Home | History | Annotate | Line # | Download | only in netinet6
nd6.c revision 1.205
      1 /*	$NetBSD: nd6.c,v 1.205 2016/08/01 03:15:31 ozaki-r Exp $	*/
      2 /*	$KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.205 2016/08/01 03:15:31 ozaki-r Exp $");
     35 
     36 #ifdef _KERNEL_OPT
     37 #include "opt_net_mpsafe.h"
     38 #endif
     39 
     40 #include "bridge.h"
     41 #include "carp.h"
     42 
     43 #include <sys/param.h>
     44 #include <sys/systm.h>
     45 #include <sys/callout.h>
     46 #include <sys/malloc.h>
     47 #include <sys/mbuf.h>
     48 #include <sys/socket.h>
     49 #include <sys/socketvar.h>
     50 #include <sys/sockio.h>
     51 #include <sys/time.h>
     52 #include <sys/kernel.h>
     53 #include <sys/protosw.h>
     54 #include <sys/errno.h>
     55 #include <sys/ioctl.h>
     56 #include <sys/syslog.h>
     57 #include <sys/queue.h>
     58 #include <sys/cprng.h>
     59 #include <sys/workqueue.h>
     60 
     61 #include <net/if.h>
     62 #include <net/if_dl.h>
     63 #include <net/if_llatbl.h>
     64 #include <net/if_types.h>
     65 #include <net/route.h>
     66 #include <net/if_ether.h>
     67 #include <net/if_fddi.h>
     68 #include <net/if_arc.h>
     69 
     70 #include <netinet/in.h>
     71 #include <netinet6/in6_var.h>
     72 #include <netinet/ip6.h>
     73 #include <netinet6/ip6_var.h>
     74 #include <netinet6/scope6_var.h>
     75 #include <netinet6/nd6.h>
     76 #include <netinet6/in6_ifattach.h>
     77 #include <netinet/icmp6.h>
     78 #include <netinet6/icmp6_private.h>
     79 
     80 #include <net/net_osdep.h>
     81 
     82 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
     83 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
     84 
     85 /* timer values */
     86 int	nd6_prune	= 1;	/* walk list every 1 seconds */
     87 int	nd6_delay	= 5;	/* delay first probe time 5 second */
     88 int	nd6_umaxtries	= 3;	/* maximum unicast query */
     89 int	nd6_mmaxtries	= 3;	/* maximum multicast query */
     90 int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
     91 int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
     92 
     93 /* preventing too many loops in ND option parsing */
     94 int nd6_maxndopt = 10;	/* max # of ND options allowed */
     95 
     96 int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
     97 
     98 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
     99 
    100 #ifdef ND6_DEBUG
    101 int nd6_debug = 1;
    102 #else
    103 int nd6_debug = 0;
    104 #endif
    105 
    106 struct nd_drhead nd_defrouter;
    107 struct nd_prhead nd_prefix = { 0 };
    108 
    109 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
    110 
    111 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
    112 static void nd6_slowtimo(void *);
    113 static int regen_tmpaddr(const struct in6_ifaddr *);
    114 static void nd6_free(struct llentry *, int);
    115 static void nd6_llinfo_timer(void *);
    116 static void nd6_timer(void *);
    117 static void nd6_timer_work(struct work *, void *);
    118 static void clear_llinfo_pqueue(struct llentry *);
    119 
    120 static callout_t nd6_slowtimo_ch;
    121 static callout_t nd6_timer_ch;
    122 static struct workqueue	*nd6_timer_wq;
    123 static struct work	nd6_timer_wk;
    124 
    125 static int fill_drlist(void *, size_t *, size_t);
    126 static int fill_prlist(void *, size_t *, size_t);
    127 
    128 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
    129 
    130 void
    131 nd6_init(void)
    132 {
    133 	int error;
    134 
    135 	/* initialization of the default router list */
    136 	TAILQ_INIT(&nd_defrouter);
    137 
    138 	callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE);
    139 	callout_init(&nd6_timer_ch, CALLOUT_MPSAFE);
