nd6.c revision 1.195 1 /* $NetBSD: nd6.c,v 1.195 2016/05/18 11:28:44 ozaki-r Exp $ */
2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.195 2016/05/18 11:28:44 ozaki-r Exp $");
35
36 #ifdef _KERNEL_OPT
37 #include "opt_net_mpsafe.h"
38 #endif
39
40 #include "bridge.h"
41 #include "carp.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/sockio.h>
51 #include <sys/time.h>
52 #include <sys/kernel.h>
53 #include <sys/protosw.h>
54 #include <sys/errno.h>
55 #include <sys/ioctl.h>
56 #include <sys/syslog.h>
57 #include <sys/queue.h>
58 #include <sys/cprng.h>
59
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_llatbl.h>
63 #include <net/if_types.h>
64 #include <net/route.h>
65 #include <net/if_ether.h>
66 #include <net/if_fddi.h>
67 #include <net/if_arc.h>
68
69 #include <netinet/in.h>
70 #include <netinet6/in6_var.h>
71 #include <netinet/ip6.h>
72 #include <netinet6/ip6_var.h>
73 #include <netinet6/scope6_var.h>
74 #include <netinet6/nd6.h>
75 #include <netinet6/in6_ifattach.h>
76 #include <netinet/icmp6.h>
77 #include <netinet6/icmp6_private.h>
78
79 #include <net/net_osdep.h>
80
81 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
82 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
83
84 /* timer values */
85 int nd6_prune = 1; /* walk list every 1 seconds */
86 int nd6_delay = 5; /* delay first probe time 5 second */
87 int nd6_umaxtries = 3; /* maximum unicast query */
88 int nd6_mmaxtries = 3; /* maximum multicast query */
89 int nd6_useloopback = 1; /* use loopback interface for local traffic */
90 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
91
92 /* preventing too many loops in ND option parsing */
93 int nd6_maxndopt = 10; /* max # of ND options allowed */
94
95 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
96
97 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
98
99 #ifdef ND6_DEBUG
100 int nd6_debug = 1;
101 #else
102 int nd6_debug = 0;
103 #endif
104
105 struct nd_drhead nd_defrouter;
106 struct nd_prhead nd_prefix = { 0 };
107
108 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
109
110 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
111 static void nd6_slowtimo(void *);
112 static int regen_tmpaddr(struct in6_ifaddr *);
113 static void nd6_free(struct llentry *, int);
114 static void nd6_llinfo_timer(void *);
115 static void nd6_timer(void *);
116 static void clear_llinfo_pqueue(struct llentry *);
117
118 static callout_t nd6_slowtimo_ch;
119 static callout_t nd6_timer_ch;
120
121 static int fill_drlist(void *, size_t *, size_t);
122 static int fill_prlist(void *, size_t *, size_t);
123
124 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
125
126 void
127 nd6_init(void)
128 {
129
130 /* initialization of the default router list */
131 TAILQ_INIT(&nd_defrouter);
132
133 callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE);
134 callout_init(&nd6_timer_ch, CALLOUT_MPSAFE);
135
136 /* start timer */
137 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
138 nd6_slowtimo, NULL);
139 callout_reset(&nd6_timer_ch, hz, nd6_timer, NULL);
140 }
141
142 struct nd_ifinfo *
143 nd6_ifattach(struct ifnet *ifp)
144 {
145 struct nd_ifinfo *nd;
146
147 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO);
148
149 nd->initialized = 1;
150
151 nd->chlim = IPV6_DEFHLIM;
152 nd->basereachable = REACHABLE_TIME;
153 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
154 nd->retrans = RETRANS_TIMER;
155
156 nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV;
157
158 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
159 * A bridge interface should not have ND6_IFF_AUTO_LINKLOCAL
160 * because one of its members should. */
161 if ((ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
162 (ifp->if_flags & IFF_LOOPBACK))
163 nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
164
165 /* A loopback interface does not need to accept RTADV.
166 * A bridge interface should not accept RTADV
167 * because one of its members should. */
168 if (ip6_accept_rtadv &&
169 !(ifp->if_flags & IFF_LOOPBACK) &&
170 !(ifp->if_type != IFT_BRIDGE))
171 nd->flags |= ND6_IFF_ACCEPT_RTADV;
172
173 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
174 nd6_setmtu0(ifp, nd);
175
176 return nd;
177 }
178
179 void
180 nd6_ifdetach(struct ifnet *ifp, struct in6_ifextra *ext)
181 {
182
183 nd6_purge(ifp, ext);
184 free(ext->nd_ifinfo, M_IP6NDP);
185 }
186
187 void
188 nd6_setmtu(struct ifnet *ifp)
189 {
190 nd6_setmtu0(ifp, ND_IFINFO(ifp));
191 }
192
193 void
194 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
195 {
196 u_int32_t omaxmtu;
197
198 omaxmtu = ndi->maxmtu;
199
200 switch (ifp->if_type) {
201 case IFT_ARCNET:
202 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
203 break;
204 case IFT_FDDI:
205 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
206 break;
207 default:
208 ndi->maxmtu = ifp->if_mtu;
209 break;
210 }
211
212 /*
213 * Decreasing the interface MTU under IPV6 minimum MTU may cause
214 * undesirable situation. We thus notify the operator of the change
215 * explicitly. The check for omaxmtu is necessary to restrict the
216 * log to the case of changing the MTU, not initializing it.
217 */
218 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
219 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
220 " small for IPv6 which needs %lu\n",
221 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
222 IPV6_MMTU);
223 }
224
225 if (ndi->maxmtu > in6_maxmtu)
226 in6_setmaxmtu(); /* check all interfaces just in case */
227 }
228
229 void
230 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
231 {
232
233 memset(ndopts, 0, sizeof(*ndopts));
234 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
235 ndopts->nd_opts_last
236 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
237
238 if (icmp6len == 0) {
239 ndopts->nd_opts_done = 1;
240 ndopts->nd_opts_search = NULL;
241 }
242 }
243
244 /*
245 * Take one ND option.
246 */
247 struct nd_opt_hdr *
248 nd6_option(union nd_opts *ndopts)
249 {
250 struct nd_opt_hdr *nd_opt;
251 int olen;
252
253 KASSERT(ndopts != NULL);
254 KASSERT(ndopts->nd_opts_last != NULL);
255
256 if (ndopts->nd_opts_search == NULL)
257 return NULL;
258 if (ndopts->nd_opts_done)
259 return NULL;
260
261 nd_opt = ndopts->nd_opts_search;
262
263 /* make sure nd_opt_len is inside the buffer */
264 if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) {
265 memset(ndopts, 0, sizeof(*ndopts));
266 return NULL;
267 }
268
269 olen = nd_opt->nd_opt_len << 3;
270 if (olen == 0) {
271 /*
272 * Message validation requires that all included
273 * options have a length that is greater than zero.
274 */
275 memset(ndopts, 0, sizeof(*ndopts));
276 return NULL;
277 }
278
279 ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen);
280 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
281 /* option overruns the end of buffer, invalid */
282 memset(ndopts, 0, sizeof(*ndopts));
283 return NULL;
284 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
285 /* reached the end of options chain */
286 ndopts->nd_opts_done = 1;
287 ndopts->nd_opts_search = NULL;
288 }
289 return nd_opt;
290 }
291
292 /*
293 * Parse multiple ND options.
294 * This function is much easier to use, for ND routines that do not need
295 * multiple options of the same type.
296 */
297 int
298 nd6_options(union nd_opts *ndopts)
299 {
300 struct nd_opt_hdr *nd_opt;
301 int i = 0;
302
303 KASSERT(ndopts != NULL);
304 KASSERT(ndopts->nd_opts_last != NULL);
305
306 if (ndopts->nd_opts_search == NULL)
307 return 0;
308
309 while (1) {
310 nd_opt = nd6_option(ndopts);
311 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
312 /*
313 * Message validation requires that all included
314 * options have a length that is greater than zero.
315 */
316 ICMP6_STATINC(ICMP6_STAT_ND_BADOPT);
317 memset(ndopts, 0, sizeof(*ndopts));
318 return -1;
319 }
320
321 if (nd_opt == NULL)
322 goto skip1;
323
324 switch (nd_opt->nd_opt_type) {
325 case ND_OPT_SOURCE_LINKADDR:
326 case ND_OPT_TARGET_LINKADDR:
327 case ND_OPT_MTU:
328 case ND_OPT_REDIRECTED_HEADER:
329 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
330 nd6log(LOG_INFO,
331 "duplicated ND6 option found (type=%d)\n",
332 nd_opt->nd_opt_type);
333 /* XXX bark? */
334 } else {
335 ndopts->nd_opt_array[nd_opt->nd_opt_type]
336 = nd_opt;
337 }
338 break;
339 case ND_OPT_PREFIX_INFORMATION:
340 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
341 ndopts->nd_opt_array[nd_opt->nd_opt_type]
342 = nd_opt;
343 }
344 ndopts->nd_opts_pi_end =
345 (struct nd_opt_prefix_info *)nd_opt;
346 break;
347 default:
348 /*
349 * Unknown options must be silently ignored,
350 * to accommodate future extension to the protocol.
351 */
352 nd6log(LOG_DEBUG,
353 "nd6_options: unsupported option %d - "
354 "option ignored\n", nd_opt->nd_opt_type);
355 }
356
357 skip1:
358 i++;
359 if (i > nd6_maxndopt) {
360 ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT);
361 nd6log(LOG_INFO, "too many loop in nd opt\n");
362 break;
363 }
364
365 if (ndopts->nd_opts_done)
366 break;
367 }
368
369 return 0;
370 }
371
372 /*
373 * ND6 timer routine to handle ND6 entries
374 */
375 void
376 nd6_llinfo_settimer(struct llentry *ln, time_t xtick)
377 {
378
379 CTASSERT(sizeof(time_t) > sizeof(int));
380 LLE_WLOCK_ASSERT(ln);
381
382 if (xtick < 0) {
383 ln->ln_expire = 0;
384 ln->ln_ntick = 0;
385 callout_halt(&ln->ln_timer_ch, &ln->lle_lock);
386 } else {
387 ln->ln_expire = time_uptime + xtick / hz;
388 LLE_ADDREF(ln);
389 if (xtick > INT_MAX) {
390 ln->ln_ntick = xtick - INT_MAX;
391 callout_reset(&ln->ln_timer_ch, INT_MAX,
392 nd6_llinfo_timer, ln);
393 } else {
394 ln->ln_ntick = 0;
395 callout_reset(&ln->ln_timer_ch, xtick,
396 nd6_llinfo_timer, ln);
397 }
398 }
399 }
400
401 /*
402 * Gets source address of the first packet in hold queue
403 * and stores it in @src.
