nd6.c revision 1.183 1 /* $NetBSD: nd6.c,v 1.183 2015/12/18 09:04:33 ozaki-r Exp $ */
2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.183 2015/12/18 09:04:33 ozaki-r Exp $");
35
36 #ifdef _KERNEL_OPT
37 #include "opt_net_mpsafe.h"
38 #endif
39
40 #include "bridge.h"
41 #include "carp.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/sockio.h>
51 #include <sys/time.h>
52 #include <sys/kernel.h>
53 #include <sys/protosw.h>
54 #include <sys/errno.h>
55 #include <sys/ioctl.h>
56 #include <sys/syslog.h>
57 #include <sys/queue.h>
58 #include <sys/cprng.h>
59
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_llatbl.h>
63 #include <net/if_types.h>
64 #include <net/route.h>
65 #include <net/if_ether.h>
66 #include <net/if_fddi.h>
67 #include <net/if_arc.h>
68
69 #include <netinet/in.h>
70 #include <netinet6/in6_var.h>
71 #include <netinet/ip6.h>
72 #include <netinet6/ip6_var.h>
73 #include <netinet6/scope6_var.h>
74 #include <netinet6/nd6.h>
75 #include <netinet6/in6_ifattach.h>
76 #include <netinet/icmp6.h>
77 #include <netinet6/icmp6_private.h>
78
79 #include <net/net_osdep.h>
80
81 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
82 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
83
84 /* timer values */
85 int nd6_prune = 1; /* walk list every 1 seconds */
86 int nd6_delay = 5; /* delay first probe time 5 second */
87 int nd6_umaxtries = 3; /* maximum unicast query */
88 int nd6_mmaxtries = 3; /* maximum multicast query */
89 int nd6_useloopback = 1; /* use loopback interface for local traffic */
90 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
91
92 /* preventing too many loops in ND option parsing */
93 int nd6_maxndopt = 10; /* max # of ND options allowed */
94
95 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
96
97 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
98
99 #ifdef ND6_DEBUG
100 int nd6_debug = 1;
101 #else
102 int nd6_debug = 0;
103 #endif
104
105 /* for debugging? */
106 static int nd6_inuse, nd6_allocated;
107
108 struct nd_drhead nd_defrouter;
109 struct nd_prhead nd_prefix = { 0 };
110
111 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
112 static const struct sockaddr_in6 all1_sa = {
113 .sin6_family = AF_INET6
114 , .sin6_len = sizeof(struct sockaddr_in6)
115 , .sin6_addr = {.s6_addr = {0xff, 0xff, 0xff, 0xff,
116 0xff, 0xff, 0xff, 0xff,
117 0xff, 0xff, 0xff, 0xff,
118 0xff, 0xff, 0xff, 0xff}}
119 };
120
121 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
122 static void nd6_slowtimo(void *);
123 static int regen_tmpaddr(struct in6_ifaddr *);
124 static void nd6_free(struct rtentry *, struct llentry *, int);
125 static void nd6_llinfo_timer(void *);
126 static void clear_llinfo_pqueue(struct llentry *);
127
128 callout_t nd6_slowtimo_ch;
129 callout_t nd6_timer_ch;
130 extern callout_t in6_tmpaddrtimer_ch;
131
132 static int fill_drlist(void *, size_t *, size_t);
133 static int fill_prlist(void *, size_t *, size_t);
134
135 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
136
137 void
138 nd6_init(void)
139 {
140 static int nd6_init_done = 0;
141
142 if (nd6_init_done) {
143 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
144 return;
145 }
146
147 /* initialization of the default router list */
148 TAILQ_INIT(&nd_defrouter);
149
150 nd6_init_done = 1;
151
152 callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE);
153 callout_init(&nd6_timer_ch, CALLOUT_MPSAFE);
154
155 /* start timer */
156 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
157 nd6_slowtimo, NULL);
158 }
159
160 struct nd_ifinfo *
161 nd6_ifattach(struct ifnet *ifp)
162 {
163 struct nd_ifinfo *nd;
164
165 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO);
166
167 nd->initialized = 1;
168
169 nd->chlim = IPV6_DEFHLIM;
170 nd->basereachable = REACHABLE_TIME;
171 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
172 nd->retrans = RETRANS_TIMER;
173
174 nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV;
175
176 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
177 * A bridge interface should not have ND6_IFF_AUTO_LINKLOCAL
178 * because one of its members should. */
179 if ((ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
180 (ifp->if_flags & IFF_LOOPBACK))
181 nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
182
183 /* A loopback interface does not need to accept RTADV.
184 * A bridge interface should not accept RTADV
185 * because one of its members should. */
186 if (ip6_accept_rtadv &&
187 !(ifp->if_flags & IFF_LOOPBACK) &&
188 !(ifp->if_type != IFT_BRIDGE))
189 nd->flags |= ND6_IFF_ACCEPT_RTADV;
190
191 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
192 nd6_setmtu0(ifp, nd);
193
194 return nd;
195 }
196
197 void
198 nd6_ifdetach(struct ifnet *ifp, struct in6_ifextra *ext)
199 {
200
201 nd6_purge(ifp, ext);
202 free(ext->nd_ifinfo, M_IP6NDP);
203 }
204
205 void
206 nd6_setmtu(struct ifnet *ifp)
207 {
208 nd6_setmtu0(ifp, ND_IFINFO(ifp));
209 }
210
211 void
212 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
213 {
214 u_int32_t omaxmtu;
215
216 omaxmtu = ndi->maxmtu;
217
218 switch (ifp->if_type) {
219 case IFT_ARCNET:
220 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
221 break;
222 case IFT_FDDI:
223 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
224 break;
225 default:
226 ndi->maxmtu = ifp->if_mtu;
227 break;
228 }
229
230 /*
231 * Decreasing the interface MTU under IPV6 minimum MTU may cause
232 * undesirable situation. We thus notify the operator of the change
233 * explicitly. The check for omaxmtu is necessary to restrict the
234 * log to the case of changing the MTU, not initializing it.
235 */
236 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
237 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
238 " small for IPv6 which needs %lu\n",
239 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
240 IPV6_MMTU);
241 }
242
243 if (ndi->maxmtu > in6_maxmtu)
244 in6_setmaxmtu(); /* check all interfaces just in case */
245 }
246
247 void
248 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
249 {
250
251 memset(ndopts, 0, sizeof(*ndopts));
252 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
253 ndopts->nd_opts_last
254 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
255
256 if (icmp6len == 0) {
257 ndopts->nd_opts_done = 1;
258 ndopts->nd_opts_search = NULL;
259 }
260 }
261
262 /*
263 * Take one ND option.
264 */
265 struct nd_opt_hdr *
266 nd6_option(union nd_opts *ndopts)
267 {
268 struct nd_opt_hdr *nd_opt;
269 int olen;
270
271 KASSERT(ndopts != NULL);
272 KASSERT(ndopts->nd_opts_last != NULL);
273
274 if (ndopts->nd_opts_search == NULL)
275 return NULL;
276 if (ndopts->nd_opts_done)
277 return NULL;
278
279 nd_opt = ndopts->nd_opts_search;
280
281 /* make sure nd_opt_len is inside the buffer */
282 if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) {
283 memset(ndopts, 0, sizeof(*ndopts));
284 return NULL;
285 }
286
287 olen = nd_opt->nd_opt_len << 3;
288 if (olen == 0) {
289 /*
290 * Message validation requires that all included
291 * options have a length that is greater than zero.
292 */
293 memset(ndopts, 0, sizeof(*ndopts));
294 return NULL;
295 }
296
297 ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen);
298 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
299 /* option overruns the end of buffer, invalid */
300 memset(ndopts, 0, sizeof(*ndopts));
301 return NULL;
302 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
303 /* reached the end of options chain */
304 ndopts->nd_opts_done = 1;
305 ndopts->nd_opts_search = NULL;
306 }
307 return nd_opt;
308 }
309
310 /*
311 * Parse multiple ND options.
312 * This function is much easier to use, for ND routines that do not need
313 * multiple options of the same type.
314 */
315 int
316 nd6_options(union nd_opts *ndopts)
317 {
318 struct nd_opt_hdr *nd_opt;
319 int i = 0;
320
321 KASSERT(ndopts != NULL);
322 KASSERT(ndopts->nd_opts_last != NULL);
323
324 if (ndopts->nd_opts_search == NULL)
325 return 0;
326
327 while (1) {
328 nd_opt = nd6_option(ndopts);
329 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
330 /*
331 * Message validation requires that all included
332 * options have a length that is greater than zero.
333 */
334 ICMP6_STATINC(ICMP6_STAT_ND_BADOPT);
335 memset(ndopts, 0, sizeof(*ndopts));
336 return -1;
337 }
338
339 if (nd_opt == NULL)
340 goto skip1;
341
342 switch (nd_opt->nd_opt_type) {
343 case ND_OPT_SOURCE_LINKADDR:
344 case ND_OPT_TARGET_LINKADDR:
345 case ND_OPT_MTU:
346 case ND_OPT_REDIRECTED_HEADER:
347 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
348 nd6log((LOG_INFO,
349 "duplicated ND6 option found (type=%d)\n",
350 nd_opt->nd_opt_type));
351 /* XXX bark? */
352 } else {
353 ndopts->nd_opt_array[nd_opt->nd_opt_type]
354 = nd_opt;
355 }
356 break;
357 case ND_OPT_PREFIX_INFORMATION:
358 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
359 ndopts->nd_opt_array[nd_opt->nd_opt_type]
360 = nd_opt;
361 }
362 ndopts->nd_opts_pi_end =
363 (struct nd_opt_prefix_info *)nd_opt;
364 break;
365 default:
366 /*
367 * Unknown options must be silently ignored,
368 * to accommodate future extension to the protocol.
369 */
370 nd6log((LOG_DEBUG,
371 "nd6_options: unsupported option %d - "
372 "option ignored\n", nd_opt->nd_opt_type));
373 }
374
375 skip1:
376 i++;
377 if (i > nd6_maxndopt) {
378 ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT);
379 nd6log((LOG_INFO, "too many loop in nd opt\n"));
380 break;
381 }
382
383 if (ndopts->nd_opts_done)
384 break;
385 }
386
387 return 0;
388 }
389
390 /*
391 * ND6 timer routine to handle ND6 entries
392 */
393 void
394 nd6_llinfo_settimer_locked(struct llentry *ln, time_t xtick)
395 {
396
397 CTASSERT(sizeof(time_t) > sizeof(int));
398 LLE_WLOCK_ASSERT(ln);
399
400 if (xtick < 0) {
401 ln->ln_expire = 0;
402 ln->ln_ntick = 0;
403 callout_halt(&ln->ln_timer_ch, &ln->lle_lock);
404 } else {
405 ln->ln_expire = time_uptime + xtick / hz;
406 LLE_ADDREF(ln);
407 if (xtick > INT_MAX) {
408 ln->ln_ntick = xtick - INT_MAX;
409 callout_reset(&ln->ln_timer_ch, INT_MAX,
410 nd6_llinfo_timer, ln);
411 } else {
412 ln->ln_ntick = 0;
413 callout_reset(&ln->ln_timer_ch, xtick,
414 nd6_llinfo_timer, ln);
415 }
416 }
417 }
418
419 void
420 nd6_llinfo_settimer(struct llentry *ln, time_t xtick)
421 {
422
423 LLE_WLOCK(ln);
424 nd6_llinfo_settimer_locked(ln, xtick);
425 LLE_WUNLOCK(ln);
426 }
427
428 /*
429 * Gets source address of the first packet in hold queue
430 * and stores it in @src.