    140 
    141 	error = workqueue_create(&nd6_timer_wq, "nd6_timer",
    142 	    nd6_timer_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
    143 	if (error)
    144 		panic("%s: workqueue_create failed (%d)\n", __func__, error);
    145 
    146 	/* start timer */
    147 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
    148 	    nd6_slowtimo, NULL);
    149 	callout_reset(&nd6_timer_ch, hz, nd6_timer, NULL);
    150 }
    151 
    152 struct nd_ifinfo *
    153 nd6_ifattach(struct ifnet *ifp)
    154 {
    155 	struct nd_ifinfo *nd;
    156 
    157 	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO);
    158 
    159 	nd->initialized = 1;
    160 
    161 	nd->chlim = IPV6_DEFHLIM;
    162 	nd->basereachable = REACHABLE_TIME;
    163 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
    164 	nd->retrans = RETRANS_TIMER;
    165 
    166 	nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV;
    167 
    168 	/* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
    169 	 * A bridge interface should not have ND6_IFF_AUTO_LINKLOCAL
    170 	 * because one of its members should. */
    171 	if ((ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
    172 	    (ifp->if_flags & IFF_LOOPBACK))
    173 		nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
    174 
    175 	/* A loopback interface does not need to accept RTADV.
    176 	 * A bridge interface should not accept RTADV
    177 	 * because one of its members should. */
    178 	if (ip6_accept_rtadv &&
    179 	    !(ifp->if_flags & IFF_LOOPBACK) &&
    180 	    !(ifp->if_type != IFT_BRIDGE))
    181 		nd->flags |= ND6_IFF_ACCEPT_RTADV;
    182 
    183 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
    184 	nd6_setmtu0(ifp, nd);
    185 
    186 	return nd;
    187 }
    188 
    189 void
    190 nd6_ifdetach(struct ifnet *ifp, struct in6_ifextra *ext)
    191 {
    192 
    193 	nd6_purge(ifp, ext);
    194 	free(ext->nd_ifinfo, M_IP6NDP);
    195 }
    196 
    197 void
    198 nd6_setmtu(struct ifnet *ifp)
    199 {
    200 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
    201 }
    202 
    203 void
    204 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
    205 {
    206 	u_int32_t omaxmtu;
    207 
    208 	omaxmtu = ndi->maxmtu;
    209 
    210 	switch (ifp->if_type) {
    211 	case IFT_ARCNET:
    212 		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
    213 		break;
    214 	case IFT_FDDI:
    215 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
    216 		break;
    217 	default:
    218 		ndi->maxmtu = ifp->if_mtu;
    219 		break;
    220 	}
    221 
    222 	/*
    223 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
    224 	 * undesirable situation.  We thus notify the operator of the change
    225 	 * explicitly.  The check for omaxmtu is necessary to restrict the
    226 	 * log to the case of changing the MTU, not initializing it.
    227 	 */
    228 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
    229 		log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
    230 		    " small for IPv6 which needs %lu\n",
    231 		    if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
    232 		    IPV6_MMTU);
    233 	}
    234 
    235 	if (ndi->maxmtu > in6_maxmtu)
    236 		in6_setmaxmtu(); /* check all interfaces just in case */
    237 }
    238 
    239 void
    240 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
    241 {
    242 
    243 	memset(ndopts, 0, sizeof(*ndopts));
    244 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
    245 	ndopts->nd_opts_last
    246 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
    247 
    248 	if (icmp6len == 0) {
    249 		ndopts->nd_opts_done = 1;
    250 		ndopts->nd_opts_search = NULL;
    251 	}
    252 }
    253 
    254 /*
    255  * Take one ND option.
