Home | History | Annotate | Line # | Download | only in netinet6
nd6.c revision 1.173
      1 /*	$NetBSD: nd6.c,v 1.173 2015/09/02 08:03:10 ozaki-r Exp $	*/
      2 /*	$KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.173 2015/09/02 08:03:10 ozaki-r Exp $");
     35 
     36 #ifdef _KERNEL_OPT
     37 #include "opt_net_mpsafe.h"
     38 #endif
     39 
     40 #include "bridge.h"
     41 #include "carp.h"
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/callout.h>
     46 #include <sys/malloc.h>
     47 #include <sys/mbuf.h>
     48 #include <sys/socket.h>
     49 #include <sys/socketvar.h>
     50 #include <sys/sockio.h>
     51 #include <sys/time.h>
     52 #include <sys/kernel.h>
     53 #include <sys/protosw.h>
     54 #include <sys/errno.h>
     55 #include <sys/ioctl.h>
     56 #include <sys/syslog.h>
     57 #include <sys/queue.h>
     58 #include <sys/cprng.h>
     59 
     60 #include <net/if.h>
     61 #include <net/if_dl.h>
     62 #include <net/if_types.h>
     63 #include <net/route.h>
     64 #include <net/if_ether.h>
     65 #include <net/if_fddi.h>
     66 #include <net/if_arc.h>
     67 
     68 #include <netinet/in.h>
     69 #include <netinet6/in6_var.h>
     70 #include <netinet/ip6.h>
     71 #include <netinet6/ip6_var.h>
     72 #include <netinet6/scope6_var.h>
     73 #include <netinet6/nd6.h>
     74 #include <netinet6/in6_ifattach.h>
     75 #include <netinet/icmp6.h>
     76 #include <netinet6/icmp6_private.h>
     77 
     78 #include <net/net_osdep.h>
     79 
     80 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
     81 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
     82 
     83 /* timer values */
     84 int	nd6_prune	= 1;	/* walk list every 1 seconds */
     85 int	nd6_delay	= 5;	/* delay first probe time 5 second */
     86 int	nd6_umaxtries	= 3;	/* maximum unicast query */
     87 int	nd6_mmaxtries	= 3;	/* maximum multicast query */
     88 int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
     89 int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
     90 
     91 /* preventing too many loops in ND option parsing */
     92 int nd6_maxndopt = 10;	/* max # of ND options allowed */
     93 
     94 int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
     95 
     96 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
     97 
     98 #ifdef ND6_DEBUG
     99 int nd6_debug = 1;
    100 #else
    101 int nd6_debug = 0;
    102 #endif
    103 
    104 /* for debugging? */
    105 static int nd6_inuse, nd6_allocated;
    106 
    107 struct llinfo_nd6 llinfo_nd6 = {
    108 	.ln_prev = &llinfo_nd6,
    109 	.ln_next = &llinfo_nd6,
    110 };
    111 struct nd_drhead nd_defrouter;
    112 struct nd_prhead nd_prefix = { 0 };
    113 
    114 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
    115 static const struct sockaddr_in6 all1_sa = {
    116 	  .sin6_family = AF_INET6
    117 	, .sin6_len = sizeof(struct sockaddr_in6)
    118 	, .sin6_addr = {.s6_addr = {0xff, 0xff, 0xff, 0xff,
    119 				    0xff, 0xff, 0xff, 0xff,
    120 				    0xff, 0xff, 0xff, 0xff,
    121 				    0xff, 0xff, 0xff, 0xff}}
    122 };
    123 
    124 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
    125 static void nd6_slowtimo(void *);
    126 static int regen_tmpaddr(struct in6_ifaddr *);
    127 static struct llinfo_nd6 *nd6_free(struct rtentry *, int);
    128 static void nd6_llinfo_timer(void *);
    129 static void clear_llinfo_pqueue(struct llinfo_nd6 *);
    130 
    131 callout_t nd6_slowtimo_ch;
    132 callout_t nd6_timer_ch;
    133 extern callout_t in6_tmpaddrtimer_ch;
    134 
    135 static int fill_drlist(void *, size_t *, size_t);
    136 static int fill_prlist(void *, size_t *, size_t);
    137 
    138 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
    139 
    140 #define LN_DEQUEUE(ln) do { \
    141 	(ln)->ln_next->ln_prev = (ln)->ln_prev; \
    142 	(ln)->ln_prev->ln_next = (ln)->ln_next; \
    143 	} while (/*CONSTCOND*/0)
    144 #define LN_INSERTHEAD(ln) do { \
    145 	(ln)->ln_next = llinfo_nd6.ln_next; \
    146 	llinfo_nd6.ln_next = (ln); \
    147 	(ln)->ln_prev = &llinfo_nd6; \
    148 	(ln)->ln_next->ln_prev = (ln); \
    149 	} while (/*CONSTCOND*/0)
    150 void
    151 nd6_init(void)
    152 {
    153 	static int nd6_init_done = 0;
    154 
    155 	if (nd6_init_done) {
    156 		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
    157 		return;
    158 	}
    159 
    160 	/* initialization of the default router list */
    161 	TAILQ_INIT(&nd_defrouter);
    162 
    163 	nd6_init_done = 1;
    164 
    165 	callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE);
    166 	callout_init(&nd6_timer_ch, CALLOUT_MPSAFE);
    167 
    168 	/* start timer */
    169 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
    170 	    nd6_slowtimo, NULL);
    171 }
    172 
    173 struct nd_ifinfo *
    174 nd6_ifattach(struct ifnet *ifp)
    175 {
    176 	struct nd_ifinfo *nd;
    177 
    178 	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO);
    179 
    180 	nd->initialized = 1;
    181 
    182 	nd->chlim = IPV6_DEFHLIM;
    183 	nd->basereachable = REACHABLE_TIME;
    184 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
    185 	nd->retrans = RETRANS_TIMER;
    186 
    187 	nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV;
    188 
    189 	/* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
    190 	 * A bridge interface should not have ND6_IFF_AUTO_LINKLOCAL
    191 	 * because one of its members should. */
    192 	if ((ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
    193 	    (ifp->if_flags & IFF_LOOPBACK))
    194 		nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
    195 
    196 	/* A loopback interface does not need to accept RTADV.
    197 	 * A bridge interface should not accept RTADV
    198 	 * because one of its members should. */
    199 	if (ip6_accept_rtadv &&
    200 	    !(ifp->if_flags & IFF_LOOPBACK) &&
    201 	    !(ifp->if_type != IFT_BRIDGE))
    202 		nd->flags |= ND6_IFF_ACCEPT_RTADV;
    203 
    204 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
    205 	nd6_setmtu0(ifp, nd);
    206 
    207 	return nd;
    208 }
    209 
    210 void
    211 nd6_ifdetach(struct ifnet *ifp, struct in6_ifextra *ext)
    212 {
    213 
    214 	nd6_purge(ifp, ext);
    215 	free(ext->nd_ifinfo, M_IP6NDP);
    216 }
    217 
    218 void
    219 nd6_setmtu(struct ifnet *ifp)
    220 {
    221 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
    222 }
    223 
    224 void
    225 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
    226 {
    227 	u_int32_t omaxmtu;
    228 
    229 	omaxmtu = ndi->maxmtu;
    230 
    231 	switch (ifp->if_type) {
    232 	case IFT_ARCNET:
    233 		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
    234 		break;
    235 	case IFT_FDDI:
    236 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
    237 		break;
    238 	default:
    239 		ndi->maxmtu = ifp->if_mtu;
    240 		break;
    241 	}
    242 
    243 	/*
    244 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
    245 	 * undesirable situation.  We thus notify the operator of the change
    246 	 * explicitly.  The check for omaxmtu is necessary to restrict the
    247 	 * log to the case of changing the MTU, not initializing it.
    248 	 */
    249 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
    250 		log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
    251 		    " small for IPv6 which needs %lu\n",
    252 		    if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
    253 		    IPV6_MMTU);
    254 	}
    255 
    256 	if (ndi->maxmtu > in6_maxmtu)
    257 		in6_setmaxmtu(); /* check all interfaces just in case */
    258 }
    259 
    260 void
    261 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
    262 {
    263 
    264 	memset(ndopts, 0, sizeof(*ndopts));
    265 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
    266 	ndopts->nd_opts_last
    267 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
    268 
    269 	if (icmp6len == 0) {
    270 		ndopts->nd_opts_done = 1;
    271 		ndopts->nd_opts_search = NULL;
    272 	}
    273 }
    274 
    275 /*
    276  * Take one ND option.
    277  */
    278 struct nd_opt_hdr *
    279 nd6_option(union nd_opts *ndopts)
    280 {
    281 	struct nd_opt_hdr *nd_opt;
    282 	int olen;
    283 
    284 	KASSERT(ndopts != NULL);
    285 	KASSERT(ndopts->nd_opts_last != NULL);
    286 
    287 	if (ndopts->nd_opts_search == NULL)
    288 		return NULL;
    289 	if (ndopts->nd_opts_done)
    290 		return NULL;
    291 
    292 	nd_opt = ndopts->nd_opts_search;
    293 
    294 	/* make sure nd_opt_len is inside the buffer */
    295 	if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) {
    296 		memset(ndopts, 0, sizeof(*ndopts));
    297 		return NULL;
    298 	}
    299 
    300 	olen = nd_opt->nd_opt_len << 3;
    301 	if (olen == 0) {
    302 		/*
    303 		 * Message validation requires that all included
    304 		 * options have a length that is greater than zero.
    305 		 */
    306 		memset(ndopts, 0, sizeof(*ndopts));
    307 		return NULL;
    308 	}
    309 
    310 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen);
    311 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
    312 		/* option overruns the end of buffer, invalid */
    313 		memset(ndopts, 0, sizeof(*ndopts));
    314 		return NULL;
    315 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
    316 		/* reached the end of options chain */
    317 		ndopts->nd_opts_done = 1;
    318 		ndopts->nd_opts_search = NULL;
    319 	}
    320 	return nd_opt;
    321 }
    322 
    323 /*
    324  * Parse multiple ND options.
    325  * This function is much easier to use, for ND routines that do not need
    326  * multiple options of the same type.
    327  */
    328 int
    329 nd6_options(union nd_opts *ndopts)
    330 {
    331 	struct nd_opt_hdr *nd_opt;
    332 	int i = 0;
    333 
    334 	KASSERT(ndopts != NULL);
    335 	KASSERT(ndopts->nd_opts_last != NULL);
    336 
    337 	if (ndopts->nd_opts_search == NULL)
    338 		return 0;
    339 
    340 	while (1) {
    341 		nd_opt = nd6_option(ndopts);
    342 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
    343 			/*
    344 			 * Message validation requires that all included
    345 			 * options have a length that is greater than zero.
    346 			 */
    347 			ICMP6_STATINC(ICMP6_STAT_ND_BADOPT);
    348 			memset(ndopts, 0, sizeof(*ndopts));
    349 			return -1;
    350 		}
    351 
    352 		if (nd_opt == NULL)
    353 			goto skip1;
    354 
    355 		switch (nd_opt->nd_opt_type) {
    356 		case ND_OPT_SOURCE_LINKADDR:
    357 		case ND_OPT_TARGET_LINKADDR:
    358 		case ND_OPT_MTU:
    359 		case ND_OPT_REDIRECTED_HEADER:
    360 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
    361 				nd6log((LOG_INFO,
    362 				    "duplicated ND6 option found (type=%d)\n",
    363 				    nd_opt->nd_opt_type));
    364 				/* XXX bark? */
    365 			} else {
    366 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
    367 					= nd_opt;
    368 			}
    369 			break;
    370 		case ND_OPT_PREFIX_INFORMATION:
    371 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
    372 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
    373 					= nd_opt;
    374 			}
    375 			ndopts->nd_opts_pi_end =
    376 				(struct nd_opt_prefix_info *)nd_opt;
    377 			break;
    378 		default:
    379 			/*
    380 			 * Unknown options must be silently ignored,
    381 			 * to accommodate future extension to the protocol.
