nd6.c revision 1.164 1 /* $NetBSD: nd6.c,v 1.164 2015/07/15 09:20:18 ozaki-r Exp $ */
2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.164 2015/07/15 09:20:18 ozaki-r Exp $");
35
36 #include "opt_net_mpsafe.h"
37
38 #include "bridge.h"
39 #include "carp.h"
40
41 #include <sys/param.h>
42 #include <sys/systm.h>
43 #include <sys/callout.h>
44 #include <sys/malloc.h>
45 #include <sys/mbuf.h>
46 #include <sys/socket.h>
47 #include <sys/socketvar.h>
48 #include <sys/sockio.h>
49 #include <sys/time.h>
50 #include <sys/kernel.h>
51 #include <sys/protosw.h>
52 #include <sys/errno.h>
53 #include <sys/ioctl.h>
54 #include <sys/syslog.h>
55 #include <sys/queue.h>
56 #include <sys/cprng.h>
57
58 #include <net/if.h>
59 #include <net/if_dl.h>
60 #include <net/if_types.h>
61 #include <net/route.h>
62 #include <net/if_ether.h>
63 #include <net/if_fddi.h>
64 #include <net/if_arc.h>
65
66 #include <netinet/in.h>
67 #include <netinet6/in6_var.h>
68 #include <netinet/ip6.h>
69 #include <netinet6/ip6_var.h>
70 #include <netinet6/scope6_var.h>
71 #include <netinet6/nd6.h>
72 #include <netinet6/in6_ifattach.h>
73 #include <netinet/icmp6.h>
74 #include <netinet6/icmp6_private.h>
75
76 #include <net/net_osdep.h>
77
78 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
79 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
80
81 /* timer values */
82 int nd6_prune = 1; /* walk list every 1 seconds */
83 int nd6_delay = 5; /* delay first probe time 5 second */
84 int nd6_umaxtries = 3; /* maximum unicast query */
85 int nd6_mmaxtries = 3; /* maximum multicast query */
86 int nd6_useloopback = 1; /* use loopback interface for local traffic */
87 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
88
89 /* preventing too many loops in ND option parsing */
90 int nd6_maxndopt = 10; /* max # of ND options allowed */
91
92 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
93
94 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
95
96 #ifdef ND6_DEBUG
97 int nd6_debug = 1;
98 #else
99 int nd6_debug = 0;
100 #endif
101
102 /* for debugging? */
103 static int nd6_inuse, nd6_allocated;
104
105 struct llinfo_nd6 llinfo_nd6 = {
106 .ln_prev = &llinfo_nd6,
107 .ln_next = &llinfo_nd6,
108 };
109 struct nd_drhead nd_defrouter;
110 struct nd_prhead nd_prefix = { 0 };
111
112 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
113 static const struct sockaddr_in6 all1_sa = {
114 .sin6_family = AF_INET6
115 , .sin6_len = sizeof(struct sockaddr_in6)
116 , .sin6_addr = {.s6_addr = {0xff, 0xff, 0xff, 0xff,
117 0xff, 0xff, 0xff, 0xff,
118 0xff, 0xff, 0xff, 0xff,
119 0xff, 0xff, 0xff, 0xff}}
120 };
121
122 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
123 static void nd6_slowtimo(void *);
124 static int regen_tmpaddr(struct in6_ifaddr *);
125 static struct llinfo_nd6 *nd6_free(struct rtentry *, int);
126 static void nd6_llinfo_timer(void *);
127 static void clear_llinfo_pqueue(struct llinfo_nd6 *);
128
129 callout_t nd6_slowtimo_ch;
130 callout_t nd6_timer_ch;
131 extern callout_t in6_tmpaddrtimer_ch;
132
133 static int fill_drlist(void *, size_t *, size_t);
134 static int fill_prlist(void *, size_t *, size_t);
135
136 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
137
138 #define LN_DEQUEUE(ln) do { \
139 (ln)->ln_next->ln_prev = (ln)->ln_prev; \
140 (ln)->ln_prev->ln_next = (ln)->ln_next; \
141 } while (/*CONSTCOND*/0)
142 #define LN_INSERTHEAD(ln) do { \
143 (ln)->ln_next = llinfo_nd6.ln_next; \
144 llinfo_nd6.ln_next = (ln); \
145 (ln)->ln_prev = &llinfo_nd6; \
146 (ln)->ln_next->ln_prev = (ln); \
147 } while (/*CONSTCOND*/0)
148 void
149 nd6_init(void)
150 {
151 static int nd6_init_done = 0;
152
153 if (nd6_init_done) {
154 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
155 return;
156 }
157
158 /* initialization of the default router list */
159 TAILQ_INIT(&nd_defrouter);
160
161 nd6_init_done = 1;
162
163 callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE);
164 callout_init(&nd6_timer_ch, CALLOUT_MPSAFE);
165
166 /* start timer */
167 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
168 nd6_slowtimo, NULL);
169 }
170
171 struct nd_ifinfo *
172 nd6_ifattach(struct ifnet *ifp)
173 {
174 struct nd_ifinfo *nd;
175
176 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO);
177
178 nd->initialized = 1;
179
180 nd->chlim = IPV6_DEFHLIM;
181 nd->basereachable = REACHABLE_TIME;
182 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
183 nd->retrans = RETRANS_TIMER;
184
185 nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV;
186
187 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
188 * A bridge interface should not have ND6_IFF_AUTO_LINKLOCAL
189 * because one of its members should. */
190 if ((ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
191 (ifp->if_flags & IFF_LOOPBACK))
192 nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
193
194 /* A loopback interface does not need to accept RTADV.
195 * A bridge interface should not accept RTADV
196 * because one of its members should. */
197 if (ip6_accept_rtadv &&
198 !(ifp->if_flags & IFF_LOOPBACK) &&
199 !(ifp->if_type != IFT_BRIDGE))
200 nd->flags |= ND6_IFF_ACCEPT_RTADV;
201
202 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
203 nd6_setmtu0(ifp, nd);
204
205 return nd;
206 }
207
208 void
209 nd6_ifdetach(struct ifnet *ifp, struct in6_ifextra *ext)
210 {
211
212 nd6_purge(ifp, ext);
213 free(ext->nd_ifinfo, M_IP6NDP);
214 }
215
216 void
217 nd6_setmtu(struct ifnet *ifp)
218 {
219 nd6_setmtu0(ifp, ND_IFINFO(ifp));
220 }
221
222 void
223 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
224 {
225 u_int32_t omaxmtu;
226
227 omaxmtu = ndi->maxmtu;
228
229 switch (ifp->if_type) {
230 case IFT_ARCNET:
231 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
232 break;
233 case IFT_FDDI:
234 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
235 break;
236 default:
237 ndi->maxmtu = ifp->if_mtu;
238 break;
239 }
240
241 /*
242 * Decreasing the interface MTU under IPV6 minimum MTU may cause
243 * undesirable situation. We thus notify the operator of the change
244 * explicitly. The check for omaxmtu is necessary to restrict the
245 * log to the case of changing the MTU, not initializing it.
246 */
247 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
248 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
249 " small for IPv6 which needs %lu\n",
250 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
251 IPV6_MMTU);
252 }
253
254 if (ndi->maxmtu > in6_maxmtu)
255 in6_setmaxmtu(); /* check all interfaces just in case */
256 }
257
258 void
259 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
260 {
261
262 memset(ndopts, 0, sizeof(*ndopts));
263 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
264 ndopts->nd_opts_last
265 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
266
267 if (icmp6len == 0) {
268 ndopts->nd_opts_done = 1;
269 ndopts->nd_opts_search = NULL;
270 }
271 }
272
273 /*
274 * Take one ND option.
275 */
276 struct nd_opt_hdr *
277 nd6_option(union nd_opts *ndopts)
278 {
279 struct nd_opt_hdr *nd_opt;
280 int olen;
281
282 KASSERT(ndopts != NULL);
283 KASSERT(ndopts->nd_opts_last != NULL);
284
285 if (ndopts->nd_opts_search == NULL)
286 return NULL;
287 if (ndopts->nd_opts_done)
288 return NULL;
289
290 nd_opt = ndopts->nd_opts_search;
291
292 /* make sure nd_opt_len is inside the buffer */
293 if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) {
294 memset(ndopts, 0, sizeof(*ndopts));
295 return NULL;
296 }
297
298 olen = nd_opt->nd_opt_len << 3;
299 if (olen == 0) {
300 /*
301 * Message validation requires that all included
302 * options have a length that is greater than zero.
303 */
304 memset(ndopts, 0, sizeof(*ndopts));
305 return NULL;
306 }
307
308 ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen);
309 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
310 /* option overruns the end of buffer, invalid */
311 memset(ndopts, 0, sizeof(*ndopts));
312 return NULL;
313 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
314 /* reached the end of options chain */
315 ndopts->nd_opts_done = 1;
316 ndopts->nd_opts_search = NULL;
317 }
318 return nd_opt;
319 }
320
321 /*
322 * Parse multiple ND options.
323 * This function is much easier to use, for ND routines that do not need
324 * multiple options of the same type.
325 */
326 int
327 nd6_options(union nd_opts *ndopts)
328 {
329 struct nd_opt_hdr *nd_opt;
330 int i = 0;
331
332 KASSERT(ndopts != NULL);
333 KASSERT(ndopts->nd_opts_last != NULL);
334
335 if (ndopts->nd_opts_search == NULL)
336 return 0;
337
338 while (1) {
339 nd_opt = nd6_option(ndopts);
340 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
341 /*
342 * Message validation requires that all included
343 * options have a length that is greater than zero.
344 */
345 ICMP6_STATINC(ICMP6_STAT_ND_BADOPT);
346 memset(ndopts, 0, sizeof(*ndopts));
347 return -1;
348 }
349
350 if (nd_opt == NULL)
351 goto skip1;
352
353 switch (nd_opt->nd_opt_type) {
354 case ND_OPT_SOURCE_LINKADDR:
355 case ND_OPT_TARGET_LINKADDR:
356 case ND_OPT_MTU:
357 case ND_OPT_REDIRECTED_HEADER:
358 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
359 nd6log((LOG_INFO,
360 "duplicated ND6 option found (type=%d)\n",
361 nd_opt->nd_opt_type));
362 /* XXX bark? */
363 } else {
364 ndopts->nd_opt_array[nd_opt->nd_opt_type]
365 = nd_opt;
366 }
367 break;
368 case ND_OPT_PREFIX_INFORMATION:
369 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
370 ndopts->nd_opt_array[nd_opt->nd_opt_type]
371 = nd_opt;
372 }
373 ndopts->nd_opts_pi_end =
374 (struct nd_opt_prefix_info *)nd_opt;
375 break;
376 default:
377 /*
378 * Unknown options must be silently ignored,
379 * to accommodate future extension to the protocol.
