nd6.c revision 1.181 1 /* $NetBSD: nd6.c,v 1.181 2015/11/25 06:21:26 ozaki-r Exp $ */
2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.181 2015/11/25 06:21:26 ozaki-r Exp $");
35
36 #ifdef _KERNEL_OPT
37 #include "opt_net_mpsafe.h"
38 #endif
39
40 #include "bridge.h"
41 #include "carp.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/sockio.h>
51 #include <sys/time.h>
52 #include <sys/kernel.h>
53 #include <sys/protosw.h>
54 #include <sys/errno.h>
55 #include <sys/ioctl.h>
56 #include <sys/syslog.h>
57 #include <sys/queue.h>
58 #include <sys/cprng.h>
59
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_llatbl.h>
63 #include <net/if_types.h>
64 #include <net/route.h>
65 #include <net/if_ether.h>
66 #include <net/if_fddi.h>
67 #include <net/if_arc.h>
68
69 #include <netinet/in.h>
70 #include <netinet6/in6_var.h>
71 #include <netinet/ip6.h>
72 #include <netinet6/ip6_var.h>
73 #include <netinet6/scope6_var.h>
74 #include <netinet6/nd6.h>
75 #include <netinet6/in6_ifattach.h>
76 #include <netinet/icmp6.h>
77 #include <netinet6/icmp6_private.h>
78
79 #include <net/net_osdep.h>
80
81 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
82 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
83
84 /* timer values */
85 int nd6_prune = 1; /* walk list every 1 seconds */
86 int nd6_delay = 5; /* delay first probe time 5 second */
87 int nd6_umaxtries = 3; /* maximum unicast query */
88 int nd6_mmaxtries = 3; /* maximum multicast query */
89 int nd6_useloopback = 1; /* use loopback interface for local traffic */
90 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
91
92 /* preventing too many loops in ND option parsing */
93 int nd6_maxndopt = 10; /* max # of ND options allowed */
94
95 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
96
97 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
98
99 #ifdef ND6_DEBUG
100 int nd6_debug = 1;
101 #else
102 int nd6_debug = 0;
103 #endif
104
105 /* for debugging? */
106 static int nd6_inuse, nd6_allocated;
107
108 struct nd_drhead nd_defrouter;
109 struct nd_prhead nd_prefix = { 0 };
110
111 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
112 static const struct sockaddr_in6 all1_sa = {
113 .sin6_family = AF_INET6
114 , .sin6_len = sizeof(struct sockaddr_in6)
115 , .sin6_addr = {.s6_addr = {0xff, 0xff, 0xff, 0xff,
116 0xff, 0xff, 0xff, 0xff,
117 0xff, 0xff, 0xff, 0xff,
118 0xff, 0xff, 0xff, 0xff}}
119 };
120
121 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
122 static void nd6_slowtimo(void *);
123 static int regen_tmpaddr(struct in6_ifaddr *);
124 static void nd6_free(struct rtentry *, struct llentry *, int);
125 static void nd6_llinfo_timer(void *);
126 static void clear_llinfo_pqueue(struct llentry *);
127
128 callout_t nd6_slowtimo_ch;
129 callout_t nd6_timer_ch;
130 extern callout_t in6_tmpaddrtimer_ch;
131
132 static int fill_drlist(void *, size_t *, size_t);
133 static int fill_prlist(void *, size_t *, size_t);
134
135 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
136
137 void
138 nd6_init(void)
139 {
140 static int nd6_init_done = 0;
141
142 if (nd6_init_done) {
143 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
144 return;
145 }
146
147 /* initialization of the default router list */
148 TAILQ_INIT(&nd_defrouter);
149
150 nd6_init_done = 1;
151
152 callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE);
153 callout_init(&nd6_timer_ch, CALLOUT_MPSAFE);
154
155 /* start timer */
156 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
157 nd6_slowtimo, NULL);
158 }
159
160 struct nd_ifinfo *
161 nd6_ifattach(struct ifnet *ifp)
162 {
163 struct nd_ifinfo *nd;
164
165 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO);
166
167 nd->initialized = 1;
168
169 nd->chlim = IPV6_DEFHLIM;
170 nd->basereachable = REACHABLE_TIME;
171 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
172 nd->retrans = RETRANS_TIMER;
173
174 nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV;
175
176 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
177 * A bridge interface should not have ND6_IFF_AUTO_LINKLOCAL
178 * because one of its members should. */
179 if ((ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
180 (ifp->if_flags & IFF_LOOPBACK))
181 nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
182
183 /* A loopback interface does not need to accept RTADV.
184 * A bridge interface should not accept RTADV
185 * because one of its members should. */
186 if (ip6_accept_rtadv &&
187 !(ifp->if_flags & IFF_LOOPBACK) &&
188 !(ifp->if_type != IFT_BRIDGE))
189 nd->flags |= ND6_IFF_ACCEPT_RTADV;
190
191 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
192 nd6_setmtu0(ifp, nd);
193
194 return nd;
195 }
196
197 void
198 nd6_ifdetach(struct ifnet *ifp, struct in6_ifextra *ext)
199 {
200
201 nd6_purge(ifp, ext);
202 free(ext->nd_ifinfo, M_IP6NDP);
203 }
204
205 void
206 nd6_setmtu(struct ifnet *ifp)
207 {
208 nd6_setmtu0(ifp, ND_IFINFO(ifp));
209 }
210
211 void
212 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
213 {
214 u_int32_t omaxmtu;
215
216 omaxmtu = ndi->maxmtu;
217
218 switch (ifp->if_type) {
219 case IFT_ARCNET:
220 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
221 break;
222 case IFT_FDDI:
223 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
224 break;
225 default:
226 ndi->maxmtu = ifp->if_mtu;
227 break;
228 }
229
230 /*
231 * Decreasing the interface MTU under IPV6 minimum MTU may cause
232 * undesirable situation. We thus notify the operator of the change
233 * explicitly. The check for omaxmtu is necessary to restrict the
234 * log to the case of changing the MTU, not initializing it.
235 */
236 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
237 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
238 " small for IPv6 which needs %lu\n",
239 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
240 IPV6_MMTU);
241 }
242
243 if (ndi->maxmtu > in6_maxmtu)
244 in6_setmaxmtu(); /* check all interfaces just in case */
245 }
246
247 void
248 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
249 {
250
251 memset(ndopts, 0, sizeof(*ndopts));
252 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
253 ndopts->nd_opts_last
254 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
255
256 if (icmp6len == 0) {
257 ndopts->nd_opts_done = 1;
258 ndopts->nd_opts_search = NULL;
259 }
260 }
261
262 /*
263 * Take one ND option.
264 */
265 struct nd_opt_hdr *
266 nd6_option(union nd_opts *ndopts)
267 {
268 struct nd_opt_hdr *nd_opt;
269 int olen;
270
271 KASSERT(ndopts != NULL);
272 KASSERT(ndopts->nd_opts_last != NULL);
273
274 if (ndopts->nd_opts_search == NULL)
275 return NULL;
276 if (ndopts->nd_opts_done)
277 return NULL;
278
279 nd_opt = ndopts->nd_opts_search;
280
281 /* make sure nd_opt_len is inside the buffer */
282 if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) {
283 memset(ndopts, 0, sizeof(*ndopts));
284 return NULL;
285 }
286
287 olen = nd_opt->nd_opt_len << 3;
288 if (olen == 0) {
289 /*
290 * Message validation requires that all included
291 * options have a length that is greater than zero.
292 */
293 memset(ndopts, 0, sizeof(*ndopts));
294 return NULL;
295 }
296
297 ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen);
298 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
299 /* option overruns the end of buffer, invalid */
300 memset(ndopts, 0, sizeof(*ndopts));
301 return NULL;
302 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
303 /* reached the end of options chain */
304 ndopts->nd_opts_done = 1;
305 ndopts->nd_opts_search = NULL;
306 }
307 return nd_opt;
308 }
309
310 /*
311 * Parse multiple ND options.
312 * This function is much easier to use, for ND routines that do not need
313 * multiple options of the same type.
314 */
315 int
316 nd6_options(union nd_opts *ndopts)
317 {
318 struct nd_opt_hdr *nd_opt;
319 int i = 0;
320
321 KASSERT(ndopts != NULL);
322 KASSERT(ndopts->nd_opts_last != NULL);
323
324 if (ndopts->nd_opts_search == NULL)
325 return 0;
326
327 while (1) {
328 nd_opt = nd6_option(ndopts);
329 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
330 /*
331 * Message validation requires that all included
332 * options have a length that is greater than zero.
333 */
334 ICMP6_STATINC(ICMP6_STAT_ND_BADOPT);
335 memset(ndopts, 0, sizeof(*ndopts));
336 return -1;
337 }
338
339 if (nd_opt == NULL)
340 goto skip1;
341
342 switch (nd_opt->nd_opt_type) {
343 case ND_OPT_SOURCE_LINKADDR:
344 case ND_OPT_TARGET_LINKADDR:
345 case ND_OPT_MTU:
346 case ND_OPT_REDIRECTED_HEADER:
347 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
348 nd6log((LOG_INFO,
349 "duplicated ND6 option found (type=%d)\n",
350 nd_opt->nd_opt_type));
351 /* XXX bark? */
352 } else {
353 ndopts->nd_opt_array[nd_opt->nd_opt_type]
354 = nd_opt;
355 }
356 break;
357 case ND_OPT_PREFIX_INFORMATION:
358 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
359 ndopts->nd_opt_array[nd_opt->nd_opt_type]
360 = nd_opt;
361 }
362 ndopts->nd_opts_pi_end =
363 (struct nd_opt_prefix_info *)nd_opt;
364 break;
365 default:
366 /*
367 * Unknown options must be silently ignored,
368 * to accommodate future extension to the protocol.
369 */
370 nd6log((LOG_DEBUG,
371 "nd6_options: unsupported option %d - "
372 "option ignored\n", nd_opt->nd_opt_type));
373 }
374
375 skip1:
376 i++;
377 if (i > nd6_maxndopt) {
378 ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT);
379 nd6log((LOG_INFO, "too many loop in nd opt\n"));
380 break;
381 }
382
383 if (ndopts->nd_opts_done)
384 break;
385 }
386
387 return 0;
388 }
389
390 /*
391 * ND6 timer routine to handle ND6 entries
392 */
393 void
394 nd6_llinfo_settimer_locked(struct llentry *ln, long xtick)
395 {
396
397 LLE_WLOCK_ASSERT(ln);
398
399 if (xtick < 0) {
400 ln->ln_expire = 0;
401 ln->ln_ntick = 0;
402 callout_halt(&ln->ln_timer_ch, &ln->lle_lock);
403 } else {
404 ln->ln_expire = time_uptime + xtick / hz;
405 LLE_ADDREF(ln);
406 if (xtick > INT_MAX) {
407 ln->ln_ntick = xtick - INT_MAX;
408 callout_reset(&ln->ln_timer_ch, INT_MAX,
409 nd6_llinfo_timer, ln);
410 } else {
411 ln->ln_ntick = 0;
412 callout_reset(&ln->ln_timer_ch, xtick,
413 nd6_llinfo_timer, ln);
414 }
415 }
416 }
417
418 void
419 nd6_llinfo_settimer(struct llentry *ln, long xtick)
420 {
421
422 LLE_WLOCK(ln);
423 nd6_llinfo_settimer_locked(ln, xtick);
424 LLE_WUNLOCK(ln);
425 }
426
427 /*
428 * Gets source address of the first packet in hold queue
429 * and stores it in @src.