    256  */
    257 struct nd_opt_hdr *
    258 nd6_option(union nd_opts *ndopts)
    259 {
    260 	struct nd_opt_hdr *nd_opt;
    261 	int olen;
    262 
    263 	KASSERT(ndopts != NULL);
    264 	KASSERT(ndopts->nd_opts_last != NULL);
    265 
    266 	if (ndopts->nd_opts_search == NULL)
    267 		return NULL;
    268 	if (ndopts->nd_opts_done)
    269 		return NULL;
    270 
    271 	nd_opt = ndopts->nd_opts_search;
    272 
    273 	/* make sure nd_opt_len is inside the buffer */
    274 	if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) {
    275 		memset(ndopts, 0, sizeof(*ndopts));
    276 		return NULL;
    277 	}
    278 
    279 	olen = nd_opt->nd_opt_len << 3;
    280 	if (olen == 0) {
    281 		/*
    282 		 * Message validation requires that all included
    283 		 * options have a length that is greater than zero.
    284 		 */
    285 		memset(ndopts, 0, sizeof(*ndopts));
    286 		return NULL;
    287 	}
    288 
    289 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen);
    290 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
    291 		/* option overruns the end of buffer, invalid */
    292 		memset(ndopts, 0, sizeof(*ndopts));
    293 		return NULL;
    294 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
    295 		/* reached the end of options chain */
    296 		ndopts->nd_opts_done = 1;
    297 		ndopts->nd_opts_search = NULL;
    298 	}
    299 	return nd_opt;
    300 }
    301 
    302 /*
    303  * Parse multiple ND options.
    304  * This function is much easier to use, for ND routines that do not need
    305  * multiple options of the same type.
    306  */
    307 int
    308 nd6_options(union nd_opts *ndopts)
    309 {
    310 	struct nd_opt_hdr *nd_opt;
    311 	int i = 0;
    312 
    313 	KASSERT(ndopts != NULL);
    314 	KASSERT(ndopts->nd_opts_last != NULL);
    315 
    316 	if (ndopts->nd_opts_search == NULL)
    317 		return 0;
    318 
    319 	while (1) {
    320 		nd_opt = nd6_option(ndopts);
    321 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
    322 			/*
    323 			 * Message validation requires that all included
    324 			 * options have a length that is greater than zero.
    325 			 */
    326 			ICMP6_STATINC(ICMP6_STAT_ND_BADOPT);
    327 			memset(ndopts, 0, sizeof(*ndopts));
    328 			return -1;
    329 		}
    330 
    331 		if (nd_opt == NULL)
    332 			goto skip1;
    333 
    334 		switch (nd_opt->nd_opt_type) {
    335 		case ND_OPT_SOURCE_LINKADDR:
    336 		case ND_OPT_TARGET_LINKADDR:
    337 		case ND_OPT_MTU:
    338 		case ND_OPT_REDIRECTED_HEADER:
    339 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
    340 				nd6log(LOG_INFO,
    341 				    "duplicated ND6 option found (type=%d)\n",
    342 				    nd_opt->nd_opt_type);
    343 				/* XXX bark? */
    344 			} else {
    345 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
    346 					= nd_opt;
    347 			}
    348 			break;
    349 		case ND_OPT_PREFIX_INFORMATION:
    350 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
    351 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
    352 					= nd_opt;
    353 			}
    354 			ndopts->nd_opts_pi_end =
    355 				(struct nd_opt_prefix_info *)nd_opt;
    356 			break;
    357 		default:
    358 			/*
    359 			 * Unknown options must be silently ignored,
    360 			 * to accommodate future extension to the protocol.