404 * Returns pointer to @src (if hold queue is not empty) or NULL.
405 */
406 static struct in6_addr *
407 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
408 {
409 struct ip6_hdr *hip6;
410
411 if (ln == NULL || ln->ln_hold == NULL)
412 return NULL;
413
414 /*
415 * assuming every packet in ln_hold has the same IP header
416 */
417 hip6 = mtod(ln->ln_hold, struct ip6_hdr *);
418 /* XXX pullup? */
419 if (sizeof(*hip6) < ln->ln_hold->m_len)
420 *src = hip6->ip6_src;
421 else
422 src = NULL;
423
424 return src;
425 }
426
427 static void
428 nd6_llinfo_timer(void *arg)
429 {
430 struct llentry *ln = arg;
431 struct ifnet *ifp;
432 struct nd_ifinfo *ndi = NULL;
433 bool send_ns = false;
434 const struct in6_addr *daddr6 = NULL;
435
436 mutex_enter(softnet_lock);
437 KERNEL_LOCK(1, NULL);
438
439 LLE_WLOCK(ln);
440 if (ln->ln_ntick > 0) {
441 nd6_llinfo_settimer(ln, ln->ln_ntick);
442 goto out;
443 }
444
445 if (callout_pending(&ln->la_timer)) {
446 /*
447 * Here we are a bit odd here in the treatment of
448 * active/pending. If the pending bit is set, it got
449 * rescheduled before I ran. The active
450 * bit we ignore, since if it was stopped
451 * in ll_tablefree() and was currently running
452 * it would have return 0 so the code would
453 * not have deleted it since the callout could
454 * not be stopped so we want to go through
455 * with the delete here now. If the callout
456 * was restarted, the pending bit will be back on and
457 * we just want to bail since the callout_reset would
458 * return 1 and our reference would have been removed
459 * by nd6_llinfo_settimer above since canceled
460 * would have been 1.
461 */
462 goto out;
463 }
464
465 ifp = ln->lle_tbl->llt_ifp;
466
467 KASSERT(ifp != NULL);
468
469 ndi = ND_IFINFO(ifp);
470
471 switch (ln->ln_state) {
472 case ND6_LLINFO_INCOMPLETE:
473 if (ln->ln_asked < nd6_mmaxtries) {
474 ln->ln_asked++;
475 send_ns = true;
476 } else {
477 struct mbuf *m = ln->ln_hold;
478 if (m) {
479 struct mbuf *m0;
480
481 /*
482 * assuming every packet in ln_hold has
483 * the same IP header
484 */
485 m0 = m->m_nextpkt;
486 m->m_nextpkt = NULL;
487 ln->ln_hold = m0;
488 clear_llinfo_pqueue(ln);
489 }
490 nd6_free(ln, 0);
491 ln = NULL;
492 if (m != NULL)
493 icmp6_error2(m, ICMP6_DST_UNREACH,
494 ICMP6_DST_UNREACH_ADDR, 0, ifp);
495 }
496 break;
497 case ND6_LLINFO_REACHABLE:
498 if (!ND6_LLINFO_PERMANENT(ln)) {
499 ln->ln_state = ND6_LLINFO_STALE;
500 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
501 }
502 break;
503
504 case ND6_LLINFO_PURGE:
505 case ND6_LLINFO_STALE:
506 /* Garbage Collection(RFC 2461 5.3) */
507 if (!ND6_LLINFO_PERMANENT(ln)) {
508 nd6_free(ln, 1);
509 ln = NULL;
510 }
511 break;
512
513 case ND6_LLINFO_DELAY:
514 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
515 /* We need NUD */
516 ln->ln_asked = 1;
517 ln->ln_state = ND6_LLINFO_PROBE;
518 daddr6 = &ln->r_l3addr.addr6;
519 send_ns = true;
520 } else {
521 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
522 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
523 }
524 break;
525 case ND6_LLINFO_PROBE:
526 if (ln->ln_asked < nd6_umaxtries) {
527 ln->ln_asked++;
528 daddr6 = &ln->r_l3addr.addr6;
529 send_ns = true;
530 } else {
531 nd6_free(ln, 0);
532 ln = NULL;
533 }
534 break;
535 }
536
537 if (send_ns) {
538 struct in6_addr src, *psrc;
539 const struct in6_addr *taddr6 = &ln->r_l3addr.addr6;
540
541 nd6_llinfo_settimer(ln, ndi->retrans * hz / 1000);
542 psrc = nd6_llinfo_get_holdsrc(ln, &src);
543 LLE_FREE_LOCKED(ln);
544 ln = NULL;
545 nd6_ns_output(ifp, daddr6, taddr6, psrc, 0);
546 }
547
548 out:
549 if (ln != NULL)
550 LLE_FREE_LOCKED(ln);
551 KERNEL_UNLOCK_ONE(NULL);
552 mutex_exit(softnet_lock);
553 }
554
555 /*
556 * ND6 timer routine to expire default route list and prefix list
557 */
558 static void
559 nd6_timer(void *ignored_arg)
560 {
561 struct nd_defrouter *next_dr, *dr;
562 struct nd_prefix *next_pr, *pr;
563 struct in6_ifaddr *ia6, *nia6;
564
565 callout_reset(&nd6_timer_ch, nd6_prune * hz,
566 nd6_timer, NULL);
567
568 mutex_enter(softnet_lock);
569 KERNEL_LOCK(1, NULL);
570
571 /* expire default router list */
572
573 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, next_dr) {
574 if (dr->expire && dr->expire < time_uptime) {
575 defrtrlist_del(dr, NULL);
576 }
577 }
578
579 /*
580 * expire interface addresses.
581 * in the past the loop was inside prefix expiry processing.
582 * However, from a stricter speci-confrmance standpoint, we should
583 * rather separate address lifetimes and prefix lifetimes.
584 */
585 addrloop:
586 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
587 nia6 = ia6->ia_next;
588 /* check address lifetime */
589 if (IFA6_IS_INVALID(ia6)) {
590 int regen = 0;
591
592 /*
593 * If the expiring address is temporary, try
594 * regenerating a new one. This would be useful when
595 * we suspended a laptop PC, then turned it on after a
596 * period that could invalidate all temporary
597 * addresses. Although we may have to restart the
598 * loop (see below), it must be after purging the
599 * address. Otherwise, we'd see an infinite loop of
600 * regeneration.
601 */
602 if (ip6_use_tempaddr &&
603 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
604 if (regen_tmpaddr(ia6) == 0)
605 regen = 1;
606 }
607
608 in6_purgeaddr(&ia6->ia_ifa);
609
610 if (regen)
611 goto addrloop; /* XXX: see below */
612 } else if (IFA6_IS_DEPRECATED(ia6)) {
613 int oldflags = ia6->ia6_flags;
614
615 if ((oldflags & IN6_IFF_DEPRECATED) == 0) {
616 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
617 rt_newaddrmsg(RTM_NEWADDR,
618 (struct ifaddr *)ia6, 0, NULL);
619 }
620
621 /*
622 * If a temporary address has just become deprecated,
623 * regenerate a new one if possible.
624 */
625 if (ip6_use_tempaddr &&
626 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
627 (oldflags & IN6_IFF_DEPRECATED) == 0) {
628
629 if (regen_tmpaddr(ia6) == 0) {
630 /*
631 * A new temporary address is
632 * generated.
633 * XXX: this means the address chain
634 * has changed while we are still in
635 * the loop. Although the change
636 * would not cause disaster (because
637 * it's not a deletion, but an
638 * addition,) we'd rather restart the
639 * loop just for safety. Or does this
640 * significantly reduce performance??
641 */
642 goto addrloop;
643 }
644 }
645 } else {
646 /*
647 * A new RA might have made a deprecated address
648 * preferred.
649 */
650 if (ia6->ia6_flags & IN6_IFF_DEPRECATED) {
651 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
652 rt_newaddrmsg(RTM_NEWADDR,
653 (struct ifaddr *)ia6, 0, NULL);
654 }
655 }
656 }
657
658 /* expire prefix list */
659 LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, next_pr) {
660 /*
661 * check prefix lifetime.
662 * since pltime is just for autoconf, pltime processing for
663 * prefix is not necessary.
664 */
665 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
666 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) {
667
668 /*
669 * address expiration and prefix expiration are
670 * separate. NEVER perform in6_purgeaddr here.
671 */
672
673 prelist_remove(pr);
674 }
675 }
676
677 KERNEL_UNLOCK_ONE(NULL);
678 mutex_exit(softnet_lock);
679 }
680
681 /* ia6: deprecated/invalidated temporary address */
682 static int
683 regen_tmpaddr(struct in6_ifaddr *ia6)
684 {
685 struct ifaddr *ifa;
686 struct ifnet *ifp;
687 struct in6_ifaddr *public_ifa6 = NULL;
688
689 ifp = ia6->ia_ifa.ifa_ifp;
690 IFADDR_FOREACH(ifa, ifp) {
691 struct in6_ifaddr *it6;
692
693 if (ifa->ifa_addr->sa_family != AF_INET6)
694 continue;
695
696 it6 = (struct in6_ifaddr *)ifa;
697
698 /* ignore no autoconf addresses. */
699 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
700 continue;
701
702 /* ignore autoconf addresses with different prefixes. */
703 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
704 continue;
705
706 /*
707 * Now we are looking at an autoconf address with the same
708 * prefix as ours. If the address is temporary and is still
709 * preferred, do not create another one. It would be rare, but
710 * could happen, for example, when we resume a laptop PC after
711 * a long period.
712 */
713 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
714 !IFA6_IS_DEPRECATED(it6)) {
715 public_ifa6 = NULL;
716 break;
717 }
718
719 /*
720 * This is a public autoconf address that has the same prefix
721 * as ours. If it is preferred, keep it. We can't break the
722 * loop here, because there may be a still-preferred temporary
723 * address with the prefix.
724 */
725 if (!IFA6_IS_DEPRECATED(it6))
726 public_ifa6 = it6;
727 }
728
729 if (public_ifa6 != NULL) {
730 int e;
731
732 /*
733 * Random factor is introduced in the preferred lifetime, so
734 * we do not need additional delay (3rd arg to in6_tmpifadd).