430 * Returns pointer to @src (if hold queue is not empty) or NULL.
431 */
432 static struct in6_addr *
433 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
434 {
435 struct ip6_hdr *hip6;
436
437 if (ln == NULL || ln->ln_hold == NULL)
438 return NULL;
439
440 /*
441 * assuming every packet in ln_hold has the same IP header
442 */
443 hip6 = mtod(ln->ln_hold, struct ip6_hdr *);
444 /* XXX pullup? */
445 if (sizeof(*hip6) < ln->ln_hold->m_len)
446 *src = hip6->ip6_src;
447 else
448 src = NULL;
449
450 return src;
451 }
452
453 static void
454 nd6_llinfo_timer(void *arg)
455 {
456 struct llentry *ln = arg;
457 struct rtentry *rt;
458 const struct sockaddr_in6 *dst;
459 struct ifnet *ifp;
460 struct nd_ifinfo *ndi = NULL;
461 bool send_ns = false;
462 const struct in6_addr *daddr6 = NULL;
463
464 mutex_enter(softnet_lock);
465 KERNEL_LOCK(1, NULL);
466
467 LLE_WLOCK(ln);
468 if (ln->ln_ntick > 0) {
469 nd6_llinfo_settimer_locked(ln, ln->ln_ntick);
470 goto out;
471 }
472
473 if (callout_pending(&ln->la_timer)) {
474 /*
475 * Here we are a bit odd here in the treatment of
476 * active/pending. If the pending bit is set, it got
477 * rescheduled before I ran. The active
478 * bit we ignore, since if it was stopped
479 * in ll_tablefree() and was currently running
480 * it would have return 0 so the code would
481 * not have deleted it since the callout could
482 * not be stopped so we want to go through
483 * with the delete here now. If the callout
484 * was restarted, the pending bit will be back on and
485 * we just want to bail since the callout_reset would
486 * return 1 and our reference would have been removed
487 * by nd6_llinfo_settimer_locked above since canceled
488 * would have been 1.
489 */
490 goto out;
491 }
492
493 ifp = ln->lle_tbl->llt_ifp;
494 rt = ln->ln_rt;
495
496 KASSERT(rt != NULL);
497 KASSERT(ifp != NULL);
498
499 ndi = ND_IFINFO(ifp);
500 dst = satocsin6(rt_getkey(rt));
501
502 /* sanity check */
503 if (rt->rt_llinfo && (struct llentry *)rt->rt_llinfo != ln)
504 panic("rt_llinfo(%p) is not equal to ln(%p)",
505 rt->rt_llinfo, ln);
506 if (!dst)
507 panic("dst=0 in nd6_timer(ln=%p)", ln);
508
509 switch (ln->ln_state) {
510 case ND6_LLINFO_INCOMPLETE:
511 if (ln->ln_asked < nd6_mmaxtries) {
512 ln->ln_asked++;
513 send_ns = true;
514 } else {
515 struct mbuf *m = ln->ln_hold;
516 if (m) {
517 struct mbuf *m0;
518
519 /*
520 * assuming every packet in ln_hold has
521 * the same IP header
522 */
523 m0 = m->m_nextpkt;
524 m->m_nextpkt = NULL;
525 ln->ln_hold = m0;
526 clear_llinfo_pqueue(ln);
527 }
528 nd6_free(rt, ln, 0);
529 ln = NULL;
530 if (m != NULL)
531 icmp6_error2(m, ICMP6_DST_UNREACH,
532 ICMP6_DST_UNREACH_ADDR, 0, ifp);
533 }
534 break;
535 case ND6_LLINFO_REACHABLE:
536 if (!ND6_LLINFO_PERMANENT(ln)) {
537 ln->ln_state = ND6_LLINFO_STALE;
538 nd6_llinfo_settimer_locked(ln, (long)nd6_gctimer * hz);
539 }
540 break;
541
542 case ND6_LLINFO_PURGE:
543 case ND6_LLINFO_STALE:
544 /* Garbage Collection(RFC 2461 5.3) */
545 if (!ND6_LLINFO_PERMANENT(ln)) {
546 nd6_free(rt, ln, 1);
547 ln = NULL;
548 }
549 break;
550
551 case ND6_LLINFO_DELAY:
552 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
553 /* We need NUD */
554 ln->ln_asked = 1;
555 ln->ln_state = ND6_LLINFO_PROBE;
556 daddr6 = &dst->sin6_addr;
557 send_ns = true;
558 } else {
559 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
560 nd6_llinfo_settimer_locked(ln, (long)nd6_gctimer * hz);
561 }
562 break;
563 case ND6_LLINFO_PROBE:
564 if (ln->ln_asked < nd6_umaxtries) {
565 ln->ln_asked++;
566 daddr6 = &dst->sin6_addr;
567 send_ns = true;
568 } else {
569 nd6_free(rt, ln, 0);
570 ln = NULL;
571 }
572 break;
573 }
574
575 if (send_ns) {
576 struct in6_addr src, *psrc;
577
578 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000);
579 psrc = nd6_llinfo_get_holdsrc(ln, &src);
580 LLE_FREE_LOCKED(ln);
581 ln = NULL;
582 nd6_ns_output(ifp, daddr6, &dst->sin6_addr, psrc, 0);
583 }
584
585 out:
586 if (ln != NULL)
587 LLE_FREE_LOCKED(ln);
588 KERNEL_UNLOCK_ONE(NULL);
589 mutex_exit(softnet_lock);
590 }
591
592 /*
593 * ND6 timer routine to expire default route list and prefix list
594 */
595 void
596 nd6_timer(void *ignored_arg)
597 {
598 struct nd_defrouter *next_dr, *dr;
599 struct nd_prefix *next_pr, *pr;
600 struct in6_ifaddr *ia6, *nia6;
601
602 callout_reset(&nd6_timer_ch, nd6_prune * hz,
603 nd6_timer, NULL);
604
605 mutex_enter(softnet_lock);
606 KERNEL_LOCK(1, NULL);
607
608 /* expire default router list */
609
610 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, next_dr) {
611 if (dr->expire && dr->expire < time_uptime) {
612 defrtrlist_del(dr, NULL);
613 }
614 }
615
616 /*
617 * expire interface addresses.
618 * in the past the loop was inside prefix expiry processing.
619 * However, from a stricter speci-confrmance standpoint, we should
620 * rather separate address lifetimes and prefix lifetimes.
621 */
622 addrloop:
623 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
624 nia6 = ia6->ia_next;
625 /* check address lifetime */
626 if (IFA6_IS_INVALID(ia6)) {
627 int regen = 0;
628
629 /*
630 * If the expiring address is temporary, try
631 * regenerating a new one. This would be useful when
632 * we suspended a laptop PC, then turned it on after a
633 * period that could invalidate all temporary
634 * addresses. Although we may have to restart the
635 * loop (see below), it must be after purging the
636 * address. Otherwise, we'd see an infinite loop of
637 * regeneration.
638 */
639 if (ip6_use_tempaddr &&
640 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
641 if (regen_tmpaddr(ia6) == 0)
642 regen = 1;
643 }
644
645 in6_purgeaddr(&ia6->ia_ifa);
646
647 if (regen)
648 goto addrloop; /* XXX: see below */
649 } else if (IFA6_IS_DEPRECATED(ia6)) {
650 int oldflags = ia6->ia6_flags;
651
652 if ((oldflags & IN6_IFF_DEPRECATED) == 0) {
653 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
654 rt_newaddrmsg(RTM_NEWADDR,
655 (struct ifaddr *)ia6, 0, NULL);
656 }
657
658 /*
659 * If a temporary address has just become deprecated,
660 * regenerate a new one if possible.
661 */
662 if (ip6_use_tempaddr &&
663 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
664 (oldflags & IN6_IFF_DEPRECATED) == 0) {
665
666 if (regen_tmpaddr(ia6) == 0) {
667 /*
668 * A new temporary address is
669 * generated.
670 * XXX: this means the address chain
671 * has changed while we are still in
672 * the loop. Although the change
673 * would not cause disaster (because
674 * it's not a deletion, but an
675 * addition,) we'd rather restart the
676 * loop just for safety. Or does this
677 * significantly reduce performance??
678 */
679 goto addrloop;
680 }
681 }
682 } else {
683 /*
684 * A new RA might have made a deprecated address
685 * preferred.
686 */
687 if (ia6->ia6_flags & IN6_IFF_DEPRECATED) {
688 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
689 rt_newaddrmsg(RTM_NEWADDR,
690 (struct ifaddr *)ia6, 0, NULL);
691 }
692 }
693 }
694
695 /* expire prefix list */
696 LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, next_pr) {
697 /*
698 * check prefix lifetime.
699 * since pltime is just for autoconf, pltime processing for
700 * prefix is not necessary.
701 */
702 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
703 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) {
704
705 /*
706 * address expiration and prefix expiration are
707 * separate. NEVER perform in6_purgeaddr here.
708 */
709
710 prelist_remove(pr);
711 }
712 }
713
714 KERNEL_UNLOCK_ONE(NULL);
715 mutex_exit(softnet_lock);
716 }
717
718 /* ia6: deprecated/invalidated temporary address */
719 static int
720 regen_tmpaddr(struct in6_ifaddr *ia6)
721 {
722 struct ifaddr *ifa;
723 struct ifnet *ifp;
724 struct in6_ifaddr *public_ifa6 = NULL;
725
726 ifp = ia6->ia_ifa.ifa_ifp;
727 IFADDR_FOREACH(ifa, ifp) {
728 struct in6_ifaddr *it6;
729
730 if (ifa->ifa_addr->sa_family != AF_INET6)
731 continue;
732
733 it6 = (struct in6_ifaddr *)ifa;
734
735 /* ignore no autoconf addresses. */
736 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
737 continue;
738
739 /* ignore autoconf addresses with different prefixes. */
740 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
741 continue;
742
743 /*
744 * Now we are looking at an autoconf address with the same
745 * prefix as ours. If the address is temporary and is still
746 * preferred, do not create another one. It would be rare, but
747 * could happen, for example, when we resume a laptop PC after
748 * a long period.
749 */
750 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
751 !IFA6_IS_DEPRECATED(it6)) {
752 public_ifa6 = NULL;
753 break;
754 }
755
756 /*
757 * This is a public autoconf address that has the same prefix
758 * as ours. If it is preferred, keep it. We can't break the
759 * loop here, because there may be a still-preferred temporary
760 * address with the prefix.
761 */
762 if (!IFA6_IS_DEPRECATED(it6))
763 public_ifa6 = it6;
764 }
765
766 if (public_ifa6 != NULL) {
767 int e;
768
769 /*
770 * Random factor is introduced in the preferred lifetime, so
771 * we do not need additional delay (3rd arg to in6_tmpifadd).
772 */
773 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
774 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
775 " tmp addr, errno=%d\n", e);
776 return -1;
777 }
778 return 0;
779 }
780
781 return -1;
782 }
783
784 bool
785 nd6_accepts_rtadv(const struct nd_ifinfo *ndi)
786 {
787 switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) {
788 case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV:
789 return true;
790 case ND6_IFF_ACCEPT_RTADV:
791 return ip6_accept_rtadv != 0;
792 case ND6_IFF_OVERRIDE_RTADV:
793 case 0:
794 default:
795 return false;
796 }
797 }
798
799 /*
800 * Nuke neighbor cache/prefix/default router management table, right before
801 * ifp goes away.
