nd6.c revision 1.188 1 /* $NetBSD: nd6.c,v 1.188 2016/04/04 07:37:07 ozaki-r Exp $ */
2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.188 2016/04/04 07:37:07 ozaki-r Exp $");
35
36 #ifdef _KERNEL_OPT
37 #include "opt_net_mpsafe.h"
38 #endif
39
40 #include "bridge.h"
41 #include "carp.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/sockio.h>
51 #include <sys/time.h>
52 #include <sys/kernel.h>
53 #include <sys/protosw.h>
54 #include <sys/errno.h>
55 #include <sys/ioctl.h>
56 #include <sys/syslog.h>
57 #include <sys/queue.h>
58 #include <sys/cprng.h>
59
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_llatbl.h>
63 #include <net/if_types.h>
64 #include <net/route.h>
65 #include <net/if_ether.h>
66 #include <net/if_fddi.h>
67 #include <net/if_arc.h>
68
69 #include <netinet/in.h>
70 #include <netinet6/in6_var.h>
71 #include <netinet/ip6.h>
72 #include <netinet6/ip6_var.h>
73 #include <netinet6/scope6_var.h>
74 #include <netinet6/nd6.h>
75 #include <netinet6/in6_ifattach.h>
76 #include <netinet/icmp6.h>
77 #include <netinet6/icmp6_private.h>
78
79 #include <net/net_osdep.h>
80
81 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
82 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
83
84 /* timer values */
85 int nd6_prune = 1; /* walk list every 1 seconds */
86 int nd6_delay = 5; /* delay first probe time 5 second */
87 int nd6_umaxtries = 3; /* maximum unicast query */
88 int nd6_mmaxtries = 3; /* maximum multicast query */
89 int nd6_useloopback = 1; /* use loopback interface for local traffic */
90 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
91
92 /* preventing too many loops in ND option parsing */
93 int nd6_maxndopt = 10; /* max # of ND options allowed */
94
95 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
96
97 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
98
99 #ifdef ND6_DEBUG
100 int nd6_debug = 1;
101 #else
102 int nd6_debug = 0;
103 #endif
104
105 struct nd_drhead nd_defrouter;
106 struct nd_prhead nd_prefix = { 0 };
107
108 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
109 static const struct sockaddr_in6 all1_sa = {
110 .sin6_family = AF_INET6
111 , .sin6_len = sizeof(struct sockaddr_in6)
112 , .sin6_addr = {.s6_addr = {0xff, 0xff, 0xff, 0xff,
113 0xff, 0xff, 0xff, 0xff,
114 0xff, 0xff, 0xff, 0xff,
115 0xff, 0xff, 0xff, 0xff}}
116 };
117
118 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
119 static void nd6_slowtimo(void *);
120 static int regen_tmpaddr(struct in6_ifaddr *);
121 static void nd6_free(struct llentry *, int);
122 static void nd6_llinfo_timer(void *);
123 static void nd6_timer(void *);
124 static void clear_llinfo_pqueue(struct llentry *);
125
126 static callout_t nd6_slowtimo_ch;
127 static callout_t nd6_timer_ch;
128
129 static int fill_drlist(void *, size_t *, size_t);
130 static int fill_prlist(void *, size_t *, size_t);
131
132 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
133
134 void
135 nd6_init(void)
136 {
137
138 /* initialization of the default router list */
139 TAILQ_INIT(&nd_defrouter);
140
141 callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE);
142 callout_init(&nd6_timer_ch, CALLOUT_MPSAFE);
143
144 /* start timer */
145 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
146 nd6_slowtimo, NULL);
147 callout_reset(&nd6_timer_ch, hz, nd6_timer, NULL);
148 }
149
150 struct nd_ifinfo *
151 nd6_ifattach(struct ifnet *ifp)
152 {
153 struct nd_ifinfo *nd;
154
155 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO);
156
157 nd->initialized = 1;
158
159 nd->chlim = IPV6_DEFHLIM;
160 nd->basereachable = REACHABLE_TIME;
161 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
162 nd->retrans = RETRANS_TIMER;
163
164 nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV;
165
166 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
167 * A bridge interface should not have ND6_IFF_AUTO_LINKLOCAL
168 * because one of its members should. */
169 if ((ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
170 (ifp->if_flags & IFF_LOOPBACK))
171 nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
172
173 /* A loopback interface does not need to accept RTADV.
174 * A bridge interface should not accept RTADV
175 * because one of its members should. */
176 if (ip6_accept_rtadv &&
177 !(ifp->if_flags & IFF_LOOPBACK) &&
178 !(ifp->if_type != IFT_BRIDGE))
179 nd->flags |= ND6_IFF_ACCEPT_RTADV;
180
181 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
182 nd6_setmtu0(ifp, nd);
183
184 return nd;
185 }
186
187 void
188 nd6_ifdetach(struct ifnet *ifp, struct in6_ifextra *ext)
189 {
190
191 nd6_purge(ifp, ext);
192 free(ext->nd_ifinfo, M_IP6NDP);
193 }
194
195 void
196 nd6_setmtu(struct ifnet *ifp)
197 {
198 nd6_setmtu0(ifp, ND_IFINFO(ifp));
199 }
200
201 void
202 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
203 {
204 u_int32_t omaxmtu;
205
206 omaxmtu = ndi->maxmtu;
207
208 switch (ifp->if_type) {
209 case IFT_ARCNET:
210 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
211 break;
212 case IFT_FDDI:
213 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
214 break;
215 default:
216 ndi->maxmtu = ifp->if_mtu;
217 break;
218 }
219
220 /*
221 * Decreasing the interface MTU under IPV6 minimum MTU may cause
222 * undesirable situation. We thus notify the operator of the change
223 * explicitly. The check for omaxmtu is necessary to restrict the
224 * log to the case of changing the MTU, not initializing it.
225 */
226 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
227 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
228 " small for IPv6 which needs %lu\n",
229 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
230 IPV6_MMTU);
231 }
232
233 if (ndi->maxmtu > in6_maxmtu)
234 in6_setmaxmtu(); /* check all interfaces just in case */
235 }
236
237 void
238 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
239 {
240
241 memset(ndopts, 0, sizeof(*ndopts));
242 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
243 ndopts->nd_opts_last
244 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
245
246 if (icmp6len == 0) {
247 ndopts->nd_opts_done = 1;
248 ndopts->nd_opts_search = NULL;
249 }
250 }
251
252 /*
253 * Take one ND option.
254 */
255 struct nd_opt_hdr *
256 nd6_option(union nd_opts *ndopts)
257 {
258 struct nd_opt_hdr *nd_opt;
259 int olen;
260
261 KASSERT(ndopts != NULL);
262 KASSERT(ndopts->nd_opts_last != NULL);
263
264 if (ndopts->nd_opts_search == NULL)
265 return NULL;
266 if (ndopts->nd_opts_done)
267 return NULL;
268
269 nd_opt = ndopts->nd_opts_search;
270
271 /* make sure nd_opt_len is inside the buffer */
272 if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) {
273 memset(ndopts, 0, sizeof(*ndopts));
274 return NULL;
275 }
276
277 olen = nd_opt->nd_opt_len << 3;
278 if (olen == 0) {
279 /*
280 * Message validation requires that all included
281 * options have a length that is greater than zero.
282 */
283 memset(ndopts, 0, sizeof(*ndopts));
284 return NULL;
285 }
286
287 ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen);
288 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
289 /* option overruns the end of buffer, invalid */
290 memset(ndopts, 0, sizeof(*ndopts));
291 return NULL;
292 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
293 /* reached the end of options chain */
294 ndopts->nd_opts_done = 1;
295 ndopts->nd_opts_search = NULL;
296 }
297 return nd_opt;
298 }
299
300 /*
301 * Parse multiple ND options.
302 * This function is much easier to use, for ND routines that do not need
303 * multiple options of the same type.
304 */
305 int
306 nd6_options(union nd_opts *ndopts)
307 {
308 struct nd_opt_hdr *nd_opt;
309 int i = 0;
310
311 KASSERT(ndopts != NULL);
312 KASSERT(ndopts->nd_opts_last != NULL);
313
314 if (ndopts->nd_opts_search == NULL)
315 return 0;
316
317 while (1) {
318 nd_opt = nd6_option(ndopts);
319 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
320 /*
321 * Message validation requires that all included
322 * options have a length that is greater than zero.
323 */
324 ICMP6_STATINC(ICMP6_STAT_ND_BADOPT);
325 memset(ndopts, 0, sizeof(*ndopts));
326 return -1;
327 }
328
329 if (nd_opt == NULL)
330 goto skip1;
331
332 switch (nd_opt->nd_opt_type) {
333 case ND_OPT_SOURCE_LINKADDR:
334 case ND_OPT_TARGET_LINKADDR:
335 case ND_OPT_MTU:
336 case ND_OPT_REDIRECTED_HEADER:
337 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
338 nd6log(LOG_INFO,
339 "duplicated ND6 option found (type=%d)\n",
340 nd_opt->nd_opt_type);
341 /* XXX bark? */
342 } else {
343 ndopts->nd_opt_array[nd_opt->nd_opt_type]
344 = nd_opt;
345 }
346 break;
347 case ND_OPT_PREFIX_INFORMATION:
348 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
349 ndopts->nd_opt_array[nd_opt->nd_opt_type]
350 = nd_opt;
351 }
352 ndopts->nd_opts_pi_end =
353 (struct nd_opt_prefix_info *)nd_opt;
354 break;
355 default:
356 /*
357 * Unknown options must be silently ignored,
358 * to accommodate future extension to the protocol.
359 */
360 nd6log(LOG_DEBUG,
361 "nd6_options: unsupported option %d - "
362 "option ignored\n", nd_opt->nd_opt_type);
363 }
364
365 skip1:
366 i++;
367 if (i > nd6_maxndopt) {
368 ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT);
369 nd6log(LOG_INFO, "too many loop in nd opt\n");
370 break;
371 }
372
373 if (ndopts->nd_opts_done)
374 break;
375 }
376
377 return 0;
378 }
379
380 /*
381 * ND6 timer routine to handle ND6 entries
382 */
383 void
384 nd6_llinfo_settimer(struct llentry *ln, time_t xtick)
385 {
386
387 CTASSERT(sizeof(time_t) > sizeof(int));
388 LLE_WLOCK_ASSERT(ln);
389
390 if (xtick < 0) {
391 ln->ln_expire = 0;
392 ln->ln_ntick = 0;
393 callout_halt(&ln->ln_timer_ch, &ln->lle_lock);
394 } else {
395 ln->ln_expire = time_uptime + xtick / hz;
396 LLE_ADDREF(ln);
397 if (xtick > INT_MAX) {
398 ln->ln_ntick = xtick - INT_MAX;
399 callout_reset(&ln->ln_timer_ch, INT_MAX,
400 nd6_llinfo_timer, ln);
401 } else {
402 ln->ln_ntick = 0;
403 callout_reset(&ln->ln_timer_ch, xtick,
404 nd6_llinfo_timer, ln);
405 }
406 }
407 }
408
409 /*
410 * Gets source address of the first packet in hold queue
411 * and stores it in @src.