    382 			 */
    383 			nd6log((LOG_DEBUG,
    384 			    "nd6_options: unsupported option %d - "
    385 			    "option ignored\n", nd_opt->nd_opt_type));
    386 		}
    387 
    388 skip1:
    389 		i++;
    390 		if (i > nd6_maxndopt) {
    391 			ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT);
    392 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
    393 			break;
    394 		}
    395 
    396 		if (ndopts->nd_opts_done)
    397 			break;
    398 	}
    399 
    400 	return 0;
    401 }
    402 
    403 /*
    404  * ND6 timer routine to handle ND6 entries
    405  */
    406 void
    407 nd6_llinfo_settimer(struct llinfo_nd6 *ln, long xtick)
    408 {
    409 	int s;
    410 
    411 	s = splsoftnet();
    412 
    413 	if (xtick < 0) {
    414 		ln->ln_expire = 0;
    415 		ln->ln_ntick = 0;
    416 		callout_stop(&ln->ln_timer_ch);
    417 	} else {
    418 		ln->ln_expire = time_uptime + xtick / hz;
    419 		if (xtick > INT_MAX) {
    420 			ln->ln_ntick = xtick - INT_MAX;
    421 			callout_reset(&ln->ln_timer_ch, INT_MAX,
    422 			    nd6_llinfo_timer, ln);
    423 		} else {
    424 			ln->ln_ntick = 0;
    425 			callout_reset(&ln->ln_timer_ch, xtick,
    426 			    nd6_llinfo_timer, ln);
    427 		}
    428 	}
    429 
    430 	splx(s);
    431 }
    432 
    433 static void
    434 nd6_llinfo_timer(void *arg)
    435 {
    436 	struct llinfo_nd6 *ln;
    437 	struct rtentry *rt;
    438 	const struct sockaddr_in6 *dst;
    439 	struct ifnet *ifp;
    440 	struct nd_ifinfo *ndi = NULL;
    441 
    442 	mutex_enter(softnet_lock);
    443 	KERNEL_LOCK(1, NULL);
    444 
    445 	ln = (struct llinfo_nd6 *)arg;
    446 
    447 	if (ln->ln_ntick > 0) {
    448 		nd6_llinfo_settimer(ln, ln->ln_ntick);
    449 		KERNEL_UNLOCK_ONE(NULL);
    450 		mutex_exit(softnet_lock);
    451 		return;
    452 	}
    453 
    454 	rt = ln->ln_rt;
    455 	KASSERT(rt != NULL);
    456 	ifp = rt->rt_ifp;
    457 	KASSERT(ifp != NULL);
    458 
    459 	ndi = ND_IFINFO(ifp);
    460 	dst = satocsin6(rt_getkey(rt));
    461 
    462 	/* sanity check */
    463 	if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
    464 		panic("rt_llinfo(%p) is not equal to ln(%p)",
    465 		      rt->rt_llinfo, ln);
    466 	if (!dst)
    467 		panic("dst=0 in nd6_timer(ln=%p)", ln);
    468 
    469 	switch (ln->ln_state) {
    470 	case ND6_LLINFO_INCOMPLETE:
    471 		if (ln->ln_asked < nd6_mmaxtries) {
    472 			ln->ln_asked++;
    473 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
    474 			nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
    475 		} else {
    476 			struct mbuf *m = ln->ln_hold;
    477 			if (m) {
    478 				struct mbuf *m0;
    479 
    480 				/*
    481 				 * assuming every packet in ln_hold has
    482 				 * the same IP header
    483 				 */
    484 				m0 = m->m_nextpkt;
    485 				m->m_nextpkt = NULL;
    486 				icmp6_error2(m, ICMP6_DST_UNREACH,
    487 				    ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
    488 
    489 				ln->ln_hold = m0;
    490 				clear_llinfo_pqueue(ln);
    491  			}
    492 			(void)nd6_free(rt, 0);
    493 			ln = NULL;
    494 		}
    495 		break;
    496 	case ND6_LLINFO_REACHABLE:
    497 		if (!ND6_LLINFO_PERMANENT(ln)) {
    498 			ln->ln_state = ND6_LLINFO_STALE;
    499 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
    500 		}
    501 		break;
    502 
    503 	case ND6_LLINFO_PURGE:
    504 	case ND6_LLINFO_STALE:
    505 		/* Garbage Collection(RFC 2461 5.3) */
    506 		if (!ND6_LLINFO_PERMANENT(ln)) {
    507 			(void)nd6_free(rt, 1);
    508 			ln = NULL;
    509 		}
    510 		break;
    511 
    512 	case ND6_LLINFO_DELAY:
    513 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
    514 			/* We need NUD */
    515 			ln->ln_asked = 1;
    516 			ln->ln_state = ND6_LLINFO_PROBE;
    517 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
    518 			nd6_ns_output(ifp, &dst->sin6_addr,
    519 			    &dst->sin6_addr, ln, 0);
    520 		} else {
    521 			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
    522 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
    523 		}
    524 		break;
    525 	case ND6_LLINFO_PROBE:
    526 		if (ln->ln_asked < nd6_umaxtries) {
    527 			ln->ln_asked++;
    528 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
    529 			nd6_ns_output(ifp, &dst->sin6_addr,
    530 			    &dst->sin6_addr, ln, 0);
    531 		} else {
    532 			(void)nd6_free(rt, 0);
    533 			ln = NULL;
    534 		}
    535 		break;
    536 	}
    537 
    538 	KERNEL_UNLOCK_ONE(NULL);
    539 	mutex_exit(softnet_lock);
    540 }
    541 
    542 /*
    543  * ND6 timer routine to expire default route list and prefix list
    544  */
    545 void
    546 nd6_timer(void *ignored_arg)
    547 {
    548 	struct nd_defrouter *next_dr, *dr;
    549 	struct nd_prefix *next_pr, *pr;
    550 	struct in6_ifaddr *ia6, *nia6;
    551 
    552 	callout_reset(&nd6_timer_ch, nd6_prune * hz,
    553 	    nd6_timer, NULL);
    554 
    555 	mutex_enter(softnet_lock);
    556 	KERNEL_LOCK(1, NULL);
    557 
    558 	/* expire default router list */
    559 
    560 	TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, next_dr) {
    561 		if (dr->expire && dr->expire < time_uptime) {
    562 			defrtrlist_del(dr, NULL);
    563 		}
    564 	}
    565 
    566 	/*
    567 	 * expire interface addresses.
    568 	 * in the past the loop was inside prefix expiry processing.
    569 	 * However, from a stricter speci-confrmance standpoint, we should
    570 	 * rather separate address lifetimes and prefix lifetimes.
    571 	 */
    572   addrloop:
    573 	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
    574 		nia6 = ia6->ia_next;
    575 		/* check address lifetime */
    576 		if (IFA6_IS_INVALID(ia6)) {
    577 			int regen = 0;
    578 
    579 			/*
    580 			 * If the expiring address is temporary, try
    581 			 * regenerating a new one.  This would be useful when
    582 			 * we suspended a laptop PC, then turned it on after a
    583 			 * period that could invalidate all temporary
    584 			 * addresses.  Although we may have to restart the
    585 			 * loop (see below), it must be after purging the
    586 			 * address.  Otherwise, we'd see an infinite loop of
    587 			 * regeneration.
    588 			 */
    589 			if (ip6_use_tempaddr &&
    590 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
    591 				if (regen_tmpaddr(ia6) == 0)
    592 					regen = 1;
    593 			}
    594 
    595  			in6_purgeaddr(&ia6->ia_ifa);
    596 
    597 			if (regen)
    598 				goto addrloop; /* XXX: see below */
    599 		} else if (IFA6_IS_DEPRECATED(ia6)) {
    600 			int oldflags = ia6->ia6_flags;
    601 
    602 			if ((oldflags & IN6_IFF_DEPRECATED) == 0) {
    603 				ia6->ia6_flags |= IN6_IFF_DEPRECATED;
    604 				rt_newaddrmsg(RTM_NEWADDR,
    605 				    (struct ifaddr *)ia6, 0, NULL);
    606 			}
    607 
    608 			/*
    609 			 * If a temporary address has just become deprecated,
    610 			 * regenerate a new one if possible.
    611 			 */
    612 			if (ip6_use_tempaddr &&
    613 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
    614 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
    615 
    616 				if (regen_tmpaddr(ia6) == 0) {
    617 					/*
    618 					 * A new temporary address is
    619 					 * generated.
    620 					 * XXX: this means the address chain
    621 					 * has changed while we are still in
    622 					 * the loop.  Although the change
    623 					 * would not cause disaster (because
    624 					 * it's not a deletion, but an
    625 					 * addition,) we'd rather restart the
    626 					 * loop just for safety.  Or does this
    627 					 * significantly reduce performance??
    628 					 */
    629 					goto addrloop;
    630 				}
    631 			}
    632 		} else {
    633 			/*
    634 			 * A new RA might have made a deprecated address
    635 			 * preferred.
    636 			 */
    637 			if (ia6->ia6_flags & IN6_IFF_DEPRECATED) {
    638 				ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
    639 				rt_newaddrmsg(RTM_NEWADDR,
    640 				    (struct ifaddr *)ia6, 0, NULL);
    641 			}
    642 		}
    643 	}
    644 
    645 	/* expire prefix list */
    646 	LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, next_pr) {
    647 		/*
    648 		 * check prefix lifetime.
    649 		 * since pltime is just for autoconf, pltime processing for
    650 		 * prefix is not necessary.
    651 		 */
    652 		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
    653 		    time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) {
    654 
    655 			/*
    656 			 * address expiration and prefix expiration are
    657 			 * separate.  NEVER perform in6_purgeaddr here.
    658 			 */
    659 
    660 			prelist_remove(pr);
    661 		}
    662 	}
    663 
    664 	KERNEL_UNLOCK_ONE(NULL);
    665 	mutex_exit(softnet_lock);
    666 }
    667 
    668 /* ia6: deprecated/invalidated temporary address */
    669 static int
    670 regen_tmpaddr(struct in6_ifaddr *ia6)
    671 {
    672 	struct ifaddr *ifa;
    673 	struct ifnet *ifp;
    674 	struct in6_ifaddr *public_ifa6 = NULL;
    675 
    676 	ifp = ia6->ia_ifa.ifa_ifp;
    677 	IFADDR_FOREACH(ifa, ifp) {
    678 		struct in6_ifaddr *it6;
    679 
    680 		if (ifa->ifa_addr->sa_family != AF_INET6)
    681 			continue;
    682 
    683 		it6 = (struct in6_ifaddr *)ifa;
    684 
    685 		/* ignore no autoconf addresses. */
    686 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
    687 			continue;
    688 
    689 		/* ignore autoconf addresses with different prefixes. */
    690 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
    691 			continue;
    692 
    693 		/*
    694 		 * Now we are looking at an autoconf address with the same
    695 		 * prefix as ours.  If the address is temporary and is still
    696 		 * preferred, do not create another one.  It would be rare, but
    697 		 * could happen, for example, when we resume a laptop PC after
    698 		 * a long period.
    699 		 */
    700 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
    701 		    !IFA6_IS_DEPRECATED(it6)) {
    702 			public_ifa6 = NULL;
    703 			break;
    704 		}
    705 
    706 		/*
    707 		 * This is a public autoconf address that has the same prefix
    708 		 * as ours.  If it is preferred, keep it.  We can't break the
    709 		 * loop here, because there may be a still-preferred temporary
    710 		 * address with the prefix.
    711 		 */
    712 		if (!IFA6_IS_DEPRECATED(it6))
    713 		    public_ifa6 = it6;
    714 	}
    715 
    716 	if (public_ifa6 != NULL) {
    717 		int e;
    718 
    719 		/*
    720 		 * Random factor is introduced in the preferred lifetime, so
    721 		 * we do not need additional delay (3rd arg to in6_tmpifadd).
    722 		 */
    723 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
    724 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
    725 			    " tmp addr, errno=%d\n", e);
    726 			return -1;
    727 		}
    728 		return 0;
    729 	}
    730 
    731 	return -1;
    732 }
    733 
    734 bool
    735 nd6_accepts_rtadv(const struct nd_ifinfo *ndi)
    736 {
    737 	switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) {
    738 	case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV:
    739 		return true;
    740 	case ND6_IFF_ACCEPT_RTADV:
    741 		return ip6_accept_rtadv != 0;
    742 	case ND6_IFF_OVERRIDE_RTADV:
    743 	case 0:
    744 	default:
    745 		return false;
    746 	}
    747 }
    748 
    749 /*
    750  * Nuke neighbor cache/prefix/default router management table, right before
    751  * ifp goes away.
    752  */
    753 void
    754 nd6_purge(struct ifnet *ifp, struct in6_ifextra *ext)
    755 {
    756 	struct llinfo_nd6 *ln, *nln;
    757 	struct nd_defrouter *dr, *ndr;
    758 	struct nd_prefix *pr, *npr;
    759 
    760 	/*
    761 	 * During detach, the ND info might be already removed, but
    762 	 * then is explitly passed as argument.