802 */
803 void
804 nd6_purge(struct ifnet *ifp, struct in6_ifextra *ext)
805 {
806 struct nd_defrouter *dr, *ndr;
807 struct nd_prefix *pr, *npr;
808
809 /*
810 * During detach, the ND info might be already removed, but
811 * then is explitly passed as argument.
812 * Otherwise get it from ifp->if_afdata.
813 */
814 if (ext == NULL)
815 ext = ifp->if_afdata[AF_INET6];
816 if (ext == NULL)
817 return;
818
819 /*
820 * Nuke default router list entries toward ifp.
821 * We defer removal of default router list entries that is installed
822 * in the routing table, in order to keep additional side effects as
823 * small as possible.
824 */
825 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
826 if (dr->installed)
827 continue;
828
829 if (dr->ifp == ifp) {
830 KASSERT(ext != NULL);
831 defrtrlist_del(dr, ext);
832 }
833 }
834
835 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
836 if (!dr->installed)
837 continue;
838
839 if (dr->ifp == ifp) {
840 KASSERT(ext != NULL);
841 defrtrlist_del(dr, ext);
842 }
843 }
844
845 /* Nuke prefix list entries toward ifp */
846 LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, npr) {
847 if (pr->ndpr_ifp == ifp) {
848 /*
849 * Because if_detach() does *not* release prefixes
850 * while purging addresses the reference count will
851 * still be above zero. We therefore reset it to
852 * make sure that the prefix really gets purged.
853 */
854 pr->ndpr_refcnt = 0;
855 /*
856 * Previously, pr->ndpr_addr is removed as well,
857 * but I strongly believe we don't have to do it.
858 * nd6_purge() is only called from in6_ifdetach(),
859 * which removes all the associated interface addresses
860 * by itself.
861 * (jinmei (at) kame.net 20010129)
862 */
863 prelist_remove(pr);
864 }
865 }
866
867 /* cancel default outgoing interface setting */
868 if (nd6_defifindex == ifp->if_index)
869 nd6_setdefaultiface(0);
870
871 /* XXX: too restrictive? */
872 if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) {
873 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
874 if (ndi && nd6_accepts_rtadv(ndi)) {
875 /* refresh default router list */
876 defrouter_select();
877 }
878 }
879
880 /*
881 * We may not need to nuke the neighbor cache entries here
882 * because the neighbor cache is kept in if_afdata[AF_INET6].
883 * nd6_purge() is invoked by in6_ifdetach() which is called
884 * from if_detach() where everything gets purged. However
885 * in6_ifdetach is directly called from vlan(4), so we still
886 * need to purge entries here.
887 */
888 if (ext->lltable != NULL)
889 lltable_purge_entries(ext->lltable);
890 }
891
892 static struct rtentry *
893 nd6_lookup1(const struct in6_addr *addr6, int create, struct ifnet *ifp,
894 int cloning)
895 {
896 struct rtentry *rt;
897 struct sockaddr_in6 sin6;
898
899 sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
900 rt = rtalloc1((struct sockaddr *)&sin6, create);
901 if (rt != NULL && (rt->rt_flags & RTF_LLINFO) == 0) {
902 /*
903 * This is the case for the default route.
904 * If we want to create a neighbor cache for the address, we
905 * should free the route for the destination and allocate an
906 * interface route.
907 */
908 if (create) {
909 rtfree(rt);
910 rt = NULL;
911 }
912 }
913 if (rt != NULL)
914 ;
915 else if (create && ifp) {
916 int e;
917
918 /*
919 * If no route is available and create is set,
920 * we allocate a host route for the destination
921 * and treat it like an interface route.
922 * This hack is necessary for a neighbor which can't
923 * be covered by our own prefix.
924 */
925 struct ifaddr *ifa =
926 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
927 if (ifa == NULL)
928 return NULL;
929
930 /*
931 * Create a new route. RTF_LLINFO is necessary
932 * to create a Neighbor Cache entry for the
933 * destination in nd6_rtrequest which will be
934 * called in rtrequest via ifa->ifa_rtrequest.
935 */
936 if ((e = rtrequest(RTM_ADD, (const struct sockaddr *)&sin6,
937 ifa->ifa_addr, (const struct sockaddr *)&all1_sa,
938 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
939 ~RTF_CLONING, &rt)) != 0) {
940 #if 0
941 log(LOG_ERR,
942 "nd6_lookup: failed to add route for a "
943 "neighbor(%s), errno=%d\n",
944 ip6_sprintf(addr6), e);
945 #endif
946 return NULL;
947 }
948 if (rt == NULL)
949 return NULL;
950 if (rt->rt_llinfo) {
951 struct llentry *ln = rt->rt_llinfo;
952 ln->ln_state = ND6_LLINFO_NOSTATE;
953 }
954 } else
955 return NULL;
956
957 /*
958 * Check for a cloning route to match the address.
959 * This should only be set from in6_is_addr_neighbor so we avoid
960 * a potentially expensive second call to rtalloc1.
961 */
962 if (cloning &&
963 rt->rt_flags & (RTF_CLONING | RTF_CLONED) &&
964 (rt->rt_ifp == ifp
965 #if NBRIDGE > 0
966 || rt->rt_ifp->if_bridge == ifp->if_bridge
967 #endif
968 #if NCARP > 0
969 || (ifp->if_type == IFT_CARP && rt->rt_ifp == ifp->if_carpdev) ||
970 (rt->rt_ifp->if_type == IFT_CARP && rt->rt_ifp->if_carpdev == ifp)||
971 (ifp->if_type == IFT_CARP && rt->rt_ifp->if_type == IFT_CARP &&
972 rt->rt_ifp->if_carpdev == ifp->if_carpdev)
973 #endif
974 ))
975 return rt;
976
977 /*
978 * Validation for the entry.
979 * Note that the check for rt_llinfo is necessary because a cloned
980 * route from a parent route that has the L flag (e.g. the default
981 * route to a p2p interface) may have the flag, too, while the
982 * destination is not actually a neighbor.
983 * XXX: we can't use rt->rt_ifp to check for the interface, since
984 * it might be the loopback interface if the entry is for our
985 * own address on a non-loopback interface. Instead, we should
986 * use rt->rt_ifa->ifa_ifp, which would specify the REAL
987 * interface.
988 * Note also that ifa_ifp and ifp may differ when we connect two
989 * interfaces to a same link, install a link prefix to an interface,
990 * and try to install a neighbor cache on an interface that does not
991 * have a route to the prefix.
992 */
993 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
994 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
995 (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
996 if (create) {
997 nd6log((LOG_DEBUG,
998 "nd6_lookup: failed to lookup %s (if = %s)\n",
999 ip6_sprintf(addr6),
1000 ifp ? if_name(ifp) : "unspec"));
1001 }
1002 rtfree(rt);
1003 return NULL;
1004 }
1005 return rt;
1006 }
1007
1008 struct rtentry *
1009 nd6_lookup(const struct in6_addr *addr6, int create, struct ifnet *ifp)
1010 {
1011
1012 return nd6_lookup1(addr6, create, ifp, 0);
1013 }
1014
1015 /*
1016 * Detect if a given IPv6 address identifies a neighbor on a given link.
1017 * XXX: should take care of the destination of a p2p link?
1018 */
1019 int
1020 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1021 {
1022 struct nd_prefix *pr;
1023 struct rtentry *rt;
1024
1025 /*
1026 * A link-local address is always a neighbor.
1027 * XXX: a link does not necessarily specify a single interface.
1028 */
1029 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
1030 struct sockaddr_in6 sin6_copy;
1031 u_int32_t zone;
1032
1033 /*
1034 * We need sin6_copy since sa6_recoverscope() may modify the
1035 * content (XXX).
1036 */
1037 sin6_copy = *addr;
1038 if (sa6_recoverscope(&sin6_copy))
1039 return 0; /* XXX: should be impossible */
1040 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
1041 return 0;
1042 if (sin6_copy.sin6_scope_id == zone)
1043 return 1;
1044 else
1045 return 0;
1046 }
1047
1048 /*
1049 * If the address matches one of our on-link prefixes, it should be a
1050 * neighbor.
1051 */
1052 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
1053 if (pr->ndpr_ifp != ifp)
1054 continue;
1055
1056 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
1057 continue;
1058
1059 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1060 &addr->sin6_addr, &pr->ndpr_mask))
1061 return 1;
1062 }
1063
1064 /*
1065 * If the default router list is empty, all addresses are regarded
1066 * as on-link, and thus, as a neighbor.
1067 * XXX: we restrict the condition to hosts, because routers usually do
1068 * not have the "default router list".
1069 */
1070 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
1071 nd6_defifindex == ifp->if_index) {
1072 return 1;
1073 }
1074
1075 /*
1076 * Even if the address matches none of our addresses, it might match
1077 * a cloning route or be in the neighbor cache.
1078 */
1079 rt = nd6_lookup1(&addr->sin6_addr, 0, ifp, 1);
1080 if (rt != NULL) {
1081 rtfree(rt);
1082 return 1;
1083 }
1084
1085 return 0;
1086 }
1087
1088 /*
1089 * Free an nd6 llinfo entry.
1090 * Since the function would cause significant changes in the kernel, DO NOT
1091 * make it global, unless you have a strong reason for the change, and are sure
1092 * that the change is safe.
1093 */
1094 static void
1095 nd6_free(struct rtentry *rt, struct llentry *ln, int gc)
1096 {
1097 struct in6_addr in6 = satocsin6(rt_getkey(rt))->sin6_addr;
1098 struct nd_defrouter *dr;
1099 int error;
1100
1101 KASSERT(ln != NULL);
1102 KASSERT(ln == rt->rt_llinfo);
1103 LLE_WLOCK_ASSERT(ln);
1104
1105 /*
1106 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1107 * even though it is not harmful, it was not really necessary.
1108 */
1109
1110 /* cancel timer */
1111 nd6_llinfo_settimer_locked(ln, -1);
1112
1113 if (!ip6_forwarding) {
1114 int s;
1115 s = splsoftnet();
1116 dr = defrouter_lookup(&satocsin6(rt_getkey(rt))->sin6_addr,
1117 rt->rt_ifp);
1118
1119 if (dr != NULL && dr->expire &&
1120 ln->ln_state == ND6_LLINFO_STALE && gc) {
1121 /*
1122 * If the reason for the deletion is just garbage
1123 * collection, and the neighbor is an active default
1124 * router, do not delete it. Instead, reset the GC
1125 * timer using the router's lifetime.
1126 * Simply deleting the entry would affect default
1127 * router selection, which is not necessarily a good
1128 * thing, especially when we're using router preference
1129 * values.
1130 * XXX: the check for ln_state would be redundant,
1131 * but we intentionally keep it just in case.
1132 */
1133 if (dr->expire > time_uptime)
1134 nd6_llinfo_settimer_locked(ln,
1135 (dr->expire - time_uptime) * hz);
1136 else
1137 nd6_llinfo_settimer_locked(ln,
1138 (long)nd6_gctimer * hz);
1139 splx(s);
1140 return;
1141 }
1142
1143 if (ln->ln_router || dr) {
1144 /*
1145 * rt6_flush must be called whether or not the neighbor
1146 * is in the Default Router List.
1147 * See a corresponding comment in nd6_na_input().
1148 */
1149 rt6_flush(&in6, rt->rt_ifp);
1150 }
1151
1152 if (dr) {
1153 /*
1154 * Unreachablity of a router might affect the default
1155 * router selection and on-link detection of advertised
1156 * prefixes.