380 */
381 nd6log((LOG_DEBUG,
382 "nd6_options: unsupported option %d - "
383 "option ignored\n", nd_opt->nd_opt_type));
384 }
385
386 skip1:
387 i++;
388 if (i > nd6_maxndopt) {
389 ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT);
390 nd6log((LOG_INFO, "too many loop in nd opt\n"));
391 break;
392 }
393
394 if (ndopts->nd_opts_done)
395 break;
396 }
397
398 return 0;
399 }
400
401 /*
402 * ND6 timer routine to handle ND6 entries
403 */
404 void
405 nd6_llinfo_settimer(struct llinfo_nd6 *ln, long xtick)
406 {
407 int s;
408
409 s = splsoftnet();
410
411 if (xtick < 0) {
412 ln->ln_expire = 0;
413 ln->ln_ntick = 0;
414 callout_stop(&ln->ln_timer_ch);
415 } else {
416 ln->ln_expire = time_second + xtick / hz;
417 if (xtick > INT_MAX) {
418 ln->ln_ntick = xtick - INT_MAX;
419 callout_reset(&ln->ln_timer_ch, INT_MAX,
420 nd6_llinfo_timer, ln);
421 } else {
422 ln->ln_ntick = 0;
423 callout_reset(&ln->ln_timer_ch, xtick,
424 nd6_llinfo_timer, ln);
425 }
426 }
427
428 splx(s);
429 }
430
431 static void
432 nd6_llinfo_timer(void *arg)
433 {
434 struct llinfo_nd6 *ln;
435 struct rtentry *rt;
436 const struct sockaddr_in6 *dst;
437 struct ifnet *ifp;
438 struct nd_ifinfo *ndi = NULL;
439
440 mutex_enter(softnet_lock);
441 KERNEL_LOCK(1, NULL);
442
443 ln = (struct llinfo_nd6 *)arg;
444
445 if (ln->ln_ntick > 0) {
446 nd6_llinfo_settimer(ln, ln->ln_ntick);
447 KERNEL_UNLOCK_ONE(NULL);
448 mutex_exit(softnet_lock);
449 return;
450 }
451
452 if ((rt = ln->ln_rt) == NULL)
453 panic("ln->ln_rt == NULL");
454 if ((ifp = rt->rt_ifp) == NULL)
455 panic("ln->ln_rt->rt_ifp == NULL");
456 ndi = ND_IFINFO(ifp);
457 dst = satocsin6(rt_getkey(rt));
458
459 /* sanity check */
460 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
461 panic("rt_llinfo(%p) is not equal to ln(%p)",
462 rt->rt_llinfo, ln);
463 if (!dst)
464 panic("dst=0 in nd6_timer(ln=%p)", ln);
465
466 switch (ln->ln_state) {
467 case ND6_LLINFO_INCOMPLETE:
468 if (ln->ln_asked < nd6_mmaxtries) {
469 ln->ln_asked++;
470 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
471 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
472 } else {
473 struct mbuf *m = ln->ln_hold;
474 if (m) {
475 struct mbuf *m0;
476
477 /*
478 * assuming every packet in ln_hold has
479 * the same IP header
480 */
481 m0 = m->m_nextpkt;
482 m->m_nextpkt = NULL;
483 icmp6_error2(m, ICMP6_DST_UNREACH,
484 ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
485
486 ln->ln_hold = m0;
487 clear_llinfo_pqueue(ln);
488 }
489 (void)nd6_free(rt, 0);
490 ln = NULL;
491 }
492 break;
493 case ND6_LLINFO_REACHABLE:
494 if (!ND6_LLINFO_PERMANENT(ln)) {
495 ln->ln_state = ND6_LLINFO_STALE;
496 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
497 }
498 break;
499
500 case ND6_LLINFO_PURGE:
501 case ND6_LLINFO_STALE:
502 /* Garbage Collection(RFC 2461 5.3) */
503 if (!ND6_LLINFO_PERMANENT(ln)) {
504 (void)nd6_free(rt, 1);
505 ln = NULL;
506 }
507 break;
508
509 case ND6_LLINFO_DELAY:
510 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
511 /* We need NUD */
512 ln->ln_asked = 1;
513 ln->ln_state = ND6_LLINFO_PROBE;
514 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
515 nd6_ns_output(ifp, &dst->sin6_addr,
516 &dst->sin6_addr, ln, 0);
517 } else {
518 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
519 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
520 }
521 break;
522 case ND6_LLINFO_PROBE:
523 if (ln->ln_asked < nd6_umaxtries) {
524 ln->ln_asked++;
525 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
526 nd6_ns_output(ifp, &dst->sin6_addr,
527 &dst->sin6_addr, ln, 0);
528 } else {
529 (void)nd6_free(rt, 0);
530 ln = NULL;
531 }
532 break;
533 }
534
535 KERNEL_UNLOCK_ONE(NULL);
536 mutex_exit(softnet_lock);
537 }
538
539 /*
540 * ND6 timer routine to expire default route list and prefix list
541 */
542 void
543 nd6_timer(void *ignored_arg)
544 {
545 struct nd_defrouter *next_dr, *dr;
546 struct nd_prefix *next_pr, *pr;
547 struct in6_ifaddr *ia6, *nia6;
548
549 callout_reset(&nd6_timer_ch, nd6_prune * hz,
550 nd6_timer, NULL);
551
552 mutex_enter(softnet_lock);
553 KERNEL_LOCK(1, NULL);
554
555 /* expire default router list */
556
557 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, next_dr) {
558 if (dr->expire && dr->expire < time_second) {
559 defrtrlist_del(dr, NULL);
560 }
561 }
562
563 /*
564 * expire interface addresses.
565 * in the past the loop was inside prefix expiry processing.
566 * However, from a stricter speci-confrmance standpoint, we should
567 * rather separate address lifetimes and prefix lifetimes.
568 */
569 addrloop:
570 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
571 nia6 = ia6->ia_next;
572 /* check address lifetime */
573 if (IFA6_IS_INVALID(ia6)) {
574 int regen = 0;
575
576 /*
577 * If the expiring address is temporary, try
578 * regenerating a new one. This would be useful when
579 * we suspended a laptop PC, then turned it on after a
580 * period that could invalidate all temporary
581 * addresses. Although we may have to restart the
582 * loop (see below), it must be after purging the
583 * address. Otherwise, we'd see an infinite loop of
584 * regeneration.
585 */
586 if (ip6_use_tempaddr &&
587 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
588 if (regen_tmpaddr(ia6) == 0)
589 regen = 1;
590 }
591
592 in6_purgeaddr(&ia6->ia_ifa);
593
594 if (regen)
595 goto addrloop; /* XXX: see below */
596 } else if (IFA6_IS_DEPRECATED(ia6)) {
597 int oldflags = ia6->ia6_flags;
598
599 if ((oldflags & IN6_IFF_DEPRECATED) == 0) {
600 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
601 rt_newaddrmsg(RTM_NEWADDR,
602 (struct ifaddr *)ia6, 0, NULL);
603 }
604
605 /*
606 * If a temporary address has just become deprecated,
607 * regenerate a new one if possible.
608 */
609 if (ip6_use_tempaddr &&
610 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
611 (oldflags & IN6_IFF_DEPRECATED) == 0) {
612
613 if (regen_tmpaddr(ia6) == 0) {
614 /*
615 * A new temporary address is
616 * generated.
617 * XXX: this means the address chain
618 * has changed while we are still in
619 * the loop. Although the change
620 * would not cause disaster (because
621 * it's not a deletion, but an
622 * addition,) we'd rather restart the
623 * loop just for safety. Or does this
624 * significantly reduce performance??
625 */
626 goto addrloop;
627 }
628 }
629 } else {
630 /*
631 * A new RA might have made a deprecated address
632 * preferred.
633 */
634 if (ia6->ia6_flags & IN6_IFF_DEPRECATED) {
635 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
636 rt_newaddrmsg(RTM_NEWADDR,
637 (struct ifaddr *)ia6, 0, NULL);
638 }
639 }
640 }
641
642 /* expire prefix list */
643 LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, next_pr) {
644 /*
645 * check prefix lifetime.
646 * since pltime is just for autoconf, pltime processing for
647 * prefix is not necessary.
648 */
649 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
650 time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
651
652 /*
653 * address expiration and prefix expiration are
654 * separate. NEVER perform in6_purgeaddr here.
655 */
656
657 prelist_remove(pr);
658 }
659 }
660
661 KERNEL_UNLOCK_ONE(NULL);
662 mutex_exit(softnet_lock);
663 }
664
665 /* ia6: deprecated/invalidated temporary address */
666 static int
667 regen_tmpaddr(struct in6_ifaddr *ia6)
668 {
669 struct ifaddr *ifa;
670 struct ifnet *ifp;
671 struct in6_ifaddr *public_ifa6 = NULL;
672
673 ifp = ia6->ia_ifa.ifa_ifp;
674 IFADDR_FOREACH(ifa, ifp) {
675 struct in6_ifaddr *it6;
676
677 if (ifa->ifa_addr->sa_family != AF_INET6)
678 continue;
679
680 it6 = (struct in6_ifaddr *)ifa;
681
682 /* ignore no autoconf addresses. */
683 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
684 continue;
685
686 /* ignore autoconf addresses with different prefixes. */
687 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
688 continue;
689
690 /*
691 * Now we are looking at an autoconf address with the same
692 * prefix as ours. If the address is temporary and is still
693 * preferred, do not create another one. It would be rare, but
694 * could happen, for example, when we resume a laptop PC after
695 * a long period.
696 */
697 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
698 !IFA6_IS_DEPRECATED(it6)) {
699 public_ifa6 = NULL;
700 break;
701 }
702
703 /*
704 * This is a public autoconf address that has the same prefix
705 * as ours. If it is preferred, keep it. We can't break the
706 * loop here, because there may be a still-preferred temporary
707 * address with the prefix.
708 */
709 if (!IFA6_IS_DEPRECATED(it6))
710 public_ifa6 = it6;
711 }
712
713 if (public_ifa6 != NULL) {
714 int e;
715
716 /*
717 * Random factor is introduced in the preferred lifetime, so
718 * we do not need additional delay (3rd arg to in6_tmpifadd).
719 */
720 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
721 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
722 " tmp addr, errno=%d\n", e);
723 return -1;
724 }
725 return 0;
726 }
727
728 return -1;
729 }
730
731 bool
732 nd6_accepts_rtadv(const struct nd_ifinfo *ndi)
733 {
734 switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) {
735 case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV:
736 return true;
737 case ND6_IFF_ACCEPT_RTADV:
738 return ip6_accept_rtadv != 0;
739 case ND6_IFF_OVERRIDE_RTADV:
740 case 0:
741 default:
742 return false;
743 }
744 }
745
746 /*
747 * Nuke neighbor cache/prefix/default router management table, right before
748 * ifp goes away.