735 */
736 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
737 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
738 " tmp addr, errno=%d\n", e);
739 return -1;
740 }
741 return 0;
742 }
743
744 return -1;
745 }
746
747 bool
748 nd6_accepts_rtadv(const struct nd_ifinfo *ndi)
749 {
750 switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) {
751 case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV:
752 return true;
753 case ND6_IFF_ACCEPT_RTADV:
754 return ip6_accept_rtadv != 0;
755 case ND6_IFF_OVERRIDE_RTADV:
756 case 0:
757 default:
758 return false;
759 }
760 }
761
762 /*
763 * Nuke neighbor cache/prefix/default router management table, right before
764 * ifp goes away.
765 */
766 void
767 nd6_purge(struct ifnet *ifp, struct in6_ifextra *ext)
768 {
769 struct nd_defrouter *dr, *ndr;
770 struct nd_prefix *pr, *npr;
771
772 /*
773 * During detach, the ND info might be already removed, but
774 * then is explitly passed as argument.
775 * Otherwise get it from ifp->if_afdata.
776 */
777 if (ext == NULL)
778 ext = ifp->if_afdata[AF_INET6];
779 if (ext == NULL)
780 return;
781
782 /*
783 * Nuke default router list entries toward ifp.
784 * We defer removal of default router list entries that is installed
785 * in the routing table, in order to keep additional side effects as
786 * small as possible.
787 */
788 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
789 if (dr->installed)
790 continue;
791
792 if (dr->ifp == ifp) {
793 KASSERT(ext != NULL);
794 defrtrlist_del(dr, ext);
795 }
796 }
797
798 TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
799 if (!dr->installed)
800 continue;
801
802 if (dr->ifp == ifp) {
803 KASSERT(ext != NULL);
804 defrtrlist_del(dr, ext);
805 }
806 }
807
808 /* Nuke prefix list entries toward ifp */
809 LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, npr) {
810 if (pr->ndpr_ifp == ifp) {
811 /*
812 * Because if_detach() does *not* release prefixes
813 * while purging addresses the reference count will
814 * still be above zero. We therefore reset it to
815 * make sure that the prefix really gets purged.
816 */
817 pr->ndpr_refcnt = 0;
818 /*
819 * Previously, pr->ndpr_addr is removed as well,
820 * but I strongly believe we don't have to do it.
821 * nd6_purge() is only called from in6_ifdetach(),
822 * which removes all the associated interface addresses
823 * by itself.
824 * (jinmei (at) kame.net 20010129)
825 */
826 prelist_remove(pr);
827 }
828 }
829
830 /* cancel default outgoing interface setting */
831 if (nd6_defifindex == ifp->if_index)
832 nd6_setdefaultiface(0);
833
834 /* XXX: too restrictive? */
835 if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) {
836 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
837 if (ndi && nd6_accepts_rtadv(ndi)) {
838 /* refresh default router list */
839 defrouter_select();
840 }
841 }
842
843 /*
844 * We may not need to nuke the neighbor cache entries here
845 * because the neighbor cache is kept in if_afdata[AF_INET6].
846 * nd6_purge() is invoked by in6_ifdetach() which is called
847 * from if_detach() where everything gets purged. However
848 * in6_ifdetach is directly called from vlan(4), so we still
849 * need to purge entries here.
850 */
851 if (ext->lltable != NULL)
852 lltable_purge_entries(ext->lltable);
853 }
854
855 struct llentry *
856 nd6_lookup(const struct in6_addr *addr6, const struct ifnet *ifp, bool wlock)
857 {
858 struct sockaddr_in6 sin6;
859 struct llentry *ln;
860
861 sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
862
863 IF_AFDATA_RLOCK(ifp);
864 ln = lla_lookup(LLTABLE6(ifp), wlock ? LLE_EXCLUSIVE : 0,
865 sin6tosa(&sin6));
866 IF_AFDATA_RUNLOCK(ifp);
867
868 return ln;
869 }
870
871 struct llentry *
872 nd6_create(const struct in6_addr *addr6, const struct ifnet *ifp)
873 {
874 struct sockaddr_in6 sin6;
875 struct llentry *ln;
876
877 sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
878
879 IF_AFDATA_WLOCK(ifp);
880 ln = lla_create(LLTABLE6(ifp), LLE_EXCLUSIVE,
881 sin6tosa(&sin6));
882 IF_AFDATA_WUNLOCK(ifp);
883
884 if (ln != NULL)
885 ln->ln_state = ND6_LLINFO_NOSTATE;
886
887 return ln;
888 }
889
890 /*
891 * Test whether a given IPv6 address is a neighbor or not, ignoring
892 * the actual neighbor cache. The neighbor cache is ignored in order
893 * to not reenter the routing code from within itself.
894 */
895 static int
896 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
897 {
898 struct nd_prefix *pr;
899 struct ifaddr *dstaddr;
900
901 /*
902 * A link-local address is always a neighbor.
903 * XXX: a link does not necessarily specify a single interface.
904 */
905 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
906 struct sockaddr_in6 sin6_copy;
907 u_int32_t zone;
908
909 /*
910 * We need sin6_copy since sa6_recoverscope() may modify the
911 * content (XXX).
912 */
913 sin6_copy = *addr;
914 if (sa6_recoverscope(&sin6_copy))
915 return 0; /* XXX: should be impossible */
916 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
917 return 0;
918 if (sin6_copy.sin6_scope_id == zone)
919 return 1;
920 else
921 return 0;
922 }
923
924 /*
925 * If the address matches one of our addresses,
926 * it should be a neighbor.
927 * If the address matches one of our on-link prefixes, it should be a
928 * neighbor.
929 */
930 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
931 if (pr->ndpr_ifp != ifp)
932 continue;
933
934 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) {
935 struct rtentry *rt;
936
937 rt = rtalloc1((struct sockaddr *)&pr->ndpr_prefix, 0);
938 if (rt == NULL)
939 continue;
940 /*
941 * This is the case where multiple interfaces
942 * have the same prefix, but only one is installed
943 * into the routing table and that prefix entry
944 * is not the one being examined here. In the case
945 * where RADIX_MPATH is enabled, multiple route
946 * entries (of the same rt_key value) will be
947 * installed because the interface addresses all
948 * differ.
949 */
950 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
951 &satocsin6(rt_getkey(rt))->sin6_addr)) {
952 continue;
953 }
954 }
955
956 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
957 &addr->sin6_addr, &pr->ndpr_mask))
958 return 1;
959 }
960
961 /*
962 * If the address is assigned on the node of the other side of
963 * a p2p interface, the address should be a neighbor.
964 */
965 dstaddr = ifa_ifwithdstaddr((const struct sockaddr *)addr);
966 if (dstaddr != NULL) {
967 if (dstaddr->ifa_ifp == ifp) {
968 #ifdef __FreeBSD__
969 /* XXX we need to ifaref in ifa_ifwithdstaddr as well */
970 ifafree(dstaddr);
971 #endif
972 return 1;
973 }
974 #ifdef __FreeBSD__
975 /* XXX we need to ifaref in ifa_ifwithdstaddr as well */
976 ifafree(dstaddr);
977 #endif
978 }
979
980 /*
981 * If the default router list is empty, all addresses are regarded
982 * as on-link, and thus, as a neighbor.
983 */
984 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
985 TAILQ_EMPTY(&nd_defrouter) &&
986 nd6_defifindex == ifp->if_index) {
987 return 1;
988 }
989
990 return 0;
991 }
992
993 /*
994 * Detect if a given IPv6 address identifies a neighbor on a given link.
995 * XXX: should take care of the destination of a p2p link?
996 */
997 int
998 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
999 {
1000 struct nd_prefix *pr;
1001 struct llentry *ln;
1002 struct rtentry *rt;
1003
1004 /*
1005 * A link-local address is always a neighbor.
1006 * XXX: a link does not necessarily specify a single interface.
1007 */
1008 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
1009 struct sockaddr_in6 sin6_copy;
1010 u_int32_t zone;
1011
1012 /*
1013 * We need sin6_copy since sa6_recoverscope() may modify the
1014 * content (XXX).
1015 */
1016 sin6_copy = *addr;
1017 if (sa6_recoverscope(&sin6_copy))
1018 return 0; /* XXX: should be impossible */
1019 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
1020 return 0;
1021 if (sin6_copy.sin6_scope_id == zone)
1022 return 1;
1023 else
1024 return 0;
1025 }
1026
1027 /*
1028 * If the address matches one of our on-link prefixes, it should be a
1029 * neighbor.
1030 */
1031 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
1032 if (pr->ndpr_ifp != ifp)
1033 continue;
1034
1035 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
1036 continue;
1037
1038 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1039 &addr->sin6_addr, &pr->ndpr_mask))
1040 return 1;
1041 }
1042
1043 /*
1044 * If the default router list is empty, all addresses are regarded
1045 * as on-link, and thus, as a neighbor.
1046 * XXX: we restrict the condition to hosts, because routers usually do
1047 * not have the "default router list".
1048 */
1049 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
1050 nd6_defifindex == ifp->if_index) {
1051 return 1;
1052 }
1053
1054 IF_AFDATA_UNLOCK_ASSERT(ifp);
1055 if (nd6_is_new_addr_neighbor(addr, ifp))
1056 return 1;
1057
1058 /*
1059 * Even if the address matches none of our addresses, it might be
1060 * in the neighbor cache or a connected route.
1061 */
1062 ln = nd6_lookup(&addr->sin6_addr, ifp, false);
1063 if (ln != NULL) {
1064 LLE_RUNLOCK(ln);
1065 return 1;
1066 }
1067
1068 rt = rtalloc1(sin6tocsa(addr), 0);
1069 if (rt == NULL)
1070 return 0;
1071
1072 if ((rt->rt_flags & RTF_CONNECTED) && (rt->rt_ifp == ifp
1073 #if NBRIDGE > 0
1074 || rt->rt_ifp->if_bridge == ifp->if_bridge
1075 #endif
1076 #if NCARP > 0
1077 || (ifp->if_type == IFT_CARP && rt->rt_ifp == ifp->if_carpdev) ||
1078 (rt->rt_ifp->if_type == IFT_CARP && rt->rt_ifp->if_carpdev == ifp)||
1079 (ifp->if_type == IFT_CARP && rt->rt_ifp->if_type == IFT_CARP &&
1080 rt->rt_ifp->if_carpdev == ifp->if_carpdev)
1081 #endif
1082 )) {
1083 rtfree(rt);
1084 return 1;
1085 }
1086 rtfree(rt);
1087
1088 return 0;
1089 }
1090
1091 /*
1092 * Free an nd6 llinfo entry.
1093 * Since the function would cause significant changes in the kernel, DO NOT
1094 * make it global, unless you have a strong reason for the change, and are sure
1095 * that the change is safe.