1157 */
1158
1159 /*
1160 * Temporarily fake the state to choose a new default
1161 * router and to perform on-link determination of
1162 * prefixes correctly.
1163 * Below the state will be set correctly,
1164 * or the entry itself will be deleted.
1165 */
1166 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1167
1168 /*
1169 * Since defrouter_select() does not affect the
1170 * on-link determination and MIP6 needs the check
1171 * before the default router selection, we perform
1172 * the check now.
1173 */
1174 pfxlist_onlink_check();
1175
1176 /*
1177 * refresh default router list
1178 */
1179 defrouter_select();
1180 }
1181 splx(s);
1182 }
1183
1184 LLE_WUNLOCK(ln);
1185 /*
1186 * Detach the route from the routing tree and the list of neighbor
1187 * caches, and disable the route entry not to be used in already
1188 * cached routes.
1189 */
1190 error = rtrequest_newmsg(RTM_DELETE, rt_getkey(rt), NULL,
1191 rt_mask(rt), 0);
1192 if (error != 0) {
1193 /* XXX need error message? */;
1194 }
1195 }
1196
1197 /*
1198 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1199 *
1200 * XXX cost-effective methods?
1201 */
1202 void
1203 nd6_nud_hint(struct rtentry *rt)
1204 {
1205 struct llentry *ln;
1206
1207 if (rt == NULL)
1208 return;
1209
1210 if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1211 (rt->rt_flags & RTF_LLINFO) == 0 ||
1212 !rt->rt_llinfo || !rt->rt_gateway ||
1213 rt->rt_gateway->sa_family != AF_LINK) {
1214 /* This is not a host route. */
1215 return;
1216 }
1217
1218 ln = rt->rt_llinfo;
1219 if (ln->ln_state < ND6_LLINFO_REACHABLE)
1220 return;
1221
1222 /*
1223 * if we get upper-layer reachability confirmation many times,
1224 * it is possible we have false information.
1225 */
1226 ln->ln_byhint++;
1227 if (ln->ln_byhint > nd6_maxnudhint)
1228 return;
1229
1230 ln->ln_state = ND6_LLINFO_REACHABLE;
1231 if (!ND6_LLINFO_PERMANENT(ln)) {
1232 nd6_llinfo_settimer(ln,
1233 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1234 }
1235
1236 return;
1237 }
1238
1239 static int
1240 nd6_purge_entry(struct lltable *llt, struct llentry *ln, void *farg)
1241 {
1242 int *n = farg;
1243
1244 if (*n <= 0)
1245 return 0;
1246
1247 if (ND6_LLINFO_PERMANENT(ln))
1248 return 0;
1249
1250 LLE_WLOCK(ln);
1251 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1252 ln->ln_state = ND6_LLINFO_STALE;
1253 else
1254 ln->ln_state = ND6_LLINFO_PURGE;
1255 nd6_llinfo_settimer_locked(ln, 0);
1256 LLE_WUNLOCK(ln);
1257
1258 (*n)--;
1259 return 0;
1260 }
1261
1262 static void
1263 nd6_gc_neighbors(struct lltable *llt)
1264 {
1265 int max_gc_entries = 10;
1266
1267 if (ip6_neighborgcthresh >= 0 &&
1268 lltable_get_entry_count(llt) >= ip6_neighborgcthresh) {
1269 /*
1270 * XXX entries that are "less recently used" should be
1271 * freed first.
1272 */
1273 lltable_foreach_lle(llt, nd6_purge_entry, &max_gc_entries);
1274 }
1275 }
1276
1277 void
1278 nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
1279 {
1280 struct sockaddr *gate = rt->rt_gateway;
1281 struct llentry *ln;
1282 struct ifnet *ifp = rt->rt_ifp;
1283 uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen;
1284 struct ifaddr *ifa;
1285 int flags = 0;
1286 bool use_lo0ifp = false;
1287
1288 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1289
1290 if (req == RTM_LLINFO_UPD) {
1291 int rc;
1292 struct in6_addr *in6;
1293 struct in6_addr in6_all;
1294 int anycast;
1295
1296 if ((ifa = info->rti_ifa) == NULL)
1297 return;
1298
1299 in6 = &ifatoia6(ifa)->ia_addr.sin6_addr;
1300 anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST;
1301
1302 in6_all = in6addr_linklocal_allnodes;
1303 if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) {
1304 log(LOG_ERR, "%s: failed to set scope %s "
1305 "(errno=%d)\n", __func__, if_name(ifp), rc);
1306 return;
1307 }
1308
1309 /* XXX don't set Override for proxy addresses */
1310 nd6_na_output(ifa->ifa_ifp, &in6_all, in6,
1311 (anycast ? 0 : ND_NA_FLAG_OVERRIDE)
1312 #if 0
1313 | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0)
1314 #endif
1315 , 1, NULL);
1316 return;
1317 }
1318
1319 if ((rt->rt_flags & RTF_GATEWAY) != 0)
1320 return;
1321
1322 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1323 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1324 /*
1325 * This is probably an interface direct route for a link
1326 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1327 * We do not need special treatment below for such a route.
1328 * Moreover, the RTF_LLINFO flag which would be set below
1329 * would annoy the ndp(8) command.
1330 */
1331 return;
1332 }
1333
1334 IF_AFDATA_RLOCK(ifp);
1335 ln = lla_lookup(LLTABLE6(ifp), flags, rt_getkey(rt));
1336 IF_AFDATA_RUNLOCK(ifp);
1337
1338 if (req == RTM_RESOLVE &&
1339 (nd6_need_cache(ifp) == 0 || /* stf case */
1340 !nd6_is_addr_neighbor(satocsin6(rt_getkey(rt)), ifp))) {
1341 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1342 /*
1343 * FreeBSD and BSD/OS often make a cloned host route based
1344 * on a less-specific route (e.g. the default route).
1345 * If the less specific route does not have a "gateway"
1346 * (this is the case when the route just goes to a p2p or an
1347 * stf interface), we'll mistakenly make a neighbor cache for
1348 * the host route, and will see strange neighbor solicitation
1349 * for the corresponding destination. In order to avoid the
1350 * confusion, we check if the destination of the route is
1351 * a neighbor in terms of neighbor discovery, and stop the
1352 * process if not. Additionally, we remove the LLINFO flag
1353 * so that ndp(8) will not try to get the neighbor information
1354 * of the destination.
1355 */
1356 rt->rt_flags &= ~RTF_LLINFO;
1357 return;
1358 }
1359
1360 switch (req) {
1361 case RTM_ADD:
1362 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1363 /*
1364 * There is no backward compatibility :)
1365 *
1366 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1367 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1368 * rt->rt_flags |= RTF_CLONING;
1369 */
1370 if ((rt->rt_flags & RTF_CLONING) ||
1371 ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1372 union {
1373 struct sockaddr sa;
1374 struct sockaddr_dl sdl;
1375 struct sockaddr_storage ss;
1376 } u;
1377 /*
1378 * Case 1: This route should come from a route to
1379 * interface (RTF_CLONING case) or the route should be
1380 * treated as on-link but is currently not
1381 * (RTF_LLINFO && ln == NULL case).
1382 */
1383 if (sockaddr_dl_init(&u.sdl, sizeof(u.ss),
1384 ifp->if_index, ifp->if_type,
1385 NULL, namelen, NULL, addrlen) == NULL) {
1386 printf("%s.%d: sockaddr_dl_init(, %zu, ) "
1387 "failed on %s\n", __func__, __LINE__,
1388 sizeof(u.ss), if_name(ifp));
1389 }
1390 rt_setgate(rt, &u.sa);
1391 gate = rt->rt_gateway;
1392 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1393 if (ln != NULL)
1394 nd6_llinfo_settimer_locked(ln, 0);
1395 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1396 if ((rt->rt_flags & RTF_CLONING) != 0)
1397 break;
1398 }
1399 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1400 /*
1401 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1402 * We don't do that here since llinfo is not ready yet.
1403 *
1404 * There are also couple of other things to be discussed:
1405 * - unsolicited NA code needs improvement beforehand
1406 * - RFC2461 says we MAY send multicast unsolicited NA
1407 * (7.2.6 paragraph 4), however, it also says that we
1408 * SHOULD provide a mechanism to prevent multicast NA storm.
1409 * we don't have anything like it right now.
1410 * note that the mechanism needs a mutual agreement
1411 * between proxies, which means that we need to implement
1412 * a new protocol, or a new kludge.
1413 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1414 * we need to check ip6forwarding before sending it.
1415 * (or should we allow proxy ND configuration only for
1416 * routers? there's no mention about proxy ND from hosts)
1417 */
1418 #if 0
1419 /* XXX it does not work */
1420 if (rt->rt_flags & RTF_ANNOUNCE)
1421 nd6_na_output(ifp,
1422 &satocsin6(rt_getkey(rt))->sin6_addr,
1423 &satocsin6(rt_getkey(rt))->sin6_addr,
1424 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1425 1, NULL);
1426 #endif
1427 /* FALLTHROUGH */
1428 case RTM_RESOLVE:
1429 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1430 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1431 /*
1432 * Address resolution isn't necessary for a point to
1433 * point link, so we can skip this test for a p2p link.
1434 */
1435 if (gate->sa_family != AF_LINK ||
1436 gate->sa_len <
1437 sockaddr_dl_measure(namelen, addrlen)) {
1438 log(LOG_DEBUG,
1439 "nd6_rtrequest: bad gateway value: %s\n",
1440 if_name(ifp));
1441 break;
1442 }
1443 satosdl(gate)->sdl_type = ifp->if_type;
1444 satosdl(gate)->sdl_index = ifp->if_index;
1445 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1446 }
1447 if (ln != NULL)
1448 break; /* This happens on a route change */
1449 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1450
1451 /* Determine to use lo0ifp or not before lla_create */
1452 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp,
1453 &satocsin6(rt_getkey(rt))->sin6_addr);
1454 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1455 if (ifa != NULL && nd6_useloopback)
1456 use_lo0ifp = true;
1457
1458 /*
1459 * Case 2: This route may come from cloning, or a manual route
1460 * add with a LL address.
1461 */
1462 flags = LLE_EXCLUSIVE;
1463 if ((rt->rt_flags & RTF_CLONED) == 0)
1464 flags |= LLE_IFADDR;
1465
1466 #define _IFP() (use_lo0ifp ? lo0ifp : ifp)
1467 IF_AFDATA_WLOCK(_IFP());
1468 ln = lla_create(LLTABLE6(_IFP()), flags, rt_getkey(rt));
1469 IF_AFDATA_WUNLOCK(_IFP());
1470
1471 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1472 if (ln == NULL) {
1473 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1474 break;
1475 }
1476
1477 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1478 nd6_inuse++;
1479 nd6_allocated++;
1480 ln->ln_rt = rt;
1481 rt->rt_refcnt++;
1482 rt->rt_llinfo = ln;
1483 LLE_ADDREF(ln);
1484 rt->rt_flags |= RTF_LLINFO;
1485 switch (_IFP()->if_type) {
1486 #if NTOKEN > 0
1487 case IFT_ISO88025:
1488 ln->la_opaque = kmem_alloc(sizeof(struct token_rif),
1489 KM_SLEEP);
1490 break;
1491 #endif /* NTOKEN > 0 */
1492 default:
1493 break;
1494 }
1495 #undef _IFP
1496
1497 /* this is required for "ndp" command. - shin */
1498 if (req == RTM_ADD) {
1499 /*
1500 * gate should have some valid AF_LINK entry,
1501 * and ln->ln_expire should have some lifetime
1502 * which is specified by ndp command.