749 */
750 void
751 nd6_purge(struct ifnet *ifp, struct in6_ifextra *ext)
752 {
753 struct llinfo_nd6 *ln, *nln;
754 struct nd_defrouter *dr, *ndr;
755 struct nd_prefix *pr, *npr;
756
757 /*
758 * During detach, the ND info might be already removed, but
759 * then is explitly passed as argument.
760 * Otherwise get it from ifp->if_afdata.
761 */
762 if (ext == NULL)
763 ext = ifp->if_afdata[AF_INET6];
764 if (ext == NULL)
765 return;
766
767 /*
768 * Nuke default router list entries toward ifp.
769 * We defer removal of default router list entries that is installed
770 * in the routing table, in order to keep additional side effects as
771 * small as possible.
772 */
773 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
774 if (dr->installed)
775 continue;
776
777 if (dr->ifp == ifp) {
778 KASSERT(ext != NULL);
779 defrtrlist_del(dr, ext);
780 }
781 }
782
783 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
784 if (!dr->installed)
785 continue;
786
787 if (dr->ifp == ifp) {
788 KASSERT(ext != NULL);
789 defrtrlist_del(dr, ext);
790 }
791 }
792
793 /* Nuke prefix list entries toward ifp */
794 LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, npr) {
795 if (pr->ndpr_ifp == ifp) {
796 /*
797 * Because if_detach() does *not* release prefixes
798 * while purging addresses the reference count will
799 * still be above zero. We therefore reset it to
800 * make sure that the prefix really gets purged.
801 */
802 pr->ndpr_refcnt = 0;
803 /*
804 * Previously, pr->ndpr_addr is removed as well,
805 * but I strongly believe we don't have to do it.
806 * nd6_purge() is only called from in6_ifdetach(),
807 * which removes all the associated interface addresses
808 * by itself.
809 * (jinmei (at) kame.net 20010129)
810 */
811 prelist_remove(pr);
812 }
813 }
814
815 /* cancel default outgoing interface setting */
816 if (nd6_defifindex == ifp->if_index)
817 nd6_setdefaultiface(0);
818
819 /* XXX: too restrictive? */
820 if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) {
821 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
822 if (ndi && nd6_accepts_rtadv(ndi)) {
823 /* refresh default router list */
824 defrouter_select();
825 }
826 }
827
828 /*
829 * Nuke neighbor cache entries for the ifp.
830 * Note that rt->rt_ifp may not be the same as ifp,
831 * due to KAME goto ours hack. See RTM_RESOLVE case in
832 * nd6_rtrequest(), and ip6_input().
833 */
834 ln = llinfo_nd6.ln_next;
835 while (ln != NULL && ln != &llinfo_nd6) {
836 struct rtentry *rt;
837 const struct sockaddr_dl *sdl;
838
839 nln = ln->ln_next;
840 rt = ln->ln_rt;
841 if (rt && rt->rt_gateway &&
842 rt->rt_gateway->sa_family == AF_LINK) {
843 sdl = satocsdl(rt->rt_gateway);
844 if (sdl->sdl_index == ifp->if_index)
845 nln = nd6_free(rt, 0);
846 }
847 ln = nln;
848 }
849 }
850
851 static struct rtentry *
852 nd6_lookup1(const struct in6_addr *addr6, int create, struct ifnet *ifp,
853 int cloning)
854 {
855 struct rtentry *rt;
856 struct sockaddr_in6 sin6;
857
858 sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
859 rt = rtalloc1((struct sockaddr *)&sin6, create);
860 if (rt != NULL && (rt->rt_flags & RTF_LLINFO) == 0) {
861 /*
862 * This is the case for the default route.
863 * If we want to create a neighbor cache for the address, we
864 * should free the route for the destination and allocate an
865 * interface route.
866 */
867 if (create) {
868 rtfree(rt);
869 rt = NULL;
870 }
871 }
872 if (rt != NULL)
873 ;
874 else if (create && ifp) {
875 int e;
876
877 /*
878 * If no route is available and create is set,
879 * we allocate a host route for the destination
880 * and treat it like an interface route.
881 * This hack is necessary for a neighbor which can't
882 * be covered by our own prefix.
883 */
884 struct ifaddr *ifa =
885 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
886 if (ifa == NULL)
887 return NULL;
888
889 /*
890 * Create a new route. RTF_LLINFO is necessary
891 * to create a Neighbor Cache entry for the
892 * destination in nd6_rtrequest which will be
893 * called in rtrequest via ifa->ifa_rtrequest.
894 */
895 if ((e = rtrequest(RTM_ADD, (const struct sockaddr *)&sin6,
896 ifa->ifa_addr, (const struct sockaddr *)&all1_sa,
897 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
898 ~RTF_CLONING, &rt)) != 0) {
899 #if 0
900 log(LOG_ERR,
901 "nd6_lookup: failed to add route for a "
902 "neighbor(%s), errno=%d\n",
903 ip6_sprintf(addr6), e);
904 #endif
905 return NULL;
906 }
907 if (rt == NULL)
908 return NULL;
909 if (rt->rt_llinfo) {
910 struct llinfo_nd6 *ln =
911 (struct llinfo_nd6 *)rt->rt_llinfo;
912 ln->ln_state = ND6_LLINFO_NOSTATE;
913 }
914 } else
915 return NULL;
916 rt->rt_refcnt--;
917
918 /*
919 * Check for a cloning route to match the address.
920 * This should only be set from in6_is_addr_neighbor so we avoid
921 * a potentially expensive second call to rtalloc1.
922 */
923 if (cloning &&
924 rt->rt_flags & (RTF_CLONING | RTF_CLONED) &&
925 (rt->rt_ifp == ifp
926 #if NBRIDGE > 0
927 || rt->rt_ifp->if_bridge == ifp->if_bridge
928 #endif
929 #if NCARP > 0
930 || (ifp->if_type == IFT_CARP && rt->rt_ifp == ifp->if_carpdev) ||
931 (rt->rt_ifp->if_type == IFT_CARP && rt->rt_ifp->if_carpdev == ifp)||
932 (ifp->if_type == IFT_CARP && rt->rt_ifp->if_type == IFT_CARP &&
933 rt->rt_ifp->if_carpdev == ifp->if_carpdev)
934 #endif
935 ))
936 return rt;
937
938 /*
939 * Validation for the entry.
940 * Note that the check for rt_llinfo is necessary because a cloned
941 * route from a parent route that has the L flag (e.g. the default
942 * route to a p2p interface) may have the flag, too, while the
943 * destination is not actually a neighbor.
944 * XXX: we can't use rt->rt_ifp to check for the interface, since
945 * it might be the loopback interface if the entry is for our
946 * own address on a non-loopback interface. Instead, we should
947 * use rt->rt_ifa->ifa_ifp, which would specify the REAL
948 * interface.
949 * Note also that ifa_ifp and ifp may differ when we connect two
950 * interfaces to a same link, install a link prefix to an interface,
951 * and try to install a neighbor cache on an interface that does not
952 * have a route to the prefix.
953 */
954 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
955 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
956 (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
957 if (create) {
958 nd6log((LOG_DEBUG,
959 "nd6_lookup: failed to lookup %s (if = %s)\n",
960 ip6_sprintf(addr6),
961 ifp ? if_name(ifp) : "unspec"));
962 }
963 return NULL;
964 }
965 return rt;
966 }
967
968 struct rtentry *
969 nd6_lookup(const struct in6_addr *addr6, int create, struct ifnet *ifp)
970 {
971
972 return nd6_lookup1(addr6, create, ifp, 0);
973 }
974
975 /*
976 * Detect if a given IPv6 address identifies a neighbor on a given link.
977 * XXX: should take care of the destination of a p2p link?
978 */
979 int
980 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
981 {
982 struct nd_prefix *pr;
983
984 /*
985 * A link-local address is always a neighbor.
986 * XXX: a link does not necessarily specify a single interface.
987 */
988 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
989 struct sockaddr_in6 sin6_copy;
990 u_int32_t zone;
991
992 /*
993 * We need sin6_copy since sa6_recoverscope() may modify the
994 * content (XXX).
995 */
996 sin6_copy = *addr;
997 if (sa6_recoverscope(&sin6_copy))
998 return 0; /* XXX: should be impossible */
999 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
1000 return 0;
1001 if (sin6_copy.sin6_scope_id == zone)
1002 return 1;
1003 else
1004 return 0;
1005 }
1006
1007 /*
1008 * If the address matches one of our on-link prefixes, it should be a
1009 * neighbor.
1010 */
1011 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
1012 if (pr->ndpr_ifp != ifp)
1013 continue;
1014
1015 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
1016 continue;
1017
1018 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1019 &addr->sin6_addr, &pr->ndpr_mask))
1020 return 1;
1021 }
1022
1023 /*
1024 * If the default router list is empty, all addresses are regarded
1025 * as on-link, and thus, as a neighbor.
1026 * XXX: we restrict the condition to hosts, because routers usually do
1027 * not have the "default router list".
1028 */
1029 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
1030 nd6_defifindex == ifp->if_index) {
1031 return 1;
1032 }
1033
1034 /*
1035 * Even if the address matches none of our addresses, it might match
1036 * a cloning route or be in the neighbor cache.
1037 */
1038 if (nd6_lookup1(&addr->sin6_addr, 0, ifp, 1) != NULL)
1039 return 1;
1040
1041 return 0;
1042 }
1043
1044 /*
1045 * Free an nd6 llinfo entry.
1046 * Since the function would cause significant changes in the kernel, DO NOT
1047 * make it global, unless you have a strong reason for the change, and are sure
1048 * that the change is safe.
1049 */
1050 static struct llinfo_nd6 *
1051 nd6_free(struct rtentry *rt, int gc)
1052 {
1053 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
1054 struct in6_addr in6 = satocsin6(rt_getkey(rt))->sin6_addr;
1055 struct nd_defrouter *dr;
1056 struct rtentry *oldrt;
1057
1058 /*
1059 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1060 * even though it is not harmful, it was not really necessary.
1061 */
1062
1063 /* cancel timer */
1064 nd6_llinfo_settimer(ln, -1);
1065
1066 if (!ip6_forwarding) {
1067 int s;
1068 s = splsoftnet();
1069 dr = defrouter_lookup(&satocsin6(rt_getkey(rt))->sin6_addr,
1070 rt->rt_ifp);
1071
1072 if (dr != NULL && dr->expire &&
1073 ln->ln_state == ND6_LLINFO_STALE && gc) {
1074 /*
1075 * If the reason for the deletion is just garbage
1076 * collection, and the neighbor is an active default
1077 * router, do not delete it. Instead, reset the GC
1078 * timer using the router's lifetime.