431 * Returns pointer to @src (if hold queue is not empty) or NULL.
432 */
433 static struct in6_addr *
434 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
435 {
436 struct ip6_hdr *hip6;
437
438 if (ln == NULL || ln->ln_hold == NULL)
439 return NULL;
440
441 /*
442 * assuming every packet in ln_hold has the same IP header
443 */
444 hip6 = mtod(ln->ln_hold, struct ip6_hdr *);
445 /* XXX pullup? */
446 if (sizeof(*hip6) < ln->ln_hold->m_len)
447 *src = hip6->ip6_src;
448 else
449 src = NULL;
450
451 return src;
452 }
453
454 static void
455 nd6_llinfo_timer(void *arg)
456 {
457 struct llentry *ln = arg;
458 struct rtentry *rt;
459 const struct sockaddr_in6 *dst;
460 struct ifnet *ifp;
461 struct nd_ifinfo *ndi = NULL;
462 bool send_ns = false;
463 const struct in6_addr *daddr6 = NULL;
464
465 mutex_enter(softnet_lock);
466 KERNEL_LOCK(1, NULL);
467
468 LLE_WLOCK(ln);
469 if (ln->ln_ntick > 0) {
470 nd6_llinfo_settimer_locked(ln, ln->ln_ntick);
471 goto out;
472 }
473
474 if (callout_pending(&ln->la_timer)) {
475 /*
476 * Here we are a bit odd here in the treatment of
477 * active/pending. If the pending bit is set, it got
478 * rescheduled before I ran. The active
479 * bit we ignore, since if it was stopped
480 * in ll_tablefree() and was currently running
481 * it would have return 0 so the code would
482 * not have deleted it since the callout could
483 * not be stopped so we want to go through
484 * with the delete here now. If the callout
485 * was restarted, the pending bit will be back on and
486 * we just want to bail since the callout_reset would
487 * return 1 and our reference would have been removed
488 * by nd6_llinfo_settimer_locked above since canceled
489 * would have been 1.
490 */
491 goto out;
492 }
493
494 ifp = ln->lle_tbl->llt_ifp;
495 rt = ln->ln_rt;
496
497 KASSERT(rt != NULL);
498 KASSERT(ifp != NULL);
499
500 ndi = ND_IFINFO(ifp);
501 dst = satocsin6(rt_getkey(rt));
502
503 /* sanity check */
504 if (rt->rt_llinfo && (struct llentry *)rt->rt_llinfo != ln)
505 panic("rt_llinfo(%p) is not equal to ln(%p)",
506 rt->rt_llinfo, ln);
507 if (!dst)
508 panic("dst=0 in nd6_timer(ln=%p)", ln);
509
510 switch (ln->ln_state) {
511 case ND6_LLINFO_INCOMPLETE:
512 if (ln->ln_asked < nd6_mmaxtries) {
513 ln->ln_asked++;
514 send_ns = true;
515 } else {
516 struct mbuf *m = ln->ln_hold;
517 if (m) {
518 struct mbuf *m0;
519
520 /*
521 * assuming every packet in ln_hold has
522 * the same IP header
523 */
524 m0 = m->m_nextpkt;
525 m->m_nextpkt = NULL;
526 ln->ln_hold = m0;
527 clear_llinfo_pqueue(ln);
528 }
529 nd6_free(rt, ln, 0);
530 ln = NULL;
531 if (m != NULL)
532 icmp6_error2(m, ICMP6_DST_UNREACH,
533 ICMP6_DST_UNREACH_ADDR, 0, ifp);
534 }
535 break;
536 case ND6_LLINFO_REACHABLE:
537 if (!ND6_LLINFO_PERMANENT(ln)) {
538 ln->ln_state = ND6_LLINFO_STALE;
539 nd6_llinfo_settimer_locked(ln, nd6_gctimer * hz);
540 }
541 break;
542
543 case ND6_LLINFO_PURGE:
544 case ND6_LLINFO_STALE:
545 /* Garbage Collection(RFC 2461 5.3) */
546 if (!ND6_LLINFO_PERMANENT(ln)) {
547 nd6_free(rt, ln, 1);
548 ln = NULL;
549 }
550 break;
551
552 case ND6_LLINFO_DELAY:
553 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
554 /* We need NUD */
555 ln->ln_asked = 1;
556 ln->ln_state = ND6_LLINFO_PROBE;
557 daddr6 = &dst->sin6_addr;
558 send_ns = true;
559 } else {
560 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
561 nd6_llinfo_settimer_locked(ln, nd6_gctimer * hz);
562 }
563 break;
564 case ND6_LLINFO_PROBE:
565 if (ln->ln_asked < nd6_umaxtries) {
566 ln->ln_asked++;
567 daddr6 = &dst->sin6_addr;
568 send_ns = true;
569 } else {
570 nd6_free(rt, ln, 0);
571 ln = NULL;
572 }
573 break;
574 }
575
576 if (send_ns) {
577 struct in6_addr src, *psrc;
578
579 nd6_llinfo_settimer_locked(ln, ndi->retrans * hz / 1000);
580 psrc = nd6_llinfo_get_holdsrc(ln, &src);
581 LLE_FREE_LOCKED(ln);
582 ln = NULL;
583 nd6_ns_output(ifp, daddr6, &dst->sin6_addr, psrc, 0);
584 }
585
586 out:
587 if (ln != NULL)
588 LLE_FREE_LOCKED(ln);
589 KERNEL_UNLOCK_ONE(NULL);
590 mutex_exit(softnet_lock);
591 }
592
593 /*
594 * ND6 timer routine to expire default route list and prefix list
595 */
596 void
597 nd6_timer(void *ignored_arg)
598 {
599 struct nd_defrouter *next_dr, *dr;
600 struct nd_prefix *next_pr, *pr;
601 struct in6_ifaddr *ia6, *nia6;
602
603 callout_reset(&nd6_timer_ch, nd6_prune * hz,
604 nd6_timer, NULL);
605
606 mutex_enter(softnet_lock);
607 KERNEL_LOCK(1, NULL);
608
609 /* expire default router list */
610
611 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, next_dr) {
612 if (dr->expire && dr->expire < time_uptime) {
613 defrtrlist_del(dr, NULL);
614 }
615 }
616
617 /*
618 * expire interface addresses.
619 * in the past the loop was inside prefix expiry processing.
620 * However, from a stricter speci-confrmance standpoint, we should
621 * rather separate address lifetimes and prefix lifetimes.
622 */
623 addrloop:
624 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
625 nia6 = ia6->ia_next;
626 /* check address lifetime */
627 if (IFA6_IS_INVALID(ia6)) {
628 int regen = 0;
629
630 /*
631 * If the expiring address is temporary, try
632 * regenerating a new one. This would be useful when
633 * we suspended a laptop PC, then turned it on after a
634 * period that could invalidate all temporary
635 * addresses. Although we may have to restart the
636 * loop (see below), it must be after purging the
637 * address. Otherwise, we'd see an infinite loop of
638 * regeneration.
639 */
640 if (ip6_use_tempaddr &&
641 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
642 if (regen_tmpaddr(ia6) == 0)
643 regen = 1;
644 }
645
646 in6_purgeaddr(&ia6->ia_ifa);
647
648 if (regen)
649 goto addrloop; /* XXX: see below */
650 } else if (IFA6_IS_DEPRECATED(ia6)) {
651 int oldflags = ia6->ia6_flags;
652
653 if ((oldflags & IN6_IFF_DEPRECATED) == 0) {
654 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
655 rt_newaddrmsg(RTM_NEWADDR,
656 (struct ifaddr *)ia6, 0, NULL);
657 }
658
659 /*
660 * If a temporary address has just become deprecated,
661 * regenerate a new one if possible.
662 */
663 if (ip6_use_tempaddr &&
664 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
665 (oldflags & IN6_IFF_DEPRECATED) == 0) {
666
667 if (regen_tmpaddr(ia6) == 0) {
668 /*
669 * A new temporary address is
670 * generated.
671 * XXX: this means the address chain
672 * has changed while we are still in
673 * the loop. Although the change
674 * would not cause disaster (because
675 * it's not a deletion, but an
676 * addition,) we'd rather restart the
677 * loop just for safety. Or does this
678 * significantly reduce performance??
679 */
680 goto addrloop;
681 }
682 }
683 } else {
684 /*
685 * A new RA might have made a deprecated address
686 * preferred.
687 */
688 if (ia6->ia6_flags & IN6_IFF_DEPRECATED) {
689 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
690 rt_newaddrmsg(RTM_NEWADDR,
691 (struct ifaddr *)ia6, 0, NULL);
692 }
693 }
694 }
695
696 /* expire prefix list */
697 LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, next_pr) {
698 /*
699 * check prefix lifetime.
700 * since pltime is just for autoconf, pltime processing for
701 * prefix is not necessary.
702 */
703 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
704 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) {
705
706 /*
707 * address expiration and prefix expiration are
708 * separate. NEVER perform in6_purgeaddr here.
709 */
710
711 prelist_remove(pr);
712 }
713 }
714
715 KERNEL_UNLOCK_ONE(NULL);
716 mutex_exit(softnet_lock);
717 }
718
719 /* ia6: deprecated/invalidated temporary address */
720 static int
721 regen_tmpaddr(struct in6_ifaddr *ia6)
722 {
723 struct ifaddr *ifa;
724 struct ifnet *ifp;
725 struct in6_ifaddr *public_ifa6 = NULL;
726
727 ifp = ia6->ia_ifa.ifa_ifp;
728 IFADDR_FOREACH(ifa, ifp) {
729 struct in6_ifaddr *it6;
730
731 if (ifa->ifa_addr->sa_family != AF_INET6)
732 continue;
733
734 it6 = (struct in6_ifaddr *)ifa;
735
736 /* ignore no autoconf addresses. */
737 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
738 continue;
739
740 /* ignore autoconf addresses with different prefixes. */
741 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
742 continue;
743
744 /*
745 * Now we are looking at an autoconf address with the same
746 * prefix as ours. If the address is temporary and is still
747 * preferred, do not create another one. It would be rare, but
748 * could happen, for example, when we resume a laptop PC after
749 * a long period.
750 */
751 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
752 !IFA6_IS_DEPRECATED(it6)) {
753 public_ifa6 = NULL;
754 break;
755 }
756
757 /*
758 * This is a public autoconf address that has the same prefix
759 * as ours. If it is preferred, keep it. We can't break the
760 * loop here, because there may be a still-preferred temporary
761 * address with the prefix.
762 */
763 if (!IFA6_IS_DEPRECATED(it6))
764 public_ifa6 = it6;
765 }
766
767 if (public_ifa6 != NULL) {
768 int e;
769
770 /*
771 * Random factor is introduced in the preferred lifetime, so
772 * we do not need additional delay (3rd arg to in6_tmpifadd).
773 */
774 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
775 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
776 " tmp addr, errno=%d\n", e);
777 return -1;
778 }
779 return 0;
780 }
781
782 return -1;
783 }
784
785 bool
786 nd6_accepts_rtadv(const struct nd_ifinfo *ndi)
787 {
788 switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) {
789 case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV:
790 return true;
791 case ND6_IFF_ACCEPT_RTADV:
792 return ip6_accept_rtadv != 0;
793 case ND6_IFF_OVERRIDE_RTADV:
794 case 0:
795 default:
796 return false;
797 }
798 }
799
800 /*
801 * Nuke neighbor cache/prefix/default router management table, right before
802 * ifp goes away.