    361 			 */
    362 			nd6log(LOG_DEBUG,
    363 			    "nd6_options: unsupported option %d - "
    364 			    "option ignored\n", nd_opt->nd_opt_type);
    365 		}
    366 
    367 skip1:
    368 		i++;
    369 		if (i > nd6_maxndopt) {
    370 			ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT);
    371 			nd6log(LOG_INFO, "too many loop in nd opt\n");
    372 			break;
    373 		}
    374 
    375 		if (ndopts->nd_opts_done)
    376 			break;
    377 	}
    378 
    379 	return 0;
    380 }
    381 
    382 /*
    383  * ND6 timer routine to handle ND6 entries
    384  */
    385 void
    386 nd6_llinfo_settimer(struct llentry *ln, time_t xtick)
    387 {
    388 
    389 	CTASSERT(sizeof(time_t) > sizeof(int));
    390 	LLE_WLOCK_ASSERT(ln);
    391 
    392 	if (xtick < 0) {
    393 		ln->ln_expire = 0;
    394 		ln->ln_ntick = 0;
    395 		callout_halt(&ln->ln_timer_ch, &ln->lle_lock);
    396 	} else {
    397 		ln->ln_expire = time_uptime + xtick / hz;
    398 		LLE_ADDREF(ln);
    399 		if (xtick > INT_MAX) {
    400 			ln->ln_ntick = xtick - INT_MAX;
    401 			callout_reset(&ln->ln_timer_ch, INT_MAX,
    402 			    nd6_llinfo_timer, ln);
    403 		} else {
    404 			ln->ln_ntick = 0;
    405 			callout_reset(&ln->ln_timer_ch, xtick,
    406 			    nd6_llinfo_timer, ln);
    407 		}
    408 	}
    409 }
    410 
    411 /*
    412  * Gets source address of the first packet in hold queue
    413  * and stores it in @src.
    414  * Returns pointer to @src (if hold queue is not empty) or NULL.
    415  */
    416 static struct in6_addr *
    417 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
    418 {
    419 	struct ip6_hdr *hip6;
    420 
    421 	if (ln == NULL || ln->ln_hold == NULL)
    422 		return NULL;
    423 
    424 	/*
    425 	 * assuming every packet in ln_hold has the same IP header
    426 	 */
    427 	hip6 = mtod(ln->ln_hold, struct ip6_hdr *);
    428 	/* XXX pullup? */
    429 	if (sizeof(*hip6) < ln->ln_hold->m_len)
    430 		*src = hip6->ip6_src;
    431 	else
    432 		src = NULL;
    433 
    434 	return src;
    435 }
    436 
    437 static void
    438 nd6_llinfo_timer(void *arg)
    439 {
    440 	struct llentry *ln = arg;
    441 	struct ifnet *ifp;
    442 	struct nd_ifinfo *ndi = NULL;
    443 	bool send_ns = false;
    444 	const struct in6_addr *daddr6 = NULL;
    445 
    446 	mutex_enter(softnet_lock);
    447 	KERNEL_LOCK(1, NULL);
    448 
    449 	LLE_WLOCK(ln);
    450 	if (ln->ln_ntick > 0) {
    451 		nd6_llinfo_settimer(ln, ln->ln_ntick);
    452 		goto out;
    453 	}
    454 
    455 	if (callout_pending(&ln->la_timer)) {
    456 		/*
    457 		 * Here we are a bit odd here in the treatment of
    458 		 * active/pending. If the pending bit is set, it got
    459 		 * rescheduled before I ran. The active
    460 		 * bit we ignore, since if it was stopped
    461 		 * in ll_tablefree() and was currently running
    462 		 * it would have return 0 so the code would
    463 		 * not have deleted it since the callout could
    464 		 * not be stopped so we want to go through
    465 		 * with the delete here now. If the callout
    466 		 * was restarted, the pending bit will be back on and
    467 		 * we just want to bail since the callout_reset would
    468 		 * return 1 and our reference would have been removed
    469 		 * by nd6_llinfo_settimer above since canceled
    470 		 * would have been 1.