1096 */
1097 static void
1098 nd6_free(struct llentry *ln, int gc)
1099 {
1100 struct nd_defrouter *dr;
1101 struct ifnet *ifp;
1102 struct in6_addr *in6;
1103
1104 KASSERT(ln != NULL);
1105 LLE_WLOCK_ASSERT(ln);
1106
1107 ifp = ln->lle_tbl->llt_ifp;
1108 in6 = &ln->r_l3addr.addr6;
1109 /*
1110 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1111 * even though it is not harmful, it was not really necessary.
1112 */
1113
1114 /* cancel timer */
1115 nd6_llinfo_settimer(ln, -1);
1116
1117 if (!ip6_forwarding) {
1118 int s;
1119 s = splsoftnet();
1120 dr = defrouter_lookup(in6, ifp);
1121
1122 if (dr != NULL && dr->expire &&
1123 ln->ln_state == ND6_LLINFO_STALE && gc) {
1124 /*
1125 * If the reason for the deletion is just garbage
1126 * collection, and the neighbor is an active default
1127 * router, do not delete it. Instead, reset the GC
1128 * timer using the router's lifetime.
1129 * Simply deleting the entry would affect default
1130 * router selection, which is not necessarily a good
1131 * thing, especially when we're using router preference
1132 * values.
1133 * XXX: the check for ln_state would be redundant,
1134 * but we intentionally keep it just in case.
1135 */
1136 if (dr->expire > time_uptime)
1137 nd6_llinfo_settimer(ln,
1138 (dr->expire - time_uptime) * hz);
1139 else
1140 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
1141 splx(s);
1142 LLE_WUNLOCK(ln);
1143 return;
1144 }
1145
1146 if (ln->ln_router || dr) {
1147 /*
1148 * We need to unlock to avoid a LOR with rt6_flush()
1149 * with the rnh and for the calls to
1150 * pfxlist_onlink_check() and defrouter_select() in the
1151 * block further down for calls into nd6_lookup().
1152 * We still hold a ref.
1153 */
1154 LLE_WUNLOCK(ln);
1155
1156 /*
1157 * rt6_flush must be called whether or not the neighbor
1158 * is in the Default Router List.
1159 * See a corresponding comment in nd6_na_input().
1160 */
1161 rt6_flush(in6, ifp);
1162 }
1163
1164 if (dr) {
1165 /*
1166 * Unreachablity of a router might affect the default
1167 * router selection and on-link detection of advertised
1168 * prefixes.
1169 */
1170
1171 /*
1172 * Temporarily fake the state to choose a new default
1173 * router and to perform on-link determination of
1174 * prefixes correctly.
1175 * Below the state will be set correctly,
1176 * or the entry itself will be deleted.
1177 */
1178 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1179
1180 /*
1181 * Since defrouter_select() does not affect the
1182 * on-link determination and MIP6 needs the check
1183 * before the default router selection, we perform
1184 * the check now.
1185 */
1186 pfxlist_onlink_check();
1187
1188 /*
1189 * refresh default router list
1190 */
1191 defrouter_select();
1192 }
1193
1194 #ifdef __FreeBSD__
1195 /*
1196 * If this entry was added by an on-link redirect, remove the
1197 * corresponding host route.
1198 */
1199 if (ln->la_flags & LLE_REDIRECT)
1200 nd6_free_redirect(ln);
1201 #endif
1202
1203 if (ln->ln_router || dr)
1204 LLE_WLOCK(ln);
1205
1206 splx(s);
1207 }
1208
1209 /*
1210 * Save to unlock. We still hold an extra reference and will not
1211 * free(9) in llentry_free() if someone else holds one as well.
1212 */
1213 LLE_WUNLOCK(ln);
1214 IF_AFDATA_LOCK(ifp);
1215 LLE_WLOCK(ln);
1216
1217 /* Guard against race with other llentry_free(). */
1218 if (ln->la_flags & LLE_LINKED) {
1219 LLE_REMREF(ln);
1220 llentry_free(ln);
1221 } else
1222 LLE_FREE_LOCKED(ln);
1223
1224 IF_AFDATA_UNLOCK(ifp);
1225 }
1226
1227 /*
1228 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1229 *
1230 * XXX cost-effective methods?
1231 */
1232 void
1233 nd6_nud_hint(struct rtentry *rt)
1234 {
1235 struct llentry *ln;
1236 struct ifnet *ifp;
1237
1238 if (rt == NULL)
1239 return;
1240
1241 ifp = rt->rt_ifp;
1242 ln = nd6_lookup(&(satocsin6(rt_getkey(rt)))->sin6_addr, ifp, true);
1243 if (ln == NULL)
1244 return;
1245
1246 if (ln->ln_state < ND6_LLINFO_REACHABLE)
1247 goto done;
1248
1249 /*
1250 * if we get upper-layer reachability confirmation many times,
1251 * it is possible we have false information.
1252 */
1253 ln->ln_byhint++;
1254 if (ln->ln_byhint > nd6_maxnudhint)
1255 goto done;
1256
1257 ln->ln_state = ND6_LLINFO_REACHABLE;
1258 if (!ND6_LLINFO_PERMANENT(ln))
1259 nd6_llinfo_settimer(ln, ND_IFINFO(rt->rt_ifp)->reachable * hz);
1260
1261 done:
1262 LLE_WUNLOCK(ln);
1263
1264 return;
1265 }
1266
1267 static int
1268 nd6_purge_entry(struct lltable *llt, struct llentry *ln, void *farg)
1269 {
1270 int *n = farg;
1271
1272 if (*n <= 0)
1273 return 0;
1274
1275 if (ND6_LLINFO_PERMANENT(ln))
1276 return 0;
1277
1278 LLE_WLOCK(ln);
1279 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1280 ln->ln_state = ND6_LLINFO_STALE;
1281 else
1282 ln->ln_state = ND6_LLINFO_PURGE;
1283 nd6_llinfo_settimer(ln, 0);
1284 LLE_WUNLOCK(ln);
1285
1286 (*n)--;
1287 return 0;
1288 }
1289
1290 static void
1291 nd6_gc_neighbors(struct lltable *llt)
1292 {
1293 int max_gc_entries = 10;
1294
1295 if (ip6_neighborgcthresh >= 0 &&
1296 lltable_get_entry_count(llt) >= ip6_neighborgcthresh) {
1297 /*
1298 * XXX entries that are "less recently used" should be
1299 * freed first.
1300 */
1301 lltable_foreach_lle(llt, nd6_purge_entry, &max_gc_entries);
1302 }
1303 }
1304
1305 void
1306 nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
1307 {
1308 struct sockaddr *gate = rt->rt_gateway;
1309 struct ifnet *ifp = rt->rt_ifp;
1310 uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen;
1311 struct ifaddr *ifa;
1312
1313 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1314
1315 if (req == RTM_LLINFO_UPD) {
1316 int rc;
1317 struct in6_addr *in6;
1318 struct in6_addr in6_all;
1319 int anycast;
1320
1321 if ((ifa = info->rti_ifa) == NULL)
1322 return;
1323
1324 in6 = &ifatoia6(ifa)->ia_addr.sin6_addr;
1325 anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST;
1326
1327 in6_all = in6addr_linklocal_allnodes;
1328 if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) {
1329 log(LOG_ERR, "%s: failed to set scope %s "
1330 "(errno=%d)\n", __func__, if_name(ifp), rc);
1331 return;
1332 }
1333
1334 /* XXX don't set Override for proxy addresses */
1335 nd6_na_output(ifa->ifa_ifp, &in6_all, in6,
1336 (anycast ? 0 : ND_NA_FLAG_OVERRIDE)
1337 #if 0
1338 | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0)
1339 #endif
1340 , 1, NULL);
1341 return;
1342 }
1343
1344 if ((rt->rt_flags & RTF_GATEWAY) != 0)
1345 return;
1346
1347 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1348 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1349 /*
1350 * This is probably an interface direct route for a link
1351 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1352 * We do not need special treatment below for such a route.
1353 * Moreover, the RTF_LLINFO flag which would be set below
1354 * would annoy the ndp(8) command.
1355 */
1356 return;
1357 }
1358
1359 switch (req) {
1360 case RTM_ADD:
1361 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1362 /*
1363 * There is no backward compatibility :)
1364 *
1365 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1366 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1367 * rt->rt_flags |= RTF_CLONING;
1368 */
1369 /* XXX should move to route.c? */
1370 if (rt->rt_flags & (RTF_CONNECTED | RTF_LOCAL)) {
1371 union {
1372 struct sockaddr sa;
1373 struct sockaddr_dl sdl;
1374 struct sockaddr_storage ss;
1375 } u;
1376 /*
1377 * Case 1: This route should come from a route to
1378 * interface (RTF_CLONING case) or the route should be
1379 * treated as on-link but is currently not
1380 * (RTF_LLINFO && ln == NULL case).
1381 */
1382 if (sockaddr_dl_init(&u.sdl, sizeof(u.ss),
1383 ifp->if_index, ifp->if_type,
1384 NULL, namelen, NULL, addrlen) == NULL) {
1385 printf("%s.%d: sockaddr_dl_init(, %zu, ) "
1386 "failed on %s\n", __func__, __LINE__,
1387 sizeof(u.ss), if_name(ifp));
1388 }
1389 rt_setgate(rt, &u.sa);
1390 gate = rt->rt_gateway;
1391 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1392 if (gate == NULL) {
1393 log(LOG_ERR,
1394 "%s: rt_setgate failed on %s\n", __func__,
1395 if_name(ifp));
1396 break;
1397 }
1398
1399 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1400 if ((rt->rt_flags & RTF_CONNECTED) != 0)
1401 break;
1402 }
1403 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1404 /*
1405 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1406 * We don't do that here since llinfo is not ready yet.
1407 *
1408 * There are also couple of other things to be discussed:
1409 * - unsolicited NA code needs improvement beforehand
1410 * - RFC2461 says we MAY send multicast unsolicited NA
1411 * (7.2.6 paragraph 4), however, it also says that we
1412 * SHOULD provide a mechanism to prevent multicast NA storm.
1413 * we don't have anything like it right now.
1414 * note that the mechanism needs a mutual agreement
1415 * between proxies, which means that we need to implement
1416 * a new protocol, or a new kludge.
1417 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1418 * we need to check ip6forwarding before sending it.
1419 * (or should we allow proxy ND configuration only for
1420 * routers? there's no mention about proxy ND from hosts)
1421 */
1422 #if 0
1423 /* XXX it does not work */
1424 if (rt->rt_flags & RTF_ANNOUNCE)
1425 nd6_na_output(ifp,
1426 &satocsin6(rt_getkey(rt))->sin6_addr,
1427 &satocsin6(rt_getkey(rt))->sin6_addr,
1428 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1429 1, NULL);
1430 #endif
1431
1432 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1433 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1434 /*
1435 * Address resolution isn't necessary for a point to
1436 * point link, so we can skip this test for a p2p link.