803 */
804 void
805 nd6_purge(struct ifnet *ifp, struct in6_ifextra *ext)
806 {
807 struct nd_defrouter *dr, *ndr;
808 struct nd_prefix *pr, *npr;
809
810 /*
811 * During detach, the ND info might be already removed, but
812 * then is explitly passed as argument.
813 * Otherwise get it from ifp->if_afdata.
814 */
815 if (ext == NULL)
816 ext = ifp->if_afdata[AF_INET6];
817 if (ext == NULL)
818 return;
819
820 /*
821 * Nuke default router list entries toward ifp.
822 * We defer removal of default router list entries that is installed
823 * in the routing table, in order to keep additional side effects as
824 * small as possible.
825 */
826 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
827 if (dr->installed)
828 continue;
829
830 if (dr->ifp == ifp) {
831 KASSERT(ext != NULL);
832 defrtrlist_del(dr, ext);
833 }
834 }
835
836 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
837 if (!dr->installed)
838 continue;
839
840 if (dr->ifp == ifp) {
841 KASSERT(ext != NULL);
842 defrtrlist_del(dr, ext);
843 }
844 }
845
846 /* Nuke prefix list entries toward ifp */
847 LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, npr) {
848 if (pr->ndpr_ifp == ifp) {
849 /*
850 * Because if_detach() does *not* release prefixes
851 * while purging addresses the reference count will
852 * still be above zero. We therefore reset it to
853 * make sure that the prefix really gets purged.
854 */
855 pr->ndpr_refcnt = 0;
856 /*
857 * Previously, pr->ndpr_addr is removed as well,
858 * but I strongly believe we don't have to do it.
859 * nd6_purge() is only called from in6_ifdetach(),
860 * which removes all the associated interface addresses
861 * by itself.
862 * (jinmei (at) kame.net 20010129)
863 */
864 prelist_remove(pr);
865 }
866 }
867
868 /* cancel default outgoing interface setting */
869 if (nd6_defifindex == ifp->if_index)
870 nd6_setdefaultiface(0);
871
872 /* XXX: too restrictive? */
873 if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) {
874 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
875 if (ndi && nd6_accepts_rtadv(ndi)) {
876 /* refresh default router list */
877 defrouter_select();
878 }
879 }
880
881 /*
882 * We may not need to nuke the neighbor cache entries here
883 * because the neighbor cache is kept in if_afdata[AF_INET6].
884 * nd6_purge() is invoked by in6_ifdetach() which is called
885 * from if_detach() where everything gets purged. However
886 * in6_ifdetach is directly called from vlan(4), so we still
887 * need to purge entries here.
888 */
889 if (ext->lltable != NULL)
890 lltable_purge_entries(ext->lltable);
891 }
892
893 static struct rtentry *
894 nd6_lookup1(const struct in6_addr *addr6, int create, struct ifnet *ifp,
895 int cloning)
896 {
897 struct rtentry *rt;
898 struct sockaddr_in6 sin6;
899
900 sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
901 rt = rtalloc1((struct sockaddr *)&sin6, create);
902 if (rt != NULL && (rt->rt_flags & RTF_LLINFO) == 0) {
903 /*
904 * This is the case for the default route.
905 * If we want to create a neighbor cache for the address, we
906 * should free the route for the destination and allocate an
907 * interface route.
908 */
909 if (create) {
910 rtfree(rt);
911 rt = NULL;
912 }
913 }
914 if (rt != NULL)
915 ;
916 else if (create && ifp) {
917 int e;
918
919 /*
920 * If no route is available and create is set,
921 * we allocate a host route for the destination
922 * and treat it like an interface route.
923 * This hack is necessary for a neighbor which can't
924 * be covered by our own prefix.
925 */
926 struct ifaddr *ifa =
927 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
928 if (ifa == NULL)
929 return NULL;
930
931 /*
932 * Create a new route. RTF_LLINFO is necessary
933 * to create a Neighbor Cache entry for the
934 * destination in nd6_rtrequest which will be
935 * called in rtrequest via ifa->ifa_rtrequest.
936 */
937 if ((e = rtrequest(RTM_ADD, (const struct sockaddr *)&sin6,
938 ifa->ifa_addr, (const struct sockaddr *)&all1_sa,
939 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
940 ~RTF_CLONING, &rt)) != 0) {
941 #if 0
942 log(LOG_ERR,
943 "nd6_lookup: failed to add route for a "
944 "neighbor(%s), errno=%d\n",
945 ip6_sprintf(addr6), e);
946 #endif
947 return NULL;
948 }
949 if (rt == NULL)
950 return NULL;
951 if (rt->rt_llinfo) {
952 struct llentry *ln = rt->rt_llinfo;
953 ln->ln_state = ND6_LLINFO_NOSTATE;
954 }
955 } else
956 return NULL;
957
958 /*
959 * Check for a cloning route to match the address.
960 * This should only be set from in6_is_addr_neighbor so we avoid
961 * a potentially expensive second call to rtalloc1.
962 */
963 if (cloning &&
964 rt->rt_flags & (RTF_CLONING | RTF_CLONED) &&
965 (rt->rt_ifp == ifp
966 #if NBRIDGE > 0
967 || rt->rt_ifp->if_bridge == ifp->if_bridge
968 #endif
969 #if NCARP > 0
970 || (ifp->if_type == IFT_CARP && rt->rt_ifp == ifp->if_carpdev) ||
971 (rt->rt_ifp->if_type == IFT_CARP && rt->rt_ifp->if_carpdev == ifp)||
972 (ifp->if_type == IFT_CARP && rt->rt_ifp->if_type == IFT_CARP &&
973 rt->rt_ifp->if_carpdev == ifp->if_carpdev)
974 #endif
975 ))
976 return rt;
977
978 /*
979 * Validation for the entry.
980 * Note that the check for rt_llinfo is necessary because a cloned
981 * route from a parent route that has the L flag (e.g. the default
982 * route to a p2p interface) may have the flag, too, while the
983 * destination is not actually a neighbor.
984 * XXX: we can't use rt->rt_ifp to check for the interface, since
985 * it might be the loopback interface if the entry is for our
986 * own address on a non-loopback interface. Instead, we should
987 * use rt->rt_ifa->ifa_ifp, which would specify the REAL
988 * interface.
989 * Note also that ifa_ifp and ifp may differ when we connect two
990 * interfaces to a same link, install a link prefix to an interface,
991 * and try to install a neighbor cache on an interface that does not
992 * have a route to the prefix.
993 */
994 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
995 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
996 (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
997 if (create) {
998 nd6log((LOG_DEBUG,
999 "nd6_lookup: failed to lookup %s (if = %s)\n",
1000 ip6_sprintf(addr6),
1001 ifp ? if_name(ifp) : "unspec"));
1002 }
1003 rtfree(rt);
1004 return NULL;
1005 }
1006 return rt;
1007 }
1008
1009 struct rtentry *
1010 nd6_lookup(const struct in6_addr *addr6, int create, struct ifnet *ifp)
1011 {
1012
1013 return nd6_lookup1(addr6, create, ifp, 0);
1014 }
1015
1016 /*
1017 * Detect if a given IPv6 address identifies a neighbor on a given link.
1018 * XXX: should take care of the destination of a p2p link?
1019 */
1020 int
1021 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1022 {
1023 struct nd_prefix *pr;
1024 struct rtentry *rt;
1025
1026 /*
1027 * A link-local address is always a neighbor.
1028 * XXX: a link does not necessarily specify a single interface.
1029 */
1030 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
1031 struct sockaddr_in6 sin6_copy;
1032 u_int32_t zone;
1033
1034 /*
1035 * We need sin6_copy since sa6_recoverscope() may modify the
1036 * content (XXX).
1037 */
1038 sin6_copy = *addr;
1039 if (sa6_recoverscope(&sin6_copy))
1040 return 0; /* XXX: should be impossible */
1041 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
1042 return 0;
1043 if (sin6_copy.sin6_scope_id == zone)
1044 return 1;
1045 else
1046 return 0;
1047 }
1048
1049 /*
1050 * If the address matches one of our on-link prefixes, it should be a
1051 * neighbor.
1052 */
1053 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
1054 if (pr->ndpr_ifp != ifp)
1055 continue;
1056
1057 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
1058 continue;
1059
1060 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1061 &addr->sin6_addr, &pr->ndpr_mask))
1062 return 1;
1063 }
1064
1065 /*
1066 * If the default router list is empty, all addresses are regarded
1067 * as on-link, and thus, as a neighbor.
1068 * XXX: we restrict the condition to hosts, because routers usually do
1069 * not have the "default router list".
1070 */
1071 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
1072 nd6_defifindex == ifp->if_index) {
1073 return 1;
1074 }
1075
1076 /*
1077 * Even if the address matches none of our addresses, it might match
1078 * a cloning route or be in the neighbor cache.
1079 */
1080 rt = nd6_lookup1(&addr->sin6_addr, 0, ifp, 1);
1081 if (rt != NULL) {
1082 rtfree(rt);
1083 return 1;
1084 }
1085
1086 return 0;
1087 }
1088
1089 /*
1090 * Free an nd6 llinfo entry.
1091 * Since the function would cause significant changes in the kernel, DO NOT
1092 * make it global, unless you have a strong reason for the change, and are sure
1093 * that the change is safe.
1094 */
1095 static void
1096 nd6_free(struct rtentry *rt, struct llentry *ln, int gc)
1097 {
1098 struct in6_addr in6 = satocsin6(rt_getkey(rt))->sin6_addr;
1099 struct nd_defrouter *dr;
1100 int error;
1101
1102 KASSERT(ln != NULL);
1103 KASSERT(ln == rt->rt_llinfo);
1104 LLE_WLOCK_ASSERT(ln);
1105
1106 /*
1107 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1108 * even though it is not harmful, it was not really necessary.
1109 */
1110
1111 /* cancel timer */
1112 nd6_llinfo_settimer_locked(ln, -1);
1113
1114 if (!ip6_forwarding) {
1115 int s;
1116 s = splsoftnet();
1117 dr = defrouter_lookup(&satocsin6(rt_getkey(rt))->sin6_addr,
1118 rt->rt_ifp);
1119
1120 if (dr != NULL && dr->expire &&
1121 ln->ln_state == ND6_LLINFO_STALE && gc) {
1122 /*
1123 * If the reason for the deletion is just garbage
1124 * collection, and the neighbor is an active default
1125 * router, do not delete it. Instead, reset the GC
1126 * timer using the router's lifetime.
1127 * Simply deleting the entry would affect default
1128 * router selection, which is not necessarily a good
1129 * thing, especially when we're using router preference
1130 * values.
1131 * XXX: the check for ln_state would be redundant,
1132 * but we intentionally keep it just in case.
1133 */
1134 if (dr->expire > time_uptime)
1135 nd6_llinfo_settimer_locked(ln,
1136 (dr->expire - time_uptime) * hz);
1137 else
1138 nd6_llinfo_settimer_locked(ln,
1139 nd6_gctimer * hz);
1140 splx(s);
1141 LLE_WUNLOCK(ln);
1142 return;
1143 }
1144
1145 if (ln->ln_router || dr) {
1146 /*
1147 * rt6_flush must be called whether or not the neighbor
1148 * is in the Default Router List.
1149 * See a corresponding comment in nd6_na_input().
1150 */
1151 rt6_flush(&in6, rt->rt_ifp);
1152 }
1153
1154 if (dr) {
1155 /*
1156 * Unreachablity of a router might affect the default
1157 * router selection and on-link detection of advertised
1158 * prefixes.