1503 */
1504 ln->ln_state = ND6_LLINFO_REACHABLE;
1505 ln->ln_byhint = 0;
1506 } else {
1507 /*
1508 * When req == RTM_RESOLVE, rt is created and
1509 * initialized in rtrequest(), so rt_expire is 0.
1510 */
1511 ln->ln_state = ND6_LLINFO_NOSTATE;
1512 nd6_llinfo_settimer_locked(ln, 0);
1513 }
1514 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1515
1516 /*
1517 * check if rt_getkey(rt) is an address assigned
1518 * to the interface.
1519 */
1520 if (ifa != NULL) {
1521 const void *mac;
1522 nd6_llinfo_settimer_locked(ln, -1);
1523 ln->ln_state = ND6_LLINFO_REACHABLE;
1524 ln->ln_byhint = 0;
1525 if ((mac = nd6_ifptomac(ifp)) != NULL) {
1526 /* XXX check for error */
1527 if (sockaddr_dl_setaddr(satosdl(gate),
1528 gate->sa_len, mac,
1529 ifp->if_addrlen) == NULL) {
1530 printf("%s.%d: "
1531 "sockaddr_dl_setaddr(, %d, ) "
1532 "failed on %s\n", __func__,
1533 __LINE__, gate->sa_len,
1534 if_name(ifp));
1535 }
1536 }
1537 if (nd6_useloopback) {
1538 ifp = rt->rt_ifp = lo0ifp; /* XXX */
1539 /*
1540 * Make sure rt_ifa be equal to the ifaddr
1541 * corresponding to the address.
1542 * We need this because when we refer
1543 * rt_ifa->ia6_flags in ip6_input, we assume
1544 * that the rt_ifa points to the address instead
1545 * of the loopback address.
1546 */
1547 if (ifa != rt->rt_ifa)
1548 rt_replace_ifa(rt, ifa);
1549 rt->rt_rmx.rmx_mtu = 0;
1550 rt->rt_flags &= ~RTF_CLONED;
1551 }
1552 rt->rt_flags |= RTF_LOCAL;
1553 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1554 nd6_llinfo_settimer_locked(ln, -1);
1555 ln->ln_state = ND6_LLINFO_REACHABLE;
1556 ln->ln_byhint = 0;
1557
1558 /* join solicited node multicast for proxy ND */
1559 if (ifp->if_flags & IFF_MULTICAST) {
1560 struct in6_addr llsol;
1561 int error;
1562
1563 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1564 llsol.s6_addr32[0] = htonl(0xff020000);
1565 llsol.s6_addr32[1] = 0;
1566 llsol.s6_addr32[2] = htonl(1);
1567 llsol.s6_addr8[12] = 0xff;
1568 if (in6_setscope(&llsol, ifp, NULL))
1569 break;
1570 if (!in6_addmulti(&llsol, ifp, &error, 0)) {
1571 nd6log((LOG_ERR, "%s: failed to join "
1572 "%s (errno=%d)\n", if_name(ifp),
1573 ip6_sprintf(&llsol), error));
1574 }
1575 }
1576 }
1577 LLE_WUNLOCK(ln);
1578 /*
1579 * If we have too many cache entries, initiate immediate
1580 * purging for some entries.
1581 */
1582 nd6_gc_neighbors(ln->lle_tbl);
1583 ln = NULL;
1584
1585 break;
1586
1587 case RTM_DELETE:
1588 if (ln == NULL)
1589 break;
1590 /* leave from solicited node multicast for proxy ND */
1591 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1592 (ifp->if_flags & IFF_MULTICAST) != 0) {
1593 struct in6_addr llsol;
1594 struct in6_multi *in6m;
1595
1596 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1597 llsol.s6_addr32[0] = htonl(0xff020000);
1598 llsol.s6_addr32[1] = 0;
1599 llsol.s6_addr32[2] = htonl(1);
1600 llsol.s6_addr8[12] = 0xff;
1601 if (in6_setscope(&llsol, ifp, NULL) == 0) {
1602 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1603 if (in6m)
1604 in6_delmulti(in6m);
1605 }
1606 }
1607 nd6_inuse--;
1608 rt->rt_llinfo = NULL;
1609 rt->rt_flags &= ~RTF_LLINFO;
1610
1611 /* Have to do before IF_AFDATA_WLOCK to avoid deadlock */
1612 callout_halt(&ln->la_timer, &ln->lle_lock);
1613 /* XXX: LOR avoidance. We still have ref on lle. */
1614 LLE_RUNLOCK(ln);
1615
1616 IF_AFDATA_WLOCK(ifp);
1617 LLE_WLOCK(ln);
1618
1619 clear_llinfo_pqueue(ln);
1620 if (ln->la_opaque != NULL) {
1621 switch (ifp->if_type) {
1622 #if NTOKEN > 0
1623 case IFT_ISO88025:
1624 kmem_free(ln->la_opaque,
1625 sizeof(struct token_rif));
1626 break;
1627 #endif /* NTOKEN > 0 */
1628 default:
1629 break;
1630 }
1631 }
1632
1633 if (ln->la_rt != NULL) {
1634 /*
1635 * Don't rtfree (may actually free objects) here.
1636 * Leave it to rtrequest1.
1637 */
1638 ln->la_rt->rt_refcnt--;
1639 ln->la_rt = NULL;
1640 }
1641 /* Guard against race with other llentry_free(). */
1642 if (ln->la_flags & LLE_LINKED) {
1643 LLE_REMREF(ln);
1644 llentry_free(ln);
1645 } else {
1646 LLE_FREE_LOCKED(ln);
1647 }
1648
1649 IF_AFDATA_WUNLOCK(ifp);
1650 ln = NULL;
1651 }
1652
1653 if (ln != NULL) {
1654 if (flags & LLE_EXCLUSIVE)
1655 LLE_WUNLOCK(ln);
1656 else
1657 LLE_RUNLOCK(ln);
1658 }
1659 }
1660
1661 int
1662 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp)
1663 {
1664 struct in6_drlist *drl = (struct in6_drlist *)data;
1665 struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1666 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1667 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1668 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1669 struct nd_defrouter *dr;
1670 struct nd_prefix *pr;
1671 int i = 0, error = 0;
1672 int s;
1673
1674 switch (cmd) {
1675 case SIOCGDRLST_IN6:
1676 /*
1677 * obsolete API, use sysctl under net.inet6.icmp6
1678 */
1679 memset(drl, 0, sizeof(*drl));
1680 s = splsoftnet();
1681 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
1682 if (i >= DRLSTSIZ)
1683 break;
1684 drl->defrouter[i].rtaddr = dr->rtaddr;
1685 in6_clearscope(&drl->defrouter[i].rtaddr);
1686
1687 drl->defrouter[i].flags = dr->flags;
1688 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1689 drl->defrouter[i].expire = dr->expire ?
1690 time_mono_to_wall(dr->expire) : 0;
1691 drl->defrouter[i].if_index = dr->ifp->if_index;
1692 i++;
1693 }
1694 splx(s);
1695 break;
1696 case SIOCGPRLST_IN6:
1697 /*
1698 * obsolete API, use sysctl under net.inet6.icmp6
1699 *
1700 * XXX the structure in6_prlist was changed in backward-
1701 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1702 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1703 */
1704 /*
1705 * XXX meaning of fields, especialy "raflags", is very
1706 * differnet between RA prefix list and RR/static prefix list.
1707 * how about separating ioctls into two?
1708 */
1709 memset(oprl, 0, sizeof(*oprl));
1710 s = splsoftnet();
1711 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
1712 struct nd_pfxrouter *pfr;
1713 int j;
1714
1715 if (i >= PRLSTSIZ)
1716 break;
1717 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1718 oprl->prefix[i].raflags = pr->ndpr_raf;
1719 oprl->prefix[i].prefixlen = pr->ndpr_plen;
1720 oprl->prefix[i].vltime = pr->ndpr_vltime;
1721 oprl->prefix[i].pltime = pr->ndpr_pltime;
1722 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1723 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1724 oprl->prefix[i].expire = 0;
1725 else {
1726 time_t maxexpire;
1727
1728 /* XXX: we assume time_t is signed. */
1729 maxexpire = (-1) &
1730 ~((time_t)1 <<
1731 ((sizeof(maxexpire) * 8) - 1));
1732 if (pr->ndpr_vltime <
1733 maxexpire - pr->ndpr_lastupdate) {
1734 time_t expire;
1735 expire = pr->ndpr_lastupdate +
1736 pr->ndpr_vltime;
1737 oprl->prefix[i].expire = expire ?
1738 time_mono_to_wall(expire) : 0;
1739 } else
1740 oprl->prefix[i].expire = maxexpire;
1741 }
1742
1743 j = 0;
1744 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
1745 if (j < DRLSTSIZ) {
1746 #define RTRADDR oprl->prefix[i].advrtr[j]
1747 RTRADDR = pfr->router->rtaddr;
1748 in6_clearscope(&RTRADDR);
1749 #undef RTRADDR
1750 }
1751 j++;
1752 }
1753 oprl->prefix[i].advrtrs = j;
1754 oprl->prefix[i].origin = PR_ORIG_RA;
1755
1756 i++;
1757 }
1758 splx(s);
1759
1760 break;
1761 case OSIOCGIFINFO_IN6:
1762 #define ND ndi->ndi
1763 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1764 memset(&ND, 0, sizeof(ND));
1765 ND.linkmtu = IN6_LINKMTU(ifp);
1766 ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1767 ND.basereachable = ND_IFINFO(ifp)->basereachable;
1768 ND.reachable = ND_IFINFO(ifp)->reachable;
1769 ND.retrans = ND_IFINFO(ifp)->retrans;
1770 ND.flags = ND_IFINFO(ifp)->flags;
1771 ND.recalctm = ND_IFINFO(ifp)->recalctm;
1772 ND.chlim = ND_IFINFO(ifp)->chlim;
1773 break;
1774 case SIOCGIFINFO_IN6:
1775 ND = *ND_IFINFO(ifp);
1776 break;
1777 case SIOCSIFINFO_IN6:
1778 /*
1779 * used to change host variables from userland.
1780 * intented for a use on router to reflect RA configurations.
1781 */
1782 /* 0 means 'unspecified' */
1783 if (ND.linkmtu != 0) {
1784 if (ND.linkmtu < IPV6_MMTU ||
1785 ND.linkmtu > IN6_LINKMTU(ifp)) {
1786 error = EINVAL;
1787 break;
1788 }
1789 ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1790 }
1791
1792 if (ND.basereachable != 0) {
1793 int obasereachable = ND_IFINFO(ifp)->basereachable;
1794
1795 ND_IFINFO(ifp)->basereachable = ND.basereachable;
1796 if (ND.basereachable != obasereachable)
1797 ND_IFINFO(ifp)->reachable =
1798 ND_COMPUTE_RTIME(ND.basereachable);
1799 }
1800 if (ND.retrans != 0)
1801 ND_IFINFO(ifp)->retrans = ND.retrans;
1802 if (ND.chlim != 0)
1803 ND_IFINFO(ifp)->chlim = ND.chlim;
1804 /* FALLTHROUGH */
1805 case SIOCSIFINFO_FLAGS:
1806 {
1807 struct ifaddr *ifa;
1808 struct in6_ifaddr *ia;
1809
1810 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1811 !(ND.flags & ND6_IFF_IFDISABLED))
1812 {
1813 /*
1814 * If the interface is marked as ND6_IFF_IFDISABLED and
1815 * has a link-local address with IN6_IFF_DUPLICATED,
1816 * do not clear ND6_IFF_IFDISABLED.