1437 */
1438 if (gate->sa_family != AF_LINK ||
1439 gate->sa_len <
1440 sockaddr_dl_measure(namelen, addrlen)) {
1441 log(LOG_DEBUG,
1442 "nd6_rtrequest: bad gateway value: %s\n",
1443 if_name(ifp));
1444 break;
1445 }
1446 satosdl(gate)->sdl_type = ifp->if_type;
1447 satosdl(gate)->sdl_index = ifp->if_index;
1448 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1449 }
1450 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1451
1452 /*
1453 * check if rt_getkey(rt) is an address assigned
1454 * to the interface.
1455 */
1456 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp,
1457 &satocsin6(rt_getkey(rt))->sin6_addr);
1458 if (ifa != NULL) {
1459 if (nd6_useloopback) {
1460 rt->rt_ifp = lo0ifp; /* XXX */
1461 /*
1462 * Make sure rt_ifa be equal to the ifaddr
1463 * corresponding to the address.
1464 * We need this because when we refer
1465 * rt_ifa->ia6_flags in ip6_input, we assume
1466 * that the rt_ifa points to the address instead
1467 * of the loopback address.
1468 */
1469 if (ifa != rt->rt_ifa)
1470 rt_replace_ifa(rt, ifa);
1471 }
1472 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1473 /* join solicited node multicast for proxy ND */
1474 if (ifp->if_flags & IFF_MULTICAST) {
1475 struct in6_addr llsol;
1476 int error;
1477
1478 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1479 llsol.s6_addr32[0] = htonl(0xff020000);
1480 llsol.s6_addr32[1] = 0;
1481 llsol.s6_addr32[2] = htonl(1);
1482 llsol.s6_addr8[12] = 0xff;
1483 if (in6_setscope(&llsol, ifp, NULL))
1484 goto out;
1485 if (!in6_addmulti(&llsol, ifp, &error, 0)) {
1486 nd6log(LOG_ERR, "%s: failed to join "
1487 "%s (errno=%d)\n", if_name(ifp),
1488 ip6_sprintf(&llsol), error);
1489 }
1490 }
1491 }
1492
1493 out:
1494 /*
1495 * If we have too many cache entries, initiate immediate
1496 * purging for some entries.
1497 */
1498 if (rt->rt_ifp != NULL)
1499 nd6_gc_neighbors(LLTABLE6(rt->rt_ifp));
1500 break;
1501
1502 case RTM_DELETE:
1503 /* leave from solicited node multicast for proxy ND */
1504 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1505 (ifp->if_flags & IFF_MULTICAST) != 0) {
1506 struct in6_addr llsol;
1507 struct in6_multi *in6m;
1508
1509 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1510 llsol.s6_addr32[0] = htonl(0xff020000);
1511 llsol.s6_addr32[1] = 0;
1512 llsol.s6_addr32[2] = htonl(1);
1513 llsol.s6_addr8[12] = 0xff;
1514 if (in6_setscope(&llsol, ifp, NULL) == 0) {
1515 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1516 if (in6m)
1517 in6_delmulti(in6m);
1518 }
1519 }
1520 break;
1521 }
1522 }
1523
1524 int
1525 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp)
1526 {
1527 struct in6_drlist *drl = (struct in6_drlist *)data;
1528 struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1529 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1530 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1531 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1532 struct nd_defrouter *dr;
1533 struct nd_prefix *pr;
1534 int i = 0, error = 0;
1535 int s;
1536
1537 switch (cmd) {
1538 case SIOCGDRLST_IN6:
1539 /*
1540 * obsolete API, use sysctl under net.inet6.icmp6
1541 */
1542 memset(drl, 0, sizeof(*drl));
1543 s = splsoftnet();
1544 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
1545 if (i >= DRLSTSIZ)
1546 break;
1547 drl->defrouter[i].rtaddr = dr->rtaddr;
1548 in6_clearscope(&drl->defrouter[i].rtaddr);
1549
1550 drl->defrouter[i].flags = dr->flags;
1551 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1552 drl->defrouter[i].expire = dr->expire ?
1553 time_mono_to_wall(dr->expire) : 0;
1554 drl->defrouter[i].if_index = dr->ifp->if_index;
1555 i++;
1556 }
1557 splx(s);
1558 break;
1559 case SIOCGPRLST_IN6:
1560 /*
1561 * obsolete API, use sysctl under net.inet6.icmp6
1562 *
1563 * XXX the structure in6_prlist was changed in backward-
1564 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1565 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1566 */
1567 /*
1568 * XXX meaning of fields, especialy "raflags", is very
1569 * differnet between RA prefix list and RR/static prefix list.
1570 * how about separating ioctls into two?
1571 */
1572 memset(oprl, 0, sizeof(*oprl));
1573 s = splsoftnet();
1574 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
1575 struct nd_pfxrouter *pfr;
1576 int j;
1577
1578 if (i >= PRLSTSIZ)
1579 break;
1580 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1581 oprl->prefix[i].raflags = pr->ndpr_raf;
1582 oprl->prefix[i].prefixlen = pr->ndpr_plen;
1583 oprl->prefix[i].vltime = pr->ndpr_vltime;
1584 oprl->prefix[i].pltime = pr->ndpr_pltime;
1585 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1586 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1587 oprl->prefix[i].expire = 0;
1588 else {
1589 time_t maxexpire;
1590
1591 /* XXX: we assume time_t is signed. */
1592 maxexpire = (-1) &
1593 ~((time_t)1 <<
1594 ((sizeof(maxexpire) * 8) - 1));
1595 if (pr->ndpr_vltime <
1596 maxexpire - pr->ndpr_lastupdate) {
1597 time_t expire;
1598 expire = pr->ndpr_lastupdate +
1599 pr->ndpr_vltime;
1600 oprl->prefix[i].expire = expire ?
1601 time_mono_to_wall(expire) : 0;
1602 } else
1603 oprl->prefix[i].expire = maxexpire;
1604 }
1605
1606 j = 0;
1607 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
1608 if (j < DRLSTSIZ) {
1609 #define RTRADDR oprl->prefix[i].advrtr[j]
1610 RTRADDR = pfr->router->rtaddr;
1611 in6_clearscope(&RTRADDR);
1612 #undef RTRADDR
1613 }
1614 j++;
1615 }
1616 oprl->prefix[i].advrtrs = j;
1617 oprl->prefix[i].origin = PR_ORIG_RA;
1618
1619 i++;
1620 }
1621 splx(s);
1622
1623 break;
1624 case OSIOCGIFINFO_IN6:
1625 #define ND ndi->ndi
1626 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1627 memset(&ND, 0, sizeof(ND));
1628 ND.linkmtu = IN6_LINKMTU(ifp);
1629 ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1630 ND.basereachable = ND_IFINFO(ifp)->basereachable;
1631 ND.reachable = ND_IFINFO(ifp)->reachable;
1632 ND.retrans = ND_IFINFO(ifp)->retrans;
1633 ND.flags = ND_IFINFO(ifp)->flags;
1634 ND.recalctm = ND_IFINFO(ifp)->recalctm;
1635 ND.chlim = ND_IFINFO(ifp)->chlim;
1636 break;
1637 case SIOCGIFINFO_IN6:
1638 ND = *ND_IFINFO(ifp);
1639 break;
1640 case SIOCSIFINFO_IN6:
1641 /*
1642 * used to change host variables from userland.
1643 * intented for a use on router to reflect RA configurations.
1644 */
1645 /* 0 means 'unspecified' */
1646 if (ND.linkmtu != 0) {
1647 if (ND.linkmtu < IPV6_MMTU ||
1648 ND.linkmtu > IN6_LINKMTU(ifp)) {
1649 error = EINVAL;
1650 break;
1651 }
1652 ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1653 }
1654
1655 if (ND.basereachable != 0) {
1656 int obasereachable = ND_IFINFO(ifp)->basereachable;
1657
1658 ND_IFINFO(ifp)->basereachable = ND.basereachable;
1659 if (ND.basereachable != obasereachable)
1660 ND_IFINFO(ifp)->reachable =
1661 ND_COMPUTE_RTIME(ND.basereachable);
1662 }
1663 if (ND.retrans != 0)
1664 ND_IFINFO(ifp)->retrans = ND.retrans;
1665 if (ND.chlim != 0)
1666 ND_IFINFO(ifp)->chlim = ND.chlim;
1667 /* FALLTHROUGH */
1668 case SIOCSIFINFO_FLAGS:
1669 {
1670 struct ifaddr *ifa;
1671 struct in6_ifaddr *ia;
1672
1673 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1674 !(ND.flags & ND6_IFF_IFDISABLED))
1675 {
1676 /*
1677 * If the interface is marked as ND6_IFF_IFDISABLED and
1678 * has a link-local address with IN6_IFF_DUPLICATED,
1679 * do not clear ND6_IFF_IFDISABLED.
1680 * See RFC 4862, section 5.4.5.
1681 */
1682 int duplicated_linklocal = 0;
1683
1684 IFADDR_FOREACH(ifa, ifp) {
1685 if (ifa->ifa_addr->sa_family != AF_INET6)
1686 continue;
1687 ia = (struct in6_ifaddr *)ifa;
1688 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1689 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1690 {
1691 duplicated_linklocal = 1;
1692 break;
1693 }
1694 }
1695
1696 if (duplicated_linklocal) {
1697 ND.flags |= ND6_IFF_IFDISABLED;
1698 log(LOG_ERR, "Cannot enable an interface"
1699 " with a link-local address marked"
1700 " duplicate.\n");
1701 } else {
1702 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1703 if (ifp->if_flags & IFF_UP)
1704 in6_if_up(ifp);
1705 }
1706 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1707 (ND.flags & ND6_IFF_IFDISABLED))
1708 {
1709 /* Mark all IPv6 addresses as tentative. */
1710
1711 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1712 IFADDR_FOREACH(ifa, ifp) {
1713 if (ifa->ifa_addr->sa_family != AF_INET6)
1714 continue;
1715 nd6_dad_stop(ifa);
1716 ia = (struct in6_ifaddr *)ifa;
1717 ia->ia6_flags |= IN6_IFF_TENTATIVE;
1718 }
1719 }
1720
1721 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1722 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1723 /* auto_linklocal 0->1 transition */
1724
1725 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1726 in6_ifattach(ifp, NULL);
1727 } else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1728 ifp->if_flags & IFF_UP)
1729 {
1730 /*
1731 * When the IF already has
1732 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1733 * address is assigned, and IFF_UP, try to
1734 * assign one.