1079 * Simply deleting the entry would affect default
1080 * router selection, which is not necessarily a good
1081 * thing, especially when we're using router preference
1082 * values.
1083 * XXX: the check for ln_state would be redundant,
1084 * but we intentionally keep it just in case.
1085 */
1086 if (dr->expire > time_second)
1087 nd6_llinfo_settimer(ln,
1088 (dr->expire - time_second) * hz);
1089 else
1090 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1091 splx(s);
1092 return ln->ln_next;
1093 }
1094
1095 if (ln->ln_router || dr) {
1096 /*
1097 * rt6_flush must be called whether or not the neighbor
1098 * is in the Default Router List.
1099 * See a corresponding comment in nd6_na_input().
1100 */
1101 rt6_flush(&in6, rt->rt_ifp);
1102 }
1103
1104 if (dr) {
1105 /*
1106 * Unreachablity of a router might affect the default
1107 * router selection and on-link detection of advertised
1108 * prefixes.
1109 */
1110
1111 /*
1112 * Temporarily fake the state to choose a new default
1113 * router and to perform on-link determination of
1114 * prefixes correctly.
1115 * Below the state will be set correctly,
1116 * or the entry itself will be deleted.
1117 */
1118 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1119
1120 /*
1121 * Since defrouter_select() does not affect the
1122 * on-link determination and MIP6 needs the check
1123 * before the default router selection, we perform
1124 * the check now.
1125 */
1126 pfxlist_onlink_check();
1127
1128 /*
1129 * refresh default router list
1130 */
1131 defrouter_select();
1132 }
1133 splx(s);
1134 }
1135
1136 /*
1137 * Before deleting the entry, remember the next entry as the
1138 * return value. We need this because pfxlist_onlink_check() above
1139 * might have freed other entries (particularly the old next entry) as
1140 * a side effect (XXX).
1141 */
1142 next = ln->ln_next;
1143
1144 /*
1145 * Detach the route from the routing tree and the list of neighbor
1146 * caches, and disable the route entry not to be used in already
1147 * cached routes.
1148 */
1149 oldrt = NULL;
1150 rtrequest(RTM_DELETE, rt_getkey(rt), NULL, rt_mask(rt), 0, &oldrt);
1151 if (oldrt) {
1152 rt_newmsg(RTM_DELETE, oldrt); /* tell user process */
1153 if (oldrt->rt_refcnt <= 0) {
1154 oldrt->rt_refcnt++;
1155 rtfree(oldrt);
1156 }
1157 }
1158
1159 return next;
1160 }
1161
1162 /*
1163 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1164 *
1165 * XXX cost-effective methods?
1166 */
1167 void
1168 nd6_nud_hint(struct rtentry *rt)
1169 {
1170 struct llinfo_nd6 *ln;
1171
1172 if (rt == NULL)
1173 return;
1174
1175 if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1176 (rt->rt_flags & RTF_LLINFO) == 0 ||
1177 !rt->rt_llinfo || !rt->rt_gateway ||
1178 rt->rt_gateway->sa_family != AF_LINK) {
1179 /* This is not a host route. */
1180 return;
1181 }
1182
1183 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1184 if (ln->ln_state < ND6_LLINFO_REACHABLE)
1185 return;
1186
1187 /*
1188 * if we get upper-layer reachability confirmation many times,
1189 * it is possible we have false information.
1190 */
1191 ln->ln_byhint++;
1192 if (ln->ln_byhint > nd6_maxnudhint)
1193 return;
1194
1195 ln->ln_state = ND6_LLINFO_REACHABLE;
1196 if (!ND6_LLINFO_PERMANENT(ln)) {
1197 nd6_llinfo_settimer(ln,
1198 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1199 }
1200 }
1201
1202 void
1203 nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
1204 {
1205 struct sockaddr *gate = rt->rt_gateway;
1206 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1207 struct ifnet *ifp = rt->rt_ifp;
1208 uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen;
1209 struct ifaddr *ifa;
1210
1211 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1212
1213 if (req == RTM_LLINFO_UPD) {
1214 int rc;
1215 struct in6_addr *in6;
1216 struct in6_addr in6_all;
1217 int anycast;
1218
1219 if ((ifa = info->rti_ifa) == NULL)
1220 return;
1221
1222 in6 = &ifatoia6(ifa)->ia_addr.sin6_addr;
1223 anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST;
1224
1225 in6_all = in6addr_linklocal_allnodes;
1226 if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) {
1227 log(LOG_ERR, "%s: failed to set scope %s "
1228 "(errno=%d)\n", __func__, if_name(ifp), rc);
1229 return;
1230 }
1231
1232 /* XXX don't set Override for proxy addresses */
1233 nd6_na_output(ifa->ifa_ifp, &in6_all, in6,
1234 (anycast ? 0 : ND_NA_FLAG_OVERRIDE)
1235 #if 0
1236 | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0)
1237 #endif
1238 , 1, NULL);
1239 return;
1240 }
1241
1242 if ((rt->rt_flags & RTF_GATEWAY) != 0)
1243 return;
1244
1245 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1246 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1247 /*
1248 * This is probably an interface direct route for a link
1249 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1250 * We do not need special treatment below for such a route.
1251 * Moreover, the RTF_LLINFO flag which would be set below
1252 * would annoy the ndp(8) command.
1253 */
1254 return;
1255 }
1256
1257 if (req == RTM_RESOLVE &&
1258 (nd6_need_cache(ifp) == 0 || /* stf case */
1259 !nd6_is_addr_neighbor(satocsin6(rt_getkey(rt)), ifp))) {
1260 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1261 /*
1262 * FreeBSD and BSD/OS often make a cloned host route based
1263 * on a less-specific route (e.g. the default route).
1264 * If the less specific route does not have a "gateway"
1265 * (this is the case when the route just goes to a p2p or an
1266 * stf interface), we'll mistakenly make a neighbor cache for
1267 * the host route, and will see strange neighbor solicitation
1268 * for the corresponding destination. In order to avoid the
1269 * confusion, we check if the destination of the route is
1270 * a neighbor in terms of neighbor discovery, and stop the
1271 * process if not. Additionally, we remove the LLINFO flag
1272 * so that ndp(8) will not try to get the neighbor information
1273 * of the destination.
1274 */
1275 rt->rt_flags &= ~RTF_LLINFO;
1276 return;
1277 }
1278
1279 switch (req) {
1280 case RTM_ADD:
1281 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1282 /*
1283 * There is no backward compatibility :)
1284 *
1285 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1286 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1287 * rt->rt_flags |= RTF_CLONING;
1288 */
1289 if ((rt->rt_flags & RTF_CLONING) ||
1290 ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1291 union {
1292 struct sockaddr sa;
1293 struct sockaddr_dl sdl;
1294 struct sockaddr_storage ss;
1295 } u;
1296 /*
1297 * Case 1: This route should come from a route to
1298 * interface (RTF_CLONING case) or the route should be
1299 * treated as on-link but is currently not
1300 * (RTF_LLINFO && ln == NULL case).
1301 */
1302 if (sockaddr_dl_init(&u.sdl, sizeof(u.ss),
1303 ifp->if_index, ifp->if_type,
1304 NULL, namelen, NULL, addrlen) == NULL) {
1305 printf("%s.%d: sockaddr_dl_init(, %zu, ) "
1306 "failed on %s\n", __func__, __LINE__,
1307 sizeof(u.ss), if_name(ifp));
1308 }
1309 rt_setgate(rt, &u.sa);
1310 gate = rt->rt_gateway;
1311 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1312 if (ln != NULL)
1313 nd6_llinfo_settimer(ln, 0);
1314 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1315 if ((rt->rt_flags & RTF_CLONING) != 0)
1316 break;
1317 }
1318 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1319 /*
1320 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1321 * We don't do that here since llinfo is not ready yet.
1322 *
1323 * There are also couple of other things to be discussed:
1324 * - unsolicited NA code needs improvement beforehand
1325 * - RFC2461 says we MAY send multicast unsolicited NA
1326 * (7.2.6 paragraph 4), however, it also says that we
1327 * SHOULD provide a mechanism to prevent multicast NA storm.
1328 * we don't have anything like it right now.
1329 * note that the mechanism needs a mutual agreement
1330 * between proxies, which means that we need to implement
1331 * a new protocol, or a new kludge.
1332 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1333 * we need to check ip6forwarding before sending it.
1334 * (or should we allow proxy ND configuration only for
1335 * routers? there's no mention about proxy ND from hosts)
1336 */
1337 #if 0
1338 /* XXX it does not work */
1339 if (rt->rt_flags & RTF_ANNOUNCE)
1340 nd6_na_output(ifp,
1341 &satocsin6(rt_getkey(rt))->sin6_addr,
1342 &satocsin6(rt_getkey(rt))->sin6_addr,
1343 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1344 1, NULL);
1345 #endif
1346 /* FALLTHROUGH */
1347 case RTM_RESOLVE:
1348 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1349 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1350 /*
1351 * Address resolution isn't necessary for a point to
1352 * point link, so we can skip this test for a p2p link.
1353 */
1354 if (gate->sa_family != AF_LINK ||
1355 gate->sa_len <
1356 sockaddr_dl_measure(namelen, addrlen)) {
1357 log(LOG_DEBUG,
1358 "nd6_rtrequest: bad gateway value: %s\n",
1359 if_name(ifp));
1360 break;
1361 }
1362 satosdl(gate)->sdl_type = ifp->if_type;
1363 satosdl(gate)->sdl_index = ifp->if_index;
1364 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1365 }
1366 if (ln != NULL)
1367 break; /* This happens on a route change */
1368 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1369 /*
1370 * Case 2: This route may come from cloning, or a manual route
1371 * add with a LL address.
1372 */
1373 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1374 rt->rt_llinfo = ln;
1375 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1376 if (ln == NULL) {
1377 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1378 break;
1379 }
1380 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1381 nd6_inuse++;
1382 nd6_allocated++;
1383 memset(ln, 0, sizeof(*ln));
1384 ln->ln_rt = rt;
1385 callout_init(&ln->ln_timer_ch, CALLOUT_MPSAFE);
1386 /* this is required for "ndp" command. - shin */
1387 if (req == RTM_ADD) {
1388 /*
1389 * gate should have some valid AF_LINK entry,
1390 * and ln->ln_expire should have some lifetime
1391 * which is specified by ndp command.