    763 	 * Otherwise get it from ifp->if_afdata.
    764 	 */
    765 	if (ext == NULL)
    766 		ext = ifp->if_afdata[AF_INET6];
    767 	if (ext == NULL)
    768 		return;
    769 
    770 	/*
    771 	 * Nuke default router list entries toward ifp.
    772 	 * We defer removal of default router list entries that is installed
    773 	 * in the routing table, in order to keep additional side effects as
    774 	 * small as possible.
    775 	 */
    776 	TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
    777 		if (dr->installed)
    778 			continue;
    779 
    780 		if (dr->ifp == ifp) {
    781 			KASSERT(ext != NULL);
    782 			defrtrlist_del(dr, ext);
    783 		}
    784 	}
    785 
    786 	TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
    787 		if (!dr->installed)
    788 			continue;
    789 
    790 		if (dr->ifp == ifp) {
    791 			KASSERT(ext != NULL);
    792 			defrtrlist_del(dr, ext);
    793 		}
    794 	}
    795 
    796 	/* Nuke prefix list entries toward ifp */
    797 	LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, npr) {
    798 		if (pr->ndpr_ifp == ifp) {
    799 			/*
    800 			 * Because if_detach() does *not* release prefixes
    801 			 * while purging addresses the reference count will
    802 			 * still be above zero. We therefore reset it to
    803 			 * make sure that the prefix really gets purged.
    804 			 */
    805 			pr->ndpr_refcnt = 0;
    806 			/*
    807 			 * Previously, pr->ndpr_addr is removed as well,
    808 			 * but I strongly believe we don't have to do it.
    809 			 * nd6_purge() is only called from in6_ifdetach(),
    810 			 * which removes all the associated interface addresses
    811 			 * by itself.
    812 			 * (jinmei (at) kame.net 20010129)
    813 			 */
    814 			prelist_remove(pr);
    815 		}
    816 	}
    817 
    818 	/* cancel default outgoing interface setting */
    819 	if (nd6_defifindex == ifp->if_index)
    820 		nd6_setdefaultiface(0);
    821 
    822 	/* XXX: too restrictive? */
    823 	if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) {
    824 		struct nd_ifinfo *ndi = ND_IFINFO(ifp);
    825 		if (ndi && nd6_accepts_rtadv(ndi)) {
    826 			/* refresh default router list */
    827 			defrouter_select();
    828 		}
    829 	}
    830 
    831 	/*
    832 	 * Nuke neighbor cache entries for the ifp.
    833 	 * Note that rt->rt_ifp may not be the same as ifp,
    834 	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
    835 	 * nd6_rtrequest(), and ip6_input().
    836 	 */
    837 	ln = llinfo_nd6.ln_next;
    838 	while (ln != NULL && ln != &llinfo_nd6) {
    839 		struct rtentry *rt;
    840 		const struct sockaddr_dl *sdl;
    841 
    842 		nln = ln->ln_next;
    843 		rt = ln->ln_rt;
    844 		if (rt && rt->rt_gateway &&
    845 		    rt->rt_gateway->sa_family == AF_LINK) {
    846 			sdl = satocsdl(rt->rt_gateway);
    847 			if (sdl->sdl_index == ifp->if_index)
    848 				nln = nd6_free(rt, 0);
    849 		}
    850 		ln = nln;
    851 	}
    852 }
    853 
    854 static struct rtentry *
    855 nd6_lookup1(const struct in6_addr *addr6, int create, struct ifnet *ifp,
    856     int cloning)
    857 {
    858 	struct rtentry *rt;
    859 	struct sockaddr_in6 sin6;
    860 
    861 	sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
    862 	rt = rtalloc1((struct sockaddr *)&sin6, create);
    863 	if (rt != NULL && (rt->rt_flags & RTF_LLINFO) == 0) {
    864 		/*
    865 		 * This is the case for the default route.
    866 		 * If we want to create a neighbor cache for the address, we
    867 		 * should free the route for the destination and allocate an
    868 		 * interface route.
    869 		 */
    870 		if (create) {
    871 			rtfree(rt);
    872 			rt = NULL;
    873 		}
    874 	}
    875 	if (rt != NULL)
    876 		;
    877 	else if (create && ifp) {
    878 		int e;
    879 
    880 		/*
    881 		 * If no route is available and create is set,
    882 		 * we allocate a host route for the destination
    883 		 * and treat it like an interface route.
    884 		 * This hack is necessary for a neighbor which can't
    885 		 * be covered by our own prefix.
    886 		 */
    887 		struct ifaddr *ifa =
    888 		    ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
    889 		if (ifa == NULL)
    890 			return NULL;
    891 
    892 		/*
    893 		 * Create a new route.  RTF_LLINFO is necessary
    894 		 * to create a Neighbor Cache entry for the
    895 		 * destination in nd6_rtrequest which will be
    896 		 * called in rtrequest via ifa->ifa_rtrequest.
    897 		 */
    898 		if ((e = rtrequest(RTM_ADD, (const struct sockaddr *)&sin6,
    899 		    ifa->ifa_addr, (const struct sockaddr *)&all1_sa,
    900 		    (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
    901 		    ~RTF_CLONING, &rt)) != 0) {
    902 #if 0
    903 			log(LOG_ERR,
    904 			    "nd6_lookup: failed to add route for a "
    905 			    "neighbor(%s), errno=%d\n",
    906 			    ip6_sprintf(addr6), e);
    907 #endif
    908 			return NULL;
    909 		}
    910 		if (rt == NULL)
    911 			return NULL;
    912 		if (rt->rt_llinfo) {
    913 			struct llinfo_nd6 *ln =
    914 			    (struct llinfo_nd6 *)rt->rt_llinfo;
    915 			ln->ln_state = ND6_LLINFO_NOSTATE;
    916 		}
    917 	} else
    918 		return NULL;
    919 
    920 	/*
    921 	 * Check for a cloning route to match the address.
    922 	 * This should only be set from in6_is_addr_neighbor so we avoid
    923 	 * a potentially expensive second call to rtalloc1.
    924 	 */
    925 	if (cloning &&
    926 	    rt->rt_flags & (RTF_CLONING | RTF_CLONED) &&
    927 	    (rt->rt_ifp == ifp
    928 #if NBRIDGE > 0
    929 	    || rt->rt_ifp->if_bridge == ifp->if_bridge
    930 #endif
    931 #if NCARP > 0
    932 	    || (ifp->if_type == IFT_CARP && rt->rt_ifp == ifp->if_carpdev) ||
    933 	    (rt->rt_ifp->if_type == IFT_CARP && rt->rt_ifp->if_carpdev == ifp)||
    934 	    (ifp->if_type == IFT_CARP && rt->rt_ifp->if_type == IFT_CARP &&
    935 	    rt->rt_ifp->if_carpdev == ifp->if_carpdev)
    936 #endif
    937 	    ))
    938 		return rt;
    939 
    940 	/*
    941 	 * Validation for the entry.
    942 	 * Note that the check for rt_llinfo is necessary because a cloned
    943 	 * route from a parent route that has the L flag (e.g. the default
    944 	 * route to a p2p interface) may have the flag, too, while the
    945 	 * destination is not actually a neighbor.
    946 	 * XXX: we can't use rt->rt_ifp to check for the interface, since
    947 	 *      it might be the loopback interface if the entry is for our
    948 	 *      own address on a non-loopback interface. Instead, we should
    949 	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
    950 	 *	interface.
    951 	 * Note also that ifa_ifp and ifp may differ when we connect two
    952 	 * interfaces to a same link, install a link prefix to an interface,
    953 	 * and try to install a neighbor cache on an interface that does not
    954 	 * have a route to the prefix.
    955 	 */
    956 	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
    957 	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
    958 	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
    959 		if (create) {
    960 			nd6log((LOG_DEBUG,
    961 			    "nd6_lookup: failed to lookup %s (if = %s)\n",
    962 			    ip6_sprintf(addr6),
    963 			    ifp ? if_name(ifp) : "unspec"));
    964 		}
    965 		rtfree(rt);
    966 		return NULL;
    967 	}
    968 	return rt;
    969 }
    970 
    971 struct rtentry *
    972 nd6_lookup(const struct in6_addr *addr6, int create, struct ifnet *ifp)
    973 {
    974 
    975 	return nd6_lookup1(addr6, create, ifp, 0);
    976 }
    977 
    978 /*
    979  * Detect if a given IPv6 address identifies a neighbor on a given link.
    980  * XXX: should take care of the destination of a p2p link?
    981  */
    982 int
    983 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
    984 {
    985 	struct nd_prefix *pr;
    986 	struct rtentry *rt;
    987 
    988 	/*
    989 	 * A link-local address is always a neighbor.
    990 	 * XXX: a link does not necessarily specify a single interface.
    991 	 */
    992 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
    993 		struct sockaddr_in6 sin6_copy;
    994 		u_int32_t zone;
    995 
    996 		/*
    997 		 * We need sin6_copy since sa6_recoverscope() may modify the
    998 		 * content (XXX).
    999 		 */
   1000 		sin6_copy = *addr;
   1001 		if (sa6_recoverscope(&sin6_copy))
   1002 			return 0; /* XXX: should be impossible */
   1003 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
   1004 			return 0;
   1005 		if (sin6_copy.sin6_scope_id == zone)
   1006 			return 1;
   1007 		else
   1008 			return 0;
   1009 	}
   1010 
   1011 	/*
   1012 	 * If the address matches one of our on-link prefixes, it should be a
   1013 	 * neighbor.
   1014 	 */
   1015 	LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
   1016 		if (pr->ndpr_ifp != ifp)
   1017 			continue;
   1018 
   1019 		if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
   1020 			continue;
   1021 
   1022 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
   1023 		    &addr->sin6_addr, &pr->ndpr_mask))
   1024 			return 1;
   1025 	}
   1026 
   1027 	/*
   1028 	 * If the default router list is empty, all addresses are regarded
   1029 	 * as on-link, and thus, as a neighbor.
   1030 	 * XXX: we restrict the condition to hosts, because routers usually do
   1031 	 * not have the "default router list".
   1032 	 */
   1033 	if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
   1034 	    nd6_defifindex == ifp->if_index) {
   1035 		return 1;
   1036 	}
   1037 
   1038 	/*
   1039 	 * Even if the address matches none of our addresses, it might match
   1040 	 * a cloning route or be in the neighbor cache.
   1041 	 */
   1042 	rt = nd6_lookup1(&addr->sin6_addr, 0, ifp, 1);
   1043 	if (rt != NULL) {
   1044 		rtfree(rt);
   1045 		return 1;
   1046 	}
   1047 
   1048 	return 0;
   1049 }
   1050 
   1051 /*
   1052  * Free an nd6 llinfo entry.
   1053  * Since the function would cause significant changes in the kernel, DO NOT
   1054  * make it global, unless you have a strong reason for the change, and are sure
   1055  * that the change is safe.
   1056  */
   1057 static struct llinfo_nd6 *
   1058 nd6_free(struct rtentry *rt, int gc)
   1059 {
   1060 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
   1061 	struct in6_addr in6 = satocsin6(rt_getkey(rt))->sin6_addr;
   1062 	struct nd_defrouter *dr;
   1063 	int error;
   1064 
   1065 	/*
   1066 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
   1067 	 * even though it is not harmful, it was not really necessary.
   1068 	 */
   1069 
   1070 	/* cancel timer */
   1071 	nd6_llinfo_settimer(ln, -1);
   1072 
   1073 	if (!ip6_forwarding) {
   1074 		int s;
   1075 		s = splsoftnet();
   1076 		dr = defrouter_lookup(&satocsin6(rt_getkey(rt))->sin6_addr,
   1077 		    rt->rt_ifp);
   1078 
   1079 		if (dr != NULL && dr->expire &&
   1080 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
   1081 			/*
   1082 			 * If the reason for the deletion is just garbage
   1083 			 * collection, and the neighbor is an active default
   1084 			 * router, do not delete it.  Instead, reset the GC
   1085 			 * timer using the router's lifetime.
   1086 			 * Simply deleting the entry would affect default
   1087 			 * router selection, which is not necessarily a good
   1088 			 * thing, especially when we're using router preference
   1089 			 * values.
   1090 			 * XXX: the check for ln_state would be redundant,
   1091 			 *      but we intentionally keep it just in case.
   1092 			 */
   1093 			if (dr->expire > time_uptime)
   1094 				nd6_llinfo_settimer(ln,
   1095 				    (dr->expire - time_uptime) * hz);
   1096 			else
   1097 				nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
   1098 			splx(s);
   1099 			return ln->ln_next;
   1100 		}
   1101 
   1102 		if (ln->ln_router || dr) {
   1103 			/*
   1104 			 * rt6_flush must be called whether or not the neighbor
   1105 			 * is in the Default Router List.