1735 */
1736 int haslinklocal = 0;
1737
1738 IFADDR_FOREACH(ifa, ifp) {
1739 if (ifa->ifa_addr->sa_family !=AF_INET6)
1740 continue;
1741 ia = (struct in6_ifaddr *)ifa;
1742 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))){
1743 haslinklocal = 1;
1744 break;
1745 }
1746 }
1747 if (!haslinklocal)
1748 in6_ifattach(ifp, NULL);
1749 }
1750 }
1751 }
1752 ND_IFINFO(ifp)->flags = ND.flags;
1753 break;
1754 #undef ND
1755 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1756 /* sync kernel routing table with the default router list */
1757 defrouter_reset();
1758 defrouter_select();
1759 break;
1760 case SIOCSPFXFLUSH_IN6:
1761 {
1762 /* flush all the prefix advertised by routers */
1763 struct nd_prefix *pfx, *next;
1764
1765 s = splsoftnet();
1766 LIST_FOREACH_SAFE(pfx, &nd_prefix, ndpr_entry, next) {
1767 struct in6_ifaddr *ia, *ia_next;
1768
1769 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
1770 continue; /* XXX */
1771
1772 /* do we really have to remove addresses as well? */
1773 for (ia = in6_ifaddr; ia; ia = ia_next) {
1774 /* ia might be removed. keep the next ptr. */
1775 ia_next = ia->ia_next;
1776
1777 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1778 continue;
1779
1780 if (ia->ia6_ndpr == pfx)
1781 in6_purgeaddr(&ia->ia_ifa);
1782 }
1783 prelist_remove(pfx);
1784 }
1785 splx(s);
1786 break;
1787 }
1788 case SIOCSRTRFLUSH_IN6:
1789 {
1790 /* flush all the default routers */
1791 struct nd_defrouter *drtr, *next;
1792
1793 s = splsoftnet();
1794 defrouter_reset();
1795 TAILQ_FOREACH_SAFE(drtr, &nd_defrouter, dr_entry, next) {
1796 defrtrlist_del(drtr, NULL);
1797 }
1798 defrouter_select();
1799 splx(s);
1800 break;
1801 }
1802 case SIOCGNBRINFO_IN6:
1803 {
1804 struct llentry *ln;
1805 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1806
1807 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1808 return error;
1809
1810 ln = nd6_lookup(&nb_addr, ifp, false);
1811 if (ln == NULL) {
1812 error = EINVAL;
1813 break;
1814 }
1815 nbi->state = ln->ln_state;
1816 nbi->asked = ln->ln_asked;
1817 nbi->isrouter = ln->ln_router;
1818 nbi->expire = ln->ln_expire ?
1819 time_mono_to_wall(ln->ln_expire) : 0;
1820 LLE_RUNLOCK(ln);
1821
1822 break;
1823 }
1824 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1825 ndif->ifindex = nd6_defifindex;
1826 break;
1827 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1828 return nd6_setdefaultiface(ndif->ifindex);
1829 }
1830 return error;
1831 }
1832
1833 void
1834 nd6_llinfo_release_pkts(struct llentry *ln, struct ifnet *ifp)
1835 {
1836 struct mbuf *m_hold, *m_hold_next;
1837 struct sockaddr_in6 sin6;
1838
1839 LLE_WLOCK_ASSERT(ln);
1840
1841 sockaddr_in6_init(&sin6, &ln->r_l3addr.addr6, 0, 0, 0);
1842
1843 m_hold = ln->la_hold, ln->la_hold = NULL, ln->la_numheld = 0;
1844
1845 LLE_WUNLOCK(ln);
1846 for (; m_hold != NULL; m_hold = m_hold_next) {
1847 m_hold_next = m_hold->m_nextpkt;
1848 m_hold->m_nextpkt = NULL;
1849
1850 /*
1851 * we assume ifp is not a p2p here, so
1852 * just set the 2nd argument as the
1853 * 1st one.
1854 */
1855 nd6_output(ifp, ifp, m_hold, &sin6, NULL);
1856 }
1857 LLE_WLOCK(ln);
1858 }
1859
1860 /*
1861 * Create neighbor cache entry and cache link-layer address,
1862 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1863 */
1864 void
1865 nd6_cache_lladdr(
1866 struct ifnet *ifp,
1867 struct in6_addr *from,
1868 char *lladdr,
1869 int lladdrlen,
1870 int type, /* ICMP6 type */
1871 int code /* type dependent information */
1872 )
1873 {
1874 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
1875 struct llentry *ln = NULL;
1876 int is_newentry;
1877 int do_update;
1878 int olladdr;
1879 int llchange;
1880 int newstate = 0;
1881 uint16_t router = 0;
1882
1883 KASSERT(ifp != NULL);
1884 KASSERT(from != NULL);
1885
1886 /* nothing must be updated for unspecified address */
1887 if (IN6_IS_ADDR_UNSPECIFIED(from))
1888 return;
1889
1890 /*
1891 * Validation about ifp->if_addrlen and lladdrlen must be done in
1892 * the caller.
1893 *
1894 * XXX If the link does not have link-layer adderss, what should
1895 * we do? (ifp->if_addrlen == 0)
1896 * Spec says nothing in sections for RA, RS and NA. There's small
1897 * description on it in NS section (RFC 2461 7.2.3).
1898 */
1899
1900 ln = nd6_lookup(from, ifp, true);
1901 if (ln == NULL) {
1902 #if 0
1903 /* nothing must be done if there's no lladdr */
1904 if (!lladdr || !lladdrlen)
1905 return NULL;
1906 #endif
1907
1908 ln = nd6_create(from, ifp);
1909 is_newentry = 1;
1910 } else {
1911 /* do nothing if static ndp is set */
1912 if (ln->la_flags & LLE_STATIC) {
1913 LLE_WUNLOCK(ln);
1914 return;
1915 }
1916 is_newentry = 0;
1917 }
1918
1919 if (ln == NULL)
1920 return;
1921
1922 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
1923 if (olladdr && lladdr) {
1924 llchange = memcmp(lladdr, &ln->ll_addr, ifp->if_addrlen);
1925 } else
1926 llchange = 0;
1927
1928 /*
1929 * newentry olladdr lladdr llchange (*=record)
1930 * 0 n n -- (1)
1931 * 0 y n -- (2)
1932 * 0 n y -- (3) * STALE
1933 * 0 y y n (4) *
1934 * 0 y y y (5) * STALE
1935 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1936 * 1 -- y -- (7) * STALE
1937 */
1938
1939 if (lladdr) { /* (3-5) and (7) */
1940 /*
1941 * Record source link-layer address
1942 * XXX is it dependent to ifp->if_type?
1943 */
1944 memcpy(&ln->ll_addr, lladdr, ifp->if_addrlen);
1945 ln->la_flags |= LLE_VALID;
1946 }
1947
1948 if (!is_newentry) {
1949 if ((!olladdr && lladdr) || /* (3) */
1950 (olladdr && lladdr && llchange)) { /* (5) */
1951 do_update = 1;
1952 newstate = ND6_LLINFO_STALE;
1953 } else /* (1-2,4) */
1954 do_update = 0;
1955 } else {
1956 do_update = 1;
1957 if (lladdr == NULL) /* (6) */
1958 newstate = ND6_LLINFO_NOSTATE;
1959 else /* (7) */
1960 newstate = ND6_LLINFO_STALE;
1961 }
1962
1963 if (do_update) {
1964 /*
1965 * Update the state of the neighbor cache.
1966 */
1967 ln->ln_state = newstate;
1968
1969 if (ln->ln_state == ND6_LLINFO_STALE) {
1970 /*
1971 * XXX: since nd6_output() below will cause
1972 * state tansition to DELAY and reset the timer,
1973 * we must set the timer now, although it is actually
1974 * meaningless.
1975 */
1976 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
1977
1978 nd6_llinfo_release_pkts(ln, ifp);
1979 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1980 /* probe right away */
1981 nd6_llinfo_settimer((void *)ln, 0);
1982 }
1983 }
1984
1985 /*
1986 * ICMP6 type dependent behavior.
1987 *
1988 * NS: clear IsRouter if new entry
1989 * RS: clear IsRouter
1990 * RA: set IsRouter if there's lladdr
1991 * redir: clear IsRouter if new entry
1992 *
1993 * RA case, (1):
1994 * The spec says that we must set IsRouter in the following cases:
1995 * - If lladdr exist, set IsRouter. This means (1-5).
1996 * - If it is old entry (!newentry), set IsRouter. This means (7).
1997 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1998 * A quetion arises for (1) case. (1) case has no lladdr in the
1999 * neighbor cache, this is similar to (6).
2000 * This case is rare but we figured that we MUST NOT set IsRouter.
2001 *
2002 * newentry olladdr lladdr llchange NS RS RA redir
2003 * D R
2004 * 0 n n -- (1) c ? s
2005 * 0 y n -- (2) c s s
2006 * 0 n y -- (3) c s s
2007 * 0 y y n (4) c s s
2008 * 0 y y y (5) c s s
2009 * 1 -- n -- (6) c c c s
2010 * 1 -- y -- (7) c c s c s
2011 *
2012 * (c=clear s=set)
2013 */
2014 switch (type & 0xff) {
2015 case ND_NEIGHBOR_SOLICIT:
2016 /*
2017 * New entry must have is_router flag cleared.
2018 */
2019 if (is_newentry) /* (6-7) */
2020 ln->ln_router = 0;
2021 break;
2022 case ND_REDIRECT:
2023 /*
2024 * If the icmp is a redirect to a better router, always set the
2025 * is_router flag. Otherwise, if the entry is newly created,
2026 * clear the flag. [RFC 2461, sec 8.3]
2027 */
2028 if (code == ND_REDIRECT_ROUTER)
2029 ln->ln_router = 1;
2030 else if (is_newentry) /* (6-7) */
2031 ln->ln_router = 0;
2032 break;
2033 case ND_ROUTER_SOLICIT:
2034 /*
2035 * is_router flag must always be cleared.
2036 */
2037 ln->ln_router = 0;
2038 break;
2039 case ND_ROUTER_ADVERT:
2040 /*
2041 * Mark an entry with lladdr as a router.