1392 */
1393 ln->ln_state = ND6_LLINFO_REACHABLE;
1394 ln->ln_byhint = 0;
1395 } else {
1396 /*
1397 * When req == RTM_RESOLVE, rt is created and
1398 * initialized in rtrequest(), so rt_expire is 0.
1399 */
1400 ln->ln_state = ND6_LLINFO_NOSTATE;
1401 nd6_llinfo_settimer(ln, 0);
1402 }
1403 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1404 rt->rt_flags |= RTF_LLINFO;
1405 ln->ln_next = llinfo_nd6.ln_next;
1406 llinfo_nd6.ln_next = ln;
1407 ln->ln_prev = &llinfo_nd6;
1408 ln->ln_next->ln_prev = ln;
1409
1410 /*
1411 * If we have too many cache entries, initiate immediate
1412 * purging for some "less recently used" entries. Note that
1413 * we cannot directly call nd6_free() here because it would
1414 * cause re-entering rtable related routines triggering an LOR
1415 * problem for FreeBSD.
1416 */
1417 if (ip6_neighborgcthresh >= 0 &&
1418 nd6_inuse >= ip6_neighborgcthresh) {
1419 int i;
1420
1421 for (i = 0; i < 10 && llinfo_nd6.ln_prev != ln; i++) {
1422 struct llinfo_nd6 *ln_end = llinfo_nd6.ln_prev;
1423
1424 /* Move this entry to the head */
1425 LN_DEQUEUE(ln_end);
1426 LN_INSERTHEAD(ln_end);
1427
1428 if (ND6_LLINFO_PERMANENT(ln_end))
1429 continue;
1430
1431 if (ln_end->ln_state > ND6_LLINFO_INCOMPLETE)
1432 ln_end->ln_state = ND6_LLINFO_STALE;
1433 else
1434 ln_end->ln_state = ND6_LLINFO_PURGE;
1435 nd6_llinfo_settimer(ln_end, 0);
1436 }
1437 }
1438
1439 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1440 /*
1441 * check if rt_getkey(rt) is an address assigned
1442 * to the interface.
1443 */
1444 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp,
1445 &satocsin6(rt_getkey(rt))->sin6_addr);
1446 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1447 if (ifa != NULL) {
1448 const void *mac;
1449 nd6_llinfo_settimer(ln, -1);
1450 ln->ln_state = ND6_LLINFO_REACHABLE;
1451 ln->ln_byhint = 0;
1452 if ((mac = nd6_ifptomac(ifp)) != NULL) {
1453 /* XXX check for error */
1454 if (sockaddr_dl_setaddr(satosdl(gate),
1455 gate->sa_len, mac,
1456 ifp->if_addrlen) == NULL) {
1457 printf("%s.%d: "
1458 "sockaddr_dl_setaddr(, %d, ) "
1459 "failed on %s\n", __func__,
1460 __LINE__, gate->sa_len,
1461 if_name(ifp));
1462 }
1463 }
1464 if (nd6_useloopback) {
1465 ifp = rt->rt_ifp = lo0ifp; /* XXX */
1466 /*
1467 * Make sure rt_ifa be equal to the ifaddr
1468 * corresponding to the address.
1469 * We need this because when we refer
1470 * rt_ifa->ia6_flags in ip6_input, we assume
1471 * that the rt_ifa points to the address instead
1472 * of the loopback address.
1473 */
1474 if (ifa != rt->rt_ifa)
1475 rt_replace_ifa(rt, ifa);
1476 rt->rt_flags &= ~RTF_CLONED;
1477 }
1478 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1479 nd6_llinfo_settimer(ln, -1);
1480 ln->ln_state = ND6_LLINFO_REACHABLE;
1481 ln->ln_byhint = 0;
1482
1483 /* join solicited node multicast for proxy ND */
1484 if (ifp->if_flags & IFF_MULTICAST) {
1485 struct in6_addr llsol;
1486 int error;
1487
1488 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1489 llsol.s6_addr32[0] = htonl(0xff020000);
1490 llsol.s6_addr32[1] = 0;
1491 llsol.s6_addr32[2] = htonl(1);
1492 llsol.s6_addr8[12] = 0xff;
1493 if (in6_setscope(&llsol, ifp, NULL))
1494 break;
1495 if (!in6_addmulti(&llsol, ifp, &error, 0)) {
1496 nd6log((LOG_ERR, "%s: failed to join "
1497 "%s (errno=%d)\n", if_name(ifp),
1498 ip6_sprintf(&llsol), error));
1499 }
1500 }
1501 }
1502 break;
1503
1504 case RTM_DELETE:
1505 if (ln == NULL)
1506 break;
1507 /* leave from solicited node multicast for proxy ND */
1508 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1509 (ifp->if_flags & IFF_MULTICAST) != 0) {
1510 struct in6_addr llsol;
1511 struct in6_multi *in6m;
1512
1513 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1514 llsol.s6_addr32[0] = htonl(0xff020000);
1515 llsol.s6_addr32[1] = 0;
1516 llsol.s6_addr32[2] = htonl(1);
1517 llsol.s6_addr8[12] = 0xff;
1518 if (in6_setscope(&llsol, ifp, NULL) == 0) {
1519 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1520 if (in6m)
1521 in6_delmulti(in6m);
1522 }
1523 }
1524 nd6_inuse--;
1525 ln->ln_next->ln_prev = ln->ln_prev;
1526 ln->ln_prev->ln_next = ln->ln_next;
1527 ln->ln_prev = NULL;
1528 nd6_llinfo_settimer(ln, -1);
1529 rt->rt_llinfo = 0;
1530 rt->rt_flags &= ~RTF_LLINFO;
1531 clear_llinfo_pqueue(ln);
1532 Free(ln);
1533 }
1534 }
1535
1536 int
1537 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp)
1538 {
1539 struct in6_drlist *drl = (struct in6_drlist *)data;
1540 struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1541 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1542 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1543 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1544 struct nd_defrouter *dr;
1545 struct nd_prefix *pr;
1546 struct rtentry *rt;
1547 int i = 0, error = 0;
1548 int s;
1549
1550 switch (cmd) {
1551 case SIOCGDRLST_IN6:
1552 /*
1553 * obsolete API, use sysctl under net.inet6.icmp6
1554 */
1555 memset(drl, 0, sizeof(*drl));
1556 s = splsoftnet();
1557 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
1558 if (i >= DRLSTSIZ)
1559 break;
1560 drl->defrouter[i].rtaddr = dr->rtaddr;
1561 in6_clearscope(&drl->defrouter[i].rtaddr);
1562
1563 drl->defrouter[i].flags = dr->flags;
1564 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1565 drl->defrouter[i].expire = dr->expire;
1566 drl->defrouter[i].if_index = dr->ifp->if_index;
1567 i++;
1568 }
1569 splx(s);
1570 break;
1571 case SIOCGPRLST_IN6:
1572 /*
1573 * obsolete API, use sysctl under net.inet6.icmp6
1574 *
1575 * XXX the structure in6_prlist was changed in backward-
1576 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1577 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1578 */
1579 /*
1580 * XXX meaning of fields, especialy "raflags", is very
1581 * differnet between RA prefix list and RR/static prefix list.
1582 * how about separating ioctls into two?
1583 */
1584 memset(oprl, 0, sizeof(*oprl));
1585 s = splsoftnet();
1586 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
1587 struct nd_pfxrouter *pfr;
1588 int j;
1589
1590 if (i >= PRLSTSIZ)
1591 break;
1592 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1593 oprl->prefix[i].raflags = pr->ndpr_raf;
1594 oprl->prefix[i].prefixlen = pr->ndpr_plen;
1595 oprl->prefix[i].vltime = pr->ndpr_vltime;
1596 oprl->prefix[i].pltime = pr->ndpr_pltime;
1597 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1598 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1599 oprl->prefix[i].expire = 0;
1600 else {
1601 time_t maxexpire;
1602
1603 /* XXX: we assume time_t is signed. */
1604 maxexpire = (-1) &
1605 ~((time_t)1 <<
1606 ((sizeof(maxexpire) * 8) - 1));
1607 if (pr->ndpr_vltime <
1608 maxexpire - pr->ndpr_lastupdate) {
1609 oprl->prefix[i].expire =
1610 pr->ndpr_lastupdate +
1611 pr->ndpr_vltime;
1612 } else
1613 oprl->prefix[i].expire = maxexpire;
1614 }
1615
1616 j = 0;
1617 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
1618 if (j < DRLSTSIZ) {
1619 #define RTRADDR oprl->prefix[i].advrtr[j]
1620 RTRADDR = pfr->router->rtaddr;
1621 in6_clearscope(&RTRADDR);
1622 #undef RTRADDR
1623 }
1624 j++;
1625 }
1626 oprl->prefix[i].advrtrs = j;
1627 oprl->prefix[i].origin = PR_ORIG_RA;
1628
1629 i++;
1630 }
1631 splx(s);
1632
1633 break;
1634 case OSIOCGIFINFO_IN6:
1635 #define ND ndi->ndi
1636 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1637 memset(&ND, 0, sizeof(ND));
1638 ND.linkmtu = IN6_LINKMTU(ifp);
1639 ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1640 ND.basereachable = ND_IFINFO(ifp)->basereachable;
1641 ND.reachable = ND_IFINFO(ifp)->reachable;
1642 ND.retrans = ND_IFINFO(ifp)->retrans;
1643 ND.flags = ND_IFINFO(ifp)->flags;
1644 ND.recalctm = ND_IFINFO(ifp)->recalctm;
1645 ND.chlim = ND_IFINFO(ifp)->chlim;
1646 break;
1647 case SIOCGIFINFO_IN6:
1648 ND = *ND_IFINFO(ifp);
1649 break;
1650 case SIOCSIFINFO_IN6:
1651 /*
1652 * used to change host variables from userland.
1653 * intented for a use on router to reflect RA configurations.
1654 */
1655 /* 0 means 'unspecified' */
1656 if (ND.linkmtu != 0) {
1657 if (ND.linkmtu < IPV6_MMTU ||
1658 ND.linkmtu > IN6_LINKMTU(ifp)) {
1659 error = EINVAL;
1660 break;
1661 }
1662 ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1663 }
1664
1665 if (ND.basereachable != 0) {
1666 int obasereachable = ND_IFINFO(ifp)->basereachable;
1667
1668 ND_IFINFO(ifp)->basereachable = ND.basereachable;
1669 if (ND.basereachable != obasereachable)
1670 ND_IFINFO(ifp)->reachable =
1671 ND_COMPUTE_RTIME(ND.basereachable);
1672 }
1673 if (ND.retrans != 0)
1674 ND_IFINFO(ifp)->retrans = ND.retrans;
1675 if (ND.chlim != 0)
1676 ND_IFINFO(ifp)->chlim = ND.chlim;
1677 /* FALLTHROUGH */
1678 case SIOCSIFINFO_FLAGS:
1679 {
1680 struct ifaddr *ifa;
1681 struct in6_ifaddr *ia;
1682
1683 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1684 !(ND.flags & ND6_IFF_IFDISABLED))
1685 {
1686 /*
1687 * If the interface is marked as ND6_IFF_IFDISABLED and
1688 * has a link-local address with IN6_IFF_DUPLICATED,
1689 * do not clear ND6_IFF_IFDISABLED.