   1106 			 * See a corresponding comment in nd6_na_input().
   1107 			 */
   1108 			rt6_flush(&in6, rt->rt_ifp);
   1109 		}
   1110 
   1111 		if (dr) {
   1112 			/*
   1113 			 * Unreachablity of a router might affect the default
   1114 			 * router selection and on-link detection of advertised
   1115 			 * prefixes.
   1116 			 */
   1117 
   1118 			/*
   1119 			 * Temporarily fake the state to choose a new default
   1120 			 * router and to perform on-link determination of
   1121 			 * prefixes correctly.
   1122 			 * Below the state will be set correctly,
   1123 			 * or the entry itself will be deleted.
   1124 			 */
   1125 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
   1126 
   1127 			/*
   1128 			 * Since defrouter_select() does not affect the
   1129 			 * on-link determination and MIP6 needs the check
   1130 			 * before the default router selection, we perform
   1131 			 * the check now.
   1132 			 */
   1133 			pfxlist_onlink_check();
   1134 
   1135 			/*
   1136 			 * refresh default router list
   1137 			 */
   1138 			defrouter_select();
   1139 		}
   1140 		splx(s);
   1141 	}
   1142 
   1143 	/*
   1144 	 * Before deleting the entry, remember the next entry as the
   1145 	 * return value.  We need this because pfxlist_onlink_check() above
   1146 	 * might have freed other entries (particularly the old next entry) as
   1147 	 * a side effect (XXX).
   1148 	 */
   1149 	next = ln->ln_next;
   1150 
   1151 	/*
   1152 	 * Detach the route from the routing tree and the list of neighbor
   1153 	 * caches, and disable the route entry not to be used in already
   1154 	 * cached routes.
   1155 	 */
   1156 	error = rtrequest_newmsg(RTM_DELETE, rt_getkey(rt), NULL,
   1157 	    rt_mask(rt), 0);
   1158 	if (error != 0) {
   1159 		/* XXX need error message? */;
   1160 	}
   1161 
   1162 	return next;
   1163 }
   1164 
   1165 /*
   1166  * Upper-layer reachability hint for Neighbor Unreachability Detection.
   1167  *
   1168  * XXX cost-effective methods?
   1169  */
   1170 void
   1171 nd6_nud_hint(struct rtentry *rt)
   1172 {
   1173 	struct llinfo_nd6 *ln;
   1174 
   1175 	if (rt == NULL)
   1176 		return;
   1177 
   1178 	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
   1179 	    (rt->rt_flags & RTF_LLINFO) == 0 ||
   1180 	    !rt->rt_llinfo || !rt->rt_gateway ||
   1181 	    rt->rt_gateway->sa_family != AF_LINK) {
   1182 		/* This is not a host route. */
   1183 		return;
   1184 	}
   1185 
   1186 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
   1187 	if (ln->ln_state < ND6_LLINFO_REACHABLE)
   1188 		return;
   1189 
   1190 	/*
   1191 	 * if we get upper-layer reachability confirmation many times,
   1192 	 * it is possible we have false information.
   1193 	 */
   1194 	ln->ln_byhint++;
   1195 	if (ln->ln_byhint > nd6_maxnudhint)
   1196 		return;
   1197 
   1198 	ln->ln_state = ND6_LLINFO_REACHABLE;
   1199 	if (!ND6_LLINFO_PERMANENT(ln)) {
   1200 		nd6_llinfo_settimer(ln,
   1201 		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
   1202 	}
   1203 
   1204 	return;
   1205 }
   1206 
   1207 void
   1208 nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
   1209 {
   1210 	struct sockaddr *gate = rt->rt_gateway;
   1211 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
   1212 	struct ifnet *ifp = rt->rt_ifp;
   1213 	uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen;
   1214 	struct ifaddr *ifa;
   1215 
   1216 	RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1217 
   1218 	if (req == RTM_LLINFO_UPD) {
   1219 		int rc;
   1220 		struct in6_addr *in6;
   1221 		struct in6_addr in6_all;
   1222 		int anycast;
   1223 
   1224 		if ((ifa = info->rti_ifa) == NULL)
   1225 			return;
   1226 
   1227 		in6 = &ifatoia6(ifa)->ia_addr.sin6_addr;
   1228 		anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST;
   1229 
   1230 		in6_all = in6addr_linklocal_allnodes;
   1231 		if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) {
   1232 			log(LOG_ERR, "%s: failed to set scope %s "
   1233 			    "(errno=%d)\n", __func__, if_name(ifp), rc);
   1234 			return;
   1235 		}
   1236 
   1237 		/* XXX don't set Override for proxy addresses */
   1238 		nd6_na_output(ifa->ifa_ifp, &in6_all, in6,
   1239 		    (anycast ? 0 : ND_NA_FLAG_OVERRIDE)
   1240 #if 0
   1241 		    | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0)
   1242 #endif
   1243 		    , 1, NULL);
   1244 		return;
   1245 	}
   1246 
   1247 	if ((rt->rt_flags & RTF_GATEWAY) != 0)
   1248 		return;
   1249 
   1250 	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
   1251 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1252 		/*
   1253 		 * This is probably an interface direct route for a link
   1254 		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
   1255 		 * We do not need special treatment below for such a route.
   1256 		 * Moreover, the RTF_LLINFO flag which would be set below
   1257 		 * would annoy the ndp(8) command.
   1258 		 */
   1259 		return;
   1260 	}
   1261 
   1262 	if (req == RTM_RESOLVE &&
   1263 	    (nd6_need_cache(ifp) == 0 || /* stf case */
   1264 	     !nd6_is_addr_neighbor(satocsin6(rt_getkey(rt)), ifp))) {
   1265 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1266 		/*
   1267 		 * FreeBSD and BSD/OS often make a cloned host route based
   1268 		 * on a less-specific route (e.g. the default route).
   1269 		 * If the less specific route does not have a "gateway"
   1270 		 * (this is the case when the route just goes to a p2p or an
   1271 		 * stf interface), we'll mistakenly make a neighbor cache for
   1272 		 * the host route, and will see strange neighbor solicitation
   1273 		 * for the corresponding destination.  In order to avoid the
   1274 		 * confusion, we check if the destination of the route is
   1275 		 * a neighbor in terms of neighbor discovery, and stop the
   1276 		 * process if not.  Additionally, we remove the LLINFO flag
   1277 		 * so that ndp(8) will not try to get the neighbor information
   1278 		 * of the destination.
   1279 		 */
   1280 		rt->rt_flags &= ~RTF_LLINFO;
   1281 		return;
   1282 	}
   1283 
   1284 	switch (req) {
   1285 	case RTM_ADD:
   1286 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1287 		/*
   1288 		 * There is no backward compatibility :)
   1289 		 *
   1290 		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
   1291 		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
   1292 		 *	   rt->rt_flags |= RTF_CLONING;
   1293 		 */
   1294 		if ((rt->rt_flags & RTF_CLONING) ||
   1295 		    ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
   1296 			union {
   1297 				struct sockaddr sa;
   1298 				struct sockaddr_dl sdl;
   1299 				struct sockaddr_storage ss;
   1300 			} u;
   1301 			/*
   1302 			 * Case 1: This route should come from a route to
   1303 			 * interface (RTF_CLONING case) or the route should be
   1304 			 * treated as on-link but is currently not
   1305 			 * (RTF_LLINFO && ln == NULL case).
   1306 			 */
   1307 			if (sockaddr_dl_init(&u.sdl, sizeof(u.ss),
   1308 			    ifp->if_index, ifp->if_type,
   1309 			    NULL, namelen, NULL, addrlen) == NULL) {
   1310 				printf("%s.%d: sockaddr_dl_init(, %zu, ) "
   1311 				    "failed on %s\n", __func__, __LINE__,
   1312 				    sizeof(u.ss), if_name(ifp));
   1313 			}
   1314 			rt_setgate(rt, &u.sa);
   1315 			gate = rt->rt_gateway;
   1316 			RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1317 			if (ln != NULL)
   1318 				nd6_llinfo_settimer(ln, 0);
   1319 			RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1320 			if ((rt->rt_flags & RTF_CLONING) != 0)
   1321 				break;
   1322 		}
   1323 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1324 		/*
   1325 		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
   1326 		 * We don't do that here since llinfo is not ready yet.
   1327 		 *
   1328 		 * There are also couple of other things to be discussed:
   1329 		 * - unsolicited NA code needs improvement beforehand
   1330 		 * - RFC2461 says we MAY send multicast unsolicited NA
   1331 		 *   (7.2.6 paragraph 4), however, it also says that we
   1332 		 *   SHOULD provide a mechanism to prevent multicast NA storm.
   1333 		 *   we don't have anything like it right now.
   1334 		 *   note that the mechanism needs a mutual agreement
   1335 		 *   between proxies, which means that we need to implement
   1336 		 *   a new protocol, or a new kludge.
   1337 		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
   1338 		 *   we need to check ip6forwarding before sending it.
   1339 		 *   (or should we allow proxy ND configuration only for
   1340 		 *   routers?  there's no mention about proxy ND from hosts)
   1341 		 */
   1342 #if 0
   1343 		/* XXX it does not work */
   1344 		if (rt->rt_flags & RTF_ANNOUNCE)
   1345 			nd6_na_output(ifp,
   1346 			      &satocsin6(rt_getkey(rt))->sin6_addr,
   1347 			      &satocsin6(rt_getkey(rt))->sin6_addr,
   1348 			      ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
   1349 			      1, NULL);
   1350 #endif
   1351 		/* FALLTHROUGH */
   1352 	case RTM_RESOLVE:
   1353 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
   1354 			RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1355 			/*
   1356 			 * Address resolution isn't necessary for a point to
   1357 			 * point link, so we can skip this test for a p2p link.
   1358 			 */
   1359 			if (gate->sa_family != AF_LINK ||
   1360 			    gate->sa_len <
   1361 			    sockaddr_dl_measure(namelen, addrlen)) {
   1362 				log(LOG_DEBUG,
   1363 				    "nd6_rtrequest: bad gateway value: %s\n",
   1364 				    if_name(ifp));
   1365 				break;
   1366 			}
   1367 			satosdl(gate)->sdl_type = ifp->if_type;
   1368 			satosdl(gate)->sdl_index = ifp->if_index;
   1369 			RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1370 		}
   1371 		if (ln != NULL)
   1372 			break;	/* This happens on a route change */
   1373 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1374 		/*
   1375 		 * Case 2: This route may come from cloning, or a manual route
   1376 		 * add with a LL address.
   1377 		 */
   1378 		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
   1379 		rt->rt_llinfo = ln;
   1380 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1381 		if (ln == NULL) {
   1382 			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
   1383 			break;
   1384 		}
   1385 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1386 		nd6_inuse++;
   1387 		nd6_allocated++;
   1388 		memset(ln, 0, sizeof(*ln));
   1389 		ln->ln_rt = rt;
   1390 		callout_init(&ln->ln_timer_ch, CALLOUT_MPSAFE);
   1391 		/* this is required for "ndp" command. - shin */
   1392 		if (req == RTM_ADD) {
   1393 		        /*
   1394 			 * gate should have some valid AF_LINK entry,
   1395 			 * and ln->ln_expire should have some lifetime
   1396 			 * which is specified by ndp command.
   1397 			 */
   1398 			ln->ln_state = ND6_LLINFO_REACHABLE;
   1399 			ln->ln_byhint = 0;
   1400 		} else {
   1401 		        /*
   1402 			 * When req == RTM_RESOLVE, rt is created and
   1403 			 * initialized in rtrequest(), so rt_expire is 0.
   1404 			 */
   1405 			ln->ln_state = ND6_LLINFO_NOSTATE;
   1406 			nd6_llinfo_settimer(ln, 0);
   1407 		}
   1408 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1409 		rt->rt_flags |= RTF_LLINFO;
   1410 		ln->ln_next = llinfo_nd6.ln_next;
   1411 		llinfo_nd6.ln_next = ln;
   1412 		ln->ln_prev = &llinfo_nd6;
   1413 		ln->ln_next->ln_prev = ln;
   1414 
   1415 		/*
   1416 		 * If we have too many cache entries, initiate immediate
   1417 		 * purging for some "less recently used" entries.  Note that
   1418 		 * we cannot directly call nd6_free() here because it would
   1419 		 * cause re-entering rtable related routines triggering an LOR
   1420 		 * problem for FreeBSD.