    471 		 */
    472 		goto out;
    473 	}
    474 
    475 	ifp = ln->lle_tbl->llt_ifp;
    476 
    477 	KASSERT(ifp != NULL);
    478 
    479 	ndi = ND_IFINFO(ifp);
    480 
    481 	switch (ln->ln_state) {
    482 	case ND6_LLINFO_INCOMPLETE:
    483 		if (ln->ln_asked < nd6_mmaxtries) {
    484 			ln->ln_asked++;
    485 			send_ns = true;
    486 		} else {
    487 			struct mbuf *m = ln->ln_hold;
    488 			if (m) {
    489 				struct mbuf *m0;
    490 
    491 				/*
    492 				 * assuming every packet in ln_hold has
    493 				 * the same IP header
    494 				 */
    495 				m0 = m->m_nextpkt;
    496 				m->m_nextpkt = NULL;
    497 				ln->ln_hold = m0;
    498 				clear_llinfo_pqueue(ln);
    499  			}
    500 			nd6_free(ln, 0);
    501 			ln = NULL;
    502 			if (m != NULL)
    503 				icmp6_error2(m, ICMP6_DST_UNREACH,
    504 				    ICMP6_DST_UNREACH_ADDR, 0, ifp);
    505 		}
    506 		break;
    507 	case ND6_LLINFO_REACHABLE:
    508 		if (!ND6_LLINFO_PERMANENT(ln)) {
    509 			ln->ln_state = ND6_LLINFO_STALE;
    510 			nd6_llinfo_settimer(ln, nd6_gctimer * hz);
    511 		}
    512 		break;
    513 
    514 	case ND6_LLINFO_PURGE:
    515 	case ND6_LLINFO_STALE:
    516 		/* Garbage Collection(RFC 2461 5.3) */
    517 		if (!ND6_LLINFO_PERMANENT(ln)) {
    518 			nd6_free(ln, 1);
    519 			ln = NULL;
    520 		}
    521 		break;
    522 
    523 	case ND6_LLINFO_DELAY:
    524 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
    525 			/* We need NUD */
    526 			ln->ln_asked = 1;
    527 			ln->ln_state = ND6_LLINFO_PROBE;
    528 			daddr6 = &ln->r_l3addr.addr6;
    529 			send_ns = true;
    530 		} else {
    531 			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
    532 			nd6_llinfo_settimer(ln, nd6_gctimer * hz);
    533 		}
    534 		break;
    535 	case ND6_LLINFO_PROBE:
    536 		if (ln->ln_asked < nd6_umaxtries) {
    537 			ln->ln_asked++;
    538 			daddr6 = &ln->r_l3addr.addr6;
    539 			send_ns = true;
    540 		} else {
    541 			nd6_free(ln, 0);
    542 			ln = NULL;
    543 		}
    544 		break;
    545 	}
    546 
    547 	if (send_ns) {
    548 		struct in6_addr src, *psrc;
    549 		const struct in6_addr *taddr6 = &ln->r_l3addr.addr6;
    550 
    551 		nd6_llinfo_settimer(ln, ndi->retrans * hz / 1000);
    552 		psrc = nd6_llinfo_get_holdsrc(ln, &src);
    553 		LLE_FREE_LOCKED(ln);
    554 		ln = NULL;
    555 		nd6_ns_output(ifp, daddr6, taddr6, psrc, 0);
    556 	}
    557 
    558 out:
    559 	if (ln != NULL)
    560 		LLE_FREE_LOCKED(ln);
    561 	KERNEL_UNLOCK_ONE(NULL);
    562 	mutex_exit(softnet_lock);
    563 }
    564 
    565 /*
    566  * ND6 timer routine to expire default route list and prefix list
    567  */
    568 static void
    569 nd6_timer_work(struct work *wk, void *arg)
    570 {
    571 	struct nd_defrouter *next_dr, *dr;
    572 	struct nd_prefix *next_pr, *pr;
    573 	struct in6_ifaddr *ia6, *nia6;
    574 	int s, bound;
    575 	struct psref psref;
    576 
    577 	callout_reset(&nd6_timer_ch, nd6_prune * hz,
    578 	    nd6_timer, NULL);
    579 
    580 	mutex_enter(softnet_lock);
    581 	KERNEL_LOCK(1, NULL);
    582 
    583 	/* expire default router list */
    584 
    585 	TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, next_dr) {
    586 		if (dr->expire && dr->expire < time_uptime) {
    587 			defrtrlist_del(dr, NULL);
    588 		}
    589 	}
    590 
    591 	/*
    592 	 * expire interface addresses.