1159 */
1160
1161 /*
1162 * Temporarily fake the state to choose a new default
1163 * router and to perform on-link determination of
1164 * prefixes correctly.
1165 * Below the state will be set correctly,
1166 * or the entry itself will be deleted.
1167 */
1168 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1169
1170 /*
1171 * Since defrouter_select() does not affect the
1172 * on-link determination and MIP6 needs the check
1173 * before the default router selection, we perform
1174 * the check now.
1175 */
1176 pfxlist_onlink_check();
1177
1178 /*
1179 * refresh default router list
1180 */
1181 defrouter_select();
1182 }
1183 splx(s);
1184 }
1185
1186 LLE_WUNLOCK(ln);
1187 /*
1188 * Detach the route from the routing tree and the list of neighbor
1189 * caches, and disable the route entry not to be used in already
1190 * cached routes.
1191 */
1192 error = rtrequest_newmsg(RTM_DELETE, rt_getkey(rt), NULL,
1193 rt_mask(rt), 0);
1194 if (error != 0) {
1195 /* XXX need error message? */;
1196 }
1197 }
1198
1199 /*
1200 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1201 *
1202 * XXX cost-effective methods?
1203 */
1204 void
1205 nd6_nud_hint(struct rtentry *rt)
1206 {
1207 struct llentry *ln;
1208
1209 if (rt == NULL)
1210 return;
1211
1212 if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1213 (rt->rt_flags & RTF_LLINFO) == 0 ||
1214 !rt->rt_llinfo || !rt->rt_gateway ||
1215 rt->rt_gateway->sa_family != AF_LINK) {
1216 /* This is not a host route. */
1217 return;
1218 }
1219
1220 ln = rt->rt_llinfo;
1221 if (ln->ln_state < ND6_LLINFO_REACHABLE)
1222 return;
1223
1224 /*
1225 * if we get upper-layer reachability confirmation many times,
1226 * it is possible we have false information.
1227 */
1228 ln->ln_byhint++;
1229 if (ln->ln_byhint > nd6_maxnudhint)
1230 return;
1231
1232 ln->ln_state = ND6_LLINFO_REACHABLE;
1233 if (!ND6_LLINFO_PERMANENT(ln)) {
1234 nd6_llinfo_settimer(ln,
1235 ND_IFINFO(rt->rt_ifp)->reachable * hz);
1236 }
1237
1238 return;
1239 }
1240
1241 static int
1242 nd6_purge_entry(struct lltable *llt, struct llentry *ln, void *farg)
1243 {
1244 int *n = farg;
1245
1246 if (*n <= 0)
1247 return 0;
1248
1249 if (ND6_LLINFO_PERMANENT(ln))
1250 return 0;
1251
1252 LLE_WLOCK(ln);
1253 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1254 ln->ln_state = ND6_LLINFO_STALE;
1255 else
1256 ln->ln_state = ND6_LLINFO_PURGE;
1257 nd6_llinfo_settimer_locked(ln, 0);
1258 LLE_WUNLOCK(ln);
1259
1260 (*n)--;
1261 return 0;
1262 }
1263
1264 static void
1265 nd6_gc_neighbors(struct lltable *llt)
1266 {
1267 int max_gc_entries = 10;
1268
1269 if (ip6_neighborgcthresh >= 0 &&
1270 lltable_get_entry_count(llt) >= ip6_neighborgcthresh) {
1271 /*
1272 * XXX entries that are "less recently used" should be
1273 * freed first.
1274 */
1275 lltable_foreach_lle(llt, nd6_purge_entry, &max_gc_entries);
1276 }
1277 }
1278
1279 void
1280 nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
1281 {
1282 struct sockaddr *gate = rt->rt_gateway;
1283 struct llentry *ln;
1284 struct ifnet *ifp = rt->rt_ifp;
1285 uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen;
1286 struct ifaddr *ifa;
1287 int flags = 0;
1288 bool use_lo0ifp = false;
1289
1290 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1291
1292 if (req == RTM_LLINFO_UPD) {
1293 int rc;
1294 struct in6_addr *in6;
1295 struct in6_addr in6_all;
1296 int anycast;
1297
1298 if ((ifa = info->rti_ifa) == NULL)
1299 return;
1300
1301 in6 = &ifatoia6(ifa)->ia_addr.sin6_addr;
1302 anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST;
1303
1304 in6_all = in6addr_linklocal_allnodes;
1305 if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) {
1306 log(LOG_ERR, "%s: failed to set scope %s "
1307 "(errno=%d)\n", __func__, if_name(ifp), rc);
1308 return;
1309 }
1310
1311 /* XXX don't set Override for proxy addresses */
1312 nd6_na_output(ifa->ifa_ifp, &in6_all, in6,
1313 (anycast ? 0 : ND_NA_FLAG_OVERRIDE)
1314 #if 0
1315 | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0)
1316 #endif
1317 , 1, NULL);
1318 return;
1319 }
1320
1321 if ((rt->rt_flags & RTF_GATEWAY) != 0)
1322 return;
1323
1324 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1325 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1326 /*
1327 * This is probably an interface direct route for a link
1328 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1329 * We do not need special treatment below for such a route.
1330 * Moreover, the RTF_LLINFO flag which would be set below
1331 * would annoy the ndp(8) command.
1332 */
1333 return;
1334 }
1335
1336 IF_AFDATA_RLOCK(ifp);
1337 ln = lla_lookup(LLTABLE6(ifp), flags, rt_getkey(rt));
1338 IF_AFDATA_RUNLOCK(ifp);
1339
1340 if (req == RTM_RESOLVE &&
1341 (nd6_need_cache(ifp) == 0 || /* stf case */
1342 !nd6_is_addr_neighbor(satocsin6(rt_getkey(rt)), ifp))) {
1343 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1344 /*
1345 * FreeBSD and BSD/OS often make a cloned host route based
1346 * on a less-specific route (e.g. the default route).
1347 * If the less specific route does not have a "gateway"
1348 * (this is the case when the route just goes to a p2p or an
1349 * stf interface), we'll mistakenly make a neighbor cache for
1350 * the host route, and will see strange neighbor solicitation
1351 * for the corresponding destination. In order to avoid the
1352 * confusion, we check if the destination of the route is
1353 * a neighbor in terms of neighbor discovery, and stop the
1354 * process if not. Additionally, we remove the LLINFO flag
1355 * so that ndp(8) will not try to get the neighbor information
1356 * of the destination.
1357 */
1358 rt->rt_flags &= ~RTF_LLINFO;
1359 return;
1360 }
1361
1362 switch (req) {
1363 case RTM_ADD:
1364 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1365 /*
1366 * There is no backward compatibility :)
1367 *
1368 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1369 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1370 * rt->rt_flags |= RTF_CLONING;
1371 */
1372 if ((rt->rt_flags & RTF_CLONING) ||
1373 ((rt->rt_flags & RTF_LLINFO) && ln == NULL)) {
1374 union {
1375 struct sockaddr sa;
1376 struct sockaddr_dl sdl;
1377 struct sockaddr_storage ss;
1378 } u;
1379 /*
1380 * Case 1: This route should come from a route to
1381 * interface (RTF_CLONING case) or the route should be
1382 * treated as on-link but is currently not
1383 * (RTF_LLINFO && ln == NULL case).
1384 */
1385 if (sockaddr_dl_init(&u.sdl, sizeof(u.ss),
1386 ifp->if_index, ifp->if_type,
1387 NULL, namelen, NULL, addrlen) == NULL) {
1388 printf("%s.%d: sockaddr_dl_init(, %zu, ) "
1389 "failed on %s\n", __func__, __LINE__,
1390 sizeof(u.ss), if_name(ifp));
1391 }
1392 rt_setgate(rt, &u.sa);
1393 gate = rt->rt_gateway;
1394 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1395 if (ln != NULL)
1396 nd6_llinfo_settimer_locked(ln, 0);
1397 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1398 if ((rt->rt_flags & RTF_CLONING) != 0)
1399 break;
1400 }
1401 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1402 /*
1403 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1404 * We don't do that here since llinfo is not ready yet.
1405 *
1406 * There are also couple of other things to be discussed:
1407 * - unsolicited NA code needs improvement beforehand
1408 * - RFC2461 says we MAY send multicast unsolicited NA
1409 * (7.2.6 paragraph 4), however, it also says that we
1410 * SHOULD provide a mechanism to prevent multicast NA storm.
1411 * we don't have anything like it right now.
1412 * note that the mechanism needs a mutual agreement
1413 * between proxies, which means that we need to implement
1414 * a new protocol, or a new kludge.
1415 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1416 * we need to check ip6forwarding before sending it.
1417 * (or should we allow proxy ND configuration only for
1418 * routers? there's no mention about proxy ND from hosts)
1419 */
1420 #if 0
1421 /* XXX it does not work */
1422 if (rt->rt_flags & RTF_ANNOUNCE)
1423 nd6_na_output(ifp,
1424 &satocsin6(rt_getkey(rt))->sin6_addr,
1425 &satocsin6(rt_getkey(rt))->sin6_addr,
1426 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1427 1, NULL);
1428 #endif
1429 /* FALLTHROUGH */
1430 case RTM_RESOLVE:
1431 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1432 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1433 /*
1434 * Address resolution isn't necessary for a point to
1435 * point link, so we can skip this test for a p2p link.
1436 */
1437 if (gate->sa_family != AF_LINK ||
1438 gate->sa_len <
1439 sockaddr_dl_measure(namelen, addrlen)) {
1440 log(LOG_DEBUG,
1441 "nd6_rtrequest: bad gateway value: %s\n",
1442 if_name(ifp));
1443 break;
1444 }
1445 satosdl(gate)->sdl_type = ifp->if_type;
1446 satosdl(gate)->sdl_index = ifp->if_index;
1447 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1448 }
1449 if (ln != NULL)
1450 break; /* This happens on a route change */
1451 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1452
1453 /* Determine to use lo0ifp or not before lla_create */
1454 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp,
1455 &satocsin6(rt_getkey(rt))->sin6_addr);
1456 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1457 if (ifa != NULL && nd6_useloopback)
1458 use_lo0ifp = true;
1459
1460 /*
1461 * Case 2: This route may come from cloning, or a manual route
1462 * add with a LL address.
1463 */
1464 flags = LLE_EXCLUSIVE;
1465 if ((rt->rt_flags & RTF_CLONED) == 0)
1466 flags |= LLE_IFADDR;
1467
1468 #define _IFP() (use_lo0ifp ? lo0ifp : ifp)
1469 IF_AFDATA_WLOCK(_IFP());
1470 ln = lla_create(LLTABLE6(_IFP()), flags, rt_getkey(rt));
1471 IF_AFDATA_WUNLOCK(_IFP());
1472
1473 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1474 if (ln == NULL) {
1475 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1476 break;
1477 }
1478
1479 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1480 nd6_inuse++;
1481 nd6_allocated++;
1482 ln->ln_rt = rt;
1483 rt->rt_refcnt++;
1484 rt->rt_llinfo = ln;
1485 LLE_ADDREF(ln);
1486 rt->rt_flags |= RTF_LLINFO;
1487 switch (_IFP()->if_type) {
1488 #if NTOKEN > 0
1489 case IFT_ISO88025:
1490 ln->la_opaque = kmem_alloc(sizeof(struct token_rif),
1491 KM_SLEEP);
1492 break;
1493 #endif /* NTOKEN > 0 */
1494 default:
1495 break;
1496 }
1497 #undef _IFP
1498
1499 /* this is required for "ndp" command. - shin */
1500 if (req == RTM_ADD) {
1501 /*
1502 * gate should have some valid AF_LINK entry,
1503 * and ln->ln_expire should have some lifetime
1504 * which is specified by ndp command.