   1421 		 */
   1422 		if (ip6_neighborgcthresh >= 0 &&
   1423 		    nd6_inuse >= ip6_neighborgcthresh) {
   1424 			int i;
   1425 
   1426 			for (i = 0; i < 10 && llinfo_nd6.ln_prev != ln; i++) {
   1427 				struct llinfo_nd6 *ln_end = llinfo_nd6.ln_prev;
   1428 
   1429 				/* Move this entry to the head */
   1430 				LN_DEQUEUE(ln_end);
   1431 				LN_INSERTHEAD(ln_end);
   1432 
   1433 				if (ND6_LLINFO_PERMANENT(ln_end))
   1434 					continue;
   1435 
   1436 				if (ln_end->ln_state > ND6_LLINFO_INCOMPLETE)
   1437 					ln_end->ln_state = ND6_LLINFO_STALE;
   1438 				else
   1439 					ln_end->ln_state = ND6_LLINFO_PURGE;
   1440 				nd6_llinfo_settimer(ln_end, 0);
   1441 			}
   1442 		}
   1443 
   1444 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1445 		/*
   1446 		 * check if rt_getkey(rt) is an address assigned
   1447 		 * to the interface.
   1448 		 */
   1449 		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp,
   1450 		    &satocsin6(rt_getkey(rt))->sin6_addr);
   1451 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1452 		if (ifa != NULL) {
   1453 			const void *mac;
   1454 			nd6_llinfo_settimer(ln, -1);
   1455 			ln->ln_state = ND6_LLINFO_REACHABLE;
   1456 			ln->ln_byhint = 0;
   1457 			if ((mac = nd6_ifptomac(ifp)) != NULL) {
   1458 				/* XXX check for error */
   1459 				if (sockaddr_dl_setaddr(satosdl(gate),
   1460 				    gate->sa_len, mac,
   1461 				    ifp->if_addrlen) == NULL) {
   1462 					printf("%s.%d: "
   1463 					    "sockaddr_dl_setaddr(, %d, ) "
   1464 					    "failed on %s\n", __func__,
   1465 					    __LINE__, gate->sa_len,
   1466 					    if_name(ifp));
   1467 				}
   1468 			}
   1469 			if (nd6_useloopback) {
   1470 				ifp = rt->rt_ifp = lo0ifp;	/* XXX */
   1471 				/*
   1472 				 * Make sure rt_ifa be equal to the ifaddr
   1473 				 * corresponding to the address.
   1474 				 * We need this because when we refer
   1475 				 * rt_ifa->ia6_flags in ip6_input, we assume
   1476 				 * that the rt_ifa points to the address instead
   1477 				 * of the loopback address.
   1478 				 */
   1479 				if (ifa != rt->rt_ifa)
   1480 					rt_replace_ifa(rt, ifa);
   1481 				rt->rt_flags &= ~RTF_CLONED;
   1482 			}
   1483 		} else if (rt->rt_flags & RTF_ANNOUNCE) {
   1484 			nd6_llinfo_settimer(ln, -1);
   1485 			ln->ln_state = ND6_LLINFO_REACHABLE;
   1486 			ln->ln_byhint = 0;
   1487 
   1488 			/* join solicited node multicast for proxy ND */
   1489 			if (ifp->if_flags & IFF_MULTICAST) {
   1490 				struct in6_addr llsol;
   1491 				int error;
   1492 
   1493 				llsol = satocsin6(rt_getkey(rt))->sin6_addr;
   1494 				llsol.s6_addr32[0] = htonl(0xff020000);
   1495 				llsol.s6_addr32[1] = 0;
   1496 				llsol.s6_addr32[2] = htonl(1);
   1497 				llsol.s6_addr8[12] = 0xff;
   1498 				if (in6_setscope(&llsol, ifp, NULL))
   1499 					break;
   1500 				if (!in6_addmulti(&llsol, ifp, &error, 0)) {
   1501 					nd6log((LOG_ERR, "%s: failed to join "
   1502 					    "%s (errno=%d)\n", if_name(ifp),
   1503 					    ip6_sprintf(&llsol), error));
   1504 				}
   1505 			}
   1506 		}
   1507 		break;
   1508 
   1509 	case RTM_DELETE:
   1510 		if (ln == NULL)
   1511 			break;
   1512 		/* leave from solicited node multicast for proxy ND */
   1513 		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
   1514 		    (ifp->if_flags & IFF_MULTICAST) != 0) {
   1515 			struct in6_addr llsol;
   1516 			struct in6_multi *in6m;
   1517 
   1518 			llsol = satocsin6(rt_getkey(rt))->sin6_addr;
   1519 			llsol.s6_addr32[0] = htonl(0xff020000);
   1520 			llsol.s6_addr32[1] = 0;
   1521 			llsol.s6_addr32[2] = htonl(1);
   1522 			llsol.s6_addr8[12] = 0xff;
   1523 			if (in6_setscope(&llsol, ifp, NULL) == 0) {
   1524 				IN6_LOOKUP_MULTI(llsol, ifp, in6m);
   1525 				if (in6m)
   1526 					in6_delmulti(in6m);
   1527 			}
   1528 		}
   1529 		nd6_inuse--;
   1530 		ln->ln_next->ln_prev = ln->ln_prev;
   1531 		ln->ln_prev->ln_next = ln->ln_next;
   1532 		ln->ln_prev = NULL;
   1533 		nd6_llinfo_settimer(ln, -1);
   1534 		rt->rt_llinfo = 0;
   1535 		rt->rt_flags &= ~RTF_LLINFO;
   1536 		clear_llinfo_pqueue(ln);
   1537 		Free(ln);
   1538 	}
   1539 }
   1540 
   1541 int
   1542 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp)
   1543 {
   1544 	struct in6_drlist *drl = (struct in6_drlist *)data;
   1545 	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
   1546 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
   1547 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
   1548 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
   1549 	struct nd_defrouter *dr;
   1550 	struct nd_prefix *pr;
   1551 	int i = 0, error = 0;
   1552 	int s;
   1553 
   1554 	switch (cmd) {
   1555 	case SIOCGDRLST_IN6:
   1556 		/*
   1557 		 * obsolete API, use sysctl under net.inet6.icmp6
   1558 		 */
   1559 		memset(drl, 0, sizeof(*drl));
   1560 		s = splsoftnet();
   1561 		TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
   1562 			if (i >= DRLSTSIZ)
   1563 				break;
   1564 			drl->defrouter[i].rtaddr = dr->rtaddr;
   1565 			in6_clearscope(&drl->defrouter[i].rtaddr);
   1566 
   1567 			drl->defrouter[i].flags = dr->flags;
   1568 			drl->defrouter[i].rtlifetime = dr->rtlifetime;
   1569 			drl->defrouter[i].expire = dr->expire ?
   1570 			    time_mono_to_wall(dr->expire) : 0;
   1571 			drl->defrouter[i].if_index = dr->ifp->if_index;
   1572 			i++;
   1573 		}
   1574 		splx(s);
   1575 		break;
   1576 	case SIOCGPRLST_IN6:
   1577 		/*
   1578 		 * obsolete API, use sysctl under net.inet6.icmp6
   1579 		 *
   1580 		 * XXX the structure in6_prlist was changed in backward-
   1581 		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
   1582 		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
   1583 		 */
   1584 		/*
   1585 		 * XXX meaning of fields, especialy "raflags", is very
   1586 		 * differnet between RA prefix list and RR/static prefix list.
   1587 		 * how about separating ioctls into two?
   1588 		 */
   1589 		memset(oprl, 0, sizeof(*oprl));
   1590 		s = splsoftnet();
   1591 		LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
   1592 			struct nd_pfxrouter *pfr;
   1593 			int j;
   1594 
   1595 			if (i >= PRLSTSIZ)
   1596 				break;
   1597 			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
   1598 			oprl->prefix[i].raflags = pr->ndpr_raf;
   1599 			oprl->prefix[i].prefixlen = pr->ndpr_plen;
   1600 			oprl->prefix[i].vltime = pr->ndpr_vltime;
   1601 			oprl->prefix[i].pltime = pr->ndpr_pltime;
   1602 			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
   1603 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
   1604 				oprl->prefix[i].expire = 0;
   1605 			else {
   1606 				time_t maxexpire;
   1607 
   1608 				/* XXX: we assume time_t is signed. */
   1609 				maxexpire = (-1) &
   1610 				    ~((time_t)1 <<
   1611 				    ((sizeof(maxexpire) * 8) - 1));
   1612 				if (pr->ndpr_vltime <
   1613 				    maxexpire - pr->ndpr_lastupdate) {
   1614 					time_t expire;
   1615 					expire = pr->ndpr_lastupdate +
   1616 					    pr->ndpr_vltime;
   1617 					oprl->prefix[i].expire = expire ?
   1618 					    time_mono_to_wall(expire) : 0;
   1619 				} else
   1620 					oprl->prefix[i].expire = maxexpire;
   1621 			}
   1622 
   1623 			j = 0;
   1624 			LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
   1625 				if (j < DRLSTSIZ) {
   1626 #define RTRADDR oprl->prefix[i].advrtr[j]
   1627 					RTRADDR = pfr->router->rtaddr;
   1628 					in6_clearscope(&RTRADDR);
   1629 #undef RTRADDR
   1630 				}
   1631 				j++;
   1632 			}
   1633 			oprl->prefix[i].advrtrs = j;
   1634 			oprl->prefix[i].origin = PR_ORIG_RA;
   1635 
   1636 			i++;
   1637 		}
   1638 		splx(s);
   1639 
   1640 		break;
   1641 	case OSIOCGIFINFO_IN6:
   1642 #define ND	ndi->ndi
   1643 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
   1644 		memset(&ND, 0, sizeof(ND));
   1645 		ND.linkmtu = IN6_LINKMTU(ifp);
   1646 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
   1647 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
   1648 		ND.reachable = ND_IFINFO(ifp)->reachable;
   1649 		ND.retrans = ND_IFINFO(ifp)->retrans;
   1650 		ND.flags = ND_IFINFO(ifp)->flags;
   1651 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
   1652 		ND.chlim = ND_IFINFO(ifp)->chlim;
   1653 		break;
   1654 	case SIOCGIFINFO_IN6:
   1655 		ND = *ND_IFINFO(ifp);
   1656 		break;
   1657 	case SIOCSIFINFO_IN6:
   1658 		/*
   1659 		 * used to change host variables from userland.
   1660 		 * intented for a use on router to reflect RA configurations.
   1661 		 */
   1662 		/* 0 means 'unspecified' */
   1663 		if (ND.linkmtu != 0) {
   1664 			if (ND.linkmtu < IPV6_MMTU ||
   1665 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
   1666 				error = EINVAL;
   1667 				break;
   1668 			}
   1669 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
   1670 		}
   1671 
   1672 		if (ND.basereachable != 0) {
   1673 			int obasereachable = ND_IFINFO(ifp)->basereachable;
   1674 
   1675 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
   1676 			if (ND.basereachable != obasereachable)
   1677 				ND_IFINFO(ifp)->reachable =
   1678 				    ND_COMPUTE_RTIME(ND.basereachable);
   1679 		}
   1680 		if (ND.retrans != 0)
   1681 			ND_IFINFO(ifp)->retrans = ND.retrans;
   1682 		if (ND.chlim != 0)
   1683 			ND_IFINFO(ifp)->chlim = ND.chlim;
   1684 		/* FALLTHROUGH */
   1685 	case SIOCSIFINFO_FLAGS:
   1686 	{
   1687 		struct ifaddr *ifa;
   1688 		struct in6_ifaddr *ia;
   1689 
   1690 		if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
   1691 		    !(ND.flags & ND6_IFF_IFDISABLED))
   1692 		{
   1693 			/*
   1694 			 * If the interface is marked as ND6_IFF_IFDISABLED and
   1695 			 * has a link-local address with IN6_IFF_DUPLICATED,
   1696 			 * do not clear ND6_IFF_IFDISABLED.
   1697 			 * See RFC 4862, section 5.4.5.