412 * Returns pointer to @src (if hold queue is not empty) or NULL.
413 */
414 static struct in6_addr *
415 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
416 {
417 struct ip6_hdr *hip6;
418
419 if (ln == NULL || ln->ln_hold == NULL)
420 return NULL;
421
422 /*
423 * assuming every packet in ln_hold has the same IP header
424 */
425 hip6 = mtod(ln->ln_hold, struct ip6_hdr *);
426 /* XXX pullup? */
427 if (sizeof(*hip6) < ln->ln_hold->m_len)
428 *src = hip6->ip6_src;
429 else
430 src = NULL;
431
432 return src;
433 }
434
435 static void
436 nd6_llinfo_timer(void *arg)
437 {
438 struct llentry *ln = arg;
439 struct ifnet *ifp;
440 struct nd_ifinfo *ndi = NULL;
441 bool send_ns = false;
442 const struct in6_addr *daddr6 = NULL;
443
444 mutex_enter(softnet_lock);
445 KERNEL_LOCK(1, NULL);
446
447 LLE_WLOCK(ln);
448 if (ln->ln_ntick > 0) {
449 nd6_llinfo_settimer(ln, ln->ln_ntick);
450 goto out;
451 }
452
453 if (callout_pending(&ln->la_timer)) {
454 /*
455 * Here we are a bit odd here in the treatment of
456 * active/pending. If the pending bit is set, it got
457 * rescheduled before I ran. The active
458 * bit we ignore, since if it was stopped
459 * in ll_tablefree() and was currently running
460 * it would have return 0 so the code would
461 * not have deleted it since the callout could
462 * not be stopped so we want to go through
463 * with the delete here now. If the callout
464 * was restarted, the pending bit will be back on and
465 * we just want to bail since the callout_reset would
466 * return 1 and our reference would have been removed
467 * by nd6_llinfo_settimer above since canceled
468 * would have been 1.
469 */
470 goto out;
471 }
472
473 ifp = ln->lle_tbl->llt_ifp;
474
475 KASSERT(ifp != NULL);
476
477 ndi = ND_IFINFO(ifp);
478
479 switch (ln->ln_state) {
480 case ND6_LLINFO_INCOMPLETE:
481 if (ln->ln_asked < nd6_mmaxtries) {
482 ln->ln_asked++;
483 send_ns = true;
484 } else {
485 struct mbuf *m = ln->ln_hold;
486 if (m) {
487 struct mbuf *m0;
488
489 /*
490 * assuming every packet in ln_hold has
491 * the same IP header
492 */
493 m0 = m->m_nextpkt;
494 m->m_nextpkt = NULL;
495 ln->ln_hold = m0;
496 clear_llinfo_pqueue(ln);
497 }
498 nd6_free(ln, 0);
499 ln = NULL;
500 if (m != NULL)
501 icmp6_error2(m, ICMP6_DST_UNREACH,
502 ICMP6_DST_UNREACH_ADDR, 0, ifp);
503 }
504 break;
505 case ND6_LLINFO_REACHABLE:
506 if (!ND6_LLINFO_PERMANENT(ln)) {
507 ln->ln_state = ND6_LLINFO_STALE;
508 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
509 }
510 break;
511
512 case ND6_LLINFO_PURGE:
513 case ND6_LLINFO_STALE:
514 /* Garbage Collection(RFC 2461 5.3) */
515 if (!ND6_LLINFO_PERMANENT(ln)) {
516 nd6_free(ln, 1);
517 ln = NULL;
518 }
519 break;
520
521 case ND6_LLINFO_DELAY:
522 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
523 /* We need NUD */
524 ln->ln_asked = 1;
525 ln->ln_state = ND6_LLINFO_PROBE;
526 daddr6 = &ln->r_l3addr.addr6;
527 send_ns = true;
528 } else {
529 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
530 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
531 }
532 break;
533 case ND6_LLINFO_PROBE:
534 if (ln->ln_asked < nd6_umaxtries) {
535 ln->ln_asked++;
536 daddr6 = &ln->r_l3addr.addr6;
537 send_ns = true;
538 } else {
539 nd6_free(ln, 0);
540 ln = NULL;
541 }
542 break;
543 }
544
545 if (send_ns) {
546 struct in6_addr src, *psrc;
547 const struct in6_addr *taddr6 = &ln->r_l3addr.addr6;
548
549 nd6_llinfo_settimer(ln, ndi->retrans * hz / 1000);
550 psrc = nd6_llinfo_get_holdsrc(ln, &src);
551 LLE_FREE_LOCKED(ln);
552 ln = NULL;
553 nd6_ns_output(ifp, daddr6, taddr6, psrc, 0);
554 }
555
556 out:
557 if (ln != NULL)
558 LLE_FREE_LOCKED(ln);
559 KERNEL_UNLOCK_ONE(NULL);
560 mutex_exit(softnet_lock);
561 }
562
563 /*
564 * ND6 timer routine to expire default route list and prefix list
565 */
566 static void
567 nd6_timer(void *ignored_arg)
568 {
569 struct nd_defrouter *next_dr, *dr;
570 struct nd_prefix *next_pr, *pr;
571 struct in6_ifaddr *ia6, *nia6;
572
573 callout_reset(&nd6_timer_ch, nd6_prune * hz,
574 nd6_timer, NULL);
575
576 mutex_enter(softnet_lock);
577 KERNEL_LOCK(1, NULL);
578
579 /* expire default router list */
580
581 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, next_dr) {
582 if (dr->expire && dr->expire < time_uptime) {
583 defrtrlist_del(dr, NULL);
584 }
585 }
586
587 /*
588 * expire interface addresses.
589 * in the past the loop was inside prefix expiry processing.
590 * However, from a stricter speci-confrmance standpoint, we should
591 * rather separate address lifetimes and prefix lifetimes.
592 */
593 addrloop:
594 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
595 nia6 = ia6->ia_next;
596 /* check address lifetime */
597 if (IFA6_IS_INVALID(ia6)) {
598 int regen = 0;
599
600 /*
601 * If the expiring address is temporary, try
602 * regenerating a new one. This would be useful when
603 * we suspended a laptop PC, then turned it on after a
604 * period that could invalidate all temporary
605 * addresses. Although we may have to restart the
606 * loop (see below), it must be after purging the
607 * address. Otherwise, we'd see an infinite loop of
608 * regeneration.
609 */
610 if (ip6_use_tempaddr &&
611 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
612 if (regen_tmpaddr(ia6) == 0)
613 regen = 1;
614 }
615
616 in6_purgeaddr(&ia6->ia_ifa);
617
618 if (regen)
619 goto addrloop; /* XXX: see below */
620 } else if (IFA6_IS_DEPRECATED(ia6)) {
621 int oldflags = ia6->ia6_flags;
622
623 if ((oldflags & IN6_IFF_DEPRECATED) == 0) {
624 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
625 rt_newaddrmsg(RTM_NEWADDR,
626 (struct ifaddr *)ia6, 0, NULL);
627 }
628
629 /*
630 * If a temporary address has just become deprecated,
631 * regenerate a new one if possible.
632 */
633 if (ip6_use_tempaddr &&
634 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
635 (oldflags & IN6_IFF_DEPRECATED) == 0) {
636
637 if (regen_tmpaddr(ia6) == 0) {
638 /*
639 * A new temporary address is
640 * generated.
641 * XXX: this means the address chain
642 * has changed while we are still in
643 * the loop. Although the change
644 * would not cause disaster (because
645 * it's not a deletion, but an
646 * addition,) we'd rather restart the
647 * loop just for safety. Or does this
648 * significantly reduce performance??
649 */
650 goto addrloop;
651 }
652 }
653 } else {
654 /*
655 * A new RA might have made a deprecated address
656 * preferred.
657 */
658 if (ia6->ia6_flags & IN6_IFF_DEPRECATED) {
659 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
660 rt_newaddrmsg(RTM_NEWADDR,
661 (struct ifaddr *)ia6, 0, NULL);
662 }
663 }
664 }
665
666 /* expire prefix list */
667 LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, next_pr) {
668 /*
669 * check prefix lifetime.
670 * since pltime is just for autoconf, pltime processing for
671 * prefix is not necessary.
672 */
673 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
674 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) {
675
676 /*
677 * address expiration and prefix expiration are
678 * separate. NEVER perform in6_purgeaddr here.
679 */
680
681 prelist_remove(pr);
682 }
683 }
684
685 KERNEL_UNLOCK_ONE(NULL);
686 mutex_exit(softnet_lock);
687 }
688
689 /* ia6: deprecated/invalidated temporary address */
690 static int
691 regen_tmpaddr(struct in6_ifaddr *ia6)
692 {
693 struct ifaddr *ifa;
694 struct ifnet *ifp;
695 struct in6_ifaddr *public_ifa6 = NULL;
696
697 ifp = ia6->ia_ifa.ifa_ifp;
698 IFADDR_FOREACH(ifa, ifp) {
699 struct in6_ifaddr *it6;
700
701 if (ifa->ifa_addr->sa_family != AF_INET6)
702 continue;
703
704 it6 = (struct in6_ifaddr *)ifa;
705
706 /* ignore no autoconf addresses. */
707 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
708 continue;
709
710 /* ignore autoconf addresses with different prefixes. */
711 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
712 continue;
713
714 /*
715 * Now we are looking at an autoconf address with the same
716 * prefix as ours. If the address is temporary and is still
717 * preferred, do not create another one. It would be rare, but
718 * could happen, for example, when we resume a laptop PC after
719 * a long period.