1505 */
1506 ln->ln_state = ND6_LLINFO_REACHABLE;
1507 ln->ln_byhint = 0;
1508 } else {
1509 /*
1510 * When req == RTM_RESOLVE, rt is created and
1511 * initialized in rtrequest(), so rt_expire is 0.
1512 */
1513 ln->ln_state = ND6_LLINFO_NOSTATE;
1514 nd6_llinfo_settimer_locked(ln, 0);
1515 }
1516 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1517
1518 /*
1519 * check if rt_getkey(rt) is an address assigned
1520 * to the interface.
1521 */
1522 if (ifa != NULL) {
1523 const void *mac;
1524 nd6_llinfo_settimer_locked(ln, -1);
1525 ln->ln_state = ND6_LLINFO_REACHABLE;
1526 ln->ln_byhint = 0;
1527 if ((mac = nd6_ifptomac(ifp)) != NULL) {
1528 /* XXX check for error */
1529 if (sockaddr_dl_setaddr(satosdl(gate),
1530 gate->sa_len, mac,
1531 ifp->if_addrlen) == NULL) {
1532 printf("%s.%d: "
1533 "sockaddr_dl_setaddr(, %d, ) "
1534 "failed on %s\n", __func__,
1535 __LINE__, gate->sa_len,
1536 if_name(ifp));
1537 }
1538 }
1539 if (nd6_useloopback) {
1540 ifp = rt->rt_ifp = lo0ifp; /* XXX */
1541 /*
1542 * Make sure rt_ifa be equal to the ifaddr
1543 * corresponding to the address.
1544 * We need this because when we refer
1545 * rt_ifa->ia6_flags in ip6_input, we assume
1546 * that the rt_ifa points to the address instead
1547 * of the loopback address.
1548 */
1549 if (ifa != rt->rt_ifa)
1550 rt_replace_ifa(rt, ifa);
1551 rt->rt_rmx.rmx_mtu = 0;
1552 rt->rt_flags &= ~RTF_CLONED;
1553 }
1554 rt->rt_flags |= RTF_LOCAL;
1555 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1556 nd6_llinfo_settimer_locked(ln, -1);
1557 ln->ln_state = ND6_LLINFO_REACHABLE;
1558 ln->ln_byhint = 0;
1559
1560 /* join solicited node multicast for proxy ND */
1561 if (ifp->if_flags & IFF_MULTICAST) {
1562 struct in6_addr llsol;
1563 int error;
1564
1565 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1566 llsol.s6_addr32[0] = htonl(0xff020000);
1567 llsol.s6_addr32[1] = 0;
1568 llsol.s6_addr32[2] = htonl(1);
1569 llsol.s6_addr8[12] = 0xff;
1570 if (in6_setscope(&llsol, ifp, NULL))
1571 break;
1572 if (!in6_addmulti(&llsol, ifp, &error, 0)) {
1573 nd6log((LOG_ERR, "%s: failed to join "
1574 "%s (errno=%d)\n", if_name(ifp),
1575 ip6_sprintf(&llsol), error));
1576 }
1577 }
1578 }
1579 LLE_WUNLOCK(ln);
1580 /*
1581 * If we have too many cache entries, initiate immediate
1582 * purging for some entries.
1583 */
1584 nd6_gc_neighbors(ln->lle_tbl);
1585 ln = NULL;
1586
1587 break;
1588
1589 case RTM_DELETE:
1590 if (ln == NULL)
1591 break;
1592 /* leave from solicited node multicast for proxy ND */
1593 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1594 (ifp->if_flags & IFF_MULTICAST) != 0) {
1595 struct in6_addr llsol;
1596 struct in6_multi *in6m;
1597
1598 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1599 llsol.s6_addr32[0] = htonl(0xff020000);
1600 llsol.s6_addr32[1] = 0;
1601 llsol.s6_addr32[2] = htonl(1);
1602 llsol.s6_addr8[12] = 0xff;
1603 if (in6_setscope(&llsol, ifp, NULL) == 0) {
1604 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1605 if (in6m)
1606 in6_delmulti(in6m);
1607 }
1608 }
1609 nd6_inuse--;
1610 rt->rt_llinfo = NULL;
1611 rt->rt_flags &= ~RTF_LLINFO;
1612
1613 /* Have to do before IF_AFDATA_WLOCK to avoid deadlock */
1614 callout_halt(&ln->la_timer, &ln->lle_lock);
1615 /* XXX: LOR avoidance. We still have ref on lle. */
1616 LLE_RUNLOCK(ln);
1617
1618 IF_AFDATA_WLOCK(ifp);
1619 LLE_WLOCK(ln);
1620
1621 clear_llinfo_pqueue(ln);
1622 if (ln->la_opaque != NULL) {
1623 switch (ifp->if_type) {
1624 #if NTOKEN > 0
1625 case IFT_ISO88025:
1626 kmem_free(ln->la_opaque,
1627 sizeof(struct token_rif));
1628 break;
1629 #endif /* NTOKEN > 0 */
1630 default:
1631 break;
1632 }
1633 }
1634
1635 if (ln->la_rt != NULL) {
1636 /*
1637 * Don't rtfree (may actually free objects) here.
1638 * Leave it to rtrequest1.
1639 */
1640 ln->la_rt->rt_refcnt--;
1641 ln->la_rt = NULL;
1642 }
1643 /* Guard against race with other llentry_free(). */
1644 if (ln->la_flags & LLE_LINKED) {
1645 LLE_REMREF(ln);
1646 llentry_free(ln);
1647 } else {
1648 LLE_FREE_LOCKED(ln);
1649 }
1650
1651 IF_AFDATA_WUNLOCK(ifp);
1652 ln = NULL;
1653 }
1654
1655 if (ln != NULL) {
1656 if (flags & LLE_EXCLUSIVE)
1657 LLE_WUNLOCK(ln);
1658 else
1659 LLE_RUNLOCK(ln);
1660 }
1661 }
1662
1663 int
1664 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp)
1665 {
1666 struct in6_drlist *drl = (struct in6_drlist *)data;
1667 struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1668 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1669 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1670 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1671 struct nd_defrouter *dr;
1672 struct nd_prefix *pr;
1673 int i = 0, error = 0;
1674 int s;
1675
1676 switch (cmd) {
1677 case SIOCGDRLST_IN6:
1678 /*
1679 * obsolete API, use sysctl under net.inet6.icmp6
1680 */
1681 memset(drl, 0, sizeof(*drl));
1682 s = splsoftnet();
1683 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
1684 if (i >= DRLSTSIZ)
1685 break;
1686 drl->defrouter[i].rtaddr = dr->rtaddr;
1687 in6_clearscope(&drl->defrouter[i].rtaddr);
1688
1689 drl->defrouter[i].flags = dr->flags;
1690 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1691 drl->defrouter[i].expire = dr->expire ?
1692 time_mono_to_wall(dr->expire) : 0;
1693 drl->defrouter[i].if_index = dr->ifp->if_index;
1694 i++;
1695 }
1696 splx(s);
1697 break;
1698 case SIOCGPRLST_IN6:
1699 /*
1700 * obsolete API, use sysctl under net.inet6.icmp6
1701 *
1702 * XXX the structure in6_prlist was changed in backward-
1703 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1704 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1705 */
1706 /*
1707 * XXX meaning of fields, especialy "raflags", is very
1708 * differnet between RA prefix list and RR/static prefix list.
1709 * how about separating ioctls into two?
1710 */
1711 memset(oprl, 0, sizeof(*oprl));
1712 s = splsoftnet();
1713 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
1714 struct nd_pfxrouter *pfr;
1715 int j;
1716
1717 if (i >= PRLSTSIZ)
1718 break;
1719 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1720 oprl->prefix[i].raflags = pr->ndpr_raf;
1721 oprl->prefix[i].prefixlen = pr->ndpr_plen;
1722 oprl->prefix[i].vltime = pr->ndpr_vltime;
1723 oprl->prefix[i].pltime = pr->ndpr_pltime;
1724 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1725 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1726 oprl->prefix[i].expire = 0;
1727 else {
1728 time_t maxexpire;
1729
1730 /* XXX: we assume time_t is signed. */
1731 maxexpire = (-1) &
1732 ~((time_t)1 <<
1733 ((sizeof(maxexpire) * 8) - 1));
1734 if (pr->ndpr_vltime <
1735 maxexpire - pr->ndpr_lastupdate) {
1736 time_t expire;
1737 expire = pr->ndpr_lastupdate +
1738 pr->ndpr_vltime;
1739 oprl->prefix[i].expire = expire ?
1740 time_mono_to_wall(expire) : 0;
1741 } else
1742 oprl->prefix[i].expire = maxexpire;
1743 }
1744
1745 j = 0;
1746 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
1747 if (j < DRLSTSIZ) {
1748 #define RTRADDR oprl->prefix[i].advrtr[j]
1749 RTRADDR = pfr->router->rtaddr;
1750 in6_clearscope(&RTRADDR);
1751 #undef RTRADDR
1752 }
1753 j++;
1754 }
1755 oprl->prefix[i].advrtrs = j;
1756 oprl->prefix[i].origin = PR_ORIG_RA;
1757
1758 i++;
1759 }
1760 splx(s);
1761
1762 break;
1763 case OSIOCGIFINFO_IN6:
1764 #define ND ndi->ndi
1765 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1766 memset(&ND, 0, sizeof(ND));
1767 ND.linkmtu = IN6_LINKMTU(ifp);
1768 ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1769 ND.basereachable = ND_IFINFO(ifp)->basereachable;
1770 ND.reachable = ND_IFINFO(ifp)->reachable;
1771 ND.retrans = ND_IFINFO(ifp)->retrans;
1772 ND.flags = ND_IFINFO(ifp)->flags;
1773 ND.recalctm = ND_IFINFO(ifp)->recalctm;
1774 ND.chlim = ND_IFINFO(ifp)->chlim;
1775 break;
1776 case SIOCGIFINFO_IN6:
1777 ND = *ND_IFINFO(ifp);
1778 break;
1779 case SIOCSIFINFO_IN6:
1780 /*
1781 * used to change host variables from userland.
1782 * intented for a use on router to reflect RA configurations.
1783 */
1784 /* 0 means 'unspecified' */
1785 if (ND.linkmtu != 0) {
1786 if (ND.linkmtu < IPV6_MMTU ||
1787 ND.linkmtu > IN6_LINKMTU(ifp)) {
1788 error = EINVAL;
1789 break;
1790 }
1791 ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1792 }
1793
1794 if (ND.basereachable != 0) {
1795 int obasereachable = ND_IFINFO(ifp)->basereachable;
1796
1797 ND_IFINFO(ifp)->basereachable = ND.basereachable;
1798 if (ND.basereachable != obasereachable)
1799 ND_IFINFO(ifp)->reachable =
1800 ND_COMPUTE_RTIME(ND.basereachable);
1801 }
1802 if (ND.retrans != 0)
1803 ND_IFINFO(ifp)->retrans = ND.retrans;
1804 if (ND.chlim != 0)
1805 ND_IFINFO(ifp)->chlim = ND.chlim;
1806 /* FALLTHROUGH */
1807 case SIOCSIFINFO_FLAGS:
1808 {
1809 struct ifaddr *ifa;
1810 struct in6_ifaddr *ia;
1811
1812 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1813 !(ND.flags & ND6_IFF_IFDISABLED))
1814 {
1815 /*
1816 * If the interface is marked as ND6_IFF_IFDISABLED and
1817 * has a link-local address with IN6_IFF_DUPLICATED,
1818 * do not clear ND6_IFF_IFDISABLED.