1690 * See RFC 4862, section 5.4.5.
1691 */
1692 int duplicated_linklocal = 0;
1693
1694 IFADDR_FOREACH(ifa, ifp) {
1695 if (ifa->ifa_addr->sa_family != AF_INET6)
1696 continue;
1697 ia = (struct in6_ifaddr *)ifa;
1698 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1699 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1700 {
1701 duplicated_linklocal = 1;
1702 break;
1703 }
1704 }
1705
1706 if (duplicated_linklocal) {
1707 ND.flags |= ND6_IFF_IFDISABLED;
1708 log(LOG_ERR, "Cannot enable an interface"
1709 " with a link-local address marked"
1710 " duplicate.\n");
1711 } else {
1712 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1713 if (ifp->if_flags & IFF_UP)
1714 in6_if_up(ifp);
1715 }
1716 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1717 (ND.flags & ND6_IFF_IFDISABLED))
1718 {
1719 /* Mark all IPv6 addresses as tentative. */
1720
1721 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1722 IFADDR_FOREACH(ifa, ifp) {
1723 if (ifa->ifa_addr->sa_family != AF_INET6)
1724 continue;
1725 nd6_dad_stop(ifa);
1726 ia = (struct in6_ifaddr *)ifa;
1727 ia->ia6_flags |= IN6_IFF_TENTATIVE;
1728 }
1729 }
1730
1731 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1732 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1733 /* auto_linklocal 0->1 transition */
1734
1735 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1736 in6_ifattach(ifp, NULL);
1737 } else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1738 ifp->if_flags & IFF_UP)
1739 {
1740 /*
1741 * When the IF already has
1742 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1743 * address is assigned, and IFF_UP, try to
1744 * assign one.
1745 */
1746 int haslinklocal = 0;
1747
1748 IFADDR_FOREACH(ifa, ifp) {
1749 if (ifa->ifa_addr->sa_family !=AF_INET6)
1750 continue;
1751 ia = (struct in6_ifaddr *)ifa;
1752 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))){
1753 haslinklocal = 1;
1754 break;
1755 }
1756 }
1757 if (!haslinklocal)
1758 in6_ifattach(ifp, NULL);
1759 }
1760 }
1761 }
1762 ND_IFINFO(ifp)->flags = ND.flags;
1763 break;
1764 #undef ND
1765 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1766 /* sync kernel routing table with the default router list */
1767 defrouter_reset();
1768 defrouter_select();
1769 break;
1770 case SIOCSPFXFLUSH_IN6:
1771 {
1772 /* flush all the prefix advertised by routers */
1773 struct nd_prefix *pfx, *next;
1774
1775 s = splsoftnet();
1776 LIST_FOREACH_SAFE(pfx, &nd_prefix, ndpr_entry, next) {
1777 struct in6_ifaddr *ia, *ia_next;
1778
1779 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
1780 continue; /* XXX */
1781
1782 /* do we really have to remove addresses as well? */
1783 for (ia = in6_ifaddr; ia; ia = ia_next) {
1784 /* ia might be removed. keep the next ptr. */
1785 ia_next = ia->ia_next;
1786
1787 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1788 continue;
1789
1790 if (ia->ia6_ndpr == pfx)
1791 in6_purgeaddr(&ia->ia_ifa);
1792 }
1793 prelist_remove(pfx);
1794 }
1795 splx(s);
1796 break;
1797 }
1798 case SIOCSRTRFLUSH_IN6:
1799 {
1800 /* flush all the default routers */
1801 struct nd_defrouter *drtr, *next;
1802
1803 s = splsoftnet();
1804 defrouter_reset();
1805 TAILQ_FOREACH_SAFE(drtr, &nd_defrouter, dr_entry, next) {
1806 defrtrlist_del(drtr, NULL);
1807 }
1808 defrouter_select();
1809 splx(s);
1810 break;
1811 }
1812 case SIOCGNBRINFO_IN6:
1813 {
1814 struct llinfo_nd6 *ln;
1815 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1816
1817 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1818 return error;
1819
1820 s = splsoftnet();
1821 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL ||
1822 (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) {
1823 error = EINVAL;
1824 splx(s);
1825 break;
1826 }
1827 nbi->state = ln->ln_state;
1828 nbi->asked = ln->ln_asked;
1829 nbi->isrouter = ln->ln_router;
1830 nbi->expire = ln->ln_expire;
1831 splx(s);
1832
1833 break;
1834 }
1835 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1836 ndif->ifindex = nd6_defifindex;
1837 break;
1838 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1839 return nd6_setdefaultiface(ndif->ifindex);
1840 }
1841 return error;
1842 }
1843
1844 void
1845 nd6_llinfo_release_pkts(struct llinfo_nd6 *ln, struct ifnet *ifp,
1846 struct rtentry *rt)
1847 {
1848 struct mbuf *m_hold, *m_hold_next;
1849
1850 for (m_hold = ln->ln_hold, ln->ln_hold = NULL;
1851 m_hold != NULL;
1852 m_hold = m_hold_next) {
1853 m_hold_next = m_hold->m_nextpkt;
1854 m_hold->m_nextpkt = NULL;
1855
1856 /*
1857 * we assume ifp is not a p2p here, so
1858 * just set the 2nd argument as the
1859 * 1st one.
1860 */
1861 nd6_output(ifp, ifp, m_hold, satocsin6(rt_getkey(rt)), rt);
1862 }
1863 }
1864
1865 /*
1866 * Create neighbor cache entry and cache link-layer address,
1867 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1868 */
1869 struct rtentry *
1870 nd6_cache_lladdr(
1871 struct ifnet *ifp,
1872 struct in6_addr *from,
1873 char *lladdr,
1874 int lladdrlen,
1875 int type, /* ICMP6 type */
1876 int code /* type dependent information */
1877 )
1878 {
1879 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
1880 struct rtentry *rt = NULL;
1881 struct llinfo_nd6 *ln = NULL;
1882 int is_newentry;
1883 struct sockaddr_dl *sdl = NULL;
1884 int do_update;
1885 int olladdr;
1886 int llchange;
1887 int newstate = 0;
1888
1889 KASSERT(ifp != NULL);
1890 KASSERT(from != NULL);
1891
1892 /* nothing must be updated for unspecified address */
1893 if (IN6_IS_ADDR_UNSPECIFIED(from))
1894 return NULL;
1895
1896 /*
1897 * Validation about ifp->if_addrlen and lladdrlen must be done in
1898 * the caller.
1899 *
1900 * XXX If the link does not have link-layer adderss, what should
1901 * we do? (ifp->if_addrlen == 0)
1902 * Spec says nothing in sections for RA, RS and NA. There's small
1903 * description on it in NS section (RFC 2461 7.2.3).
1904 */
1905
1906 rt = nd6_lookup(from, 0, ifp);
1907 if (rt == NULL) {
1908 #if 0
1909 /* nothing must be done if there's no lladdr */
1910 if (!lladdr || !lladdrlen)
1911 return NULL;
1912 #endif
1913
1914 rt = nd6_lookup(from, 1, ifp);
1915 is_newentry = 1;
1916 } else {
1917 /* do nothing if static ndp is set */
1918 if (rt->rt_flags & RTF_STATIC)
1919 return NULL;
1920 is_newentry = 0;
1921 }
1922
1923 if (rt == NULL)
1924 return NULL;
1925 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1926 fail:
1927 (void)nd6_free(rt, 0);
1928 return NULL;
1929 }
1930 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1931 if (ln == NULL)
1932 goto fail;
1933 if (rt->rt_gateway == NULL)
1934 goto fail;
1935 if (rt->rt_gateway->sa_family != AF_LINK)
1936 goto fail;
1937 sdl = satosdl(rt->rt_gateway);
1938
1939 olladdr = (sdl->sdl_alen) ? 1 : 0;
1940 if (olladdr && lladdr) {
1941 if (memcmp(lladdr, CLLADDR(sdl), ifp->if_addrlen))
1942 llchange = 1;
1943 else
1944 llchange = 0;
1945 } else
1946 llchange = 0;
1947
1948 /*
1949 * newentry olladdr lladdr llchange (*=record)
1950 * 0 n n -- (1)
1951 * 0 y n -- (2)
1952 * 0 n y -- (3) * STALE
1953 * 0 y y n (4) *
1954 * 0 y y y (5) * STALE
1955 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1956 * 1 -- y -- (7) * STALE
1957 */
1958
1959 if (lladdr) { /* (3-5) and (7) */
1960 /*
1961 * Record source link-layer address
1962 * XXX is it dependent to ifp->if_type?
1963 */
1964 /* XXX check for error */
1965 if (sockaddr_dl_setaddr(sdl, sdl->sdl_len, lladdr,
1966 ifp->if_addrlen) == NULL) {
1967 printf("%s.%d: sockaddr_dl_setaddr(, %d, ) "
1968 "failed on %s\n", __func__, __LINE__,
1969 sdl->sdl_len, if_name(ifp));
1970 }
1971 }
1972
1973 if (!is_newentry) {
1974 if ((!olladdr && lladdr) || /* (3) */
1975 (olladdr && lladdr && llchange)) { /* (5) */
1976 do_update = 1;
1977 newstate = ND6_LLINFO_STALE;
1978 } else /* (1-2,4) */
1979 do_update = 0;
1980 } else {
1981 do_update = 1;
1982 if (lladdr == NULL) /* (6) */
1983 newstate = ND6_LLINFO_NOSTATE;
1984 else /* (7) */
1985 newstate = ND6_LLINFO_STALE;
1986 }
1987
1988 if (do_update) {
1989 /*
1990 * Update the state of the neighbor cache.
1991 */
1992 ln->ln_state = newstate;
1993
1994 if (ln->ln_state == ND6_LLINFO_STALE) {
1995 /*
1996 * XXX: since nd6_output() below will cause
1997 * state tansition to DELAY and reset the timer,
1998 * we must set the timer now, although it is actually
1999 * meaningless.
2000 */
2001 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2002
2003 nd6_llinfo_release_pkts(ln, ifp, rt);
2004 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
2005 /* probe right away */
2006 nd6_llinfo_settimer((void *)ln, 0);
2007 }
2008 }
2009
2010 /*
2011 * ICMP6 type dependent behavior.