2042 */
2043 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
2044 (is_newentry && lladdr)) { /* (7) */
2045 ln->ln_router = 1;
2046 }
2047 break;
2048 }
2049
2050 #if 0
2051 /* XXX should we send rtmsg as it used to be? */
2052 if (do_update)
2053 rt_newmsg(RTM_CHANGE, rt); /* tell user process */
2054 #endif
2055
2056 if (ln != NULL) {
2057 router = ln->ln_router;
2058 LLE_WUNLOCK(ln);
2059 }
2060
2061 /*
2062 * If we have too many cache entries, initiate immediate
2063 * purging for some entries.
2064 */
2065 if (is_newentry)
2066 nd6_gc_neighbors(LLTABLE6(ifp));
2067
2068 /*
2069 * When the link-layer address of a router changes, select the
2070 * best router again. In particular, when the neighbor entry is newly
2071 * created, it might affect the selection policy.
2072 * Question: can we restrict the first condition to the "is_newentry"
2073 * case?
2074 * XXX: when we hear an RA from a new router with the link-layer
2075 * address option, defrouter_select() is called twice, since
2076 * defrtrlist_update called the function as well. However, I believe
2077 * we can compromise the overhead, since it only happens the first
2078 * time.
2079 * XXX: although defrouter_select() should not have a bad effect
2080 * for those are not autoconfigured hosts, we explicitly avoid such
2081 * cases for safety.
2082 */
2083 if (do_update && router && !ip6_forwarding &&
2084 nd6_accepts_rtadv(ndi))
2085 defrouter_select();
2086 }
2087
2088 static void
2089 nd6_slowtimo(void *ignored_arg)
2090 {
2091 struct nd_ifinfo *nd6if;
2092 struct ifnet *ifp;
2093 int s;
2094
2095 mutex_enter(softnet_lock);
2096 KERNEL_LOCK(1, NULL);
2097 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
2098 nd6_slowtimo, NULL);
2099
2100 s = pserialize_read_enter();
2101 IFNET_READER_FOREACH(ifp) {
2102 nd6if = ND_IFINFO(ifp);
2103 if (nd6if->basereachable && /* already initialized */
2104 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
2105 /*
2106 * Since reachable time rarely changes by router
2107 * advertisements, we SHOULD insure that a new random
2108 * value gets recomputed at least once every few hours.
2109 * (RFC 2461, 6.3.4)
2110 */
2111 nd6if->recalctm = nd6_recalc_reachtm_interval;
2112 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
2113 }
2114 }
2115 pserialize_read_exit(s);
2116
2117 KERNEL_UNLOCK_ONE(NULL);
2118 mutex_exit(softnet_lock);
2119 }
2120
2121 int
2122 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
2123 const struct sockaddr_in6 *dst, struct rtentry *rt)
2124 {
2125 #define senderr(e) { error = (e); goto bad;}
2126 struct llentry *ln = NULL;
2127 int error = 0;
2128 bool created = false;
2129
2130 if (rt != NULL) {
2131 error = rt_check_reject_route(rt, ifp);
2132 if (error != 0) {
2133 m_freem(m);
2134 return error;
2135 }
2136 }
2137
2138 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
2139 goto sendpkt;
2140
2141 if (nd6_need_cache(ifp) == 0)
2142 goto sendpkt;
2143
2144 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) != 0) {
2145 struct sockaddr_in6 *gw6 = satosin6(rt->rt_gateway);
2146
2147 /* XXX remain the check to keep the original behavior. */
2148 /*
2149 * We skip link-layer address resolution and NUD
2150 * if the gateway is not a neighbor from ND point
2151 * of view, regardless of the value of nd_ifinfo.flags.
2152 * The second condition is a bit tricky; we skip
2153 * if the gateway is our own address, which is
2154 * sometimes used to install a route to a p2p link.
2155 */
2156 if (!nd6_is_addr_neighbor(gw6, ifp) ||
2157 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
2158 /*
2159 * We allow this kind of tricky route only
2160 * when the outgoing interface is p2p.
2161 * XXX: we may need a more generic rule here.
2162 */
2163 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
2164 senderr(EHOSTUNREACH);
2165
2166 goto sendpkt;
2167 }
2168 }
2169
2170 /*
2171 * Address resolution or Neighbor Unreachability Detection
2172 * for the next hop.
2173 * At this point, the destination of the packet must be a unicast
2174 * or an anycast address(i.e. not a multicast).
2175 */
2176
2177 /* Look up the neighbor cache for the nexthop */
2178 ln = nd6_lookup(&dst->sin6_addr, ifp, true);
2179 if ((ln == NULL) && nd6_is_addr_neighbor(dst, ifp)) {
2180 /*
2181 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2182 * the condition below is not very efficient. But we believe
2183 * it is tolerable, because this should be a rare case.
2184 */
2185 ln = nd6_create(&dst->sin6_addr, ifp);
2186 if (ln != NULL)
2187 created = true;
2188 }
2189
2190 if (ln == NULL) {
2191 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2192 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2193 log(LOG_DEBUG,
2194 "nd6_output: can't allocate llinfo for %s "
2195 "(ln=%p, rt=%p)\n",
2196 ip6_sprintf(&dst->sin6_addr), ln, rt);
2197 senderr(EIO); /* XXX: good error? */
2198 }
2199 goto sendpkt; /* send anyway */
2200 }
2201
2202 LLE_WLOCK_ASSERT(ln);
2203
2204 /* We don't have to do link-layer address resolution on a p2p link. */
2205 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2206 ln->ln_state < ND6_LLINFO_REACHABLE) {
2207 ln->ln_state = ND6_LLINFO_STALE;
2208 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
2209 }
2210
2211 /*
2212 * The first time we send a packet to a neighbor whose entry is
2213 * STALE, we have to change the state to DELAY and a sets a timer to
2214 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2215 * neighbor unreachability detection on expiration.
2216 * (RFC 2461 7.3.3)
2217 */
2218 if (ln->ln_state == ND6_LLINFO_STALE) {
2219 ln->ln_asked = 0;
2220 ln->ln_state = ND6_LLINFO_DELAY;
2221 nd6_llinfo_settimer(ln, nd6_delay * hz);
2222 }
2223
2224 /*
2225 * If the neighbor cache entry has a state other than INCOMPLETE
2226 * (i.e. its link-layer address is already resolved), just
2227 * send the packet.
2228 */
2229 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2230 goto sendpkt;
2231
2232 /*
2233 * There is a neighbor cache entry, but no ethernet address
2234 * response yet. Append this latest packet to the end of the
2235 * packet queue in the mbuf, unless the number of the packet
2236 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen,
2237 * the oldest packet in the queue will be removed.
2238 */
2239 if (ln->ln_state == ND6_LLINFO_NOSTATE)
2240 ln->ln_state = ND6_LLINFO_INCOMPLETE;
2241 if (ln->ln_hold) {
2242 struct mbuf *m_hold;
2243 int i;
2244
2245 i = 0;
2246 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2247 i++;
2248 if (m_hold->m_nextpkt == NULL) {
2249 m_hold->m_nextpkt = m;
2250 break;
2251 }
2252 }
2253 while (i >= nd6_maxqueuelen) {
2254 m_hold = ln->ln_hold;
2255 ln->ln_hold = ln->ln_hold->m_nextpkt;
2256 m_freem(m_hold);
2257 i--;
2258 }
2259 } else {
2260 ln->ln_hold = m;
2261 }
2262
2263 /*
2264 * If there has been no NS for the neighbor after entering the
2265 * INCOMPLETE state, send the first solicitation.
2266 */
2267 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2268 struct in6_addr src, *psrc;
2269
2270 ln->ln_asked++;
2271 nd6_llinfo_settimer(ln, ND_IFINFO(ifp)->retrans * hz / 1000);
2272 psrc = nd6_llinfo_get_holdsrc(ln, &src);
2273 LLE_WUNLOCK(ln);
2274 ln = NULL;
2275 nd6_ns_output(ifp, NULL, &dst->sin6_addr, psrc, 0);
2276 } else {
2277 /* We did the lookup so we need to do the unlock here. */
2278 LLE_WUNLOCK(ln);
2279 }
2280
2281 error = 0;
2282 goto exit;
2283
2284 sendpkt:
2285 /* discard the packet if IPv6 operation is disabled on the interface */
2286 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2287 error = ENETDOWN; /* better error? */
2288 goto bad;
2289 }
2290
2291 if (ln != NULL)
2292 LLE_WUNLOCK(ln);
2293
2294 #ifndef NET_MPSAFE
2295 KERNEL_LOCK(1, NULL);
2296 #endif
2297 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2298 error = (*ifp->if_output)(origifp, m, sin6tocsa(dst), rt);
2299 else
2300 error = (*ifp->if_output)(ifp, m, sin6tocsa(dst), rt);
2301 #ifndef NET_MPSAFE
2302 KERNEL_UNLOCK_ONE(NULL);
2303 #endif
2304 goto exit;
2305
2306 bad:
2307 if (m != NULL)
2308 m_freem(m);
2309 exit:
2310 if (created)
2311 nd6_gc_neighbors(LLTABLE6(ifp));
2312
2313 return error;
2314 #undef senderr
2315 }
2316
2317 int
2318 nd6_need_cache(struct ifnet *ifp)
2319 {
2320 /*
2321 * XXX: we currently do not make neighbor cache on any interface
2322 * other than ARCnet, Ethernet, FDDI and GIF.
2323 *
2324 * RFC2893 says:
2325 * - unidirectional tunnels needs no ND
2326 */
2327 switch (ifp->if_type) {
2328 case IFT_ARCNET:
2329 case IFT_ETHER:
2330 case IFT_FDDI:
2331 case IFT_IEEE1394:
2332 case IFT_CARP:
2333 case IFT_GIF: /* XXX need more cases? */
2334 case IFT_PPP:
2335 case IFT_TUNNEL:
2336 return 1;
2337 default:
2338 return 0;
2339 }
2340 }
2341
2342 /*
2343 * Add pernament ND6 link-layer record for given
2344 * interface address.
2345 *
2346 * Very similar to IPv4 arp_ifinit(), but:
2347 * 1) IPv6 DAD is performed in different place
2348 * 2) It is called by IPv6 protocol stack in contrast to
2349 * arp_ifinit() which is typically called in SIOCSIFADDR
2350 * driver ioctl handler.