   1698 			 */
   1699 			int duplicated_linklocal = 0;
   1700 
   1701 			IFADDR_FOREACH(ifa, ifp) {
   1702 				if (ifa->ifa_addr->sa_family != AF_INET6)
   1703 					continue;
   1704 				ia = (struct in6_ifaddr *)ifa;
   1705 				if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
   1706 				    IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
   1707 				{
   1708 					duplicated_linklocal = 1;
   1709 					break;
   1710 				}
   1711 			}
   1712 
   1713 			if (duplicated_linklocal) {
   1714 				ND.flags |= ND6_IFF_IFDISABLED;
   1715 				log(LOG_ERR, "Cannot enable an interface"
   1716 				    " with a link-local address marked"
   1717 				    " duplicate.\n");
   1718 			} else {
   1719 				ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
   1720 				if (ifp->if_flags & IFF_UP)
   1721 					in6_if_up(ifp);
   1722 			}
   1723 		} else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
   1724 		    (ND.flags & ND6_IFF_IFDISABLED))
   1725 		{
   1726 			/* Mark all IPv6 addresses as tentative. */
   1727 
   1728 			ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
   1729 			IFADDR_FOREACH(ifa, ifp) {
   1730 				if (ifa->ifa_addr->sa_family != AF_INET6)
   1731 					continue;
   1732 				nd6_dad_stop(ifa);
   1733 				ia = (struct in6_ifaddr *)ifa;
   1734 				ia->ia6_flags |= IN6_IFF_TENTATIVE;
   1735 			}
   1736 		}
   1737 
   1738 		if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
   1739 			if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
   1740 				/* auto_linklocal 0->1 transition */
   1741 
   1742 				ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
   1743 				in6_ifattach(ifp, NULL);
   1744 			} else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
   1745 			    ifp->if_flags & IFF_UP)
   1746 			{
   1747 				/*
   1748 				 * When the IF already has
   1749 				 * ND6_IFF_AUTO_LINKLOCAL, no link-local
   1750 				 * address is assigned, and IFF_UP, try to
   1751 				 * assign one.
   1752 				 */
   1753 				 int haslinklocal = 0;
   1754 
   1755 				 IFADDR_FOREACH(ifa, ifp) {
   1756 					if (ifa->ifa_addr->sa_family !=AF_INET6)
   1757 						continue;
   1758 					ia = (struct in6_ifaddr *)ifa;
   1759 					if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))){
   1760 						haslinklocal = 1;
   1761 						break;
   1762 					}
   1763 				 }
   1764 				 if (!haslinklocal)
   1765 					in6_ifattach(ifp, NULL);
   1766 			}
   1767 		}
   1768 	}
   1769 		ND_IFINFO(ifp)->flags = ND.flags;
   1770 		break;
   1771 #undef ND
   1772 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
   1773 		/* sync kernel routing table with the default router list */
   1774 		defrouter_reset();
   1775 		defrouter_select();
   1776 		break;
   1777 	case SIOCSPFXFLUSH_IN6:
   1778 	{
   1779 		/* flush all the prefix advertised by routers */
   1780 		struct nd_prefix *pfx, *next;
   1781 
   1782 		s = splsoftnet();
   1783 		LIST_FOREACH_SAFE(pfx, &nd_prefix, ndpr_entry, next) {
   1784 			struct in6_ifaddr *ia, *ia_next;
   1785 
   1786 			if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
   1787 				continue; /* XXX */
   1788 
   1789 			/* do we really have to remove addresses as well? */
   1790 			for (ia = in6_ifaddr; ia; ia = ia_next) {
   1791 				/* ia might be removed.  keep the next ptr. */
   1792 				ia_next = ia->ia_next;
   1793 
   1794 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
   1795 					continue;
   1796 
   1797 				if (ia->ia6_ndpr == pfx)
   1798 					in6_purgeaddr(&ia->ia_ifa);
   1799 			}
   1800 			prelist_remove(pfx);
   1801 		}
   1802 		splx(s);
   1803 		break;
   1804 	}
   1805 	case SIOCSRTRFLUSH_IN6:
   1806 	{
   1807 		/* flush all the default routers */
   1808 		struct nd_defrouter *drtr, *next;
   1809 
   1810 		s = splsoftnet();
   1811 		defrouter_reset();
   1812 		TAILQ_FOREACH_SAFE(drtr, &nd_defrouter, dr_entry, next) {
   1813 			defrtrlist_del(drtr, NULL);
   1814 		}
   1815 		defrouter_select();
   1816 		splx(s);
   1817 		break;
   1818 	}
   1819 	case SIOCGNBRINFO_IN6:
   1820 	{
   1821 		struct llinfo_nd6 *ln;
   1822 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
   1823 		struct rtentry *rt;
   1824 
   1825 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
   1826 			return error;
   1827 
   1828 		s = splsoftnet();
   1829 		rt = nd6_lookup(&nb_addr, 0, ifp);
   1830 		if (rt == NULL) {
   1831 			error = EINVAL;
   1832 			splx(s);
   1833 			break;
   1834 		}
   1835 
   1836 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
   1837 		rtfree(rt);
   1838 		if (ln == NULL) {
   1839 			error = EINVAL;
   1840 			splx(s);
   1841 			break;
   1842 		}
   1843 		nbi->state = ln->ln_state;
   1844 		nbi->asked = ln->ln_asked;
   1845 		nbi->isrouter = ln->ln_router;
   1846 		nbi->expire = ln->ln_expire ?
   1847 		    time_mono_to_wall(ln->ln_expire) : 0;
   1848 		splx(s);
   1849 
   1850 		break;
   1851 	}
   1852 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
   1853 		ndif->ifindex = nd6_defifindex;
   1854 		break;
   1855 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
   1856 		return nd6_setdefaultiface(ndif->ifindex);
   1857 	}
   1858 	return error;
   1859 }
   1860 
   1861 void
   1862 nd6_llinfo_release_pkts(struct llinfo_nd6 *ln, struct ifnet *ifp,
   1863     struct rtentry *rt)
   1864 {
   1865 	struct mbuf *m_hold, *m_hold_next;
   1866 
   1867 	for (m_hold = ln->ln_hold, ln->ln_hold = NULL;
   1868 	     m_hold != NULL;
   1869 	     m_hold = m_hold_next) {
   1870 		m_hold_next = m_hold->m_nextpkt;
   1871 		m_hold->m_nextpkt = NULL;
   1872 
   1873 		/*
   1874 		 * we assume ifp is not a p2p here, so
   1875 		 * just set the 2nd argument as the
   1876 		 * 1st one.
   1877 		 */
   1878 		nd6_output(ifp, ifp, m_hold, satocsin6(rt_getkey(rt)), rt);
   1879 	}
   1880 }
   1881 
   1882 /*
   1883  * Create neighbor cache entry and cache link-layer address,
   1884  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
   1885  */
   1886 void
   1887 nd6_cache_lladdr(
   1888     struct ifnet *ifp,
   1889     struct in6_addr *from,
   1890     char *lladdr,
   1891     int lladdrlen,
   1892     int type,	/* ICMP6 type */
   1893     int code	/* type dependent information */
   1894 )
   1895 {
   1896 	struct nd_ifinfo *ndi = ND_IFINFO(ifp);
   1897 	struct rtentry *rt = NULL;
   1898 	struct llinfo_nd6 *ln = NULL;
   1899 	int is_newentry;
   1900 	struct sockaddr_dl *sdl = NULL;
   1901 	int do_update;
   1902 	int olladdr;
   1903 	int llchange;
   1904 	int newstate = 0;
   1905 
   1906 	KASSERT(ifp != NULL);
   1907 	KASSERT(from != NULL);
   1908 
   1909 	/* nothing must be updated for unspecified address */
   1910 	if (IN6_IS_ADDR_UNSPECIFIED(from))
   1911 		return;
   1912 
   1913 	/*
   1914 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
   1915 	 * the caller.
   1916 	 *
   1917 	 * XXX If the link does not have link-layer adderss, what should
   1918 	 * we do? (ifp->if_addrlen == 0)
   1919 	 * Spec says nothing in sections for RA, RS and NA.  There's small
   1920 	 * description on it in NS section (RFC 2461 7.2.3).
   1921 	 */
   1922 
   1923 	rt = nd6_lookup(from, 0, ifp);
   1924 	if (rt == NULL) {
   1925 #if 0
   1926 		/* nothing must be done if there's no lladdr */
   1927 		if (!lladdr || !lladdrlen)
   1928 			return NULL;
   1929 #endif
   1930 
   1931 		rt = nd6_lookup(from, 1, ifp);
   1932 		is_newentry = 1;
   1933 	} else {
   1934 		/* do nothing if static ndp is set */
   1935 		if (rt->rt_flags & RTF_STATIC) {
   1936 			rtfree(rt);
   1937 			return;
   1938 		}
   1939 		is_newentry = 0;
   1940 	}
   1941 
   1942 	if (rt == NULL)
   1943 		return;
   1944 	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
   1945 fail:
   1946 		(void)nd6_free(rt, 0);
   1947 		rtfree(rt);
   1948 		return;
   1949 	}
   1950 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
   1951 	if (ln == NULL)
   1952 		goto fail;
   1953 	if (rt->rt_gateway == NULL)
   1954 		goto fail;
   1955 	if (rt->rt_gateway->sa_family != AF_LINK)
   1956 		goto fail;
   1957 	sdl = satosdl(rt->rt_gateway);
   1958 
   1959 	olladdr = (sdl->sdl_alen) ? 1 : 0;
   1960 	if (olladdr && lladdr) {
   1961 		if (memcmp(lladdr, CLLADDR(sdl), ifp->if_addrlen))
   1962 			llchange = 1;
   1963 		else
   1964 			llchange = 0;
   1965 	} else
   1966 		llchange = 0;
   1967 
   1968 	/*
   1969 	 * newentry olladdr  lladdr  llchange	(*=record)
   1970 	 *	0	n	n	--	(1)
   1971 	 *	0	y	n	--	(2)
   1972 	 *	0	n	y	--	(3) * STALE
   1973 	 *	0	y	y	n	(4) *
   1974 	 *	0	y	y	y	(5) * STALE
   1975 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
   1976 	 *	1	--	y	--	(7) * STALE
   1977 	 */
   1978 
   1979 	if (lladdr) {		/* (3-5) and (7) */
   1980 		/*
   1981 		 * Record source link-layer address
   1982 		 * XXX is it dependent to ifp->if_type?
   1983 		 */
   1984 		/* XXX check for error */
   1985 		if (sockaddr_dl_setaddr(sdl, sdl->sdl_len, lladdr,
   1986 		    ifp->if_addrlen) == NULL) {
   1987 			printf("%s.%d: sockaddr_dl_setaddr(, %d, ) "
   1988 			    "failed on %s\n", __func__, __LINE__,
   1989 			    sdl->sdl_len, if_name(ifp));
   1990 		}
   1991 	}
   1992 
   1993 	if (!is_newentry) {
   1994 		if ((!olladdr && lladdr) ||		/* (3) */
   1995 		    (olladdr && lladdr && llchange)) {	/* (5) */
   1996 			do_update = 1;
   1997 			newstate = ND6_LLINFO_STALE;
   1998 		} else					/* (1-2,4) */
   1999 			do_update = 0;
   2000 	} else {
   2001 		do_update = 1;
   2002 		if (lladdr == NULL)			/* (6) */
   2003 			newstate = ND6_LLINFO_NOSTATE;
   2004 		else					/* (7) */
   2005 			newstate = ND6_LLINFO_STALE;
   2006 	}
   2007 
   2008 	if (do_update) {
   2009 		/*
   2010 		 * Update the state of the neighbor cache.
   2011 		 */
   2012 		ln->ln_state = newstate;
   2013 
   2014 		if (ln->ln_state == ND6_LLINFO_STALE) {
   2015 			/*
   2016 			 * XXX: since nd6_output() below will cause
   2017 			 * state tansition to DELAY and reset the timer,
   2018 			 * we must set the timer now, although it is actually
   2019 			 * meaningless.
   2020 			 */
   2021 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
   2022 
   2023 			nd6_llinfo_release_pkts(ln, ifp, rt);
   2024 		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
   2025 			/* probe right away */
   2026 			nd6_llinfo_settimer((void *)ln, 0);
   2027 		}
   2028 	}
   2029 
   2030 	/*
   2031 	 * ICMP6 type dependent behavior.
   2032 	 *
   2033 	 * NS: clear IsRouter if new entry
   2034 	 * RS: clear IsRouter
   2035 	 * RA: set IsRouter if there's lladdr
   2036 	 * redir: clear IsRouter if new entry
   2037 	 *
   2038 	 * RA case, (1):
   2039 	 * The spec says that we must set IsRouter in the following cases:
   2040 	 * - If lladdr exist, set IsRouter.  This means (1-5).
   2041 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
   2042 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
   2043 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
   2044 	 * neighbor cache, this is similar to (6).
   2045 	 * This case is rare but we figured that we MUST NOT set IsRouter.