1817 * See RFC 4862, section 5.4.5.
1818 */
1819 int duplicated_linklocal = 0;
1820
1821 IFADDR_FOREACH(ifa, ifp) {
1822 if (ifa->ifa_addr->sa_family != AF_INET6)
1823 continue;
1824 ia = (struct in6_ifaddr *)ifa;
1825 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1826 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1827 {
1828 duplicated_linklocal = 1;
1829 break;
1830 }
1831 }
1832
1833 if (duplicated_linklocal) {
1834 ND.flags |= ND6_IFF_IFDISABLED;
1835 log(LOG_ERR, "Cannot enable an interface"
1836 " with a link-local address marked"
1837 " duplicate.\n");
1838 } else {
1839 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1840 if (ifp->if_flags & IFF_UP)
1841 in6_if_up(ifp);
1842 }
1843 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1844 (ND.flags & ND6_IFF_IFDISABLED))
1845 {
1846 /* Mark all IPv6 addresses as tentative. */
1847
1848 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1849 IFADDR_FOREACH(ifa, ifp) {
1850 if (ifa->ifa_addr->sa_family != AF_INET6)
1851 continue;
1852 nd6_dad_stop(ifa);
1853 ia = (struct in6_ifaddr *)ifa;
1854 ia->ia6_flags |= IN6_IFF_TENTATIVE;
1855 }
1856 }
1857
1858 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1859 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1860 /* auto_linklocal 0->1 transition */
1861
1862 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1863 in6_ifattach(ifp, NULL);
1864 } else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1865 ifp->if_flags & IFF_UP)
1866 {
1867 /*
1868 * When the IF already has
1869 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1870 * address is assigned, and IFF_UP, try to
1871 * assign one.
1872 */
1873 int haslinklocal = 0;
1874
1875 IFADDR_FOREACH(ifa, ifp) {
1876 if (ifa->ifa_addr->sa_family !=AF_INET6)
1877 continue;
1878 ia = (struct in6_ifaddr *)ifa;
1879 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))){
1880 haslinklocal = 1;
1881 break;
1882 }
1883 }
1884 if (!haslinklocal)
1885 in6_ifattach(ifp, NULL);
1886 }
1887 }
1888 }
1889 ND_IFINFO(ifp)->flags = ND.flags;
1890 break;
1891 #undef ND
1892 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1893 /* sync kernel routing table with the default router list */
1894 defrouter_reset();
1895 defrouter_select();
1896 break;
1897 case SIOCSPFXFLUSH_IN6:
1898 {
1899 /* flush all the prefix advertised by routers */
1900 struct nd_prefix *pfx, *next;
1901
1902 s = splsoftnet();
1903 LIST_FOREACH_SAFE(pfx, &nd_prefix, ndpr_entry, next) {
1904 struct in6_ifaddr *ia, *ia_next;
1905
1906 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
1907 continue; /* XXX */
1908
1909 /* do we really have to remove addresses as well? */
1910 for (ia = in6_ifaddr; ia; ia = ia_next) {
1911 /* ia might be removed. keep the next ptr. */
1912 ia_next = ia->ia_next;
1913
1914 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1915 continue;
1916
1917 if (ia->ia6_ndpr == pfx)
1918 in6_purgeaddr(&ia->ia_ifa);
1919 }
1920 prelist_remove(pfx);
1921 }
1922 splx(s);
1923 break;
1924 }
1925 case SIOCSRTRFLUSH_IN6:
1926 {
1927 /* flush all the default routers */
1928 struct nd_defrouter *drtr, *next;
1929
1930 s = splsoftnet();
1931 defrouter_reset();
1932 TAILQ_FOREACH_SAFE(drtr, &nd_defrouter, dr_entry, next) {
1933 defrtrlist_del(drtr, NULL);
1934 }
1935 defrouter_select();
1936 splx(s);
1937 break;
1938 }
1939 case SIOCGNBRINFO_IN6:
1940 {
1941 struct llentry *ln;
1942 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1943 struct rtentry *rt;
1944
1945 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1946 return error;
1947
1948 s = splsoftnet();
1949 rt = nd6_lookup(&nb_addr, 0, ifp);
1950 if (rt == NULL) {
1951 error = EINVAL;
1952 splx(s);
1953 break;
1954 }
1955
1956 ln = rt->rt_llinfo;
1957 rtfree(rt);
1958 if (ln == NULL) {
1959 error = EINVAL;
1960 splx(s);
1961 break;
1962 }
1963 nbi->state = ln->ln_state;
1964 nbi->asked = ln->ln_asked;
1965 nbi->isrouter = ln->ln_router;
1966 nbi->expire = ln->ln_expire ?
1967 time_mono_to_wall(ln->ln_expire) : 0;
1968 splx(s);
1969
1970 break;
1971 }
1972 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1973 ndif->ifindex = nd6_defifindex;
1974 break;
1975 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1976 return nd6_setdefaultiface(ndif->ifindex);
1977 }
1978 return error;
1979 }
1980
1981 void
1982 nd6_llinfo_release_pkts(struct llentry *ln, struct ifnet *ifp,
1983 struct rtentry *rt)
1984 {
1985 struct mbuf *m_hold, *m_hold_next;
1986
1987 for (m_hold = ln->la_hold, ln->la_hold = NULL, ln->la_numheld = 0;
1988 m_hold != NULL;
1989 m_hold = m_hold_next) {
1990 m_hold_next = m_hold->m_nextpkt;
1991 m_hold->m_nextpkt = NULL;
1992
1993 /*
1994 * we assume ifp is not a p2p here, so
1995 * just set the 2nd argument as the
1996 * 1st one.
1997 */
1998 nd6_output(ifp, ifp, m_hold, satocsin6(rt_getkey(rt)), rt);
1999 }
2000 }
2001
2002 /*
2003 * Create neighbor cache entry and cache link-layer address,
2004 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
2005 */
2006 void
2007 nd6_cache_lladdr(
2008 struct ifnet *ifp,
2009 struct in6_addr *from,
2010 char *lladdr,
2011 int lladdrlen,
2012 int type, /* ICMP6 type */
2013 int code /* type dependent information */
2014 )
2015 {
2016 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
2017 struct rtentry *rt = NULL;
2018 struct llentry *ln = NULL;
2019 int is_newentry;
2020 struct sockaddr_dl *sdl = NULL;
2021 int do_update;
2022 int olladdr;
2023 int llchange;
2024 int newstate = 0;
2025
2026 KASSERT(ifp != NULL);
2027 KASSERT(from != NULL);
2028
2029 /* nothing must be updated for unspecified address */
2030 if (IN6_IS_ADDR_UNSPECIFIED(from))
2031 return;
2032
2033 /*
2034 * Validation about ifp->if_addrlen and lladdrlen must be done in
2035 * the caller.
2036 *
2037 * XXX If the link does not have link-layer adderss, what should
2038 * we do? (ifp->if_addrlen == 0)
2039 * Spec says nothing in sections for RA, RS and NA. There's small
2040 * description on it in NS section (RFC 2461 7.2.3).
2041 */
2042
2043 rt = nd6_lookup(from, 0, ifp);
2044 if (rt == NULL) {
2045 #if 0
2046 /* nothing must be done if there's no lladdr */
2047 if (!lladdr || !lladdrlen)
2048 return NULL;
2049 #endif
2050
2051 rt = nd6_lookup(from, 1, ifp);
2052 is_newentry = 1;
2053 } else {
2054 /* do nothing if static ndp is set */
2055 if (rt->rt_flags & RTF_STATIC) {
2056 rtfree(rt);
2057 return;
2058 }
2059 is_newentry = 0;
2060 }
2061
2062 if (rt == NULL)
2063 return;
2064 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
2065 fail:
2066 if (rt->rt_llinfo != NULL)
2067 LLE_WLOCK((struct llentry *)rt->rt_llinfo);
2068 nd6_free(rt, rt->rt_llinfo, 0);
2069 rtfree(rt);
2070 return;
2071 }
2072 ln = rt->rt_llinfo;
2073 if (ln == NULL)
2074 goto fail;
2075 if (rt->rt_gateway == NULL)
2076 goto fail;
2077 if (rt->rt_gateway->sa_family != AF_LINK)
2078 goto fail;
2079 sdl = satosdl(rt->rt_gateway);
2080
2081 olladdr = (sdl->sdl_alen) ? 1 : 0;
2082 if (olladdr && lladdr) {
2083 if (memcmp(lladdr, CLLADDR(sdl), ifp->if_addrlen))
2084 llchange = 1;
2085 else
2086 llchange = 0;
2087 } else
2088 llchange = 0;
2089
2090 /*
2091 * newentry olladdr lladdr llchange (*=record)
2092 * 0 n n -- (1)
2093 * 0 y n -- (2)
2094 * 0 n y -- (3) * STALE
2095 * 0 y y n (4) *
2096 * 0 y y y (5) * STALE
2097 * 1 -- n -- (6) NOSTATE(= PASSIVE)
2098 * 1 -- y -- (7) * STALE
2099 */
2100
2101 if (lladdr) { /* (3-5) and (7) */
2102 /*
2103 * Record source link-layer address
2104 * XXX is it dependent to ifp->if_type?
2105 */
2106 /* XXX check for error */
2107 if (sockaddr_dl_setaddr(sdl, sdl->sdl_len, lladdr,
2108 ifp->if_addrlen) == NULL) {
2109 printf("%s.%d: sockaddr_dl_setaddr(, %d, ) "
2110 "failed on %s\n", __func__, __LINE__,
2111 sdl->sdl_len, if_name(ifp));
2112 }
2113 }
2114
2115 if (!is_newentry) {
2116 if ((!olladdr && lladdr) || /* (3) */
2117 (olladdr && lladdr && llchange)) { /* (5) */
2118 do_update = 1;
2119 newstate = ND6_LLINFO_STALE;
2120 } else /* (1-2,4) */
2121 do_update = 0;
2122 } else {
2123 do_update = 1;
2124 if (lladdr == NULL) /* (6) */
2125 newstate = ND6_LLINFO_NOSTATE;
2126 else /* (7) */
2127 newstate = ND6_LLINFO_STALE;
2128 }
2129
2130 if (do_update) {
2131 /*
2132 * Update the state of the neighbor cache.
2133 */
2134 ln->ln_state = newstate;
2135
2136 if (ln->ln_state == ND6_LLINFO_STALE) {
2137 /*
2138 * XXX: since nd6_output() below will cause
2139 * state tansition to DELAY and reset the timer,
2140 * we must set the timer now, although it is actually
2141 * meaningless.
2142 */
2143 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2144
2145 nd6_llinfo_release_pkts(ln, ifp, rt);
2146 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
2147 /* probe right away */
2148 nd6_llinfo_settimer((void *)ln, 0);
2149 }
2150 }
2151
2152 /*
2153 * ICMP6 type dependent behavior.
2154 *
2155 * NS: clear IsRouter if new entry
2156 * RS: clear IsRouter
2157 * RA: set IsRouter if there's lladdr
2158 * redir: clear IsRouter if new entry
2159 *
2160 * RA case, (1):
2161 * The spec says that we must set IsRouter in the following cases:
2162 * - If lladdr exist, set IsRouter. This means (1-5).
2163 * - If it is old entry (!newentry), set IsRouter. This means (7).
2164 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
2165 * A quetion arises for (1) case. (1) case has no lladdr in the
2166 * neighbor cache, this is similar to (6).