    593 	 * in the past the loop was inside prefix expiry processing.
    594 	 * However, from a stricter speci-confrmance standpoint, we should
    595 	 * rather separate address lifetimes and prefix lifetimes.
    596 	 */
    597 	bound = curlwp_bind();
    598   addrloop:
    599 	s = pserialize_read_enter();
    600 	for (ia6 = IN6_ADDRLIST_READER_FIRST(); ia6; ia6 = nia6) {
    601 		nia6 = IN6_ADDRLIST_READER_NEXT(ia6);
    602 
    603 		ia6_acquire(ia6, &psref);
    604 		pserialize_read_exit(s);
    605 
    606 		/* check address lifetime */
    607 		if (IFA6_IS_INVALID(ia6)) {
    608 			int regen = 0;
    609 
    610 			/*
    611 			 * If the expiring address is temporary, try
    612 			 * regenerating a new one.  This would be useful when
    613 			 * we suspended a laptop PC, then turned it on after a
    614 			 * period that could invalidate all temporary
    615 			 * addresses.  Although we may have to restart the
    616 			 * loop (see below), it must be after purging the
    617 			 * address.  Otherwise, we'd see an infinite loop of
    618 			 * regeneration.
    619 			 */
    620 			if (ip6_use_tempaddr &&
    621 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
    622 				if (regen_tmpaddr(ia6) == 0)
    623 					regen = 1;
    624 			}
    625 
    626 			ia6_release(ia6, &psref);
    627  			in6_purgeaddr(&ia6->ia_ifa);
    628 			ia6 = NULL;
    629 
    630 			if (regen)
    631 				goto addrloop; /* XXX: see below */
    632 		} else if (IFA6_IS_DEPRECATED(ia6)) {
    633 			int oldflags = ia6->ia6_flags;
    634 
    635 			if ((oldflags & IN6_IFF_DEPRECATED) == 0) {
    636 				ia6->ia6_flags |= IN6_IFF_DEPRECATED;
    637 				rt_newaddrmsg(RTM_NEWADDR,
    638 				    (struct ifaddr *)ia6, 0, NULL);
    639 			}
    640 
    641 			/*
    642 			 * If a temporary address has just become deprecated,
    643 			 * regenerate a new one if possible.
    644 			 */
    645 			if (ip6_use_tempaddr &&
    646 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
    647 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
    648 
    649 				if (regen_tmpaddr(ia6) == 0) {
    650 					/*
    651 					 * A new temporary address is
    652 					 * generated.
    653 					 * XXX: this means the address chain
    654 					 * has changed while we are still in
    655 					 * the loop.  Although the change
    656 					 * would not cause disaster (because
    657 					 * it's not a deletion, but an
    658 					 * addition,) we'd rather restart the
    659 					 * loop just for safety.  Or does this
    660 					 * significantly reduce performance??
    661 					 */
    662 					ia6_release(ia6, &psref);
    663 					goto addrloop;
    664 				}
    665 			}
    666 		} else {
    667 			/*
    668 			 * A new RA might have made a deprecated address
    669 			 * preferred.
    670 			 */
    671 			if (ia6->ia6_flags & IN6_IFF_DEPRECATED) {
    672 				ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
    673 				rt_newaddrmsg(RTM_NEWADDR,
    674 				    (struct ifaddr *)ia6, 0, NULL);
    675 			}
    676 		}
    677 		s = pserialize_read_enter();
    678 		ia6_release(ia6, &psref);
    679 	}
    680 	pserialize_read_exit(s);
    681 	curlwp_bindx(bound);
    682 
    683 	/* expire prefix list */
    684 	LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, next_pr) {
    685 		/*
    686 		 * check prefix lifetime.