1819 * See RFC 4862, section 5.4.5.
1820 */
1821 int duplicated_linklocal = 0;
1822
1823 IFADDR_FOREACH(ifa, ifp) {
1824 if (ifa->ifa_addr->sa_family != AF_INET6)
1825 continue;
1826 ia = (struct in6_ifaddr *)ifa;
1827 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1828 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1829 {
1830 duplicated_linklocal = 1;
1831 break;
1832 }
1833 }
1834
1835 if (duplicated_linklocal) {
1836 ND.flags |= ND6_IFF_IFDISABLED;
1837 log(LOG_ERR, "Cannot enable an interface"
1838 " with a link-local address marked"
1839 " duplicate.\n");
1840 } else {
1841 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1842 if (ifp->if_flags & IFF_UP)
1843 in6_if_up(ifp);
1844 }
1845 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1846 (ND.flags & ND6_IFF_IFDISABLED))
1847 {
1848 /* Mark all IPv6 addresses as tentative. */
1849
1850 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1851 IFADDR_FOREACH(ifa, ifp) {
1852 if (ifa->ifa_addr->sa_family != AF_INET6)
1853 continue;
1854 nd6_dad_stop(ifa);
1855 ia = (struct in6_ifaddr *)ifa;
1856 ia->ia6_flags |= IN6_IFF_TENTATIVE;
1857 }
1858 }
1859
1860 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1861 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1862 /* auto_linklocal 0->1 transition */
1863
1864 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1865 in6_ifattach(ifp, NULL);
1866 } else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1867 ifp->if_flags & IFF_UP)
1868 {
1869 /*
1870 * When the IF already has
1871 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1872 * address is assigned, and IFF_UP, try to
1873 * assign one.
1874 */
1875 int haslinklocal = 0;
1876
1877 IFADDR_FOREACH(ifa, ifp) {
1878 if (ifa->ifa_addr->sa_family !=AF_INET6)
1879 continue;
1880 ia = (struct in6_ifaddr *)ifa;
1881 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))){
1882 haslinklocal = 1;
1883 break;
1884 }
1885 }
1886 if (!haslinklocal)
1887 in6_ifattach(ifp, NULL);
1888 }
1889 }
1890 }
1891 ND_IFINFO(ifp)->flags = ND.flags;
1892 break;
1893 #undef ND
1894 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1895 /* sync kernel routing table with the default router list */
1896 defrouter_reset();
1897 defrouter_select();
1898 break;
1899 case SIOCSPFXFLUSH_IN6:
1900 {
1901 /* flush all the prefix advertised by routers */
1902 struct nd_prefix *pfx, *next;
1903
1904 s = splsoftnet();
1905 LIST_FOREACH_SAFE(pfx, &nd_prefix, ndpr_entry, next) {
1906 struct in6_ifaddr *ia, *ia_next;
1907
1908 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
1909 continue; /* XXX */
1910
1911 /* do we really have to remove addresses as well? */
1912 for (ia = in6_ifaddr; ia; ia = ia_next) {
1913 /* ia might be removed. keep the next ptr. */
1914 ia_next = ia->ia_next;
1915
1916 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1917 continue;
1918
1919 if (ia->ia6_ndpr == pfx)
1920 in6_purgeaddr(&ia->ia_ifa);
1921 }
1922 prelist_remove(pfx);
1923 }
1924 splx(s);
1925 break;
1926 }
1927 case SIOCSRTRFLUSH_IN6:
1928 {
1929 /* flush all the default routers */
1930 struct nd_defrouter *drtr, *next;
1931
1932 s = splsoftnet();
1933 defrouter_reset();
1934 TAILQ_FOREACH_SAFE(drtr, &nd_defrouter, dr_entry, next) {
1935 defrtrlist_del(drtr, NULL);
1936 }
1937 defrouter_select();
1938 splx(s);
1939 break;
1940 }
1941 case SIOCGNBRINFO_IN6:
1942 {
1943 struct llentry *ln;
1944 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1945 struct rtentry *rt;
1946
1947 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1948 return error;
1949
1950 s = splsoftnet();
1951 rt = nd6_lookup(&nb_addr, 0, ifp);
1952 if (rt == NULL) {
1953 error = EINVAL;
1954 splx(s);
1955 break;
1956 }
1957
1958 ln = rt->rt_llinfo;
1959 rtfree(rt);
1960 if (ln == NULL) {
1961 error = EINVAL;
1962 splx(s);
1963 break;
1964 }
1965 nbi->state = ln->ln_state;
1966 nbi->asked = ln->ln_asked;
1967 nbi->isrouter = ln->ln_router;
1968 nbi->expire = ln->ln_expire ?
1969 time_mono_to_wall(ln->ln_expire) : 0;
1970 splx(s);
1971
1972 break;
1973 }
1974 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1975 ndif->ifindex = nd6_defifindex;
1976 break;
1977 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1978 return nd6_setdefaultiface(ndif->ifindex);
1979 }
1980 return error;
1981 }
1982
1983 void
1984 nd6_llinfo_release_pkts(struct llentry *ln, struct ifnet *ifp,
1985 struct rtentry *rt)
1986 {
1987 struct mbuf *m_hold, *m_hold_next;
1988
1989 for (m_hold = ln->la_hold, ln->la_hold = NULL, ln->la_numheld = 0;
1990 m_hold != NULL;
1991 m_hold = m_hold_next) {
1992 m_hold_next = m_hold->m_nextpkt;
1993 m_hold->m_nextpkt = NULL;
1994
1995 /*
1996 * we assume ifp is not a p2p here, so
1997 * just set the 2nd argument as the
1998 * 1st one.
1999 */
2000 nd6_output(ifp, ifp, m_hold, satocsin6(rt_getkey(rt)), rt);
2001 }
2002 }
2003
2004 /*
2005 * Create neighbor cache entry and cache link-layer address,
2006 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
2007 */
2008 void
2009 nd6_cache_lladdr(
2010 struct ifnet *ifp,
2011 struct in6_addr *from,
2012 char *lladdr,
2013 int lladdrlen,
2014 int type, /* ICMP6 type */
2015 int code /* type dependent information */
2016 )
2017 {
2018 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
2019 struct rtentry *rt = NULL;
2020 struct llentry *ln = NULL;
2021 int is_newentry;
2022 struct sockaddr_dl *sdl = NULL;
2023 int do_update;
2024 int olladdr;
2025 int llchange;
2026 int newstate = 0;
2027
2028 KASSERT(ifp != NULL);
2029 KASSERT(from != NULL);
2030
2031 /* nothing must be updated for unspecified address */
2032 if (IN6_IS_ADDR_UNSPECIFIED(from))
2033 return;
2034
2035 /*
2036 * Validation about ifp->if_addrlen and lladdrlen must be done in
2037 * the caller.
2038 *
2039 * XXX If the link does not have link-layer adderss, what should
2040 * we do? (ifp->if_addrlen == 0)
2041 * Spec says nothing in sections for RA, RS and NA. There's small
2042 * description on it in NS section (RFC 2461 7.2.3).
2043 */
2044
2045 rt = nd6_lookup(from, 0, ifp);
2046 if (rt == NULL) {
2047 #if 0
2048 /* nothing must be done if there's no lladdr */
2049 if (!lladdr || !lladdrlen)
2050 return NULL;
2051 #endif
2052
2053 rt = nd6_lookup(from, 1, ifp);
2054 is_newentry = 1;
2055 } else {
2056 /* do nothing if static ndp is set */
2057 if (rt->rt_flags & RTF_STATIC) {
2058 rtfree(rt);
2059 return;
2060 }
2061 is_newentry = 0;
2062 }
2063
2064 if (rt == NULL)
2065 return;
2066 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
2067 fail:
2068 if (rt->rt_llinfo != NULL)
2069 LLE_WLOCK((struct llentry *)rt->rt_llinfo);
2070 nd6_free(rt, rt->rt_llinfo, 0);
2071 rtfree(rt);
2072 return;
2073 }
2074 ln = rt->rt_llinfo;
2075 if (ln == NULL)
2076 goto fail;
2077 if (rt->rt_gateway == NULL)
2078 goto fail;
2079 if (rt->rt_gateway->sa_family != AF_LINK)
2080 goto fail;
2081 sdl = satosdl(rt->rt_gateway);
2082
2083 olladdr = (sdl->sdl_alen) ? 1 : 0;
2084 if (olladdr && lladdr) {
2085 if (memcmp(lladdr, CLLADDR(sdl), ifp->if_addrlen))
2086 llchange = 1;
2087 else
2088 llchange = 0;
2089 } else
2090 llchange = 0;
2091
2092 /*
2093 * newentry olladdr lladdr llchange (*=record)
2094 * 0 n n -- (1)
2095 * 0 y n -- (2)
2096 * 0 n y -- (3) * STALE
2097 * 0 y y n (4) *
2098 * 0 y y y (5) * STALE
2099 * 1 -- n -- (6) NOSTATE(= PASSIVE)
2100 * 1 -- y -- (7) * STALE
2101 */
2102
2103 if (lladdr) { /* (3-5) and (7) */
2104 /*
2105 * Record source link-layer address
2106 * XXX is it dependent to ifp->if_type?
2107 */
2108 /* XXX check for error */
2109 if (sockaddr_dl_setaddr(sdl, sdl->sdl_len, lladdr,
2110 ifp->if_addrlen) == NULL) {
2111 printf("%s.%d: sockaddr_dl_setaddr(, %d, ) "
2112 "failed on %s\n", __func__, __LINE__,
2113 sdl->sdl_len, if_name(ifp));
2114 }
2115 }
2116
2117 if (!is_newentry) {
2118 if ((!olladdr && lladdr) || /* (3) */
2119 (olladdr && lladdr && llchange)) { /* (5) */
2120 do_update = 1;
2121 newstate = ND6_LLINFO_STALE;
2122 } else /* (1-2,4) */
2123 do_update = 0;
2124 } else {
2125 do_update = 1;
2126 if (lladdr == NULL) /* (6) */
2127 newstate = ND6_LLINFO_NOSTATE;
2128 else /* (7) */
2129 newstate = ND6_LLINFO_STALE;
2130 }
2131
2132 if (do_update) {
2133 /*
2134 * Update the state of the neighbor cache.
2135 */
2136 ln->ln_state = newstate;
2137
2138 if (ln->ln_state == ND6_LLINFO_STALE) {
2139 /*
2140 * XXX: since nd6_output() below will cause
2141 * state tansition to DELAY and reset the timer,
2142 * we must set the timer now, although it is actually
2143 * meaningless.
2144 */
2145 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
2146
2147 nd6_llinfo_release_pkts(ln, ifp, rt);
2148 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
2149 /* probe right away */
2150 nd6_llinfo_settimer((void *)ln, 0);
2151 }
2152 }
2153
2154 /*
2155 * ICMP6 type dependent behavior.
2156 *
2157 * NS: clear IsRouter if new entry
2158 * RS: clear IsRouter
2159 * RA: set IsRouter if there's lladdr
2160 * redir: clear IsRouter if new entry
2161 *
2162 * RA case, (1):
2163 * The spec says that we must set IsRouter in the following cases:
2164 * - If lladdr exist, set IsRouter. This means (1-5).
2165 * - If it is old entry (!newentry), set IsRouter. This means (7).
2166 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
2167 * A quetion arises for (1) case. (1) case has no lladdr in the
2168 * neighbor cache, this is similar to (6).