720 */
721 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
722 !IFA6_IS_DEPRECATED(it6)) {
723 public_ifa6 = NULL;
724 break;
725 }
726
727 /*
728 * This is a public autoconf address that has the same prefix
729 * as ours. If it is preferred, keep it. We can't break the
730 * loop here, because there may be a still-preferred temporary
731 * address with the prefix.
732 */
733 if (!IFA6_IS_DEPRECATED(it6))
734 public_ifa6 = it6;
735 }
736
737 if (public_ifa6 != NULL) {
738 int e;
739
740 /*
741 * Random factor is introduced in the preferred lifetime, so
742 * we do not need additional delay (3rd arg to in6_tmpifadd).
743 */
744 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
745 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
746 " tmp addr, errno=%d\n", e);
747 return -1;
748 }
749 return 0;
750 }
751
752 return -1;
753 }
754
755 bool
756 nd6_accepts_rtadv(const struct nd_ifinfo *ndi)
757 {
758 switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) {
759 case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV:
760 return true;
761 case ND6_IFF_ACCEPT_RTADV:
762 return ip6_accept_rtadv != 0;
763 case ND6_IFF_OVERRIDE_RTADV:
764 case 0:
765 default:
766 return false;
767 }
768 }
769
770 /*
771 * Nuke neighbor cache/prefix/default router management table, right before
772 * ifp goes away.
773 */
774 void
775 nd6_purge(struct ifnet *ifp, struct in6_ifextra *ext)
776 {
777 struct nd_defrouter *dr, *ndr;
778 struct nd_prefix *pr, *npr;
779
780 /*
781 * During detach, the ND info might be already removed, but
782 * then is explitly passed as argument.
783 * Otherwise get it from ifp->if_afdata.
784 */
785 if (ext == NULL)
786 ext = ifp->if_afdata[AF_INET6];
787 if (ext == NULL)
788 return;
789
790 /*
791 * Nuke default router list entries toward ifp.
792 * We defer removal of default router list entries that is installed
793 * in the routing table, in order to keep additional side effects as
794 * small as possible.
795 */
796 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
797 if (dr->installed)
798 continue;
799
800 if (dr->ifp == ifp) {
801 KASSERT(ext != NULL);
802 defrtrlist_del(dr, ext);
803 }
804 }
805
806 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
807 if (!dr->installed)
808 continue;
809
810 if (dr->ifp == ifp) {
811 KASSERT(ext != NULL);
812 defrtrlist_del(dr, ext);
813 }
814 }
815
816 /* Nuke prefix list entries toward ifp */
817 LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, npr) {
818 if (pr->ndpr_ifp == ifp) {
819 /*
820 * Because if_detach() does *not* release prefixes
821 * while purging addresses the reference count will
822 * still be above zero. We therefore reset it to
823 * make sure that the prefix really gets purged.
824 */
825 pr->ndpr_refcnt = 0;
826 /*
827 * Previously, pr->ndpr_addr is removed as well,
828 * but I strongly believe we don't have to do it.
829 * nd6_purge() is only called from in6_ifdetach(),
830 * which removes all the associated interface addresses
831 * by itself.
832 * (jinmei (at) kame.net 20010129)
833 */
834 prelist_remove(pr);
835 }
836 }
837
838 /* cancel default outgoing interface setting */
839 if (nd6_defifindex == ifp->if_index)
840 nd6_setdefaultiface(0);
841
842 /* XXX: too restrictive? */
843 if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) {
844 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
845 if (ndi && nd6_accepts_rtadv(ndi)) {
846 /* refresh default router list */
847 defrouter_select();
848 }
849 }
850
851 /*
852 * We may not need to nuke the neighbor cache entries here
853 * because the neighbor cache is kept in if_afdata[AF_INET6].
854 * nd6_purge() is invoked by in6_ifdetach() which is called
855 * from if_detach() where everything gets purged. However
856 * in6_ifdetach is directly called from vlan(4), so we still
857 * need to purge entries here.
858 */
859 if (ext->lltable != NULL)
860 lltable_purge_entries(ext->lltable);
861 }
862
863 struct llentry *
864 nd6_lookup(const struct in6_addr *addr6, const struct ifnet *ifp, bool wlock)
865 {
866 struct sockaddr_in6 sin6;
867 struct llentry *ln;
868
869 sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
870
871 IF_AFDATA_RLOCK(ifp);
872 ln = lla_lookup(LLTABLE6(ifp), wlock ? LLE_EXCLUSIVE : 0,
873 sin6tosa(&sin6));
874 IF_AFDATA_RUNLOCK(ifp);
875
876 return ln;
877 }
878
879 struct llentry *
880 nd6_create(const struct in6_addr *addr6, const struct ifnet *ifp)
881 {
882 struct sockaddr_in6 sin6;
883 struct llentry *ln;
884
885 sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
886
887 IF_AFDATA_WLOCK(ifp);
888 ln = lla_create(LLTABLE6(ifp), LLE_EXCLUSIVE,
889 sin6tosa(&sin6));
890 IF_AFDATA_WUNLOCK(ifp);
891
892 if (ln != NULL)
893 ln->ln_state = ND6_LLINFO_NOSTATE;
894
895 return ln;
896 }
897
898 /*
899 * Test whether a given IPv6 address is a neighbor or not, ignoring
900 * the actual neighbor cache. The neighbor cache is ignored in order
901 * to not reenter the routing code from within itself.
902 */
903 static int
904 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
905 {
906 struct nd_prefix *pr;
907 struct ifaddr *dstaddr;
908
909 /*
910 * A link-local address is always a neighbor.
911 * XXX: a link does not necessarily specify a single interface.
912 */
913 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
914 struct sockaddr_in6 sin6_copy;
915 u_int32_t zone;
916
917 /*
918 * We need sin6_copy since sa6_recoverscope() may modify the
919 * content (XXX).
920 */
921 sin6_copy = *addr;
922 if (sa6_recoverscope(&sin6_copy))
923 return 0; /* XXX: should be impossible */
924 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
925 return 0;
926 if (sin6_copy.sin6_scope_id == zone)
927 return 1;
928 else
929 return 0;
930 }
931
932 /*
933 * If the address matches one of our addresses,
934 * it should be a neighbor.
935 * If the address matches one of our on-link prefixes, it should be a
936 * neighbor.
937 */
938 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
939 if (pr->ndpr_ifp != ifp)
940 continue;
941
942 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) {
943 struct rtentry *rt;
944
945 rt = rtalloc1((struct sockaddr *)&pr->ndpr_prefix, 0);
946 if (rt == NULL)
947 continue;
948 /*
949 * This is the case where multiple interfaces
950 * have the same prefix, but only one is installed
951 * into the routing table and that prefix entry
952 * is not the one being examined here. In the case
953 * where RADIX_MPATH is enabled, multiple route
954 * entries (of the same rt_key value) will be
955 * installed because the interface addresses all
956 * differ.
957 */
958 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
959 &satocsin6(rt_getkey(rt))->sin6_addr)) {
960 continue;
961 }
962 }
963
964 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
965 &addr->sin6_addr, &pr->ndpr_mask))
966 return 1;
967 }
968
969 /*
970 * If the address is assigned on the node of the other side of
971 * a p2p interface, the address should be a neighbor.
972 */
973 dstaddr = ifa_ifwithdstaddr((const struct sockaddr *)addr);
974 if (dstaddr != NULL) {
975 if (dstaddr->ifa_ifp == ifp) {
976 #ifdef __FreeBSD__
977 /* XXX we need to ifaref in ifa_ifwithdstaddr as well */
978 ifafree(dstaddr);
979 #endif
980 return 1;
981 }
982 #ifdef __FreeBSD__
983 /* XXX we need to ifaref in ifa_ifwithdstaddr as well */
984 ifafree(dstaddr);
985 #endif
986 }
987
988 /*
989 * If the default router list is empty, all addresses are regarded
990 * as on-link, and thus, as a neighbor.
991 */
992 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
993 TAILQ_EMPTY(&nd_defrouter) &&
994 nd6_defifindex == ifp->if_index) {
995 return 1;
996 }
997
998 return 0;
999 }
1000
1001 /*
1002 * Detect if a given IPv6 address identifies a neighbor on a given link.
1003 * XXX: should take care of the destination of a p2p link?
1004 */
1005 int
1006 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1007 {
1008 struct nd_prefix *pr;
1009 struct llentry *ln;
1010 struct rtentry *rt;
1011
1012 /*
1013 * A link-local address is always a neighbor.
1014 * XXX: a link does not necessarily specify a single interface.
1015 */
1016 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
1017 struct sockaddr_in6 sin6_copy;
1018 u_int32_t zone;
1019
1020 /*
1021 * We need sin6_copy since sa6_recoverscope() may modify the
1022 * content (XXX).
1023 */
1024 sin6_copy = *addr;
1025 if (sa6_recoverscope(&sin6_copy))
1026 return 0; /* XXX: should be impossible */
1027 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
1028 return 0;
1029 if (sin6_copy.sin6_scope_id == zone)
1030 return 1;
1031 else
1032 return 0;
1033 }
1034
1035 /*
1036 * If the address matches one of our on-link prefixes, it should be a
1037 * neighbor.
1038 */
1039 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
1040 if (pr->ndpr_ifp != ifp)
1041 continue;
1042
1043 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
1044 continue;
1045
1046 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1047 &addr->sin6_addr, &pr->ndpr_mask))
1048 return 1;
1049 }
1050
1051 /*
1052 * If the default router list is empty, all addresses are regarded
1053 * as on-link, and thus, as a neighbor.
1054 * XXX: we restrict the condition to hosts, because routers usually do
1055 * not have the "default router list".
1056 */
1057 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
1058 nd6_defifindex == ifp->if_index) {
1059 return 1;
1060 }
1061
1062 IF_AFDATA_UNLOCK_ASSERT(ifp);
1063 if (nd6_is_new_addr_neighbor(addr, ifp))
1064 return 1;
1065
1066 /*
1067 * Even if the address matches none of our addresses, it might be
1068 * in the neighbor cache or a connected route.