    687 		 * since pltime is just for autoconf, pltime processing for
    688 		 * prefix is not necessary.
    689 		 */
    690 		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
    691 		    time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) {
    692 
    693 			/*
    694 			 * address expiration and prefix expiration are
    695 			 * separate.  NEVER perform in6_purgeaddr here.
    696 			 */
    697 
    698 			prelist_remove(pr);
    699 		}
    700 	}
    701 
    702 	KERNEL_UNLOCK_ONE(NULL);
    703 	mutex_exit(softnet_lock);
    704 }
    705 
    706 static void
    707 nd6_timer(void *ignored_arg)
    708 {
    709 
    710 	workqueue_enqueue(nd6_timer_wq, &nd6_timer_wk, NULL);
    711 }
    712 
    713 /* ia6: deprecated/invalidated temporary address */
    714 static int
    715 regen_tmpaddr(const struct in6_ifaddr *ia6)
    716 {
    717 	struct ifaddr *ifa;
    718 	struct ifnet *ifp;
    719 	struct in6_ifaddr *public_ifa6 = NULL;
    720 	int s;
    721 
    722 	ifp = ia6->ia_ifa.ifa_ifp;
    723 	s = pserialize_read_enter();
    724 	IFADDR_READER_FOREACH(ifa, ifp) {
    725 		struct in6_ifaddr *it6;
    726 
    727 		if (ifa->ifa_addr->sa_family != AF_INET6)
    728 			continue;
    729 
    730 		it6 = (struct in6_ifaddr *)ifa;
    731 
    732 		/* ignore no autoconf addresses. */
    733 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
    734 			continue;
    735 
    736 		/* ignore autoconf addresses with different prefixes. */
    737 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
    738 			continue;
    739 
    740 		/*
    741 		 * Now we are looking at an autoconf address with the same
    742 		 * prefix as ours.  If the address is temporary and is still
    743 		 * preferred, do not create another one.  It would be rare, but
    744 		 * could happen, for example, when we resume a laptop PC after
    745 		 * a long period.
    746 		 */
    747 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
    748 		    !IFA6_IS_DEPRECATED(it6)) {
    749 			public_ifa6 = NULL;
    750 			break;
    751 		}
    752 
    753 		/*
    754 		 * This is a public autoconf address that has the same prefix
    755 		 * as ours.  If it is preferred, keep it.  We can't break the
    756 		 * loop here, because there may be a still-preferred temporary
    757 		 * address with the prefix.
    758 		 */
    759 		if (!IFA6_IS_DEPRECATED(it6))
    760 			public_ifa6 = it6;
    761 	}
    762 
    763 	if (public_ifa6 != NULL) {
    764 		int e;
    765 		struct psref psref;
    766 
    767 		ia6_acquire(public_ifa6, &psref);
    768 		pserialize_read_exit(s);
    769 		/*
    770 		 * Random factor is introduced in the preferred lifetime, so
    771 		 * we do not need additional delay (3rd arg to in6_tmpifadd).
    772 		 */
    773 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
    774 			ia6_release(public_ifa6, &psref);
    775 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
    776 			    " tmp addr, errno=%d\n", e);
    777 			return -1;
    778 		}
    779 		ia6_release(public_ifa6, &psref);
    780 		return 0;
    781 	}
    782 		pserialize_read_exit(s);
    783 
    784 	return -1;
    785 }
    786 
    787 bool
    788 nd6_accepts_rtadv(const struct nd_ifinfo *ndi)
    789 {
    790 	switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) {
    791 	case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV:
    792 		return true;
    793 	case ND6_IFF_ACCEPT_RTADV:
    794 		return ip6_accept_rtadv != 0;
    795 	case ND6_IFF_OVERRIDE_RTADV:
    796 	case 0:
    797 	default:
    798 		return false;
    799 	}
    800 }
    801 
    802 /*
    803  * Nuke neighbor cache/prefix/default router management table, right before
    804  * ifp goes away.