   2046 	 *
   2047 	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
   2048 	 *							D R
   2049 	 *	0	n	n	--	(1)	c   ?     s
   2050 	 *	0	y	n	--	(2)	c   s     s
   2051 	 *	0	n	y	--	(3)	c   s     s
   2052 	 *	0	y	y	n	(4)	c   s     s
   2053 	 *	0	y	y	y	(5)	c   s     s
   2054 	 *	1	--	n	--	(6) c	c 	c s
   2055 	 *	1	--	y	--	(7) c	c   s	c s
   2056 	 *
   2057 	 *					(c=clear s=set)
   2058 	 */
   2059 	switch (type & 0xff) {
   2060 	case ND_NEIGHBOR_SOLICIT:
   2061 		/*
   2062 		 * New entry must have is_router flag cleared.
   2063 		 */
   2064 		if (is_newentry)	/* (6-7) */
   2065 			ln->ln_router = 0;
   2066 		break;
   2067 	case ND_REDIRECT:
   2068 		/*
   2069 		 * If the icmp is a redirect to a better router, always set the
   2070 		 * is_router flag.  Otherwise, if the entry is newly created,
   2071 		 * clear the flag.  [RFC 2461, sec 8.3]
   2072 		 */
   2073 		if (code == ND_REDIRECT_ROUTER)
   2074 			ln->ln_router = 1;
   2075 		else if (is_newentry) /* (6-7) */
   2076 			ln->ln_router = 0;
   2077 		break;
   2078 	case ND_ROUTER_SOLICIT:
   2079 		/*
   2080 		 * is_router flag must always be cleared.
   2081 		 */
   2082 		ln->ln_router = 0;
   2083 		break;
   2084 	case ND_ROUTER_ADVERT:
   2085 		/*
   2086 		 * Mark an entry with lladdr as a router.
   2087 		 */
   2088 		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
   2089 		    (is_newentry && lladdr)) {			/* (7) */
   2090 			ln->ln_router = 1;
   2091 		}
   2092 		break;
   2093 	}
   2094 
   2095 	if (do_update)
   2096 		rt_newmsg(RTM_CHANGE, rt);  /* tell user process */
   2097 
   2098 	/*
   2099 	 * When the link-layer address of a router changes, select the
   2100 	 * best router again.  In particular, when the neighbor entry is newly
   2101 	 * created, it might affect the selection policy.
   2102 	 * Question: can we restrict the first condition to the "is_newentry"
   2103 	 * case?
   2104 	 * XXX: when we hear an RA from a new router with the link-layer
   2105 	 * address option, defrouter_select() is called twice, since
   2106 	 * defrtrlist_update called the function as well.  However, I believe
   2107 	 * we can compromise the overhead, since it only happens the first
   2108 	 * time.
   2109 	 * XXX: although defrouter_select() should not have a bad effect
   2110 	 * for those are not autoconfigured hosts, we explicitly avoid such
   2111 	 * cases for safety.
   2112 	 */
   2113 	if (do_update && ln->ln_router && !ip6_forwarding &&
   2114 	    nd6_accepts_rtadv(ndi))
   2115 		defrouter_select();
   2116 
   2117 	rtfree(rt);
   2118 }
   2119 
   2120 static void
   2121 nd6_slowtimo(void *ignored_arg)
   2122 {
   2123 	struct nd_ifinfo *nd6if;
   2124 	struct ifnet *ifp;
   2125 
   2126 	mutex_enter(softnet_lock);
   2127 	KERNEL_LOCK(1, NULL);
   2128 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
   2129 	    nd6_slowtimo, NULL);
   2130 	IFNET_FOREACH(ifp) {
   2131 		nd6if = ND_IFINFO(ifp);
   2132 		if (nd6if->basereachable && /* already initialized */
   2133 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
   2134 			/*
   2135 			 * Since reachable time rarely changes by router
   2136 			 * advertisements, we SHOULD insure that a new random
   2137 			 * value gets recomputed at least once every few hours.
   2138 			 * (RFC 2461, 6.3.4)
   2139 			 */
   2140 			nd6if->recalctm = nd6_recalc_reachtm_interval;
   2141 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
   2142 		}
   2143 	}
   2144 	KERNEL_UNLOCK_ONE(NULL);
   2145 	mutex_exit(softnet_lock);
   2146 }
   2147 
   2148 #define senderr(e) { error = (e); goto bad;}
   2149 int
   2150 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
   2151     const struct sockaddr_in6 *dst, struct rtentry *rt00)
   2152 {
   2153 	struct mbuf *m = m0;
   2154 	struct rtentry *rt, *rt0;
   2155 	struct sockaddr_in6 *gw6 = NULL;
   2156 	struct llinfo_nd6 *ln = NULL;
   2157 	int error = 0;
   2158 
   2159 #define RTFREE_IF_NEEDED(_rt) \
   2160 	if ((_rt) != NULL && (_rt) != rt00) \
   2161 		rtfree((_rt));
   2162 
   2163 	rt = rt0 = rt00;
   2164 
   2165 	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
   2166 		goto sendpkt;
   2167 
   2168 	if (nd6_need_cache(ifp) == 0)
   2169 		goto sendpkt;
   2170 
   2171 	/*
   2172 	 * next hop determination.  This routine is derived from ether_output.
   2173 	 */
   2174 	if (rt) {
   2175 		if ((rt->rt_flags & RTF_UP) == 0) {
   2176 			if ((rt0 = rt = rtalloc1(sin6tocsa(dst), 1)) != NULL) {
   2177 				if (rt->rt_ifp != ifp)
   2178 					senderr(EHOSTUNREACH);
   2179 			} else
   2180 				senderr(EHOSTUNREACH);
   2181 		}
   2182 
   2183 		if (rt->rt_flags & RTF_GATEWAY) {
   2184 			struct rtentry *gwrt;
   2185 			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
   2186 
   2187 			/*
   2188 			 * We skip link-layer address resolution and NUD
   2189 			 * if the gateway is not a neighbor from ND point
   2190 			 * of view, regardless of the value of nd_ifinfo.flags.
   2191 			 * The second condition is a bit tricky; we skip
   2192 			 * if the gateway is our own address, which is
   2193 			 * sometimes used to install a route to a p2p link.
   2194 			 */
   2195 			if (!nd6_is_addr_neighbor(gw6, ifp) ||
   2196 			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
   2197 				/*
   2198 				 * We allow this kind of tricky route only
   2199 				 * when the outgoing interface is p2p.
   2200 				 * XXX: we may need a more generic rule here.
   2201 				 */
   2202 				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
   2203 					senderr(EHOSTUNREACH);
   2204 
   2205 				goto sendpkt;
   2206 			}
   2207 
   2208 			gwrt = rt_get_gwroute(rt);
   2209 			if (gwrt == NULL)
   2210 				goto lookup;
   2211 
   2212 			RTFREE_IF_NEEDED(rt);
   2213 			rt = gwrt;
   2214 			if ((rt->rt_flags & RTF_UP) == 0) {
   2215 				rtfree(rt);
   2216 				rt = rt0;
   2217 			lookup:
   2218 				gwrt = rt->rt_gwroute =
   2219 				    rtalloc1(rt->rt_gateway, 1);
   2220 				rtfree(rt);
   2221 				rt = gwrt;
   2222 				if (rt == NULL)
   2223 					senderr(EHOSTUNREACH);
   2224 				/* the "G" test below also prevents rt == rt0 */
   2225 				if ((rt->rt_flags & RTF_GATEWAY) ||
   2226 				    (rt->rt_ifp != ifp)) {
   2227 					rt0->rt_gwroute = NULL;
   2228 					senderr(EHOSTUNREACH);
   2229 				}
   2230 			}
   2231 		}
   2232 	}
   2233 
   2234 	/*
   2235 	 * Address resolution or Neighbor Unreachability Detection
   2236 	 * for the next hop.
   2237 	 * At this point, the destination of the packet must be a unicast
   2238 	 * or an anycast address(i.e. not a multicast).
   2239 	 */
   2240 
   2241 	/* Look up the neighbor cache for the nexthop */
   2242 	if (rt != NULL && (rt->rt_flags & RTF_LLINFO) != 0)
   2243 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
   2244 	else {
   2245 		/*
   2246 		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
   2247 		 * the condition below is not very efficient.  But we believe
   2248 		 * it is tolerable, because this should be a rare case.
   2249 		 */
   2250 		if (nd6_is_addr_neighbor(dst, ifp)) {
   2251 			RTFREE_IF_NEEDED(rt);
   2252 			rt = nd6_lookup(&dst->sin6_addr, 1, ifp);
   2253 			if (rt != NULL)
   2254 				ln = (struct llinfo_nd6 *)rt->rt_llinfo;
   2255 		}
   2256 	}
   2257 	if (ln == NULL || rt == NULL) {
   2258 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
   2259 		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
   2260 			log(LOG_DEBUG,
   2261 			    "nd6_output: can't allocate llinfo for %s "
   2262 			    "(ln=%p, rt=%p)\n",
   2263 			    ip6_sprintf(&dst->sin6_addr), ln, rt);
   2264 			senderr(EIO);	/* XXX: good error? */
   2265 		}
   2266 
   2267 		goto sendpkt;	/* send anyway */
   2268 	}
   2269 
   2270 	/*
   2271 	 * Move this entry to the head of the queue so that it is less likely
   2272 	 * for this entry to be a target of forced garbage collection (see
   2273 	 * nd6_rtrequest()).
   2274 	 */
   2275 	LN_DEQUEUE(ln);
   2276 	LN_INSERTHEAD(ln);
   2277 
   2278 	/* We don't have to do link-layer address resolution on a p2p link. */
   2279 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
   2280 	    ln->ln_state < ND6_LLINFO_REACHABLE) {
   2281 		ln->ln_state = ND6_LLINFO_STALE;
   2282 		nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
   2283 	}
   2284 
   2285 	/*
   2286 	 * The first time we send a packet to a neighbor whose entry is
   2287 	 * STALE, we have to change the state to DELAY and a sets a timer to
   2288 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
   2289 	 * neighbor unreachability detection on expiration.
   2290 	 * (RFC 2461 7.3.3)
   2291 	 */
   2292 	if (ln->ln_state == ND6_LLINFO_STALE) {
   2293 		ln->ln_asked = 0;
   2294 		ln->ln_state = ND6_LLINFO_DELAY;
   2295 		nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
   2296 	}
   2297 
   2298 	/*
   2299 	 * If the neighbor cache entry has a state other than INCOMPLETE
   2300 	 * (i.e. its link-layer address is already resolved), just
   2301 	 * send the packet.
   2302 	 */
   2303 	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
   2304 		goto sendpkt;
   2305 
   2306 	/*
   2307 	 * There is a neighbor cache entry, but no ethernet address
   2308 	 * response yet.  Append this latest packet to the end of the
   2309 	 * packet queue in the mbuf, unless the number of the packet
   2310 	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
   2311 	 * the oldest packet in the queue will be removed.
   2312 	 */
   2313 	if (ln->ln_state == ND6_LLINFO_NOSTATE)
   2314 		ln->ln_state = ND6_LLINFO_INCOMPLETE;
   2315 	if (ln->ln_hold) {
   2316 		struct mbuf *m_hold;
   2317 		int i;
   2318 
   2319 		i = 0;
   2320 		for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
   2321 			i++;
   2322 			if (m_hold->m_nextpkt == NULL) {
   2323 				m_hold->m_nextpkt = m;
   2324 				break;
   2325 			}
   2326 		}
   2327 		while (i >= nd6_maxqueuelen) {
   2328 			m_hold = ln->ln_hold;
   2329 			ln->ln_hold = ln->ln_hold->m_nextpkt;
   2330 			m_freem(m_hold);
   2331 			i--;
   2332 		}
   2333 	} else {
   2334 		ln->ln_hold = m;
   2335 	}
   2336 
   2337 	/*
   2338 	 * If there has been no NS for the neighbor after entering the
   2339 	 * INCOMPLETE state, send the first solicitation.