1069 */
1070 ln = nd6_lookup(&addr->sin6_addr, ifp, false);
1071 if (ln != NULL) {
1072 LLE_RUNLOCK(ln);
1073 return 1;
1074 }
1075
1076 rt = rtalloc1(sin6tocsa(addr), 0);
1077 if (rt == NULL)
1078 return 0;
1079
1080 if ((rt->rt_flags & RTF_CONNECTED) && (rt->rt_ifp == ifp
1081 #if NBRIDGE > 0
1082 || rt->rt_ifp->if_bridge == ifp->if_bridge
1083 #endif
1084 #if NCARP > 0
1085 || (ifp->if_type == IFT_CARP && rt->rt_ifp == ifp->if_carpdev) ||
1086 (rt->rt_ifp->if_type == IFT_CARP && rt->rt_ifp->if_carpdev == ifp)||
1087 (ifp->if_type == IFT_CARP && rt->rt_ifp->if_type == IFT_CARP &&
1088 rt->rt_ifp->if_carpdev == ifp->if_carpdev)
1089 #endif
1090 )) {
1091 rtfree(rt);
1092 return 1;
1093 }
1094 rtfree(rt);
1095
1096 return 0;
1097 }
1098
1099 /*
1100 * Free an nd6 llinfo entry.
1101 * Since the function would cause significant changes in the kernel, DO NOT
1102 * make it global, unless you have a strong reason for the change, and are sure
1103 * that the change is safe.
1104 */
1105 static void
1106 nd6_free(struct llentry *ln, int gc)
1107 {
1108 struct nd_defrouter *dr;
1109 struct ifnet *ifp;
1110 struct in6_addr *in6;
1111
1112 KASSERT(ln != NULL);
1113 LLE_WLOCK_ASSERT(ln);
1114
1115 ifp = ln->lle_tbl->llt_ifp;
1116 in6 = &ln->r_l3addr.addr6;
1117 /*
1118 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1119 * even though it is not harmful, it was not really necessary.
1120 */
1121
1122 /* cancel timer */
1123 nd6_llinfo_settimer(ln, -1);
1124
1125 if (!ip6_forwarding) {
1126 int s;
1127 s = splsoftnet();
1128 dr = defrouter_lookup(in6, ifp);
1129
1130 if (dr != NULL && dr->expire &&
1131 ln->ln_state == ND6_LLINFO_STALE && gc) {
1132 /*
1133 * If the reason for the deletion is just garbage
1134 * collection, and the neighbor is an active default
1135 * router, do not delete it. Instead, reset the GC
1136 * timer using the router's lifetime.
1137 * Simply deleting the entry would affect default
1138 * router selection, which is not necessarily a good
1139 * thing, especially when we're using router preference
1140 * values.
1141 * XXX: the check for ln_state would be redundant,
1142 * but we intentionally keep it just in case.
1143 */
1144 if (dr->expire > time_uptime)
1145 nd6_llinfo_settimer(ln,
1146 (dr->expire - time_uptime) * hz);
1147 else
1148 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
1149 splx(s);
1150 LLE_WUNLOCK(ln);
1151 return;
1152 }
1153
1154 if (ln->ln_router || dr) {
1155 /*
1156 * rt6_flush must be called whether or not the neighbor
1157 * is in the Default Router List.
1158 * See a corresponding comment in nd6_na_input().
1159 */
1160 rt6_flush(in6, ifp);
1161 }
1162
1163 if (dr) {
1164 /*
1165 * Unreachablity of a router might affect the default
1166 * router selection and on-link detection of advertised
1167 * prefixes.
1168 */
1169
1170 /*
1171 * Temporarily fake the state to choose a new default
1172 * router and to perform on-link determination of
1173 * prefixes correctly.
1174 * Below the state will be set correctly,
1175 * or the entry itself will be deleted.
1176 */
1177 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1178
1179 /*
1180 * Since defrouter_select() does not affect the
1181 * on-link determination and MIP6 needs the check
1182 * before the default router selection, we perform
1183 * the check now.
1184 */
1185 pfxlist_onlink_check();
1186
1187 /*
1188 * refresh default router list
1189 */
1190 defrouter_select();
1191 }
1192 splx(s);
1193 }
1194
1195 /*
1196 * Save to unlock. We still hold an extra reference and will not
1197 * free(9) in llentry_free() if someone else holds one as well.
1198 */
1199 LLE_WUNLOCK(ln);
1200 IF_AFDATA_LOCK(ifp);
1201 LLE_WLOCK(ln);
1202
1203 /* Guard against race with other llentry_free(). */
1204 if (ln->la_flags & LLE_LINKED) {
1205 LLE_REMREF(ln);
1206 llentry_free(ln);
1207 } else
1208 LLE_FREE_LOCKED(ln);
1209
1210 IF_AFDATA_UNLOCK(ifp);
1211 }
1212
1213 /*
1214 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1215 *
1216 * XXX cost-effective methods?
1217 */
1218 void
1219 nd6_nud_hint(struct rtentry *rt)
1220 {
1221 struct llentry *ln;
1222 struct ifnet *ifp;
1223
1224 if (rt == NULL)
1225 return;
1226
1227 ifp = rt->rt_ifp;
1228 ln = nd6_lookup(&(satocsin6(rt_getkey(rt)))->sin6_addr, ifp, true);
1229 if (ln == NULL)
1230 return;
1231
1232 if (ln->ln_state < ND6_LLINFO_REACHABLE)
1233 goto done;
1234
1235 /*
1236 * if we get upper-layer reachability confirmation many times,
1237 * it is possible we have false information.
1238 */
1239 ln->ln_byhint++;
1240 if (ln->ln_byhint > nd6_maxnudhint)
1241 goto done;
1242
1243 ln->ln_state = ND6_LLINFO_REACHABLE;
1244 if (!ND6_LLINFO_PERMANENT(ln))
1245 nd6_llinfo_settimer(ln, ND_IFINFO(rt->rt_ifp)->reachable * hz);
1246
1247 done:
1248 LLE_WUNLOCK(ln);
1249
1250 return;
1251 }
1252
1253 static int
1254 nd6_purge_entry(struct lltable *llt, struct llentry *ln, void *farg)
1255 {
1256 int *n = farg;
1257
1258 if (*n <= 0)
1259 return 0;
1260
1261 if (ND6_LLINFO_PERMANENT(ln))
1262 return 0;
1263
1264 LLE_WLOCK(ln);
1265 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1266 ln->ln_state = ND6_LLINFO_STALE;
1267 else
1268 ln->ln_state = ND6_LLINFO_PURGE;
1269 nd6_llinfo_settimer(ln, 0);
1270 LLE_WUNLOCK(ln);
1271
1272 (*n)--;
1273 return 0;
1274 }
1275
1276 static void
1277 nd6_gc_neighbors(struct lltable *llt)
1278 {
1279 int max_gc_entries = 10;
1280
1281 if (ip6_neighborgcthresh >= 0 &&
1282 lltable_get_entry_count(llt) >= ip6_neighborgcthresh) {
1283 /*
1284 * XXX entries that are "less recently used" should be
1285 * freed first.
1286 */
1287 lltable_foreach_lle(llt, nd6_purge_entry, &max_gc_entries);
1288 }
1289 }
1290
1291 void
1292 nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
1293 {
1294 struct sockaddr *gate = rt->rt_gateway;
1295 struct ifnet *ifp = rt->rt_ifp;
1296 uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen;
1297 struct ifaddr *ifa;
1298
1299 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1300
1301 if (req == RTM_LLINFO_UPD) {
1302 int rc;
1303 struct in6_addr *in6;
1304 struct in6_addr in6_all;
1305 int anycast;
1306
1307 if ((ifa = info->rti_ifa) == NULL)
1308 return;
1309
1310 in6 = &ifatoia6(ifa)->ia_addr.sin6_addr;
1311 anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST;
1312
1313 in6_all = in6addr_linklocal_allnodes;
1314 if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) {
1315 log(LOG_ERR, "%s: failed to set scope %s "
1316 "(errno=%d)\n", __func__, if_name(ifp), rc);
1317 return;
1318 }
1319
1320 /* XXX don't set Override for proxy addresses */
1321 nd6_na_output(ifa->ifa_ifp, &in6_all, in6,
1322 (anycast ? 0 : ND_NA_FLAG_OVERRIDE)
1323 #if 0
1324 | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0)
1325 #endif
1326 , 1, NULL);
1327 return;
1328 }
1329
1330 if ((rt->rt_flags & RTF_GATEWAY) != 0)
1331 return;
1332
1333 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1334 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1335 /*
1336 * This is probably an interface direct route for a link
1337 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1338 * We do not need special treatment below for such a route.
1339 * Moreover, the RTF_LLINFO flag which would be set below
1340 * would annoy the ndp(8) command.
1341 */
1342 return;
1343 }
1344
1345 switch (req) {
1346 case RTM_ADD:
1347 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1348 /*
1349 * There is no backward compatibility :)
1350 *
1351 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1352 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1353 * rt->rt_flags |= RTF_CLONING;
1354 */
1355 /* XXX should move to route.c? */
1356 if (rt->rt_flags & (RTF_CONNECTED | RTF_LOCAL)) {
1357 union {
1358 struct sockaddr sa;
1359 struct sockaddr_dl sdl;
1360 struct sockaddr_storage ss;
1361 } u;
1362 /*
1363 * Case 1: This route should come from a route to
1364 * interface (RTF_CLONING case) or the route should be
1365 * treated as on-link but is currently not
1366 * (RTF_LLINFO && ln == NULL case).
1367 */
1368 if (sockaddr_dl_init(&u.sdl, sizeof(u.ss),
1369 ifp->if_index, ifp->if_type,
1370 NULL, namelen, NULL, addrlen) == NULL) {
1371 printf("%s.%d: sockaddr_dl_init(, %zu, ) "
1372 "failed on %s\n", __func__, __LINE__,
1373 sizeof(u.ss), if_name(ifp));
1374 }
1375 rt_setgate(rt, &u.sa);
1376 gate = rt->rt_gateway;
1377 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1378
1379 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1380 if ((rt->rt_flags & RTF_CONNECTED) != 0)
1381 break;
1382 }
1383 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1384 /*
1385 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1386 * We don't do that here since llinfo is not ready yet.
1387 *
1388 * There are also couple of other things to be discussed:
1389 * - unsolicited NA code needs improvement beforehand
1390 * - RFC2461 says we MAY send multicast unsolicited NA
1391 * (7.2.6 paragraph 4), however, it also says that we
1392 * SHOULD provide a mechanism to prevent multicast NA storm.
1393 * we don't have anything like it right now.
1394 * note that the mechanism needs a mutual agreement
1395 * between proxies, which means that we need to implement
1396 * a new protocol, or a new kludge.