2169 * This case is rare but we figured that we MUST NOT set IsRouter.
2170 *
2171 * newentry olladdr lladdr llchange NS RS RA redir
2172 * D R
2173 * 0 n n -- (1) c ? s
2174 * 0 y n -- (2) c s s
2175 * 0 n y -- (3) c s s
2176 * 0 y y n (4) c s s
2177 * 0 y y y (5) c s s
2178 * 1 -- n -- (6) c c c s
2179 * 1 -- y -- (7) c c s c s
2180 *
2181 * (c=clear s=set)
2182 */
2183 switch (type & 0xff) {
2184 case ND_NEIGHBOR_SOLICIT:
2185 /*
2186 * New entry must have is_router flag cleared.
2187 */
2188 if (is_newentry) /* (6-7) */
2189 ln->ln_router = 0;
2190 break;
2191 case ND_REDIRECT:
2192 /*
2193 * If the icmp is a redirect to a better router, always set the
2194 * is_router flag. Otherwise, if the entry is newly created,
2195 * clear the flag. [RFC 2461, sec 8.3]
2196 */
2197 if (code == ND_REDIRECT_ROUTER)
2198 ln->ln_router = 1;
2199 else if (is_newentry) /* (6-7) */
2200 ln->ln_router = 0;
2201 break;
2202 case ND_ROUTER_SOLICIT:
2203 /*
2204 * is_router flag must always be cleared.
2205 */
2206 ln->ln_router = 0;
2207 break;
2208 case ND_ROUTER_ADVERT:
2209 /*
2210 * Mark an entry with lladdr as a router.
2211 */
2212 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
2213 (is_newentry && lladdr)) { /* (7) */
2214 ln->ln_router = 1;
2215 }
2216 break;
2217 }
2218
2219 if (do_update)
2220 rt_newmsg(RTM_CHANGE, rt); /* tell user process */
2221
2222 /*
2223 * When the link-layer address of a router changes, select the
2224 * best router again. In particular, when the neighbor entry is newly
2225 * created, it might affect the selection policy.
2226 * Question: can we restrict the first condition to the "is_newentry"
2227 * case?
2228 * XXX: when we hear an RA from a new router with the link-layer
2229 * address option, defrouter_select() is called twice, since
2230 * defrtrlist_update called the function as well. However, I believe
2231 * we can compromise the overhead, since it only happens the first
2232 * time.
2233 * XXX: although defrouter_select() should not have a bad effect
2234 * for those are not autoconfigured hosts, we explicitly avoid such
2235 * cases for safety.
2236 */
2237 if (do_update && ln->ln_router && !ip6_forwarding &&
2238 nd6_accepts_rtadv(ndi))
2239 defrouter_select();
2240
2241 rtfree(rt);
2242 }
2243
2244 static void
2245 nd6_slowtimo(void *ignored_arg)
2246 {
2247 struct nd_ifinfo *nd6if;
2248 struct ifnet *ifp;
2249
2250 mutex_enter(softnet_lock);
2251 KERNEL_LOCK(1, NULL);
2252 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
2253 nd6_slowtimo, NULL);
2254 IFNET_FOREACH(ifp) {
2255 nd6if = ND_IFINFO(ifp);
2256 if (nd6if->basereachable && /* already initialized */
2257 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
2258 /*
2259 * Since reachable time rarely changes by router
2260 * advertisements, we SHOULD insure that a new random
2261 * value gets recomputed at least once every few hours.
2262 * (RFC 2461, 6.3.4)
2263 */
2264 nd6if->recalctm = nd6_recalc_reachtm_interval;
2265 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
2266 }
2267 }
2268 KERNEL_UNLOCK_ONE(NULL);
2269 mutex_exit(softnet_lock);
2270 }
2271
2272 /*
2273 * Next hop determination. This routine was derived from ether_output.
2274 */
2275 static int
2276 nd6_determine_nexthop(struct ifnet *ifp, const struct sockaddr_in6 *dst,
2277 struct rtentry *rt00, struct rtentry **ret_rt, bool *sendpkt)
2278 {
2279 struct rtentry *rt, *rt0;
2280 struct rtentry *gwrt;
2281 struct sockaddr_in6 *gw6;
2282
2283 #define RTFREE_IF_NEEDED(_rt) \
2284 if ((_rt) != NULL && (_rt) != rt00) \
2285 rtfree((_rt));
2286
2287 KASSERT(rt00 != NULL);
2288
2289 rt = rt0 = rt00;
2290
2291 if ((rt->rt_flags & RTF_UP) == 0) {
2292 rt0 = rt = rtalloc1(sin6tocsa(dst), 1);
2293 if (rt == NULL)
2294 goto hostunreach;
2295 if (rt->rt_ifp != ifp)
2296 goto hostunreach;
2297 }
2298
2299 if ((rt->rt_flags & RTF_GATEWAY) == 0)
2300 goto out;
2301
2302 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
2303
2304 /*
2305 * We skip link-layer address resolution and NUD
2306 * if the gateway is not a neighbor from ND point
2307 * of view, regardless of the value of nd_ifinfo.flags.
2308 * The second condition is a bit tricky; we skip
2309 * if the gateway is our own address, which is
2310 * sometimes used to install a route to a p2p link.
2311 */
2312 if (!nd6_is_addr_neighbor(gw6, ifp) ||
2313 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
2314 /*
2315 * We allow this kind of tricky route only
2316 * when the outgoing interface is p2p.
2317 * XXX: we may need a more generic rule here.
2318 */
2319 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
2320 goto hostunreach;
2321
2322 *sendpkt = true;
2323 goto out;
2324 }
2325
2326 /* Try to use a cached nexthop route (gwroute) if exists */
2327 gwrt = rt_get_gwroute(rt);
2328 if (gwrt == NULL)
2329 goto lookup;
2330
2331 RTFREE_IF_NEEDED(rt);
2332 rt = gwrt;
2333 if ((rt->rt_flags & RTF_UP) == 0) {
2334 RTFREE_IF_NEEDED(rt);
2335 rt = rt0;
2336 lookup:
2337 /* Look up a nexthop route */
2338 gwrt = rtalloc1(rt->rt_gateway, 1);
2339 rt_set_gwroute(rt, gwrt);
2340 RTFREE_IF_NEEDED(rt);
2341 rt = gwrt;
2342 if (rt == NULL)
2343 goto hostunreach;
2344 /* the "G" test below also prevents rt == rt0 */
2345 if ((rt->rt_flags & RTF_GATEWAY) ||
2346 (rt->rt_ifp != ifp)) {
2347 if (rt0->rt_gwroute != NULL)
2348 rtfree(rt0->rt_gwroute);
2349 rt0->rt_gwroute = NULL;
2350 goto hostunreach;
2351 }
2352 }
2353
2354 out:
2355 *ret_rt = rt;
2356 return 0;
2357
2358 hostunreach:
2359 RTFREE_IF_NEEDED(rt);
2360
2361 return EHOSTUNREACH;
2362 #undef RTFREE_IF_NEEDED
2363 }
2364
2365 #define senderr(e) { error = (e); goto bad;}
2366 int
2367 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m0,
2368 const struct sockaddr_in6 *dst, struct rtentry *rt0)
2369 {
2370 struct mbuf *m = m0;
2371 struct rtentry *rt = rt0;
2372 struct llentry *ln = NULL;
2373 int error = 0;
2374
2375 #define RTFREE_IF_NEEDED(_rt) \
2376 if ((_rt) != NULL && (_rt) != rt0) \
2377 rtfree((_rt));
2378
2379 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
2380 goto sendpkt;
2381
2382 if (nd6_need_cache(ifp) == 0)
2383 goto sendpkt;
2384
2385 if (rt) {
2386 struct rtentry *nexthop = NULL;
2387 bool sendpkt = false;
2388
2389 error = nd6_determine_nexthop(ifp, dst, rt, &nexthop, &sendpkt);
2390 if (error != 0)
2391 senderr(error);
2392 rt = nexthop;
2393 if (sendpkt)
2394 goto sendpkt;
2395 }
2396
2397 /*
2398 * Address resolution or Neighbor Unreachability Detection
2399 * for the next hop.
2400 * At this point, the destination of the packet must be a unicast
2401 * or an anycast address(i.e. not a multicast).
2402 */
2403
2404 /* Look up the neighbor cache for the nexthop */
2405 if (rt != NULL && (rt->rt_flags & RTF_LLINFO) != 0)
2406 ln = rt->rt_llinfo;
2407 else {
2408 /*
2409 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2410 * the condition below is not very efficient. But we believe
2411 * it is tolerable, because this should be a rare case.
2412 */
2413 if (nd6_is_addr_neighbor(dst, ifp)) {
2414 RTFREE_IF_NEEDED(rt);
2415 rt = nd6_lookup(&dst->sin6_addr, 1, ifp);
2416 if (rt != NULL)
2417 ln = rt->rt_llinfo;
2418 }
2419 }
2420 if (ln == NULL || rt == NULL) {
2421 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2422 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2423 log(LOG_DEBUG,
2424 "nd6_output: can't allocate llinfo for %s "
2425 "(ln=%p, rt=%p)\n",
2426 ip6_sprintf(&dst->sin6_addr), ln, rt);
2427 senderr(EIO); /* XXX: good error? */
2428 }
2429
2430 goto sendpkt; /* send anyway */
2431 }
2432
2433 /* We don't have to do link-layer address resolution on a p2p link. */
2434 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2435 ln->ln_state < ND6_LLINFO_REACHABLE) {
2436 ln->ln_state = ND6_LLINFO_STALE;
2437 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
2438 }
2439
2440 /*
2441 * The first time we send a packet to a neighbor whose entry is
2442 * STALE, we have to change the state to DELAY and a sets a timer to
2443 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2444 * neighbor unreachability detection on expiration.
2445 * (RFC 2461 7.3.3)
2446 */
2447 if (ln->ln_state == ND6_LLINFO_STALE) {
2448 ln->ln_asked = 0;
2449 ln->ln_state = ND6_LLINFO_DELAY;
2450 nd6_llinfo_settimer(ln, nd6_delay * hz);
2451 }
2452
2453 /*
2454 * If the neighbor cache entry has a state other than INCOMPLETE
2455 * (i.e. its link-layer address is already resolved), just
2456 * send the packet.
2457 */
2458 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2459 goto sendpkt;
2460
2461 /*
2462 * There is a neighbor cache entry, but no ethernet address
2463 * response yet. Append this latest packet to the end of the
2464 * packet queue in the mbuf, unless the number of the packet
2465 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen,
2466 * the oldest packet in the queue will be removed.
2467 */
2468 if (ln->ln_state == ND6_LLINFO_NOSTATE)
2469 ln->ln_state = ND6_LLINFO_INCOMPLETE;
2470 if (ln->ln_hold) {
2471 struct mbuf *m_hold;
2472 int i;
2473
2474 i = 0;
2475 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2476 i++;
2477 if (m_hold->m_nextpkt == NULL) {
2478 m_hold->m_nextpkt = m;
2479 break;
2480 }
2481 }
2482 while (i >= nd6_maxqueuelen) {
2483 m_hold = ln->ln_hold;
2484 ln->ln_hold = ln->ln_hold->m_nextpkt;
2485 m_freem(m_hold);
2486 i--;
2487 }
2488 } else {
2489 ln->ln_hold = m;
2490 }
2491
2492 /*
2493 * If there has been no NS for the neighbor after entering the
2494 * INCOMPLETE state, send the first solicitation.
