removed.
2258 */
2259 if (ln->ln_state == ND6_LLINFO_NOSTATE)
2260 ln->ln_state = ND6_LLINFO_INCOMPLETE;
2261 if (ln->ln_hold) {
2262 struct mbuf *m_hold;
2263 int i;
2264
2265 i = 0;
2266 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2267 i++;
2268 if (m_hold->m_nextpkt == NULL) {
2269 m_hold->m_nextpkt = m;
2270 break;
2271 }
2272 }
2273 while (i >= nd6_maxqueuelen) {
2274 m_hold = ln->ln_hold;
2275 ln->ln_hold = ln->ln_hold->m_nextpkt;
2276 m_freem(m_hold);
2277 i--;
2278 }
2279 } else {
2280 ln->ln_hold = m;
2281 }
2282
2283 /*
2284 * If there has been no NS for the neighbor after entering the
2285 * INCOMPLETE state, send the first solicitation.
2286 */
2287 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2288 ln->ln_asked++;
2289 nd6_llinfo_settimer(ln,
2290 (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2291 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2292 }
2293 return 0;
2294
2295 sendpkt:
2296 /* discard the packet if IPv6 operation is disabled on the interface */
2297 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2298 error = ENETDOWN; /* better error? */
2299 goto bad;
2300 }
2301
2302 KERNEL_LOCK(1, NULL);
2303 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2304 error = (*ifp->if_output)(origifp, m, sin6tocsa(dst), rt);
2305 else
2306 error = (*ifp->if_output)(ifp, m, sin6tocsa(dst), rt);
2307 KERNEL_UNLOCK_ONE(NULL);
2308 return error;
2309
2310 bad:
2311 if (m != NULL)
2312 m_freem(m);
2313 return error;
2314 }
2315 #undef senderr
2316
2317 int
2318 nd6_need_cache(struct ifnet *ifp)
2319 {
2320 /*
2321 * XXX: we currently do not make neighbor cache on any interface
2322 * other than ARCnet, Ethernet, FDDI and GIF.
2323 *
2324 * RFC2893 says:
2325 * - unidirectional tunnels needs no ND
2326 */
2327 switch (ifp->if_type) {
2328 case IFT_ARCNET:
2329 case IFT_ETHER:
2330 case IFT_FDDI:
2331 case IFT_IEEE1394:
2332 case IFT_CARP:
2333 case IFT_GIF: /* XXX need more cases? */
2334 case IFT_PPP:
2335 case IFT_TUNNEL:
2336 return 1;
2337 default:
2338 return 0;
2339 }
2340 }
2341
2342 int
2343 nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt,
2344 struct mbuf *m, const struct sockaddr *dst, uint8_t *lldst,
2345 size_t dstsize)
2346 {
2347 const struct sockaddr_dl *sdl;
2348
2349 if (m->m_flags & M_MCAST) {
2350 switch (ifp->if_type) {
2351 case IFT_ETHER:
2352 case IFT_FDDI:
2353 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
2354 lldst);
2355 return 1;
2356 case IFT_IEEE1394:
2357 memcpy(lldst, ifp->if_broadcastaddr,
2358 MIN(dstsize, ifp->if_addrlen));
2359 return 1;
2360 case IFT_ARCNET:
2361 *lldst = 0;
2362 return 1;
2363 default:
2364 m_freem(m);
2365 return 0;
2366 }
2367 }
2368
2369 if (rt == NULL) {
2370 /* this could happen, if we could not allocate memory */
2371 m_freem(m);
2372 return 0;
2373 }
2374 if (rt->rt_gateway->sa_family != AF_LINK) {
2375 printf("%s: something odd happens\n", __func__);
2376 m_freem(m);
2377 return 0;
2378 }
2379 sdl = satocsdl(rt->rt_gateway);
2380 if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) {
2381 /* this should be impossible, but we bark here for debugging */
2382 printf("%s: sdl_alen == %" PRIu8 ", dst=%s, if=%s\n", __func__,
2383 sdl->sdl_alen, ip6_sprintf(&satocsin6(dst)->sin6_addr),
2384 if_name(ifp));
2385 m_freem(m);
2386 return 0;
2387 }
2388
2389 memcpy(lldst, CLLADDR(sdl), MIN(dstsize, sdl->sdl_alen));
2390 return 1;
2391 }
2392
2393 static void
2394 clear_llinfo_pqueue(struct llinfo_nd6 *ln)
2395 {
2396 struct mbuf *m_hold, *m_hold_next;
2397
2398 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2399 m_hold_next = m_hold->m_nextpkt;
2400 m_hold->m_nextpkt = NULL;
2401 m_freem(m_hold);
2402 }
2403
2404 ln->ln_hold = NULL;
2405 return;
2406 }
2407
2408 int
2409 nd6_sysctl(
2410 int name,
2411 void *oldp, /* syscall arg, need copyout */
2412 size_t *oldlenp,
2413 void *newp, /* syscall arg, need copyin */
2414 size_t newlen
2415 )
2416 {
2417 void *p;
2418 size_t ol;
2419 int error;
2420
2421 error = 0;
2422
2423 if (newp)
2424 return EPERM;
2425 if (oldp && !oldlenp)
2426 return EINVAL;
2427 ol = oldlenp ? *oldlenp : 0;
2428
2429 if (oldp) {
2430 p = malloc(*oldlenp, M_TEMP, M_WAITOK);
2431 if (p == NULL)
2432 return ENOMEM;