1397 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1398 * we need to check ip6forwarding before sending it.
1399 * (or should we allow proxy ND configuration only for
1400 * routers? there's no mention about proxy ND from hosts)
1401 */
1402 #if 0
1403 /* XXX it does not work */
1404 if (rt->rt_flags & RTF_ANNOUNCE)
1405 nd6_na_output(ifp,
1406 &satocsin6(rt_getkey(rt))->sin6_addr,
1407 &satocsin6(rt_getkey(rt))->sin6_addr,
1408 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1409 1, NULL);
1410 #endif
1411
1412 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1413 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1414 /*
1415 * Address resolution isn't necessary for a point to
1416 * point link, so we can skip this test for a p2p link.
1417 */
1418 if (gate->sa_family != AF_LINK ||
1419 gate->sa_len <
1420 sockaddr_dl_measure(namelen, addrlen)) {
1421 log(LOG_DEBUG,
1422 "nd6_rtrequest: bad gateway value: %s\n",
1423 if_name(ifp));
1424 break;
1425 }
1426 satosdl(gate)->sdl_type = ifp->if_type;
1427 satosdl(gate)->sdl_index = ifp->if_index;
1428 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1429 }
1430 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1431
1432 /*
1433 * check if rt_getkey(rt) is an address assigned
1434 * to the interface.
1435 */
1436 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp,
1437 &satocsin6(rt_getkey(rt))->sin6_addr);
1438 if (ifa != NULL) {
1439 if (nd6_useloopback) {
1440 ifp = rt->rt_ifp = lo0ifp; /* XXX */
1441 /*
1442 * Make sure rt_ifa be equal to the ifaddr
1443 * corresponding to the address.
1444 * We need this because when we refer
1445 * rt_ifa->ia6_flags in ip6_input, we assume
1446 * that the rt_ifa points to the address instead
1447 * of the loopback address.
1448 */
1449 if (ifa != rt->rt_ifa)
1450 rt_replace_ifa(rt, ifa);
1451 }
1452 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1453 /* join solicited node multicast for proxy ND */
1454 if (ifp->if_flags & IFF_MULTICAST) {
1455 struct in6_addr llsol;
1456 int error;
1457
1458 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1459 llsol.s6_addr32[0] = htonl(0xff020000);
1460 llsol.s6_addr32[1] = 0;
1461 llsol.s6_addr32[2] = htonl(1);
1462 llsol.s6_addr8[12] = 0xff;
1463 if (in6_setscope(&llsol, ifp, NULL))
1464 goto out;
1465 if (!in6_addmulti(&llsol, ifp, &error, 0)) {
1466 nd6log(LOG_ERR, "%s: failed to join "
1467 "%s (errno=%d)\n", if_name(ifp),
1468 ip6_sprintf(&llsol), error);
1469 }
1470 }
1471 }
1472
1473 out:
1474 /*
1475 * If we have too many cache entries, initiate immediate
1476 * purging for some entries.
1477 */
1478 if (rt->rt_ifp != NULL)
1479 nd6_gc_neighbors(LLTABLE6(rt->rt_ifp));
1480 break;
1481
1482 case RTM_DELETE:
1483 /* leave from solicited node multicast for proxy ND */
1484 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1485 (ifp->if_flags & IFF_MULTICAST) != 0) {
1486 struct in6_addr llsol;
1487 struct in6_multi *in6m;
1488
1489 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1490 llsol.s6_addr32[0] = htonl(0xff020000);
1491 llsol.s6_addr32[1] = 0;
1492 llsol.s6_addr32[2] = htonl(1);
1493 llsol.s6_addr8[12] = 0xff;
1494 if (in6_setscope(&llsol, ifp, NULL) == 0) {
1495 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1496 if (in6m)
1497 in6_delmulti(in6m);
1498 }
1499 }
1500 break;
1501 }
1502 }
1503
1504 int
1505 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp)
1506 {
1507 struct in6_drlist *drl = (struct in6_drlist *)data;
1508 struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1509 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1510 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1511 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1512 struct nd_defrouter *dr;
1513 struct nd_prefix *pr;
1514 int i = 0, error = 0;
1515 int s;
1516
1517 switch (cmd) {
1518 case SIOCGDRLST_IN6:
1519 /*
1520 * obsolete API, use sysctl under net.inet6.icmp6
1521 */
1522 memset(drl, 0, sizeof(*drl));
1523 s = splsoftnet();
1524 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
1525 if (i >= DRLSTSIZ)
1526 break;
1527 drl->defrouter[i].rtaddr = dr->rtaddr;
1528 in6_clearscope(&drl->defrouter[i].rtaddr);
1529
1530 drl->defrouter[i].flags = dr->flags;
1531 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1532 drl->defrouter[i].expire = dr->expire ?
1533 time_mono_to_wall(dr->expire) : 0;
1534 drl->defrouter[i].if_index = dr->ifp->if_index;
1535 i++;
1536 }
1537 splx(s);
1538 break;
1539 case SIOCGPRLST_IN6:
1540 /*
1541 * obsolete API, use sysctl under net.inet6.icmp6
1542 *
1543 * XXX the structure in6_prlist was changed in backward-
1544 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1545 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1546 */
1547 /*
1548 * XXX meaning of fields, especialy "raflags", is very
1549 * differnet between RA prefix list and RR/static prefix list.
1550 * how about separating ioctls into two?
1551 */
1552 memset(oprl, 0, sizeof(*oprl));
1553 s = splsoftnet();
1554 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
1555 struct nd_pfxrouter *pfr;
1556 int j;
1557
1558 if (i >= PRLSTSIZ)
1559 break;
1560 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1561 oprl->prefix[i].raflags = pr->ndpr_raf;
1562 oprl->prefix[i].prefixlen = pr->ndpr_plen;
1563 oprl->prefix[i].vltime = pr->ndpr_vltime;
1564 oprl->prefix[i].pltime = pr->ndpr_pltime;
1565 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1566 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1567 oprl->prefix[i].expire = 0;
1568 else {
1569 time_t maxexpire;
1570
1571 /* XXX: we assume time_t is signed. */
1572 maxexpire = (-1) &
1573 ~((time_t)1 <<
1574 ((sizeof(maxexpire) * 8) - 1));
1575 if (pr->ndpr_vltime <
1576 maxexpire - pr->ndpr_lastupdate) {
1577 time_t expire;
1578 expire = pr->ndpr_lastupdate +
1579 pr->ndpr_vltime;
1580 oprl->prefix[i].expire = expire ?
1581 time_mono_to_wall(expire) : 0;
1582 } else
1583 oprl->prefix[i].expire = maxexpire;
1584 }
1585
1586 j = 0;
1587 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
1588 if (j < DRLSTSIZ) {
1589 #define RTRADDR oprl->prefix[i].advrtr[j]
1590 RTRADDR = pfr->router->rtaddr;
1591 in6_clearscope(&RTRADDR);
1592 #undef RTRADDR
1593 }
1594 j++;
1595 }
1596 oprl->prefix[i].advrtrs = j;
1597 oprl->prefix[i].origin = PR_ORIG_RA;
1598
1599 i++;
1600 }
1601 splx(s);
1602
1603 break;
1604 case OSIOCGIFINFO_IN6:
1605 #define ND ndi->ndi
1606 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1607 memset(&ND, 0, sizeof(ND));
1608 ND.linkmtu = IN6_LINKMTU(ifp);
1609 ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1610 ND.basereachable = ND_IFINFO(ifp)->basereachable;
1611 ND.reachable = ND_IFINFO(ifp)->reachable;
1612 ND.retrans = ND_IFINFO(ifp)->retrans;
1613 ND.flags = ND_IFINFO(ifp)->flags;
1614 ND.recalctm = ND_IFINFO(ifp)->recalctm;
1615 ND.chlim = ND_IFINFO(ifp)->chlim;
1616 break;
1617 case SIOCGIFINFO_IN6:
1618 ND = *ND_IFINFO(ifp);
1619 break;
1620 case SIOCSIFINFO_IN6:
1621 /*
1622 * used to change host variables from userland.
1623 * intented for a use on router to reflect RA configurations.
1624 */
1625 /* 0 means 'unspecified' */
1626 if (ND.linkmtu != 0) {
1627 if (ND.linkmtu < IPV6_MMTU ||
1628 ND.linkmtu > IN6_LINKMTU(ifp)) {
1629 error = EINVAL;
1630 break;
1631 }
1632 ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1633 }
1634
1635 if (ND.basereachable != 0) {
1636 int obasereachable = ND_IFINFO(ifp)->basereachable;
1637
1638 ND_IFINFO(ifp)->basereachable = ND.basereachable;
1639 if (ND.basereachable != obasereachable)
1640 ND_IFINFO(ifp)->reachable =
1641 ND_COMPUTE_RTIME(ND.basereachable);
1642 }
1643 if (ND.retrans != 0)
1644 ND_IFINFO(ifp)->retrans = ND.retrans;
1645 if (ND.chlim != 0)
1646 ND_IFINFO(ifp)->chlim = ND.chlim;
1647 /* FALLTHROUGH */
1648 case SIOCSIFINFO_FLAGS:
1649 {
1650 struct ifaddr *ifa;
1651 struct in6_ifaddr *ia;
1652
1653 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1654 !(ND.flags & ND6_IFF_IFDISABLED))
1655 {
1656 /*
1657 * If the interface is marked as ND6_IFF_IFDISABLED and
1658 * has a link-local address with IN6_IFF_DUPLICATED,
1659 * do not clear ND6_IFF_IFDISABLED.
1660 * See RFC 4862, section 5.4.5.
1661 */
1662 int duplicated_linklocal = 0;
1663
1664 IFADDR_FOREACH(ifa, ifp) {
1665 if (ifa->ifa_addr->sa_family != AF_INET6)
1666 continue;
1667 ia = (struct in6_ifaddr *)ifa;
1668 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1669 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1670 {
1671 duplicated_linklocal = 1;
1672 break;
1673 }
1674 }
1675
1676 if (duplicated_linklocal) {
1677 ND.flags |= ND6_IFF_IFDISABLED;
1678 log(LOG_ERR, "Cannot enable an interface"
1679 " with a link-local address marked"
1680 " duplicate.\n");
1681 } else {
1682 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1683 if (ifp->if_flags & IFF_UP)
1684 in6_if_up(ifp);
1685 }
1686 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1687 (ND.flags & ND6_IFF_IFDISABLED))
1688 {
1689 /* Mark all IPv6 addresses as tentative. */
1690
1691 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1692 IFADDR_FOREACH(ifa, ifp) {
1693 if (ifa->ifa_addr->sa_family != AF_INET6)
1694 continue;
1695 nd6_dad_stop(ifa);
1696 ia = (struct in6_ifaddr *)ifa;
1697 ia->ia6_flags |= IN6_IFF_TENTATIVE;
1698 }
1699 }
1700
1701 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1702 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1703 /* auto_linklocal 0->1 transition */
1704
1705 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1706 in6_ifattach(ifp, NULL);
1707 } else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1708 ifp->if_flags & IFF_UP)
1709 {
1710 /*
1711 * When the IF already has
1712 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1713 * address is assigned, and IFF_UP, try to
1714 * assign one.