   2340 	 */
   2341 	if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
   2342 		ln->ln_asked++;
   2343 		nd6_llinfo_settimer(ln,
   2344 		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
   2345 		nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
   2346 	}
   2347 	error = 0;
   2348 	goto exit;
   2349 
   2350   sendpkt:
   2351 	/* discard the packet if IPv6 operation is disabled on the interface */
   2352 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
   2353 		error = ENETDOWN; /* better error? */
   2354 		goto bad;
   2355 	}
   2356 
   2357 #ifndef NET_MPSAFE
   2358 	KERNEL_LOCK(1, NULL);
   2359 #endif
   2360 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
   2361 		error = (*ifp->if_output)(origifp, m, sin6tocsa(dst), rt);
   2362 	else
   2363 		error = (*ifp->if_output)(ifp, m, sin6tocsa(dst), rt);
   2364 #ifndef NET_MPSAFE
   2365 	KERNEL_UNLOCK_ONE(NULL);
   2366 #endif
   2367 	goto exit;
   2368 
   2369   bad:
   2370 	if (m != NULL)
   2371 		m_freem(m);
   2372   exit:
   2373 	RTFREE_IF_NEEDED(rt);
   2374 
   2375 	return error;
   2376 #undef RTFREE_IF_NEEDED
   2377 }
   2378 #undef senderr
   2379 
   2380 int
   2381 nd6_need_cache(struct ifnet *ifp)
   2382 {
   2383 	/*
   2384 	 * XXX: we currently do not make neighbor cache on any interface
   2385 	 * other than ARCnet, Ethernet, FDDI and GIF.
   2386 	 *
   2387 	 * RFC2893 says:
   2388 	 * - unidirectional tunnels needs no ND
   2389 	 */
   2390 	switch (ifp->if_type) {
   2391 	case IFT_ARCNET:
   2392 	case IFT_ETHER:
   2393 	case IFT_FDDI:
   2394 	case IFT_IEEE1394:
   2395 	case IFT_CARP:
   2396 	case IFT_GIF:		/* XXX need more cases? */
   2397 	case IFT_PPP:
   2398 	case IFT_TUNNEL:
   2399 		return 1;
   2400 	default:
   2401 		return 0;
   2402 	}
   2403 }
   2404 
   2405 int
   2406 nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt,
   2407     struct mbuf *m, const struct sockaddr *dst, uint8_t *lldst,
   2408     size_t dstsize)
   2409 {
   2410 	const struct sockaddr_dl *sdl;
   2411 
   2412 	if (m->m_flags & M_MCAST) {
   2413 		switch (ifp->if_type) {
   2414 		case IFT_ETHER:
   2415 		case IFT_FDDI:
   2416 			ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
   2417 			    lldst);
   2418 			return 1;
   2419 		case IFT_IEEE1394:
   2420 			memcpy(lldst, ifp->if_broadcastaddr,
   2421 			    MIN(dstsize, ifp->if_addrlen));
   2422 			return 1;
   2423 		case IFT_ARCNET:
   2424 			*lldst = 0;
   2425 			return 1;
   2426 		default:
   2427 			m_freem(m);
   2428 			return 0;
   2429 		}
   2430 	}
   2431 
   2432 	if (rt == NULL) {
   2433 		/* this could happen, if we could not allocate memory */
   2434 		m_freem(m);
   2435 		return 0;
   2436 	}
   2437 	if (rt->rt_gateway->sa_family != AF_LINK) {
   2438 		char gbuf[256];
   2439 		char dbuf[LINK_ADDRSTRLEN];
   2440 		sockaddr_format(rt->rt_gateway, gbuf, sizeof(gbuf));
   2441 		printf("%s: bad gateway address type %s for dst %s"
   2442 		    " through interface %s\n", __func__, gbuf,
   2443 		    IN6_PRINT(dbuf, &satocsin6(dst)->sin6_addr),
   2444 		    if_name(ifp));
   2445 		m_freem(m);
   2446 		return 0;
   2447 	}
   2448 	sdl = satocsdl(rt->rt_gateway);
   2449 	if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) {
   2450 		char sbuf[INET6_ADDRSTRLEN];
   2451 		char dbuf[LINK_ADDRSTRLEN];
   2452 		/* this should be impossible, but we bark here for debugging */
   2453 		printf("%s: sdl_alen == %" PRIu8 ", if=%s, dst=%s, sdl=%s\n",
   2454 		    __func__, sdl->sdl_alen, if_name(ifp),
   2455 		    IN6_PRINT(sbuf, &satocsin6(dst)->sin6_addr),
   2456 		    DL_PRINT(dbuf, &sdl->sdl_addr));
   2457 		m_freem(m);
   2458 		return 0;
   2459 	}
   2460 
   2461 	memcpy(lldst, CLLADDR(sdl), MIN(dstsize, sdl->sdl_alen));
   2462 	return 1;
   2463 }
   2464 
   2465 static void
   2466 clear_llinfo_pqueue(struct llinfo_nd6 *ln)
   2467 {
   2468 	struct mbuf *m_hold, *m_hold_next;
   2469 
   2470 	for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
   2471 		m_hold_next = m_hold->m_nextpkt;
   2472 		m_hold->m_nextpkt = NULL;
   2473 		m_freem(m_hold);
   2474 	}
   2475 
   2476 	ln->ln_hold = NULL;
   2477 	return;
   2478 }
   2479 
   2480 int
   2481 nd6_sysctl(
   2482     int name,
   2483     void *oldp,	/* syscall arg, need copyout */
   2484     size_t *oldlenp,
   2485     void *newp,	/* syscall arg, need copyin */
   2486     size_t newlen
   2487 )
   2488 {
   2489 	void *p;
   2490 	size_t ol;
   2491 	int error;
   2492 
   2493 	error = 0;
   2494 
   2495 	if (newp)
   2496 		return EPERM;
   2497 	if (oldp && !oldlenp)
   2498 		return EINVAL;
   2499 	ol = oldlenp ? *oldlenp : 0;
   2500 
   2501 	if (oldp) {
   2502 		p = malloc(*oldlenp, M_TEMP, M_WAITOK);
   2503 		if (p == NULL)
   2504 			return ENOMEM;
   2505 	} else
   2506 		p = NULL;
   2507 	switch (name) {
   2508 	case ICMPV6CTL_ND6_DRLIST:
   2509 		error = fill_drlist(p, oldlenp, ol);
   2510 		if (!error && p != NULL && oldp != NULL)
   2511 			error = copyout(p, oldp, *oldlenp);
   2512 		break;
   2513 
   2514 	case ICMPV6CTL_ND6_PRLIST:
   2515 		error = fill_prlist(p, oldlenp, ol);
   2516 		if (!error && p != NULL && oldp != NULL)
   2517 			error = copyout(p, oldp, *oldlenp);
   2518 		break;
   2519 
   2520 	case ICMPV6CTL_ND6_MAXQLEN:
   2521 		break;
   2522 
   2523 	default:
   2524 		error = ENOPROTOOPT;
   2525 		break;
   2526 	}
   2527 	if (p)
   2528 		free(p, M_TEMP);
   2529 
   2530 	return error;
   2531 }
   2532 
   2533 static int
   2534 fill_drlist(void *oldp, size_t *oldlenp, size_t ol)
   2535 {
   2536 	int error = 0, s;
   2537 	struct in6_defrouter *d = NULL, *de = NULL;
   2538 	struct nd_defrouter *dr;
   2539 	size_t l;
   2540 
   2541 	s = splsoftnet();
   2542 
   2543 	if (oldp) {
   2544 		d = (struct in6_defrouter *)oldp;
   2545 		de = (struct in6_defrouter *)((char *)oldp + *oldlenp);
   2546 	}
   2547 	l = 0;
   2548 
   2549 	TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
   2550 
   2551 		if (oldp && d + 1 <= de) {
   2552 			memset(d, 0, sizeof(*d));
   2553 			sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0);
   2554 			if (sa6_recoverscope(&d->rtaddr)) {
   2555 				log(LOG_ERR,
   2556 				    "scope error in router list (%s)\n",
   2557 				    ip6_sprintf(&d->rtaddr.sin6_addr));
   2558 				/* XXX: press on... */
   2559 			}
   2560 			d->flags = dr->flags;
   2561 			d->rtlifetime = dr->rtlifetime;
   2562 			d->expire = dr->expire ?
   2563 			    time_mono_to_wall(dr->expire) : 0;
   2564 			d->if_index = dr->ifp->if_index;
   2565 		}
   2566 
   2567 		l += sizeof(*d);
   2568 		if (d)
   2569 			d++;
   2570 	}
   2571 
   2572 	if (oldp) {
   2573 		if (l > ol)
   2574 			error = ENOMEM;
   2575 	}
   2576 	if (oldlenp)
   2577 		*oldlenp = l;	/* (void *)d - (void *)oldp */
   2578 
   2579 	splx(s);
   2580 
   2581 	return error;
   2582 }
   2583 
   2584 static int
   2585 fill_prlist(void *oldp, size_t *oldlenp, size_t ol)
   2586 {
   2587 	int error = 0, s;
   2588 	struct nd_prefix *pr;
   2589 	uint8_t *p = NULL, *ps = NULL;
   2590 	uint8_t *pe = NULL;
   2591 	size_t l;
   2592 
   2593 	s = splsoftnet();
   2594 
   2595 	if (oldp) {
   2596 		ps = p = (uint8_t*)oldp;
   2597 		pe = (uint8_t*)oldp + *oldlenp;
   2598 	}
   2599 	l = 0;
   2600 
   2601 	LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
   2602 		u_short advrtrs;
   2603 		struct sockaddr_in6 sin6;
   2604 		struct nd_pfxrouter *pfr;
   2605 		struct in6_prefix pfx;
   2606 
   2607 		if (oldp && p + sizeof(struct in6_prefix) <= pe)
   2608 		{
   2609 			memset(&pfx, 0, sizeof(pfx));
   2610 			ps = p;
   2611 			pfx.prefix = pr->ndpr_prefix;
   2612 
   2613 			if (sa6_recoverscope(&pfx.prefix)) {
   2614 				log(LOG_ERR,
   2615 				    "scope error in prefix list (%s)\n",
   2616 				    ip6_sprintf(&pfx.prefix.sin6_addr));
   2617 				/* XXX: press on... */
   2618 			}
   2619 			pfx.raflags = pr->ndpr_raf;
   2620 			pfx.prefixlen = pr->ndpr_plen;
   2621 			pfx.vltime = pr->ndpr_vltime;
   2622 			pfx.pltime = pr->ndpr_pltime;
   2623 			pfx.if_index = pr->ndpr_ifp->if_index;
   2624 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
   2625 				pfx.expire = 0;
   2626 			else {
   2627 				time_t maxexpire;
   2628 
   2629 				/* XXX: we assume time_t is signed. */
   2630 				maxexpire = (-1) &
   2631 				    ~((time_t)1 <<
   2632 				    ((sizeof(maxexpire) * 8) - 1));
   2633 				if (pr->ndpr_vltime <
   2634 				    maxexpire - pr->ndpr_lastupdate) {
   2635 					pfx.expire = pr->ndpr_lastupdate +
   2636 						pr->ndpr_vltime;
   2637 				} else
   2638 					pfx.expire = maxexpire;
   2639 			}
   2640 			pfx.refcnt = pr->ndpr_refcnt;
   2641 			pfx.flags = pr->ndpr_stateflags;
   2642 			pfx.origin = PR_ORIG_RA;
   2643 
   2644 			p += sizeof(pfx); l += sizeof(pfx);
   2645 
   2646 			advrtrs = 0;
   2647 			LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
   2648 				if (p + sizeof(sin6) > pe) {
   2649 					advrtrs++;
   2650 					continue;
   2651 				}
   2652 
   2653 				sockaddr_in6_init(&sin6, &pfr->router->rtaddr,
   2654 				    0, 0, 0);
   2655 				if (sa6_recoverscope(&sin6)) {
   2656 					log(LOG_ERR,
   2657 					    "scope error in "
   2658 					    "prefix list (%s)\n",
   2659 					    ip6_sprintf(&pfr->router->rtaddr));
   2660 				}
   2661 				advrtrs++;
   2662 				memcpy(p, &sin6, sizeof(sin6));
   2663 				p += sizeof(sin6);
   2664 				l += sizeof(sin6);
   2665 			}
   2666 			pfx.advrtrs = advrtrs;
   2667 			memcpy(ps, &pfx, sizeof(pfx));
   2668 		}
   2669 		else {
   2670 			l += sizeof(pfx);
   2671 			advrtrs = 0;
   2672 			LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
   2673 				advrtrs++;
   2674 				l += sizeof(sin6);
   2675 			}
   2676 		}
   2677 	}
   2678 
   2679 	if (oldp) {
   2680 		*oldlenp = l;	/* (void *)d - (void *)oldp */
   2681 		if (l > ol)
   2682 			error = ENOMEM;
   2683 	} else
   2684 		*oldlenp = l;
   2685 
   2686 	splx(s);
   2687 
   2688 	return error;
   2689 }
   2690