2351 *
2352 */
2353 int
2354 nd6_add_ifa_lle(struct in6_ifaddr *ia)
2355 {
2356 struct ifnet *ifp;
2357 struct llentry *ln;
2358
2359 ifp = ia->ia_ifa.ifa_ifp;
2360 if (nd6_need_cache(ifp) == 0)
2361 return 0;
2362 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
2363 ia->ia_ifa.ifa_flags = RTF_CONNECTED;
2364
2365 IF_AFDATA_WLOCK(ifp);
2366 ln = lla_create(LLTABLE6(ifp), LLE_IFADDR | LLE_EXCLUSIVE,
2367 (struct sockaddr *)&ia->ia_addr);
2368 IF_AFDATA_WUNLOCK(ifp);
2369 if (ln == NULL)
2370 return ENOBUFS;
2371
2372 ln->la_expire = 0; /* for IPv6 this means permanent */
2373 ln->ln_state = ND6_LLINFO_REACHABLE;
2374
2375 LLE_WUNLOCK(ln);
2376 return 0;
2377 }
2378
2379 /*
2380 * Removes ALL lle records for interface address prefix.
2381 * XXXME: That's probably not we really want to do, we need
2382 * to remove address record only and keep other records
2383 * until we determine if given prefix is really going
2384 * to be removed.
2385 */
2386 void
2387 nd6_rem_ifa_lle(struct in6_ifaddr *ia)
2388 {
2389 struct sockaddr_in6 mask, addr;
2390
2391 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
2392 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
2393 lltable_prefix_free(AF_INET6, (struct sockaddr *)&addr,
2394 (struct sockaddr *)&mask, LLE_STATIC);
2395 }
2396
2397 int
2398 nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt,
2399 struct mbuf *m, const struct sockaddr *dst, uint8_t *lldst,
2400 size_t dstsize)
2401 {
2402 struct llentry *ln;
2403
2404 if (m->m_flags & M_MCAST) {
2405 switch (ifp->if_type) {
2406 case IFT_ETHER:
2407 case IFT_FDDI:
2408 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
2409 lldst);
2410 return 1;
2411 case IFT_IEEE1394:
2412 memcpy(lldst, ifp->if_broadcastaddr,
2413 MIN(dstsize, ifp->if_addrlen));
2414 return 1;
2415 case IFT_ARCNET:
2416 *lldst = 0;
2417 return 1;
2418 default:
2419 m_freem(m);
2420 return 0;
2421 }
2422 }
2423
2424 /*
2425 * the entry should have been created in nd6_store_lladdr
2426 */
2427 ln = nd6_lookup(&satocsin6(dst)->sin6_addr, ifp, false);
2428 if ((ln == NULL) || !(ln->la_flags & LLE_VALID)) {
2429 if (ln != NULL)
2430 LLE_RUNLOCK(ln);
2431 /* this could happen, if we could not allocate memory */
2432 m_freem(m);
2433 return 0;
2434 }
2435
2436 /* XXX llentry should have addrlen? */
2437 #if 0
2438 sdl = satocsdl(rt->rt_gateway);
2439 if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) {
2440 char sbuf[INET6_ADDRSTRLEN];
2441 char dbuf[LINK_ADDRSTRLEN];
2442 /* this should be impossible, but we bark here for debugging */
2443 printf("%s: sdl_alen == %" PRIu8 ", if=%s, dst=%s, sdl=%s\n",
2444 __func__, sdl->sdl_alen, if_name(ifp),
2445 IN6_PRINT(sbuf, &satocsin6(dst)->sin6_addr),
2446 DL_PRINT(dbuf, &sdl->sdl_addr));
2447 m_freem(m);
2448 return 0;
2449 }
2450 #endif
2451
2452 memcpy(lldst, &ln->ll_addr, MIN(dstsize, ifp->if_addrlen));
2453
2454 LLE_RUNLOCK(ln);
2455
2456 return 1;
2457 }
2458
2459 static void
2460 clear_llinfo_pqueue(struct llentry *ln)
2461 {
2462 struct mbuf *m_hold, *m_hold_next;
2463
2464 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2465 m_hold_next = m_hold->m_nextpkt;
2466 m_hold->m_nextpkt = NULL;
2467 m_freem(m_hold);
2468 }
2469
2470 ln->ln_hold = NULL;
2471 return;
2472 }
2473
2474 int
2475 nd6_sysctl(
2476 int name,
2477 void *oldp, /* syscall arg, need copyout */
2478 size_t *oldlenp,
2479 void *newp, /* syscall arg, need copyin */
2480 size_t newlen
2481 )
2482 {
2483 void *p;
2484 size_t ol;
2485 int error;
2486
2487 error = 0;
2488
2489 if (newp)
2490 return EPERM;
2491 if (oldp && !oldlenp)
2492 return EINVAL;
2493 ol = oldlenp ? *oldlenp : 0;
2494
2495 if (oldp) {
2496 p = malloc(*oldlenp, M_TEMP, M_WAITOK);
2497 if (p == NULL)
2498 return ENOMEM;
2499 } else
2500 p = NULL;
2501 switch (name) {
2502 case ICMPV6CTL_ND6_DRLIST:
2503 error = fill_drlist(p, oldlenp, ol);
2504 if (!error && p != NULL && oldp != NULL)
2505 error = copyout(p, oldp, *oldlenp);
2506 break;
2507
2508 case ICMPV6CTL_ND6_PRLIST:
2509 error = fill_prlist(p, oldlenp, ol);
2510 if (!error && p != NULL && oldp != NULL)
2511 error = copyout(p, oldp, *oldlenp);
2512 break;
2513
2514 case ICMPV6CTL_ND6_MAXQLEN:
2515 break;
2516
2517 default:
2518 error = ENOPROTOOPT;
2519 break;
2520 }
2521 if (p)
2522 free(p, M_TEMP);
2523
2524 return error;
2525 }
2526
2527 static int
2528 fill_drlist(void *oldp, size_t *oldlenp, size_t ol)
2529 {
2530 int error = 0, s;
2531 struct in6_defrouter *d = NULL, *de = NULL;
2532 struct nd_defrouter *dr;
2533 size_t l;
2534
2535 s = splsoftnet();
2536
2537 if (oldp) {
2538 d = (struct in6_defrouter *)oldp;
2539 de = (struct in6_defrouter *)((char *)oldp + *oldlenp);
2540 }
2541 l = 0;
2542
2543 TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
2544
2545 if (oldp && d + 1 <= de) {
2546 memset(d, 0, sizeof(*d));
2547 sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0);
2548 if (sa6_recoverscope(&d->rtaddr)) {
2549 log(LOG_ERR,
2550 "scope error in router list (%s)\n",
2551 ip6_sprintf(&d->rtaddr.sin6_addr));
2552 /* XXX: press on... */
2553 }
2554 d->flags = dr->flags;
2555 d->rtlifetime = dr->rtlifetime;
2556 d->expire = dr->expire ?
2557 time_mono_to_wall(dr->expire) : 0;
2558 d->if_index = dr->ifp->if_index;
2559 }
2560
2561 l += sizeof(*d);
2562 if (d)
2563 d++;
2564 }
2565
2566 if (oldp) {
2567 if (l > ol)
2568 error = ENOMEM;
2569 }
2570 if (oldlenp)
2571 *oldlenp = l; /* (void *)d - (void *)oldp */
2572
2573 splx(s);
2574
2575 return error;
2576 }
2577
2578 static int
2579 fill_prlist(void *oldp, size_t *oldlenp, size_t ol)
2580 {
2581 int error = 0, s;
2582 struct nd_prefix *pr;
2583 uint8_t *p = NULL, *ps = NULL;
2584 uint8_t *pe = NULL;
2585 size_t l;
2586
2587 s = splsoftnet();
2588
2589 if (oldp) {
2590 ps = p = (uint8_t*)oldp;
2591 pe = (uint8_t*)oldp + *oldlenp;
2592 }
2593 l = 0;
2594
2595 LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
2596 u_short advrtrs;
2597 struct sockaddr_in6 sin6;
2598 struct nd_pfxrouter *pfr;
2599 struct in6_prefix pfx;
2600
2601 if (oldp && p + sizeof(struct in6_prefix) <= pe)
2602 {
2603 memset(&pfx, 0, sizeof(pfx));
2604 ps = p;
2605 pfx.prefix = pr->ndpr_prefix;
2606
2607 if (sa6_recoverscope(&pfx.prefix)) {
2608 log(LOG_ERR,
2609 "scope error in prefix list (%s)\n",
2610 ip6_sprintf(&pfx.prefix.sin6_addr));
2611 /* XXX: press on... */
2612 }
2613 pfx.raflags = pr->ndpr_raf;
2614 pfx.prefixlen = pr->ndpr_plen;
2615 pfx.vltime = pr->ndpr_vltime;
2616 pfx.pltime = pr->ndpr_pltime;
2617 pfx.if_index = pr->ndpr_ifp->if_index;
2618 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2619 pfx.expire = 0;
2620 else {
2621 time_t maxexpire;
2622
2623 /* XXX: we assume time_t is signed. */
2624 maxexpire = (-1) &
2625 ~((time_t)1 <<
2626 ((sizeof(maxexpire) * 8) - 1));
2627 if (pr->ndpr_vltime <
2628 maxexpire - pr->ndpr_lastupdate) {
2629 pfx.expire = pr->ndpr_lastupdate +
2630 pr->ndpr_vltime;
2631 } else
2632 pfx.expire = maxexpire;
2633 }
2634 pfx.refcnt = pr->ndpr_refcnt;
2635 pfx.flags = pr->ndpr_stateflags;
2636 pfx.origin = PR_ORIG_RA;
2637
2638 p += sizeof(pfx); l += sizeof(pfx);
2639
2640 advrtrs = 0;
2641 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2642 if (p + sizeof(sin6) > pe) {
2643 advrtrs++;
2644 continue;
2645 }
2646
2647 sockaddr_in6_init(&sin6, &pfr->router->rtaddr,
2648 0, 0, 0);
2649 if (sa6_recoverscope(&sin6)) {
2650 log(LOG_ERR,
2651 "scope error in "
2652 "prefix list (%s)\n",
2653 ip6_sprintf(&pfr->router->rtaddr));
2654 }
2655 advrtrs++;
2656 memcpy(p, &sin6, sizeof(sin6));
2657 p += sizeof(sin6);
2658 l += sizeof(sin6);
2659 }
2660 pfx.advrtrs = advrtrs;
2661 memcpy(ps, &pfx, sizeof(pfx));
2662 }
2663 else {
2664 l += sizeof(pfx);
2665 advrtrs = 0;
2666 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2667 advrtrs++;
2668 l += sizeof(sin6);
2669 }
2670 }
2671 }
2672
2673 if (oldp) {
2674 *oldlenp = l; /* (void *)d - (void *)oldp */
2675 if (l > ol)
2676 error = ENOMEM;
2677 } else
2678 *oldlenp = l;
2679
2680 splx(s);
2681
2682 return error;
2683 }
2684