1715 */
1716 int haslinklocal = 0;
1717
1718 IFADDR_FOREACH(ifa, ifp) {
1719 if (ifa->ifa_addr->sa_family !=AF_INET6)
1720 continue;
1721 ia = (struct in6_ifaddr *)ifa;
1722 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))){
1723 haslinklocal = 1;
1724 break;
1725 }
1726 }
1727 if (!haslinklocal)
1728 in6_ifattach(ifp, NULL);
1729 }
1730 }
1731 }
1732 ND_IFINFO(ifp)->flags = ND.flags;
1733 break;
1734 #undef ND
1735 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1736 /* sync kernel routing table with the default router list */
1737 defrouter_reset();
1738 defrouter_select();
1739 break;
1740 case SIOCSPFXFLUSH_IN6:
1741 {
1742 /* flush all the prefix advertised by routers */
1743 struct nd_prefix *pfx, *next;
1744
1745 s = splsoftnet();
1746 LIST_FOREACH_SAFE(pfx, &nd_prefix, ndpr_entry, next) {
1747 struct in6_ifaddr *ia, *ia_next;
1748
1749 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
1750 continue; /* XXX */
1751
1752 /* do we really have to remove addresses as well? */
1753 for (ia = in6_ifaddr; ia; ia = ia_next) {
1754 /* ia might be removed. keep the next ptr. */
1755 ia_next = ia->ia_next;
1756
1757 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1758 continue;
1759
1760 if (ia->ia6_ndpr == pfx)
1761 in6_purgeaddr(&ia->ia_ifa);
1762 }
1763 prelist_remove(pfx);
1764 }
1765 splx(s);
1766 break;
1767 }
1768 case SIOCSRTRFLUSH_IN6:
1769 {
1770 /* flush all the default routers */
1771 struct nd_defrouter *drtr, *next;
1772
1773 s = splsoftnet();
1774 defrouter_reset();
1775 TAILQ_FOREACH_SAFE(drtr, &nd_defrouter, dr_entry, next) {
1776 defrtrlist_del(drtr, NULL);
1777 }
1778 defrouter_select();
1779 splx(s);
1780 break;
1781 }
1782 case SIOCGNBRINFO_IN6:
1783 {
1784 struct llentry *ln;
1785 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1786
1787 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1788 return error;
1789
1790 ln = nd6_lookup(&nb_addr, ifp, false);
1791 if (ln == NULL) {
1792 error = EINVAL;
1793 break;
1794 }
1795 nbi->state = ln->ln_state;
1796 nbi->asked = ln->ln_asked;
1797 nbi->isrouter = ln->ln_router;
1798 nbi->expire = ln->ln_expire ?
1799 time_mono_to_wall(ln->ln_expire) : 0;
1800 LLE_RUNLOCK(ln);
1801
1802 break;
1803 }
1804 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1805 ndif->ifindex = nd6_defifindex;
1806 break;
1807 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1808 return nd6_setdefaultiface(ndif->ifindex);
1809 }
1810 return error;
1811 }
1812
1813 void
1814 nd6_llinfo_release_pkts(struct llentry *ln, struct ifnet *ifp)
1815 {
1816 struct mbuf *m_hold, *m_hold_next;
1817 struct sockaddr_in6 sin6;
1818
1819 LLE_WLOCK_ASSERT(ln);
1820
1821 sockaddr_in6_init(&sin6, &ln->r_l3addr.addr6, 0, 0, 0);
1822
1823 m_hold = ln->la_hold, ln->la_hold = NULL, ln->la_numheld = 0;
1824
1825 LLE_WUNLOCK(ln);
1826 for (; m_hold != NULL; m_hold = m_hold_next) {
1827 m_hold_next = m_hold->m_nextpkt;
1828 m_hold->m_nextpkt = NULL;
1829
1830 /*
1831 * we assume ifp is not a p2p here, so
1832 * just set the 2nd argument as the
1833 * 1st one.
1834 */
1835 nd6_output(ifp, ifp, m_hold, &sin6, NULL);
1836 }
1837 LLE_WLOCK(ln);
1838 }
1839
1840 /*
1841 * Create neighbor cache entry and cache link-layer address,
1842 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1843 */
1844 void
1845 nd6_cache_lladdr(
1846 struct ifnet *ifp,
1847 struct in6_addr *from,
1848 char *lladdr,
1849 int lladdrlen,
1850 int type, /* ICMP6 type */
1851 int code /* type dependent information */
1852 )
1853 {
1854 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
1855 struct llentry *ln = NULL;
1856 int is_newentry;
1857 int do_update;
1858 int olladdr;
1859 int llchange;
1860 int newstate = 0;
1861 uint16_t router = 0;
1862
1863 KASSERT(ifp != NULL);
1864 KASSERT(from != NULL);
1865
1866 /* nothing must be updated for unspecified address */
1867 if (IN6_IS_ADDR_UNSPECIFIED(from))
1868 return;
1869
1870 /*
1871 * Validation about ifp->if_addrlen and lladdrlen must be done in
1872 * the caller.
1873 *
1874 * XXX If the link does not have link-layer adderss, what should
1875 * we do? (ifp->if_addrlen == 0)
1876 * Spec says nothing in sections for RA, RS and NA. There's small
1877 * description on it in NS section (RFC 2461 7.2.3).
1878 */
1879
1880 ln = nd6_lookup(from, ifp, true);
1881 if (ln == NULL) {
1882 #if 0
1883 /* nothing must be done if there's no lladdr */
1884 if (!lladdr || !lladdrlen)
1885 return NULL;
1886 #endif
1887
1888 ln = nd6_create(from, ifp);
1889 is_newentry = 1;
1890 } else {
1891 /* do nothing if static ndp is set */
1892 if (ln->la_flags & LLE_STATIC) {
1893 LLE_WUNLOCK(ln);
1894 return;
1895 }
1896 is_newentry = 0;
1897 }
1898
1899 if (ln == NULL)
1900 return;
1901
1902 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
1903 if (olladdr && lladdr) {
1904 llchange = memcmp(lladdr, &ln->ll_addr, ifp->if_addrlen);
1905 } else
1906 llchange = 0;
1907
1908 /*
1909 * newentry olladdr lladdr llchange (*=record)
1910 * 0 n n -- (1)
1911 * 0 y n -- (2)
1912 * 0 n y -- (3) * STALE
1913 * 0 y y n (4) *
1914 * 0 y y y (5) * STALE
1915 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1916 * 1 -- y -- (7) * STALE
1917 */
1918
1919 if (lladdr) { /* (3-5) and (7) */
1920 /*
1921 * Record source link-layer address
1922 * XXX is it dependent to ifp->if_type?
1923 */
1924 memcpy(&ln->ll_addr, lladdr, ifp->if_addrlen);
1925 ln->la_flags |= LLE_VALID;
1926 }
1927
1928 if (!is_newentry) {
1929 if ((!olladdr && lladdr) || /* (3) */
1930 (olladdr && lladdr && llchange)) { /* (5) */
1931 do_update = 1;
1932 newstate = ND6_LLINFO_STALE;
1933 } else /* (1-2,4) */
1934 do_update = 0;
1935 } else {
1936 do_update = 1;
1937 if (lladdr == NULL) /* (6) */
1938 newstate = ND6_LLINFO_NOSTATE;
1939 else /* (7) */
1940 newstate = ND6_LLINFO_STALE;
1941 }
1942
1943 if (do_update) {
1944 /*
1945 * Update the state of the neighbor cache.
1946 */
1947 ln->ln_state = newstate;
1948
1949 if (ln->ln_state == ND6_LLINFO_STALE) {
1950 /*
1951 * XXX: since nd6_output() below will cause
1952 * state tansition to DELAY and reset the timer,
1953 * we must set the timer now, although it is actually
1954 * meaningless.
1955 */
1956 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
1957
1958 nd6_llinfo_release_pkts(ln, ifp);
1959 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1960 /* probe right away */
1961 nd6_llinfo_settimer((void *)ln, 0);
1962 }
1963 }
1964
1965 /*
1966 * ICMP6 type dependent behavior.
1967 *
1968 * NS: clear IsRouter if new entry
1969 * RS: clear IsRouter
1970 * RA: set IsRouter if there's lladdr
1971 * redir: clear IsRouter if new entry
1972 *
1973 * RA case, (1):
1974 * The spec says that we must set IsRouter in the following cases:
1975 * - If lladdr exist, set IsRouter. This means (1-5).
1976 * - If it is old entry (!newentry), set IsRouter. This means (7).
1977 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1978 * A quetion arises for (1) case. (1) case has no lladdr in the
1979 * neighbor cache, this is similar to (6).
1980 * This case is rare but we figured that we MUST NOT set IsRouter.
1981 *
1982 * newentry olladdr lladdr llchange NS RS RA redir
1983 * D R
1984 * 0 n n -- (1) c ? s
1985 * 0 y n -- (2) c s s
1986 * 0 n y -- (3) c s s
1987 * 0 y y n (4) c s s
1988 * 0 y y y (5) c s s
1989 * 1 -- n -- (6) c c c s
1990 * 1 -- y -- (7) c c s c s
1991 *
1992 * (c=clear s=set)
1993 */
1994 switch (type & 0xff) {
1995 case ND_NEIGHBOR_SOLICIT:
1996 /*
1997 * New entry must have is_router flag cleared.