2167 * This case is rare but we figured that we MUST NOT set IsRouter.
2168 *
2169 * newentry olladdr lladdr llchange NS RS RA redir
2170 * D R
2171 * 0 n n -- (1) c ? s
2172 * 0 y n -- (2) c s s
2173 * 0 n y -- (3) c s s
2174 * 0 y y n (4) c s s
2175 * 0 y y y (5) c s s
2176 * 1 -- n -- (6) c c c s
2177 * 1 -- y -- (7) c c s c s
2178 *
2179 * (c=clear s=set)
2180 */
2181 switch (type & 0xff) {
2182 case ND_NEIGHBOR_SOLICIT:
2183 /*
2184 * New entry must have is_router flag cleared.
2185 */
2186 if (is_newentry) /* (6-7) */
2187 ln->ln_router = 0;
2188 break;
2189 case ND_REDIRECT:
2190 /*
2191 * If the icmp is a redirect to a better router, always set the
2192 * is_router flag. Otherwise, if the entry is newly created,
2193 * clear the flag. [RFC 2461, sec 8.3]
2194 */
2195 if (code == ND_REDIRECT_ROUTER)
2196 ln->ln_router = 1;
2197 else if (is_newentry) /* (6-7) */
2198 ln->ln_router = 0;
2199 break;
2200 case ND_ROUTER_SOLICIT:
2201 /*
2202 * is_router flag must always be cleared.
2203 */
2204 ln->ln_router = 0;
2205 break;
2206 case ND_ROUTER_ADVERT:
2207 /*
2208 * Mark an entry with lladdr as a router.
2209 */
2210 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
2211 (is_newentry && lladdr)) { /* (7) */
2212 ln->ln_router = 1;
2213 }
2214 break;
2215 }
2216
2217 if (do_update)
2218 rt_newmsg(RTM_CHANGE, rt); /* tell user process */
2219
2220 /*
2221 * When the link-layer address of a router changes, select the
2222 * best router again. In particular, when the neighbor entry is newly
2223 * created, it might affect the selection policy.
2224 * Question: can we restrict the first condition to the "is_newentry"
2225 * case?
2226 * XXX: when we hear an RA from a new router with the link-layer
2227 * address option, defrouter_select() is called twice, since
2228 * defrtrlist_update called the function as well. However, I believe
2229 * we can compromise the overhead, since it only happens the first
2230 * time.
2231 * XXX: although defrouter_select() should not have a bad effect
2232 * for those are not autoconfigured hosts, we explicitly avoid such
2233 * cases for safety.
2234 */
2235 if (do_update && ln->ln_router && !ip6_forwarding &&
2236 nd6_accepts_rtadv(ndi))
2237 defrouter_select();
2238
2239 rtfree(rt);
2240 }
2241
2242 static void
2243 nd6_slowtimo(void *ignored_arg)
2244 {
2245 struct nd_ifinfo *nd6if;
2246 struct ifnet *ifp;
2247
2248 mutex_enter(softnet_lock);
2249 KERNEL_LOCK(1, NULL);
2250 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
2251 nd6_slowtimo, NULL);
2252 IFNET_FOREACH(ifp) {
2253 nd6if = ND_IFINFO(ifp);
2254 if (nd6if->basereachable && /* already initialized */
2255 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
2256 /*
2257 * Since reachable time rarely changes by router
2258 * advertisements, we SHOULD insure that a new random
2259 * value gets recomputed at least once every few hours.
2260 * (RFC 2461, 6.3.4)
2261 */
2262 nd6if->recalctm = nd6_recalc_reachtm_interval;
2263 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
2264 }
2265 }
2266 KERNEL_UNLOCK_ONE(NULL);
2267 mutex_exit(softnet_lock);
2268 }
2269
2270 /*
2271 * Next hop determination. This routine was derived from ether_output.
2272 */
2273 static int
2274 nd6_determine_nexthop(struct ifnet *ifp, const struct sockaddr_in6 *dst,
2275 struct rtentry *rt00, struct rtentry **ret_rt, bool *sendpkt)
2276 {
2277 struct rtentry *rt, *rt0;
2278 struct rtentry *gwrt;
2279 struct sockaddr_in6 *gw6;
2280
2281 #define RTFREE_IF_NEEDED(_rt) \
2282 if ((_rt) != NULL && (_rt) != rt00) \
2283 rtfree((_rt));
2284
2285 KASSERT(rt00 != NULL);
2286
2287 rt = rt0 = rt00;
2288
2289 if ((rt->rt_flags & RTF_UP) == 0) {
2290 rt0 = rt = rtalloc1(sin6tocsa(dst), 1);
2291 if (rt == NULL)
2292 goto hostunreach;
2293 if (rt->rt_ifp != ifp)
2294 goto hostunreach;
2295 }
2296
2297 if ((rt->rt_flags & RTF_GATEWAY) == 0)
2298 goto out;
2299
2300 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
2301
2302 /*
2303 * We skip link-layer address resolution and NUD
2304 * if the gateway is not a neighbor from ND point
2305 * of view, regardless of the value of nd_ifinfo.flags.
2306 * The second condition is a bit tricky; we skip
2307 * if the gateway is our own address, which is
2308 * sometimes used to install a route to a p2p link.
2309 */
2310 if (!nd6_is_addr_neighbor(gw6, ifp) ||
2311 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
2312 /*
2313 * We allow this kind of tricky route only
2314 * when the outgoing interface is p2p.
2315 * XXX: we may need a more generic rule here.
2316 */
2317 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
2318 goto hostunreach;
2319
2320 *sendpkt = true;
2321 goto out;
2322 }
2323
2324 /* Try to use a cached nexthop route (gwroute) if exists */
2325 gwrt = rt_get_gwroute(rt);
2326 if (gwrt == NULL)
2327 goto lookup;
2328
2329 RTFREE_IF_NEEDED(rt);
2330 rt = gwrt;
2331 if ((rt->rt_flags & RTF_UP) == 0) {
2332 RTFREE_IF_NEEDED(rt);
2333 rt = rt0;
2334 lookup:
2335 /* Look up a nexthop route */
2336 gwrt = rtalloc1(rt->rt_gateway, 1);
2337 rt_set_gwroute(rt, gwrt);
2338 RTFREE_IF_NEEDED(rt);
2339 rt = gwrt;
2340 if (rt == NULL)
2341 goto hostunreach;
2342 /* the "G" test below also prevents rt == rt0 */
2343 if ((rt->rt_flags & RTF_GATEWAY) ||
2344 (rt->rt_ifp != ifp)) {
2345 if (rt0->rt_gwroute != NULL)
2346 rtfree(rt0->rt_gwroute);
2347 rt0->rt_gwroute = NULL;
2348 goto hostunreach;
2349 }
2350 }
2351
2352 out:
2353 *ret_rt = rt;
2354 return 0;
2355
2356 hostunreach:
2357 RTFREE_IF_NEEDED(rt);
2358
2359 return EHOSTUNREACH;
2360 #undef RTFREE_IF_NEEDED
2361 }
2362
2363 #define senderr(e) { error = (e); goto bad;}
2364 int
2365 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
2366 const struct sockaddr_in6 *dst, struct rtentry *rt0)
2367 {
2368 struct mbuf *m = m0;
2369 struct rtentry *rt = rt0;
2370 struct llentry *ln = NULL;
2371 int error = 0;
2372
2373 #define RTFREE_IF_NEEDED(_rt) \
2374 if ((_rt) != NULL && (_rt) != rt0) \
2375 rtfree((_rt));
2376
2377 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
2378 goto sendpkt;
2379
2380 if (nd6_need_cache(ifp) == 0)
2381 goto sendpkt;
2382
2383 if (rt) {
2384 struct rtentry *nexthop = NULL;
2385 bool sendpkt = false;
2386
2387 error = nd6_determine_nexthop(ifp, dst, rt, &nexthop, &sendpkt);
2388 if (error != 0)
2389 senderr(error);
2390 rt = nexthop;
2391 if (sendpkt)
2392 goto sendpkt;
2393 }
2394
2395 /*
2396 * Address resolution or Neighbor Unreachability Detection
2397 * for the next hop.
2398 * At this point, the destination of the packet must be a unicast
2399 * or an anycast address(i.e. not a multicast).
2400 */
2401
2402 /* Look up the neighbor cache for the nexthop */
2403 if (rt != NULL && (rt->rt_flags & RTF_LLINFO) != 0)
2404 ln = rt->rt_llinfo;
2405 else {
2406 /*
2407 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2408 * the condition below is not very efficient. But we believe
2409 * it is tolerable, because this should be a rare case.
2410 */
2411 if (nd6_is_addr_neighbor(dst, ifp)) {
2412 RTFREE_IF_NEEDED(rt);
2413 rt = nd6_lookup(&dst->sin6_addr, 1, ifp);
2414 if (rt != NULL)
2415 ln = rt->rt_llinfo;
2416 }
2417 }
2418 if (ln == NULL || rt == NULL) {
2419 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2420 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2421 log(LOG_DEBUG,
2422 "nd6_output: can't allocate llinfo for %s "
2423 "(ln=%p, rt=%p)\n",
2424 ip6_sprintf(&dst->sin6_addr), ln, rt);
2425 senderr(EIO); /* XXX: good error? */
2426 }
2427
2428 goto sendpkt; /* send anyway */
2429 }
2430
2431 /* We don't have to do link-layer address resolution on a p2p link. */
2432 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2433 ln->ln_state < ND6_LLINFO_REACHABLE) {
2434 ln->ln_state = ND6_LLINFO_STALE;
2435 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2436 }
2437
2438 /*
2439 * The first time we send a packet to a neighbor whose entry is
2440 * STALE, we have to change the state to DELAY and a sets a timer to
2441 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2442 * neighbor unreachability detection on expiration.
2443 * (RFC 2461 7.3.3)
2444 */
2445 if (ln->ln_state == ND6_LLINFO_STALE) {
2446 ln->ln_asked = 0;
2447 ln->ln_state = ND6_LLINFO_DELAY;
2448 nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2449 }
2450
2451 /*
2452 * If the neighbor cache entry has a state other than INCOMPLETE
2453 * (i.e. its link-layer address is already resolved), just
2454 * send the packet.
2455 */
2456 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2457 goto sendpkt;
2458
2459 /*
2460 * There is a neighbor cache entry, but no ethernet address
2461 * response yet. Append this latest packet to the end of the
2462 * packet queue in the mbuf, unless the number of the packet
2463 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen,
2464 * the oldest packet in the queue will be removed.
2465 */
2466 if (ln->ln_state == ND6_LLINFO_NOSTATE)
2467 ln->ln_state = ND6_LLINFO_INCOMPLETE;
2468 if (ln->ln_hold) {
2469 struct mbuf *m_hold;
2470 int i;
2471
2472 i = 0;
2473 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2474 i++;
2475 if (m_hold->m_nextpkt == NULL) {
2476 m_hold->m_nextpkt = m;
2477 break;
2478 }
2479 }
2480 while (i >= nd6_maxqueuelen) {
2481 m_hold = ln->ln_hold;
2482 ln->ln_hold = ln->ln_hold->m_nextpkt;
2483 m_freem(m_hold);
2484 i--;
2485 }
2486 } else {
2487 ln->ln_hold = m;
2488 }
2489
2490 /*
2491 * If there has been no NS for the neighbor after entering the
2492 * INCOMPLETE state, send the first solicitation.