2012 *
2013 * NS: clear IsRouter if new entry
2014 * RS: clear IsRouter
2015 * RA: set IsRouter if there's lladdr
2016 * redir: clear IsRouter if new entry
2017 *
2018 * RA case, (1):
2019 * The spec says that we must set IsRouter in the following cases:
2020 * - If lladdr exist, set IsRouter. This means (1-5).
2021 * - If it is old entry (!newentry), set IsRouter. This means (7).
2022 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
2023 * A quetion arises for (1) case. (1) case has no lladdr in the
2024 * neighbor cache, this is similar to (6).
2025 * This case is rare but we figured that we MUST NOT set IsRouter.
2026 *
2027 * newentry olladdr lladdr llchange NS RS RA redir
2028 * D R
2029 * 0 n n -- (1) c ? s
2030 * 0 y n -- (2) c s s
2031 * 0 n y -- (3) c s s
2032 * 0 y y n (4) c s s
2033 * 0 y y y (5) c s s
2034 * 1 -- n -- (6) c c c s
2035 * 1 -- y -- (7) c c s c s
2036 *
2037 * (c=clear s=set)
2038 */
2039 switch (type & 0xff) {
2040 case ND_NEIGHBOR_SOLICIT:
2041 /*
2042 * New entry must have is_router flag cleared.
2043 */
2044 if (is_newentry) /* (6-7) */
2045 ln->ln_router = 0;
2046 break;
2047 case ND_REDIRECT:
2048 /*
2049 * If the icmp is a redirect to a better router, always set the
2050 * is_router flag. Otherwise, if the entry is newly created,
2051 * clear the flag. [RFC 2461, sec 8.3]
2052 */
2053 if (code == ND_REDIRECT_ROUTER)
2054 ln->ln_router = 1;
2055 else if (is_newentry) /* (6-7) */
2056 ln->ln_router = 0;
2057 break;
2058 case ND_ROUTER_SOLICIT:
2059 /*
2060 * is_router flag must always be cleared.
2061 */
2062 ln->ln_router = 0;
2063 break;
2064 case ND_ROUTER_ADVERT:
2065 /*
2066 * Mark an entry with lladdr as a router.
2067 */
2068 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
2069 (is_newentry && lladdr)) { /* (7) */
2070 ln->ln_router = 1;
2071 }
2072 break;
2073 }
2074
2075 if (do_update)
2076 rt_newmsg(RTM_CHANGE, rt); /* tell user process */
2077
2078 /*
2079 * When the link-layer address of a router changes, select the
2080 * best router again. In particular, when the neighbor entry is newly
2081 * created, it might affect the selection policy.
2082 * Question: can we restrict the first condition to the "is_newentry"
2083 * case?
2084 * XXX: when we hear an RA from a new router with the link-layer
2085 * address option, defrouter_select() is called twice, since
2086 * defrtrlist_update called the function as well. However, I believe
2087 * we can compromise the overhead, since it only happens the first
2088 * time.
2089 * XXX: although defrouter_select() should not have a bad effect
2090 * for those are not autoconfigured hosts, we explicitly avoid such
2091 * cases for safety.
2092 */
2093 if (do_update && ln->ln_router && !ip6_forwarding &&
2094 nd6_accepts_rtadv(ndi))
2095 defrouter_select();
2096
2097 return rt;
2098 }
2099
2100 static void
2101 nd6_slowtimo(void *ignored_arg)
2102 {
2103 struct nd_ifinfo *nd6if;
2104 struct ifnet *ifp;
2105
2106 mutex_enter(softnet_lock);
2107 KERNEL_LOCK(1, NULL);
2108 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
2109 nd6_slowtimo, NULL);
2110 IFNET_FOREACH(ifp) {
2111 nd6if = ND_IFINFO(ifp);
2112 if (nd6if->basereachable && /* already initialized */
2113 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
2114 /*
2115 * Since reachable time rarely changes by router
2116 * advertisements, we SHOULD insure that a new random
2117 * value gets recomputed at least once every few hours.
2118 * (RFC 2461, 6.3.4)
2119 */
2120 nd6if->recalctm = nd6_recalc_reachtm_interval;
2121 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
2122 }
2123 }
2124 KERNEL_UNLOCK_ONE(NULL);
2125 mutex_exit(softnet_lock);
2126 }
2127
2128 #define senderr(e) { error = (e); goto bad;}
2129 int
2130 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
2131 const struct sockaddr_in6 *dst, struct rtentry *rt0)
2132 {
2133 struct mbuf *m = m0;
2134 struct rtentry *rt = rt0;
2135 struct sockaddr_in6 *gw6 = NULL;
2136 struct llinfo_nd6 *ln = NULL;
2137 int error = 0;
2138
2139 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
2140 goto sendpkt;
2141
2142 if (nd6_need_cache(ifp) == 0)
2143 goto sendpkt;
2144
2145 /*
2146 * next hop determination. This routine is derived from ether_output.
2147 */
2148 if (rt) {
2149 if ((rt->rt_flags & RTF_UP) == 0) {
2150 if ((rt0 = rt = rtalloc1(sin6tocsa(dst), 1)) != NULL) {
2151 rt->rt_refcnt--;
2152 if (rt->rt_ifp != ifp)
2153 senderr(EHOSTUNREACH);
2154 } else
2155 senderr(EHOSTUNREACH);
2156 }
2157
2158 if (rt->rt_flags & RTF_GATEWAY) {
2159 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
2160
2161 /*
2162 * We skip link-layer address resolution and NUD
2163 * if the gateway is not a neighbor from ND point
2164 * of view, regardless of the value of nd_ifinfo.flags.
2165 * The second condition is a bit tricky; we skip
2166 * if the gateway is our own address, which is
2167 * sometimes used to install a route to a p2p link.
2168 */
2169 if (!nd6_is_addr_neighbor(gw6, ifp) ||
2170 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
2171 /*
2172 * We allow this kind of tricky route only
2173 * when the outgoing interface is p2p.
2174 * XXX: we may need a more generic rule here.
2175 */
2176 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
2177 senderr(EHOSTUNREACH);
2178
2179 goto sendpkt;
2180 }
2181
2182 if (rt->rt_gwroute == NULL)
2183 goto lookup;
2184 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
2185 rtfree(rt); rt = rt0;
2186 lookup:
2187 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
2188 if ((rt = rt->rt_gwroute) == NULL)
2189 senderr(EHOSTUNREACH);
2190 /* the "G" test below also prevents rt == rt0 */
2191 if ((rt->rt_flags & RTF_GATEWAY) ||
2192 (rt->rt_ifp != ifp)) {
2193 rt->rt_refcnt--;
2194 rt0->rt_gwroute = NULL;
2195 senderr(EHOSTUNREACH);
2196 }
2197 }
2198 }
2199 }
2200
2201 /*
2202 * Address resolution or Neighbor Unreachability Detection
2203 * for the next hop.
2204 * At this point, the destination of the packet must be a unicast
2205 * or an anycast address(i.e. not a multicast).
2206 */
2207
2208 /* Look up the neighbor cache for the nexthop */
2209 if (rt != NULL && (rt->rt_flags & RTF_LLINFO) != 0)
2210 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2211 else {
2212 /*
2213 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2214 * the condition below is not very efficient. But we believe
2215 * it is tolerable, because this should be a rare case.
2216 */
2217 if (nd6_is_addr_neighbor(dst, ifp) &&
2218 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
2219 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
2220 }
2221 if (ln == NULL || rt == NULL) {
2222 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2223 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2224 log(LOG_DEBUG,
2225 "nd6_output: can't allocate llinfo for %s "
2226 "(ln=%p, rt=%p)\n",
2227 ip6_sprintf(&dst->sin6_addr), ln, rt);
2228 senderr(EIO); /* XXX: good error? */
2229 }
2230
2231 goto sendpkt; /* send anyway */
2232 }
2233
2234 /*
2235 * Move this entry to the head of the queue so that it is less likely
2236 * for this entry to be a target of forced garbage collection (see
2237 * nd6_rtrequest()).
2238 */
2239 LN_DEQUEUE(ln);
2240 LN_INSERTHEAD(ln);
2241
2242 /* We don't have to do link-layer address resolution on a p2p link. */
2243 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2244 ln->ln_state < ND6_LLINFO_REACHABLE) {
2245 ln->ln_state = ND6_LLINFO_STALE;
2246 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2247 }
2248
2249 /*
2250 * The first time we send a packet to a neighbor whose entry is
2251 * STALE, we have to change the state to DELAY and a sets a timer to
2252 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2253 * neighbor unreachability detection on expiration.
2254 * (RFC 2461 7.3.3)
2255 */
2256 if (ln->ln_state == ND6_LLINFO_STALE) {
2257 ln->ln_asked = 0;
2258 ln->ln_state = ND6_LLINFO_DELAY;
2259 nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2260 }
2261
2262 /*
2263 * If the neighbor cache entry has a state other than INCOMPLETE
2264 * (i.e. its link-layer address is already resolved), just
2265 * send the packet.
2266 */
2267 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2268 goto sendpkt;
2269
2270 /*
2271 * There is a neighbor cache entry, but no ethernet address
2272 * response yet. Append this latest packet to the end of the
2273 * packet queue in the mbuf, unless the number of the packet
2274 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen,
2275 * the oldest packet in the queue will be removed.
2276 */
2277 if (ln->ln_state == ND6_LLINFO_NOSTATE)
2278 ln->ln_state = ND6_LLINFO_INCOMPLETE;
2279 if (ln->ln_hold) {
2280 struct mbuf *m_hold;
2281 int i;
2282
2283 i = 0;
2284 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2285 i++;
2286 if (m_hold->m_nextpkt == NULL) {
2287 m_hold->m_nextpkt = m;
2288 break;
2289 }
2290 }
2291 while (i >= nd6_maxqueuelen) {
2292 m_hold = ln->ln_hold;
2293 ln->ln_hold = ln->ln_hold->m_nextpkt;
2294 m_freem(m_hold);
2295 i--;
2296 }
2297 } else {
2298 ln->ln_hold = m;
2299 }
2300
2301 /*
2302 * If there has been no NS for the neighbor after entering the
2303 * INCOMPLETE state, send the first solicitation.