2495 */
2496 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2497 struct in6_addr src, *psrc;
2498
2499 ln->ln_asked++;
2500 nd6_llinfo_settimer(ln,
2501 ND_IFINFO(ifp)->retrans * hz / 1000);
2502 psrc = nd6_llinfo_get_holdsrc(ln, &src);
2503 nd6_ns_output(ifp, NULL, &dst->sin6_addr, psrc, 0);
2504 }
2505 error = 0;
2506 goto exit;
2507
2508 sendpkt:
2509 /* discard the packet if IPv6 operation is disabled on the interface */
2510 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2511 error = ENETDOWN; /* better error? */
2512 goto bad;
2513 }
2514
2515 #ifndef NET_MPSAFE
2516 KERNEL_LOCK(1, NULL);
2517 #endif
2518 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2519 error = (*ifp->if_output)(origifp, m, sin6tocsa(dst), rt);
2520 else
2521 error = (*ifp->if_output)(ifp, m, sin6tocsa(dst), rt);
2522 #ifndef NET_MPSAFE
2523 KERNEL_UNLOCK_ONE(NULL);
2524 #endif
2525 goto exit;
2526
2527 bad:
2528 if (m != NULL)
2529 m_freem(m);
2530 exit:
2531 RTFREE_IF_NEEDED(rt);
2532
2533 return error;
2534 #undef RTFREE_IF_NEEDED
2535 }
2536 #undef senderr
2537
2538 int
2539 nd6_need_cache(struct ifnet *ifp)
2540 {
2541 /*
2542 * XXX: we currently do not make neighbor cache on any interface
2543 * other than ARCnet, Ethernet, FDDI and GIF.
2544 *
2545 * RFC2893 says:
2546 * - unidirectional tunnels needs no ND
2547 */
2548 switch (ifp->if_type) {
2549 case IFT_ARCNET:
2550 case IFT_ETHER:
2551 case IFT_FDDI:
2552 case IFT_IEEE1394:
2553 case IFT_CARP:
2554 case IFT_GIF: /* XXX need more cases? */
2555 case IFT_PPP:
2556 case IFT_TUNNEL:
2557 return 1;
2558 default:
2559 return 0;
2560 }
2561 }
2562
2563 int
2564 nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt,
2565 struct mbuf *m, const struct sockaddr *dst, uint8_t *lldst,
2566 size_t dstsize)
2567 {
2568 const struct sockaddr_dl *sdl;
2569
2570 if (m->m_flags & M_MCAST) {
2571 switch (ifp->if_type) {
2572 case IFT_ETHER:
2573 case IFT_FDDI:
2574 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
2575 lldst);
2576 return 1;
2577 case IFT_IEEE1394:
2578 memcpy(lldst, ifp->if_broadcastaddr,
2579 MIN(dstsize, ifp->if_addrlen));
2580 return 1;
2581 case IFT_ARCNET:
2582 *lldst = 0;
2583 return 1;
2584 default:
2585 m_freem(m);
2586 return 0;
2587 }
2588 }
2589
2590 if (rt == NULL) {
2591 /* this could happen, if we could not allocate memory */
2592 m_freem(m);
2593 return 0;
2594 }
2595 if (rt->rt_gateway->sa_family != AF_LINK) {
2596 char gbuf[256];
2597 char dbuf[LINK_ADDRSTRLEN];
2598 sockaddr_format(rt->rt_gateway, gbuf, sizeof(gbuf));
2599 printf("%s: bad gateway address type %s for dst %s"
2600 " through interface %s\n", __func__, gbuf,
2601 IN6_PRINT(dbuf, &satocsin6(dst)->sin6_addr),
2602 if_name(ifp));
2603 m_freem(m);
2604 return 0;
2605 }
2606 sdl = satocsdl(rt->rt_gateway);
2607 if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) {
2608 char sbuf[INET6_ADDRSTRLEN];
2609 char dbuf[LINK_ADDRSTRLEN];
2610 /* this should be impossible, but we bark here for debugging */
2611 printf("%s: sdl_alen == %" PRIu8 ", if=%s, dst=%s, sdl=%s\n",
2612 __func__, sdl->sdl_alen, if_name(ifp),
2613 IN6_PRINT(sbuf, &satocsin6(dst)->sin6_addr),
2614 DL_PRINT(dbuf, &sdl->sdl_addr));
2615 m_freem(m);
2616 return 0;
2617 }
2618
2619 memcpy(lldst, CLLADDR(sdl), MIN(dstsize, sdl->sdl_alen));
2620 return 1;
2621 }
2622
2623 static void
2624 clear_llinfo_pqueue(struct llentry *ln)
2625 {
2626 struct mbuf *m_hold, *m_hold_next;
2627
2628 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2629 m_hold_next = m_hold->m_nextpkt;
2630 m_hold->m_nextpkt = NULL;
2631 m_freem(m_hold);
2632 }
2633
2634 ln->ln_hold = NULL;
2635 return;
2636 }
2637
2638 int
2639 nd6_sysctl(
2640 int name,
2641 void *oldp, /* syscall arg, need copyout */
2642 size_t *oldlenp,
2643 void *newp, /* syscall arg, need copyin */
2644 size_t newlen
2645 )
2646 {
2647 void *p;
2648 size_t ol;
2649 int error;
2650
2651 error = 0;
2652
2653 if (newp)
2654 return EPERM;
2655 if (oldp && !oldlenp)
2656 return EINVAL;
2657 ol = oldlenp ? *oldlenp : 0;
2658
2659 if (oldp) {
2660 p = malloc(*oldlenp, M_TEMP, M_WAITOK);
2661 if (p == NULL)
2662 return ENOMEM;
2663 } else
2664 p = NULL;
2665 switch (name) {
2666 case ICMPV6CTL_ND6_DRLIST:
2667 error = fill_drlist(p, oldlenp, ol);
2668 if (!error && p != NULL && oldp != NULL)
2669 error = copyout(p, oldp, *oldlenp);
2670 break;
2671
2672 case ICMPV6CTL_ND6_PRLIST:
2673 error = fill_prlist(p, oldlenp, ol);
2674 if (!error && p != NULL && oldp != NULL)
2675 error = copyout(p, oldp, *oldlenp);
2676 break;
2677
2678 case ICMPV6CTL_ND6_MAXQLEN:
2679 break;
2680
2681 default:
2682 error = ENOPROTOOPT;
2683 break;
2684 }
2685 if (p)
2686 free(p, M_TEMP);
2687
2688 return error;
2689 }
2690
2691 static int
2692 fill_drlist(void *oldp, size_t *oldlenp, size_t ol)
2693 {
2694 int error = 0, s;
2695 struct in6_defrouter *d = NULL, *de = NULL;
2696 struct nd_defrouter *dr;
2697 size_t l;
2698
2699 s = splsoftnet();
2700
2701 if (oldp) {
2702 d = (struct in6_defrouter *)oldp;
2703 de = (struct in6_defrouter *)((char *)oldp + *oldlenp);
2704 }
2705 l = 0;
2706
2707 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
2708
2709 if (oldp && d + 1 <= de) {
2710 memset(d, 0, sizeof(*d));
2711 sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0);
2712 if (sa6_recoverscope(&d->rtaddr)) {
2713 log(LOG_ERR,
2714 "scope error in router list (%s)\n",
2715 ip6_sprintf(&d->rtaddr.sin6_addr));
2716 /* XXX: press on... */
2717 }
2718 d->flags = dr->flags;
2719 d->rtlifetime = dr->rtlifetime;
2720 d->expire = dr->expire ?
2721 time_mono_to_wall(dr->expire) : 0;
2722 d->if_index = dr->ifp->if_index;
2723 }
2724
2725 l += sizeof(*d);
2726 if (d)
2727 d++;
2728 }
2729
2730 if (oldp) {
2731 if (l > ol)
2732 error = ENOMEM;
2733 }
2734 if (oldlenp)
2735 *oldlenp = l; /* (void *)d - (void *)oldp */
2736
2737 splx(s);
2738
2739 return error;
2740 }
2741
2742 static int
2743 fill_prlist(void *oldp, size_t *oldlenp, size_t ol)
2744 {
2745 int error = 0, s;
2746 struct nd_prefix *pr;
2747 uint8_t *p = NULL, *ps = NULL;
2748 uint8_t *pe = NULL;
2749 size_t l;
2750
2751 s = splsoftnet();
2752
2753 if (oldp) {
2754 ps = p = (uint8_t*)oldp;
2755 pe = (uint8_t*)oldp + *oldlenp;
2756 }
2757 l = 0;
2758
2759 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
2760 u_short advrtrs;
2761 struct sockaddr_in6 sin6;
2762 struct nd_pfxrouter *pfr;
2763 struct in6_prefix pfx;
2764
2765 if (oldp && p + sizeof(struct in6_prefix) <= pe)
2766 {
2767 memset(&pfx, 0, sizeof(pfx));
2768 ps = p;
2769 pfx.prefix = pr->ndpr_prefix;
2770
2771 if (sa6_recoverscope(&pfx.prefix)) {
2772 log(LOG_ERR,
2773 "scope error in prefix list (%s)\n",
2774 ip6_sprintf(&pfx.prefix.sin6_addr));
2775 /* XXX: press on... */
2776 }
2777 pfx.raflags = pr->ndpr_raf;
2778 pfx.prefixlen = pr->ndpr_plen;
2779 pfx.vltime = pr->ndpr_vltime;
2780 pfx.pltime = pr->ndpr_pltime;
2781 pfx.if_index = pr->ndpr_ifp->if_index;
2782 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2783 pfx.expire = 0;
2784 else {
2785 time_t maxexpire;
2786
2787 /* XXX: we assume time_t is signed. */
2788 maxexpire = (-1) &
2789 ~((time_t)1 <<
2790 ((sizeof(maxexpire) * 8) - 1));
2791 if (pr->ndpr_vltime <
2792 maxexpire - pr->ndpr_lastupdate) {
2793 pfx.expire = pr->ndpr_lastupdate +
2794 pr->ndpr_vltime;
2795 } else
2796 pfx.expire = maxexpire;
2797 }
2798 pfx.refcnt = pr->ndpr_refcnt;
2799 pfx.flags = pr->ndpr_stateflags;
2800 pfx.origin = PR_ORIG_RA;
2801
2802 p += sizeof(pfx); l += sizeof(pfx);
2803
2804 advrtrs = 0;
2805 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2806 if (p + sizeof(sin6) > pe) {
2807 advrtrs++;
2808 continue;
2809 }
2810
2811 sockaddr_in6_init(&sin6, &pfr->router->rtaddr,
2812 0, 0, 0);
2813 if (sa6_recoverscope(&sin6)) {
2814 log(LOG_ERR,
2815 "scope error in "
2816 "prefix list (%s)\n",
2817 ip6_sprintf(&pfr->router->rtaddr));
2818 }
2819 advrtrs++;
2820 memcpy(p, &sin6, sizeof(sin6));
2821 p += sizeof(sin6);
2822 l += sizeof(sin6);
2823 }
2824 pfx.advrtrs = advrtrs;
2825 memcpy(ps, &pfx, sizeof(pfx));
2826 }
2827 else {
2828 l += sizeof(pfx);
2829 advrtrs = 0;
2830 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2831 advrtrs++;
2832 l += sizeof(sin6);
2833 }
2834 }
2835 }
2836
2837 if (oldp) {
2838 *oldlenp = l; /* (void *)d - (void *)oldp */
2839 if (l > ol)
2840 error = ENOMEM;
2841 } else
2842 *oldlenp = l;
2843
2844 splx(s);
2845
2846 return error;
2847 }
2848