1998 */
1999 if (is_newentry) /* (6-7) */
2000 ln->ln_router = 0;
2001 break;
2002 case ND_REDIRECT:
2003 /*
2004 * If the icmp is a redirect to a better router, always set the
2005 * is_router flag. Otherwise, if the entry is newly created,
2006 * clear the flag. [RFC 2461, sec 8.3]
2007 */
2008 if (code == ND_REDIRECT_ROUTER)
2009 ln->ln_router = 1;
2010 else if (is_newentry) /* (6-7) */
2011 ln->ln_router = 0;
2012 break;
2013 case ND_ROUTER_SOLICIT:
2014 /*
2015 * is_router flag must always be cleared.
2016 */
2017 ln->ln_router = 0;
2018 break;
2019 case ND_ROUTER_ADVERT:
2020 /*
2021 * Mark an entry with lladdr as a router.
2022 */
2023 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
2024 (is_newentry && lladdr)) { /* (7) */
2025 ln->ln_router = 1;
2026 }
2027 break;
2028 }
2029
2030 #if 0
2031 /* XXX should we send rtmsg as it used to be? */
2032 if (do_update)
2033 rt_newmsg(RTM_CHANGE, rt); /* tell user process */
2034 #endif
2035
2036 if (ln != NULL) {
2037 router = ln->ln_router;
2038 LLE_WUNLOCK(ln);
2039 }
2040
2041 /*
2042 * If we have too many cache entries, initiate immediate
2043 * purging for some entries.
2044 */
2045 if (is_newentry)
2046 nd6_gc_neighbors(LLTABLE6(ifp));
2047
2048 /*
2049 * When the link-layer address of a router changes, select the
2050 * best router again. In particular, when the neighbor entry is newly
2051 * created, it might affect the selection policy.
2052 * Question: can we restrict the first condition to the "is_newentry"
2053 * case?
2054 * XXX: when we hear an RA from a new router with the link-layer
2055 * address option, defrouter_select() is called twice, since
2056 * defrtrlist_update called the function as well. However, I believe
2057 * we can compromise the overhead, since it only happens the first
2058 * time.
2059 * XXX: although defrouter_select() should not have a bad effect
2060 * for those are not autoconfigured hosts, we explicitly avoid such
2061 * cases for safety.
2062 */
2063 if (do_update && router && !ip6_forwarding &&
2064 nd6_accepts_rtadv(ndi))
2065 defrouter_select();
2066 }
2067
2068 static void
2069 nd6_slowtimo(void *ignored_arg)
2070 {
2071 struct nd_ifinfo *nd6if;
2072 struct ifnet *ifp;
2073
2074 mutex_enter(softnet_lock);
2075 KERNEL_LOCK(1, NULL);
2076 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
2077 nd6_slowtimo, NULL);
2078 IFNET_FOREACH(ifp) {
2079 nd6if = ND_IFINFO(ifp);
2080 if (nd6if->basereachable && /* already initialized */
2081 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
2082 /*
2083 * Since reachable time rarely changes by router
2084 * advertisements, we SHOULD insure that a new random
2085 * value gets recomputed at least once every few hours.
2086 * (RFC 2461, 6.3.4)
2087 */
2088 nd6if->recalctm = nd6_recalc_reachtm_interval;
2089 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
2090 }
2091 }
2092 KERNEL_UNLOCK_ONE(NULL);
2093 mutex_exit(softnet_lock);
2094 }
2095
2096 int
2097 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
2098 const struct sockaddr_in6 *dst, struct rtentry *rt)
2099 {
2100 #define senderr(e) { error = (e); goto bad;}
2101 struct llentry *ln = NULL;
2102 int error = 0;
2103 bool created = false;
2104
2105 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
2106 goto sendpkt;
2107
2108 if (nd6_need_cache(ifp) == 0)
2109 goto sendpkt;
2110
2111 /*
2112 * Address resolution or Neighbor Unreachability Detection
2113 * for the next hop.
2114 * At this point, the destination of the packet must be a unicast
2115 * or an anycast address(i.e. not a multicast).
2116 */
2117
2118 /* Look up the neighbor cache for the nexthop */
2119 ln = nd6_lookup(&dst->sin6_addr, ifp, true);
2120 if ((ln == NULL) && nd6_is_addr_neighbor(dst, ifp)) {
2121 /*
2122 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2123 * the condition below is not very efficient. But we believe
2124 * it is tolerable, because this should be a rare case.
2125 */
2126 ln = nd6_create(&dst->sin6_addr, ifp);
2127 if (ln != NULL)
2128 created = true;
2129 }
2130
2131 if (ln == NULL) {
2132 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2133 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2134 log(LOG_DEBUG,
2135 "nd6_output: can't allocate llinfo for %s "
2136 "(ln=%p, rt=%p)\n",
2137 ip6_sprintf(&dst->sin6_addr), ln, rt);
2138 senderr(EIO); /* XXX: good error? */
2139 }
2140 goto sendpkt; /* send anyway */
2141 }
2142
2143 LLE_WLOCK_ASSERT(ln);
2144
2145 /* We don't have to do link-layer address resolution on a p2p link. */
2146 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2147 ln->ln_state < ND6_LLINFO_REACHABLE) {
2148 ln->ln_state = ND6_LLINFO_STALE;
2149 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
2150 }
2151
2152 /*
2153 * The first time we send a packet to a neighbor whose entry is
2154 * STALE, we have to change the state to DELAY and a sets a timer to
2155 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2156 * neighbor unreachability detection on expiration.
2157 * (RFC 2461 7.3.3)
2158 */
2159 if (ln->ln_state == ND6_LLINFO_STALE) {
2160 ln->ln_asked = 0;
2161 ln->ln_state = ND6_LLINFO_DELAY;
2162 nd6_llinfo_settimer(ln, nd6_delay * hz);
2163 }
2164
2165 /*
2166 * If the neighbor cache entry has a state other than INCOMPLETE
2167 * (i.e. its link-layer address is already resolved), just
2168 * send the packet.
2169 */
2170 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2171 goto sendpkt;
2172
2173 /*
2174 * There is a neighbor cache entry, but no ethernet address
2175 * response yet. Append this latest packet to the end of the
2176 * packet queue in the mbuf, unless the number of the packet
2177 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen,
2178 * the oldest packet in the queue will be removed.
2179 */
2180 if (ln->ln_state == ND6_LLINFO_NOSTATE)
2181 ln->ln_state = ND6_LLINFO_INCOMPLETE;
2182 if (ln->ln_hold) {
2183 struct mbuf *m_hold;
2184 int i;
2185
2186 i = 0;
2187 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2188 i++;
2189 if (m_hold->m_nextpkt == NULL) {
2190 m_hold->m_nextpkt = m;
2191 break;
2192 }
2193 }
2194 while (i >= nd6_maxqueuelen) {
2195 m_hold = ln->ln_hold;
2196 ln->ln_hold = ln->ln_hold->m_nextpkt;
2197 m_freem(m_hold);
2198 i--;
2199 }
2200 } else {
2201 ln->ln_hold = m;
2202 }
2203
2204 /*
2205 * If there has been no NS for the neighbor after entering the
2206 * INCOMPLETE state, send the first solicitation.
2207 */
2208 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2209 struct in6_addr src, *psrc;
2210
2211 ln->ln_asked++;
2212 nd6_llinfo_settimer(ln, ND_IFINFO(ifp)->retrans * hz / 1000);
2213 psrc = nd6_llinfo_get_holdsrc(ln, &src);
2214 LLE_WUNLOCK(ln);
2215 ln = NULL;
2216 nd6_ns_output(ifp, NULL, &dst->sin6_addr, psrc, 0);
2217 } else {
2218 /* We did the lookup so we need to do the unlock here. */
2219 LLE_WUNLOCK(ln);
2220 }
2221
2222 error = 0;
2223 goto exit;
2224
2225 sendpkt:
2226 /* discard the packet if IPv6 operation is disabled on the interface */
2227 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2228 error = ENETDOWN; /* better error? */
2229 goto bad;
2230 }
2231
2232 if (ln != NULL)
2233 LLE_WUNLOCK(ln);
2234
2235 #ifndef NET_MPSAFE
2236 KERNEL_LOCK(1, NULL);
2237 #endif
2238 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2239 error = (*ifp->if_output)(origifp, m, sin6tocsa(dst), rt);
2240 else
2241 error = (*ifp->if_output)(ifp, m, sin6tocsa(dst), rt);
2242 #ifndef NET_MPSAFE
2243 KERNEL_UNLOCK_ONE(NULL);
2244 #endif
2245 goto exit;
2246
2247 bad:
2248 if (m != NULL)
2249 m_freem(m);
2250 exit:
2251 if (created)
2252 nd6_gc_neighbors(LLTABLE6(ifp));
2253
2254 return error;
2255 #undef senderr
2256 }
2257
2258 int
2259 nd6_need_cache(struct ifnet *ifp)
2260 {
2261 /*
2262 * XXX: we currently do not make neighbor cache on any interface
2263 * other than ARCnet, Ethernet, FDDI and GIF.
2264 *
2265 * RFC2893 says:
2266 * - unidirectional tunnels needs no ND
2267 */
2268 switch (ifp->if_type) {
2269 case IFT_ARCNET:
2270 case IFT_ETHER:
2271 case IFT_FDDI:
2272 case IFT_IEEE1394:
2273 case IFT_CARP:
2274 case IFT_GIF: /* XXX need more cases? */
2275 case IFT_PPP:
2276 case IFT_TUNNEL:
2277 return 1;
2278 default:
2279 return 0;
2280 }
2281 }
2282
2283 /*
2284 * Add pernament ND6 link-layer record for given
2285 * interface address.
2286 *
2287 * Very similar to IPv4 arp_ifinit(), but:
2288 * 1) IPv6 DAD is performed in different place
2289 * 2) It is called by IPv6 protocol stack in contrast to
2290 * arp_ifinit() which is typically called in SIOCSIFADDR
2291 * driver ioctl handler.
2292 *
2293 */
2294 int
2295 nd6_add_ifa_lle(struct in6_ifaddr *ia)
2296 {
2297 struct ifnet *ifp;
2298 struct llentry *ln;
2299
2300 ifp = ia->ia_ifa.ifa_ifp;
2301 if (nd6_need_cache(ifp) == 0)
2302 return 0;
2303 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
2304 ia->ia_ifa.ifa_flags = RTF_CONNECTED;
2305
2306 IF_AFDATA_WLOCK(ifp);
2307 ln = lla_create(LLTABLE6(ifp), LLE_IFADDR | LLE_EXCLUSIVE,
2308 (struct sockaddr *)&ia->ia_addr);
2309 IF_AFDATA_WUNLOCK(ifp);
2310 if (ln == NULL)
2311 return ENOBUFS;
2312
2313 ln->la_expire = 0; /* for IPv6 this means permanent */
2314 ln->ln_state = ND6_LLINFO_REACHABLE;
2315
2316 LLE_WUNLOCK(ln);
2317 return 0;
2318 }
2319
2320 /*
2321 * Removes ALL lle records for interface address prefix.