2304 */
2305 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2306 ln->ln_asked++;
2307 nd6_llinfo_settimer(ln,
2308 (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2309 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2310 }
2311 return 0;
2312
2313 sendpkt:
2314 /* discard the packet if IPv6 operation is disabled on the interface */
2315 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2316 error = ENETDOWN; /* better error? */
2317 goto bad;
2318 }
2319
2320 #ifndef NET_MPSAFE
2321 KERNEL_LOCK(1, NULL);
2322 #endif
2323 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2324 error = (*ifp->if_output)(origifp, m, sin6tocsa(dst), rt);
2325 else
2326 error = (*ifp->if_output)(ifp, m, sin6tocsa(dst), rt);
2327 #ifndef NET_MPSAFE
2328 KERNEL_UNLOCK_ONE(NULL);
2329 #endif
2330 return error;
2331
2332 bad:
2333 if (m != NULL)
2334 m_freem(m);
2335 return error;
2336 }
2337 #undef senderr
2338
2339 int
2340 nd6_need_cache(struct ifnet *ifp)
2341 {
2342 /*
2343 * XXX: we currently do not make neighbor cache on any interface
2344 * other than ARCnet, Ethernet, FDDI and GIF.
2345 *
2346 * RFC2893 says:
2347 * - unidirectional tunnels needs no ND
2348 */
2349 switch (ifp->if_type) {
2350 case IFT_ARCNET:
2351 case IFT_ETHER:
2352 case IFT_FDDI:
2353 case IFT_IEEE1394:
2354 case IFT_CARP:
2355 case IFT_GIF: /* XXX need more cases? */
2356 case IFT_PPP:
2357 case IFT_TUNNEL:
2358 return 1;
2359 default:
2360 return 0;
2361 }
2362 }
2363
2364 int
2365 nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt,
2366 struct mbuf *m, const struct sockaddr *dst, uint8_t *lldst,
2367 size_t dstsize)
2368 {
2369 const struct sockaddr_dl *sdl;
2370
2371 if (m->m_flags & M_MCAST) {
2372 switch (ifp->if_type) {
2373 case IFT_ETHER:
2374 case IFT_FDDI:
2375 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
2376 lldst);
2377 return 1;
2378 case IFT_IEEE1394:
2379 memcpy(lldst, ifp->if_broadcastaddr,
2380 MIN(dstsize, ifp->if_addrlen));
2381 return 1;
2382 case IFT_ARCNET:
2383 *lldst = 0;
2384 return 1;
2385 default:
2386 m_freem(m);
2387 return 0;
2388 }
2389 }
2390
2391 if (rt == NULL) {
2392 /* this could happen, if we could not allocate memory */
2393 m_freem(m);
2394 return 0;
2395 }
2396 if (rt->rt_gateway->sa_family != AF_LINK) {
2397 char gbuf[256];
2398 char dbuf[LINK_ADDRSTRLEN];
2399 sockaddr_format(rt->rt_gateway, gbuf, sizeof(gbuf));
2400 printf("%s: bad gateway address type %s for dst %s"
2401 " through interface %s\n", __func__, gbuf,
2402 IN6_PRINT(dbuf, &satocsin6(dst)->sin6_addr),
2403 if_name(ifp));
2404 m_freem(m);
2405 return 0;
2406 }
2407 sdl = satocsdl(rt->rt_gateway);
2408 if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) {
2409 char sbuf[INET6_ADDRSTRLEN];
2410 char dbuf[LINK_ADDRSTRLEN];
2411 /* this should be impossible, but we bark here for debugging */
2412 printf("%s: sdl_alen == %" PRIu8 ", if=%s, dst=%s, sdl=%s\n",
2413 __func__, sdl->sdl_alen, if_name(ifp),
2414 IN6_PRINT(sbuf, &satocsin6(dst)->sin6_addr),
2415 DL_PRINT(dbuf, &sdl->sdl_addr));
2416 m_freem(m);
2417 return 0;
2418 }
2419
2420 memcpy(lldst, CLLADDR(sdl), MIN(dstsize, sdl->sdl_alen));
2421 return 1;
2422 }
2423
2424 static void
2425 clear_llinfo_pqueue(struct llinfo_nd6 *ln)
2426 {
2427 struct mbuf *m_hold, *m_hold_next;
2428
2429 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2430 m_hold_next = m_hold->m_nextpkt;
2431 m_hold->m_nextpkt = NULL;
2432 m_freem(m_hold);
2433 }
2434
2435 ln->ln_hold = NULL;
2436 return;
2437 }
2438
2439 int
2440 nd6_sysctl(
2441 int name,
2442 void *oldp, /* syscall arg, need copyout */
2443 size_t *oldlenp,
2444 void *newp, /* syscall arg, need copyin */
2445 size_t newlen
2446 )
2447 {
2448 void *p;
2449 size_t ol;
2450 int error;
2451
2452 error = 0;
2453
2454 if (newp)
2455 return EPERM;
2456 if (oldp && !oldlenp)
2457 return EINVAL;
2458 ol = oldlenp ? *oldlenp : 0;
2459
2460 if (oldp) {
2461 p = malloc(*oldlenp, M_TEMP, M_WAITOK);
2462 if (p == NULL)
2463 return ENOMEM;
2464 } else
2465 p = NULL;
2466 switch (name) {
2467 case ICMPV6CTL_ND6_DRLIST:
2468 error = fill_drlist(p, oldlenp, ol);
2469 if (!error && p != NULL && oldp != NULL)
2470 error = copyout(p, oldp, *oldlenp);
2471 break;
2472
2473 case ICMPV6CTL_ND6_PRLIST:
2474 error = fill_prlist(p, oldlenp, ol);
2475 if (!error && p != NULL && oldp != NULL)
2476 error = copyout(p, oldp, *oldlenp);
2477 break;
2478
2479 case ICMPV6CTL_ND6_MAXQLEN:
2480 break;
2481
2482 default:
2483 error = ENOPROTOOPT;
2484 break;
2485 }
2486 if (p)
2487 free(p, M_TEMP);
2488
2489 return error;
2490 }
2491
2492 static int
2493 fill_drlist(void *oldp, size_t *oldlenp, size_t ol)
2494 {
2495 int error = 0, s;
2496 struct in6_defrouter *d = NULL, *de = NULL;
2497 struct nd_defrouter *dr;
2498 size_t l;
2499
2500 s = splsoftnet();
2501
2502 if (oldp) {
2503 d = (struct in6_defrouter *)oldp;
2504 de = (struct in6_defrouter *)((char *)oldp + *oldlenp);
2505 }
2506 l = 0;
2507
2508 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
2509
2510 if (oldp && d + 1 <= de) {
2511 memset(d, 0, sizeof(*d));
2512 sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0);
2513 if (sa6_recoverscope(&d->rtaddr)) {
2514 log(LOG_ERR,
2515 "scope error in router list (%s)\n",
2516 ip6_sprintf(&d->rtaddr.sin6_addr));
2517 /* XXX: press on... */
2518 }
2519 d->flags = dr->flags;
2520 d->rtlifetime = dr->rtlifetime;
2521 d->expire = dr->expire;
2522 d->if_index = dr->ifp->if_index;
2523 }
2524
2525 l += sizeof(*d);
2526 if (d)
2527 d++;
2528 }
2529
2530 if (oldp) {
2531 if (l > ol)
2532 error = ENOMEM;
2533 }
2534 if (oldlenp)
2535 *oldlenp = l; /* (void *)d - (void *)oldp */
2536
2537 splx(s);
2538
2539 return error;
2540 }
2541
2542 static int
2543 fill_prlist(void *oldp, size_t *oldlenp, size_t ol)
2544 {
2545 int error = 0, s;
2546 struct nd_prefix *pr;
2547 uint8_t *p = NULL, *ps = NULL;
2548 uint8_t *pe = NULL;
2549 size_t l;
2550
2551 s = splsoftnet();
2552
2553 if (oldp) {
2554 ps = p = (uint8_t*)oldp;
2555 pe = (uint8_t*)oldp + *oldlenp;
2556 }
2557 l = 0;
2558
2559 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
2560 u_short advrtrs;
2561 struct sockaddr_in6 sin6;
2562 struct nd_pfxrouter *pfr;
2563 struct in6_prefix pfx;
2564
2565 if (oldp && p + sizeof(struct in6_prefix) <= pe)
2566 {
2567 memset(&pfx, 0, sizeof(pfx));
2568 ps = p;
2569 pfx.prefix = pr->ndpr_prefix;
2570
2571 if (sa6_recoverscope(&pfx.prefix)) {
2572 log(LOG_ERR,
2573 "scope error in prefix list (%s)\n",
2574 ip6_sprintf(&pfx.prefix.sin6_addr));
2575 /* XXX: press on... */
2576 }
2577 pfx.raflags = pr->ndpr_raf;
2578 pfx.prefixlen = pr->ndpr_plen;
2579 pfx.vltime = pr->ndpr_vltime;
2580 pfx.pltime = pr->ndpr_pltime;
2581 pfx.if_index = pr->ndpr_ifp->if_index;
2582 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2583 pfx.expire = 0;
2584 else {
2585 time_t maxexpire;
2586
2587 /* XXX: we assume time_t is signed. */
2588 maxexpire = (-1) &
2589 ~((time_t)1 <<
2590 ((sizeof(maxexpire) * 8) - 1));
2591 if (pr->ndpr_vltime <
2592 maxexpire - pr->ndpr_lastupdate) {
2593 pfx.expire = pr->ndpr_lastupdate +
2594 pr->ndpr_vltime;
2595 } else
2596 pfx.expire = maxexpire;
2597 }
2598 pfx.refcnt = pr->ndpr_refcnt;
2599 pfx.flags = pr->ndpr_stateflags;
2600 pfx.origin = PR_ORIG_RA;
2601
2602 p += sizeof(pfx); l += sizeof(pfx);
2603
2604 advrtrs = 0;
2605 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2606 if (p + sizeof(sin6) > pe) {
2607 advrtrs++;
2608 continue;
2609 }
2610
2611 sockaddr_in6_init(&sin6, &pfr->router->rtaddr,
2612 0, 0, 0);
2613 if (sa6_recoverscope(&sin6)) {
2614 log(LOG_ERR,
2615 "scope error in "
2616 "prefix list (%s)\n",
2617 ip6_sprintf(&pfr->router->rtaddr));
2618 }
2619 advrtrs++;
2620 memcpy(p, &sin6, sizeof(sin6));
2621 p += sizeof(sin6);
2622 l += sizeof(sin6);
2623 }
2624 pfx.advrtrs = advrtrs;
2625 memcpy(ps, &pfx, sizeof(pfx));
2626 }
2627 else {
2628 l += sizeof(pfx);
2629 advrtrs = 0;
2630 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2631 advrtrs++;
2632 l += sizeof(sin6);
2633 }
2634 }
2635 }
2636
2637 if (oldp) {
2638 *oldlenp = l; /* (void *)d - (void *)oldp */
2639 if (l > ol)
2640 error = ENOMEM;
2641 } else
2642 *oldlenp = l;
2643
2644 splx(s);
2645
2646 return error;
2647 }
2648