2433 } else
2434 p = NULL;
2435 switch (name) {
2436 case ICMPV6CTL_ND6_DRLIST:
2437 error = fill_drlist(p, oldlenp, ol);
2438 if (!error && p != NULL && oldp != NULL)
2439 error = copyout(p, oldp, *oldlenp);
2440 break;
2441
2442 case ICMPV6CTL_ND6_PRLIST:
2443 error = fill_prlist(p, oldlenp, ol);
2444 if (!error && p != NULL && oldp != NULL)
2445 error = copyout(p, oldp, *oldlenp);
2446 break;
2447
2448 case ICMPV6CTL_ND6_MAXQLEN:
2449 break;
2450
2451 default:
2452 error = ENOPROTOOPT;
2453 break;
2454 }
2455 if (p)
2456 free(p, M_TEMP);
2457
2458 return error;
2459 }
2460
2461 static int
2462 fill_drlist(void *oldp, size_t *oldlenp, size_t ol)
2463 {
2464 int error = 0, s;
2465 struct in6_defrouter *d = NULL, *de = NULL;
2466 struct nd_defrouter *dr;
2467 size_t l;
2468
2469 s = splsoftnet();
2470
2471 if (oldp) {
2472 d = (struct in6_defrouter *)oldp;
2473 de = (struct in6_defrouter *)((char *)oldp + *oldlenp);
2474 }
2475 l = 0;
2476
2477 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
2478
2479 if (oldp && d + 1 <= de) {
2480 memset(d, 0, sizeof(*d));
2481 sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0);
2482 if (sa6_recoverscope(&d->rtaddr)) {
2483 log(LOG_ERR,
2484 "scope error in router list (%s)\n",
2485 ip6_sprintf(&d->rtaddr.sin6_addr));
2486 /* XXX: press on... */
2487 }
2488 d->flags = dr->flags;
2489 d->rtlifetime = dr->rtlifetime;
2490 d->expire = dr->expire;
2491 d->if_index = dr->ifp->if_index;
2492 }
2493
2494 l += sizeof(*d);
2495 if (d)
2496 d++;
2497 }
2498
2499 if (oldp) {
2500 if (l > ol)
2501 error = ENOMEM;
2502 }
2503 if (oldlenp)
2504 *oldlenp = l; /* (void *)d - (void *)oldp */
2505
2506 splx(s);
2507
2508 return error;
2509 }
2510
2511 static int
2512 fill_prlist(void *oldp, size_t *oldlenp, size_t ol)
2513 {
2514 int error = 0, s;
2515 struct nd_prefix *pr;
2516 uint8_t *p = NULL, *ps = NULL;
2517 uint8_t *pe = NULL;
2518 size_t l;
2519
2520 s = splsoftnet();
2521
2522 if (oldp) {
2523 ps = p = (uint8_t*)oldp;
2524 pe = (uint8_t*)oldp + *oldlenp;
2525 }
2526 l = 0;
2527
2528 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
2529 u_short advrtrs;
2530 struct sockaddr_in6 sin6;
2531 struct nd_pfxrouter *pfr;
2532 struct in6_prefix pfx;
2533
2534 if (oldp && p + sizeof(struct in6_prefix) <= pe)
2535 {
2536 memset(&pfx, 0, sizeof(pfx));
2537 ps = p;
2538 pfx.prefix = pr->ndpr_prefix;
2539
2540 if (sa6_recoverscope(&pfx.prefix)) {
2541 log(LOG_ERR,
2542 "scope error in prefix list (%s)\n",
2543 ip6_sprintf(&pfx.prefix.sin6_addr));
2544 /* XXX: press on... */
2545 }
2546 pfx.raflags = pr->ndpr_raf;
2547 pfx.prefixlen = pr->ndpr_plen;
2548 pfx.vltime = pr->ndpr_vltime;
2549 pfx.pltime = pr->ndpr_pltime;
2550 pfx.if_index = pr->ndpr_ifp->if_index;
2551 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2552 pfx.expire = 0;
2553 else {
2554 time_t maxexpire;
2555
2556 /* XXX: we assume time_t is signed. */
2557 maxexpire = (-1) &
2558 ~((time_t)1 <<
2559 ((sizeof(maxexpire) * 8) - 1));
2560 if (pr->ndpr_vltime <
2561 maxexpire - pr->ndpr_lastupdate) {
2562 pfx.expire = pr->ndpr_lastupdate +
2563 pr->ndpr_vltime;
2564 } else
2565 pfx.expire = maxexpire;
2566 }
2567 pfx.refcnt = pr->ndpr_refcnt;
2568 pfx.flags = pr->ndpr_stateflags;
2569 pfx.origin = PR_ORIG_RA;
2570
2571 p += sizeof(pfx); l += sizeof(pfx);
2572
2573 advrtrs = 0;
2574 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2575 if (p + sizeof(sin6) > pe) {
2576 advrtrs++;
2577 continue;
2578 }
2579
2580 sockaddr_in6_init(&sin6, &pfr->router->rtaddr,
2581 0, 0, 0);
2582 if (sa6_recoverscope(&sin6)) {
2583 log(LOG_ERR,
2584 "scope error in "
2585 "prefix list (%s)\n",
2586 ip6_sprintf(&pfr->router->rtaddr));
2587 }
2588 advrtrs++;
2589 memcpy(p, &sin6, sizeof(sin6));
2590 p += sizeof(sin6);
2591 l += sizeof(sin6);
2592 }
2593 pfx.advrtrs = advrtrs;
2594 memcpy(ps, &pfx, sizeof(pfx));
2595 }
2596 else {
2597 l += sizeof(pfx);
2598 advrtrs = 0;
2599 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2600 advrtrs++;
2601 l += sizeof(sin6);
2602 }
2603 }
2604 }
2605
2606 if (oldp) {
2607 *oldlenp = l; /* (void *)d - (void *)oldp */
2608 if (l > ol)
2609 error = ENOMEM;
2610 } else
2611 *oldlenp = l;
2612
2613 splx(s);
2614
2615 return error;
2616 }
2617