2322 * XXXME: That's probably not we really want to do, we need
2323 * to remove address record only and keep other records
2324 * until we determine if given prefix is really going
2325 * to be removed.
2326 */
2327 void
2328 nd6_rem_ifa_lle(struct in6_ifaddr *ia)
2329 {
2330 struct sockaddr_in6 mask, addr;
2331
2332 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
2333 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
2334 lltable_prefix_free(AF_INET6, (struct sockaddr *)&addr,
2335 (struct sockaddr *)&mask, LLE_STATIC);
2336 }
2337
2338 int
2339 nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt,
2340 struct mbuf *m, const struct sockaddr *dst, uint8_t *lldst,
2341 size_t dstsize)
2342 {
2343 struct llentry *ln;
2344
2345 if (m->m_flags & M_MCAST) {
2346 switch (ifp->if_type) {
2347 case IFT_ETHER:
2348 case IFT_FDDI:
2349 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
2350 lldst);
2351 return 1;
2352 case IFT_IEEE1394:
2353 memcpy(lldst, ifp->if_broadcastaddr,
2354 MIN(dstsize, ifp->if_addrlen));
2355 return 1;
2356 case IFT_ARCNET:
2357 *lldst = 0;
2358 return 1;
2359 default:
2360 m_freem(m);
2361 return 0;
2362 }
2363 }
2364
2365 /*
2366 * the entry should have been created in nd6_store_lladdr
2367 */
2368 ln = nd6_lookup(&satocsin6(dst)->sin6_addr, ifp, false);
2369 if ((ln == NULL) || !(ln->la_flags & LLE_VALID)) {
2370 if (ln != NULL)
2371 LLE_RUNLOCK(ln);
2372 /* this could happen, if we could not allocate memory */
2373 m_freem(m);
2374 return 0;
2375 }
2376
2377 /* XXX llentry should have addrlen? */
2378 #if 0
2379 sdl = satocsdl(rt->rt_gateway);
2380 if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) {
2381 char sbuf[INET6_ADDRSTRLEN];
2382 char dbuf[LINK_ADDRSTRLEN];
2383 /* this should be impossible, but we bark here for debugging */
2384 printf("%s: sdl_alen == %" PRIu8 ", if=%s, dst=%s, sdl=%s\n",
2385 __func__, sdl->sdl_alen, if_name(ifp),
2386 IN6_PRINT(sbuf, &satocsin6(dst)->sin6_addr),
2387 DL_PRINT(dbuf, &sdl->sdl_addr));
2388 m_freem(m);
2389 return 0;
2390 }
2391 #endif
2392
2393 memcpy(lldst, &ln->ll_addr, MIN(dstsize, ifp->if_addrlen));
2394
2395 LLE_RUNLOCK(ln);
2396
2397 return 1;
2398 }
2399
2400 static void
2401 clear_llinfo_pqueue(struct llentry *ln)
2402 {
2403 struct mbuf *m_hold, *m_hold_next;
2404
2405 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2406 m_hold_next = m_hold->m_nextpkt;
2407 m_hold->m_nextpkt = NULL;
2408 m_freem(m_hold);
2409 }
2410
2411 ln->ln_hold = NULL;
2412 return;
2413 }
2414
2415 int
2416 nd6_sysctl(
2417 int name,
2418 void *oldp, /* syscall arg, need copyout */
2419 size_t *oldlenp,
2420 void *newp, /* syscall arg, need copyin */
2421 size_t newlen
2422 )
2423 {
2424 void *p;
2425 size_t ol;
2426 int error;
2427
2428 error = 0;
2429
2430 if (newp)
2431 return EPERM;
2432 if (oldp && !oldlenp)
2433 return EINVAL;
2434 ol = oldlenp ? *oldlenp : 0;
2435
2436 if (oldp) {
2437 p = malloc(*oldlenp, M_TEMP, M_WAITOK);
2438 if (p == NULL)
2439 return ENOMEM;
2440 } else
2441 p = NULL;
2442 switch (name) {
2443 case ICMPV6CTL_ND6_DRLIST:
2444 error = fill_drlist(p, oldlenp, ol);
2445 if (!error && p != NULL && oldp != NULL)
2446 error = copyout(p, oldp, *oldlenp);
2447 break;
2448
2449 case ICMPV6CTL_ND6_PRLIST:
2450 error = fill_prlist(p, oldlenp, ol);
2451 if (!error && p != NULL && oldp != NULL)
2452 error = copyout(p, oldp, *oldlenp);
2453 break;
2454
2455 case ICMPV6CTL_ND6_MAXQLEN:
2456 break;
2457
2458 default:
2459 error = ENOPROTOOPT;
2460 break;
2461 }
2462 if (p)
2463 free(p, M_TEMP);
2464
2465 return error;
2466 }
2467
2468 static int
2469 fill_drlist(void *oldp, size_t *oldlenp, size_t ol)
2470 {
2471 int error = 0, s;
2472 struct in6_defrouter *d = NULL, *de = NULL;
2473 struct nd_defrouter *dr;
2474 size_t l;
2475
2476 s = splsoftnet();
2477
2478 if (oldp) {
2479 d = (struct in6_defrouter *)oldp;
2480 de = (struct in6_defrouter *)((char *)oldp + *oldlenp);
2481 }
2482 l = 0;
2483
2484 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
2485
2486 if (oldp && d + 1 <= de) {
2487 memset(d, 0, sizeof(*d));
2488 sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0);
2489 if (sa6_recoverscope(&d->rtaddr)) {
2490 log(LOG_ERR,
2491 "scope error in router list (%s)\n",
2492 ip6_sprintf(&d->rtaddr.sin6_addr));
2493 /* XXX: press on... */
2494 }
2495 d->flags = dr->flags;
2496 d->rtlifetime = dr->rtlifetime;
2497 d->expire = dr->expire ?
2498 time_mono_to_wall(dr->expire) : 0;
2499 d->if_index = dr->ifp->if_index;
2500 }
2501
2502 l += sizeof(*d);
2503 if (d)
2504 d++;
2505 }
2506
2507 if (oldp) {
2508 if (l > ol)
2509 error = ENOMEM;
2510 }
2511 if (oldlenp)
2512 *oldlenp = l; /* (void *)d - (void *)oldp */
2513
2514 splx(s);
2515
2516 return error;
2517 }
2518
2519 static int
2520 fill_prlist(void *oldp, size_t *oldlenp, size_t ol)
2521 {
2522 int error = 0, s;
2523 struct nd_prefix *pr;
2524 uint8_t *p = NULL, *ps = NULL;
2525 uint8_t *pe = NULL;
2526 size_t l;
2527
2528 s = splsoftnet();
2529
2530 if (oldp) {
2531 ps = p = (uint8_t*)oldp;
2532 pe = (uint8_t*)oldp + *oldlenp;
2533 }
2534 l = 0;
2535
2536 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
2537 u_short advrtrs;
2538 struct sockaddr_in6 sin6;
2539 struct nd_pfxrouter *pfr;
2540 struct in6_prefix pfx;
2541
2542 if (oldp && p + sizeof(struct in6_prefix) <= pe)
2543 {
2544 memset(&pfx, 0, sizeof(pfx));
2545 ps = p;
2546 pfx.prefix = pr->ndpr_prefix;
2547
2548 if (sa6_recoverscope(&pfx.prefix)) {
2549 log(LOG_ERR,
2550 "scope error in prefix list (%s)\n",
2551 ip6_sprintf(&pfx.prefix.sin6_addr));
2552 /* XXX: press on... */
2553 }
2554 pfx.raflags = pr->ndpr_raf;
2555 pfx.prefixlen = pr->ndpr_plen;
2556 pfx.vltime = pr->ndpr_vltime;
2557 pfx.pltime = pr->ndpr_pltime;
2558 pfx.if_index = pr->ndpr_ifp->if_index;
2559 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2560 pfx.expire = 0;
2561 else {
2562 time_t maxexpire;
2563
2564 /* XXX: we assume time_t is signed. */
2565 maxexpire = (-1) &
2566 ~((time_t)1 <<
2567 ((sizeof(maxexpire) * 8) - 1));
2568 if (pr->ndpr_vltime <
2569 maxexpire - pr->ndpr_lastupdate) {
2570 pfx.expire = pr->ndpr_lastupdate +
2571 pr->ndpr_vltime;
2572 } else
2573 pfx.expire = maxexpire;
2574 }
2575 pfx.refcnt = pr->ndpr_refcnt;
2576 pfx.flags = pr->ndpr_stateflags;
2577 pfx.origin = PR_ORIG_RA;
2578
2579 p += sizeof(pfx); l += sizeof(pfx);
2580
2581 advrtrs = 0;
2582 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2583 if (p + sizeof(sin6) > pe) {
2584 advrtrs++;
2585 continue;
2586 }
2587
2588 sockaddr_in6_init(&sin6, &pfr->router->rtaddr,
2589 0, 0, 0);
2590 if (sa6_recoverscope(&sin6)) {
2591 log(LOG_ERR,
2592 "scope error in "
2593 "prefix list (%s)\n",
2594 ip6_sprintf(&pfr->router->rtaddr));
2595 }
2596 advrtrs++;
2597 memcpy(p, &sin6, sizeof(sin6));
2598 p += sizeof(sin6);
2599 l += sizeof(sin6);
2600 }
2601 pfx.advrtrs = advrtrs;
2602 memcpy(ps, &pfx, sizeof(pfx));
2603 }
2604 else {
2605 l += sizeof(pfx);
2606 advrtrs = 0;
2607 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2608 advrtrs++;
2609 l += sizeof(sin6);
2610 }
2611 }
2612 }
2613
2614 if (oldp) {
2615 *oldlenp = l; /* (void *)d - (void *)oldp */
2616 if (l > ol)
2617 error = ENOMEM;
2618 } else
2619 *oldlenp = l;
2620
2621 splx(s);
2622
2623 return error;
2624 }
2625