2493 */
2494 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2495 struct in6_addr src, *psrc;
2496
2497 ln->ln_asked++;
2498 nd6_llinfo_settimer(ln,
2499 (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2500 psrc = nd6_llinfo_get_holdsrc(ln, &src);
2501 nd6_ns_output(ifp, NULL, &dst->sin6_addr, psrc, 0);
2502 }
2503 error = 0;
2504 goto exit;
2505
2506 sendpkt:
2507 /* discard the packet if IPv6 operation is disabled on the interface */
2508 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2509 error = ENETDOWN; /* better error? */
2510 goto bad;
2511 }
2512
2513 #ifndef NET_MPSAFE
2514 KERNEL_LOCK(1, NULL);
2515 #endif
2516 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2517 error = (*ifp->if_output)(origifp, m, sin6tocsa(dst), rt);
2518 else
2519 error = (*ifp->if_output)(ifp, m, sin6tocsa(dst), rt);
2520 #ifndef NET_MPSAFE
2521 KERNEL_UNLOCK_ONE(NULL);
2522 #endif
2523 goto exit;
2524
2525 bad:
2526 if (m != NULL)
2527 m_freem(m);
2528 exit:
2529 RTFREE_IF_NEEDED(rt);
2530
2531 return error;
2532 #undef RTFREE_IF_NEEDED
2533 }
2534 #undef senderr
2535
2536 int
2537 nd6_need_cache(struct ifnet *ifp)
2538 {
2539 /*
2540 * XXX: we currently do not make neighbor cache on any interface
2541 * other than ARCnet, Ethernet, FDDI and GIF.
2542 *
2543 * RFC2893 says:
2544 * - unidirectional tunnels needs no ND
2545 */
2546 switch (ifp->if_type) {
2547 case IFT_ARCNET:
2548 case IFT_ETHER:
2549 case IFT_FDDI:
2550 case IFT_IEEE1394:
2551 case IFT_CARP:
2552 case IFT_GIF: /* XXX need more cases? */
2553 case IFT_PPP:
2554 case IFT_TUNNEL:
2555 return 1;
2556 default:
2557 return 0;
2558 }
2559 }
2560
2561 int
2562 nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt,
2563 struct mbuf *m, const struct sockaddr *dst, uint8_t *lldst,
2564 size_t dstsize)
2565 {
2566 const struct sockaddr_dl *sdl;
2567
2568 if (m->m_flags & M_MCAST) {
2569 switch (ifp->if_type) {
2570 case IFT_ETHER:
2571 case IFT_FDDI:
2572 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
2573 lldst);
2574 return 1;
2575 case IFT_IEEE1394:
2576 memcpy(lldst, ifp->if_broadcastaddr,
2577 MIN(dstsize, ifp->if_addrlen));
2578 return 1;
2579 case IFT_ARCNET:
2580 *lldst = 0;
2581 return 1;
2582 default:
2583 m_freem(m);
2584 return 0;
2585 }
2586 }
2587
2588 if (rt == NULL) {
2589 /* this could happen, if we could not allocate memory */
2590 m_freem(m);
2591 return 0;
2592 }
2593 if (rt->rt_gateway->sa_family != AF_LINK) {
2594 char gbuf[256];
2595 char dbuf[LINK_ADDRSTRLEN];
2596 sockaddr_format(rt->rt_gateway, gbuf, sizeof(gbuf));
2597 printf("%s: bad gateway address type %s for dst %s"
2598 " through interface %s\n", __func__, gbuf,
2599 IN6_PRINT(dbuf, &satocsin6(dst)->sin6_addr),
2600 if_name(ifp));
2601 m_freem(m);
2602 return 0;
2603 }
2604 sdl = satocsdl(rt->rt_gateway);
2605 if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) {
2606 char sbuf[INET6_ADDRSTRLEN];
2607 char dbuf[LINK_ADDRSTRLEN];
2608 /* this should be impossible, but we bark here for debugging */
2609 printf("%s: sdl_alen == %" PRIu8 ", if=%s, dst=%s, sdl=%s\n",
2610 __func__, sdl->sdl_alen, if_name(ifp),
2611 IN6_PRINT(sbuf, &satocsin6(dst)->sin6_addr),
2612 DL_PRINT(dbuf, &sdl->sdl_addr));
2613 m_freem(m);
2614 return 0;
2615 }
2616
2617 memcpy(lldst, CLLADDR(sdl), MIN(dstsize, sdl->sdl_alen));
2618 return 1;
2619 }
2620
2621 static void
2622 clear_llinfo_pqueue(struct llentry *ln)
2623 {
2624 struct mbuf *m_hold, *m_hold_next;
2625
2626 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2627 m_hold_next = m_hold->m_nextpkt;
2628 m_hold->m_nextpkt = NULL;
2629 m_freem(m_hold);
2630 }
2631
2632 ln->ln_hold = NULL;
2633 return;
2634 }
2635
2636 int
2637 nd6_sysctl(
2638 int name,
2639 void *oldp, /* syscall arg, need copyout */
2640 size_t *oldlenp,
2641 void *newp, /* syscall arg, need copyin */
2642 size_t newlen
2643 )
2644 {
2645 void *p;
2646 size_t ol;
2647 int error;
2648
2649 error = 0;
2650
2651 if (newp)
2652 return EPERM;
2653 if (oldp && !oldlenp)
2654 return EINVAL;
2655 ol = oldlenp ? *oldlenp : 0;
2656
2657 if (oldp) {
2658 p = malloc(*oldlenp, M_TEMP, M_WAITOK);
2659 if (p == NULL)
2660 return ENOMEM;
2661 } else
2662 p = NULL;
2663 switch (name) {
2664 case ICMPV6CTL_ND6_DRLIST:
2665 error = fill_drlist(p, oldlenp, ol);
2666 if (!error && p != NULL && oldp != NULL)
2667 error = copyout(p, oldp, *oldlenp);
2668 break;
2669
2670 case ICMPV6CTL_ND6_PRLIST:
2671 error = fill_prlist(p, oldlenp, ol);
2672 if (!error && p != NULL && oldp != NULL)
2673 error = copyout(p, oldp, *oldlenp);
2674 break;
2675
2676 case ICMPV6CTL_ND6_MAXQLEN:
2677 break;
2678
2679 default:
2680 error = ENOPROTOOPT;
2681 break;
2682 }
2683 if (p)
2684 free(p, M_TEMP);
2685
2686 return error;
2687 }
2688
2689 static int
2690 fill_drlist(void *oldp, size_t *oldlenp, size_t ol)
2691 {
2692 int error = 0, s;
2693 struct in6_defrouter *d = NULL, *de = NULL;
2694 struct nd_defrouter *dr;
2695 size_t l;
2696
2697 s = splsoftnet();
2698
2699 if (oldp) {
2700 d = (struct in6_defrouter *)oldp;
2701 de = (struct in6_defrouter *)((char *)oldp + *oldlenp);
2702 }
2703 l = 0;
2704
2705 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
2706
2707 if (oldp && d + 1 <= de) {
2708 memset(d, 0, sizeof(*d));
2709 sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0);
2710 if (sa6_recoverscope(&d->rtaddr)) {
2711 log(LOG_ERR,
2712 "scope error in router list (%s)\n",
2713 ip6_sprintf(&d->rtaddr.sin6_addr));
2714 /* XXX: press on... */
2715 }
2716 d->flags = dr->flags;
2717 d->rtlifetime = dr->rtlifetime;
2718 d->expire = dr->expire ?
2719 time_mono_to_wall(dr->expire) : 0;
2720 d->if_index = dr->ifp->if_index;
2721 }
2722
2723 l += sizeof(*d);
2724 if (d)
2725 d++;
2726 }
2727
2728 if (oldp) {
2729 if (l > ol)
2730 error = ENOMEM;
2731 }
2732 if (oldlenp)
2733 *oldlenp = l; /* (void *)d - (void *)oldp */
2734
2735 splx(s);
2736
2737 return error;
2738 }
2739
2740 static int
2741 fill_prlist(void *oldp, size_t *oldlenp, size_t ol)
2742 {
2743 int error = 0, s;
2744 struct nd_prefix *pr;
2745 uint8_t *p = NULL, *ps = NULL;
2746 uint8_t *pe = NULL;
2747 size_t l;
2748
2749 s = splsoftnet();
2750
2751 if (oldp) {
2752 ps = p = (uint8_t*)oldp;
2753 pe = (uint8_t*)oldp + *oldlenp;
2754 }
2755 l = 0;
2756
2757 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
2758 u_short advrtrs;
2759 struct sockaddr_in6 sin6;
2760 struct nd_pfxrouter *pfr;
2761 struct in6_prefix pfx;
2762
2763 if (oldp && p + sizeof(struct in6_prefix) <= pe)
2764 {
2765 memset(&pfx, 0, sizeof(pfx));
2766 ps = p;
2767 pfx.prefix = pr->ndpr_prefix;
2768
2769 if (sa6_recoverscope(&pfx.prefix)) {
2770 log(LOG_ERR,
2771 "scope error in prefix list (%s)\n",
2772 ip6_sprintf(&pfx.prefix.sin6_addr));
2773 /* XXX: press on... */
2774 }
2775 pfx.raflags = pr->ndpr_raf;
2776 pfx.prefixlen = pr->ndpr_plen;
2777 pfx.vltime = pr->ndpr_vltime;
2778 pfx.pltime = pr->ndpr_pltime;
2779 pfx.if_index = pr->ndpr_ifp->if_index;
2780 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2781 pfx.expire = 0;
2782 else {
2783 time_t maxexpire;
2784
2785 /* XXX: we assume time_t is signed. */
2786 maxexpire = (-1) &
2787 ~((time_t)1 <<
2788 ((sizeof(maxexpire) * 8) - 1));
2789 if (pr->ndpr_vltime <
2790 maxexpire - pr->ndpr_lastupdate) {
2791 pfx.expire = pr->ndpr_lastupdate +
2792 pr->ndpr_vltime;
2793 } else
2794 pfx.expire = maxexpire;
2795 }
2796 pfx.refcnt = pr->ndpr_refcnt;
2797 pfx.flags = pr->ndpr_stateflags;
2798 pfx.origin = PR_ORIG_RA;
2799
2800 p += sizeof(pfx); l += sizeof(pfx);
2801
2802 advrtrs = 0;
2803 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2804 if (p + sizeof(sin6) > pe) {
2805 advrtrs++;
2806 continue;
2807 }
2808
2809 sockaddr_in6_init(&sin6, &pfr->router->rtaddr,
2810 0, 0, 0);
2811 if (sa6_recoverscope(&sin6)) {
2812 log(LOG_ERR,
2813 "scope error in "
2814 "prefix list (%s)\n",
2815 ip6_sprintf(&pfr->router->rtaddr));
2816 }
2817 advrtrs++;
2818 memcpy(p, &sin6, sizeof(sin6));
2819 p += sizeof(sin6);
2820 l += sizeof(sin6);
2821 }
2822 pfx.advrtrs = advrtrs;
2823 memcpy(ps, &pfx, sizeof(pfx));
2824 }
2825 else {
2826 l += sizeof(pfx);
2827 advrtrs = 0;
2828 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2829 advrtrs++;
2830 l += sizeof(sin6);
2831 }
2832 }
2833 }
2834
2835 if (oldp) {
2836 *oldlenp = l; /* (void *)d - (void *)oldp */
2837 if (l > ol)
2838 error = ENOMEM;
2839 } else
2840 *oldlenp = l;
2841
2842 splx(s);
2843
2844 return error;
2845 }
2846