    805  */
    806 void
    807 nd6_purge(struct ifnet *ifp, struct in6_ifextra *ext)
    808 {
    809 	struct nd_defrouter *dr, *ndr;
    810 	struct nd_prefix *pr, *npr;
    811 
    812 	/*
    813 	 * During detach, the ND info might be already removed, but
    814 	 * then is explitly passed as argument.
    815 	 * Otherwise get it from ifp->if_afdata.
    816 	 */
    817 	if (ext == NULL)
    818 		ext = ifp->if_afdata[AF_INET6];
    819 	if (ext == NULL)
    820 		return;
    821 
    822 	/*
    823 	 * Nuke default router list entries toward ifp.
    824 	 * We defer removal of default router list entries that is installed
    825 	 * in the routing table, in order to keep additional side effects as
    826 	 * small as possible.
    827 	 */
    828 	TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
    829 		if (dr->installed)
    830 			continue;
    831 
    832 		if (dr->ifp == ifp) {
    833 			KASSERT(ext != NULL);
    834 			defrtrlist_del(dr, ext);
    835 		}
    836 	}
    837 
    838 	TAILQ_FOREACH_SAFE(dr, &nd_defrouter, dr_entry, ndr) {
    839 		if (!dr->installed)
    840 			continue;
    841 
    842 		if (dr->ifp == ifp) {
    843 			KASSERT(ext != NULL);
    844 			defrtrlist_del(dr, ext);
    845 		}
    846 	}
    847 
    848 	/* Nuke prefix list entries toward ifp */
    849 	LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, npr) {
    850 		if (pr->ndpr_ifp == ifp) {
    851 			/*
    852 			 * Because if_detach() does *not* release prefixes
    853 			 * while purging addresses the reference count will
    854 			 * still be above zero. We therefore reset it to
    855 			 * make sure that the prefix really gets purged.
    856 			 */
    857 			pr->ndpr_refcnt = 0;
    858 			/*
    859 			 * Previously, pr->ndpr_addr is removed as well,
    860 			 * but I strongly believe we don't have to do it.
    861 			 * nd6_purge() is only called from in6_ifdetach(),
    862 			 * which removes all the associated interface addresses
    863 			 * by itself.
    864 			 * (jinmei (at) kame.net 20010129)
    865 			 */
    866 			prelist_remove(pr);
    867 		}
    868 	}
    869 
    870 	/* cancel default outgoing interface setting */
    871 	if (nd6_defifindex == ifp->if_index)
    872 		nd6_setdefaultiface(0);
    873 
    874 	/* XXX: too restrictive? */
    875 	if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) {
    876 		struct nd_ifinfo *ndi = ND_IFINFO(ifp);
    877 		if (ndi && nd6_accepts_rtadv(ndi)) {
    878 			/* refresh default router list */
    879 			defrouter_select();
    880 		}
    881 	}
    882 
    883 	/*
    884 	 * We may not need to nuke the neighbor cache entries here
    885 	 * because the neighbor cache is kept in if_afdata[AF_INET6].
    886 	 * nd6_purge() is invoked by in6_ifdetach() which is called
    887 	 * from if_detach() where everything gets purged. However
    888 	 * in6_ifdetach is directly called from vlan(4), so we still
    889 	 * need to purge entries here.
    890 	 */
    891 	if (ext->lltable != NULL)
    892 		lltable_purge_entries(ext->lltable);
    893 }
    894 
    895 struct llentry *
    896 nd6_lookup(const struct in6_addr *addr6, const struct ifnet *ifp, bool wlock)
    897 {
    898 	struct sockaddr_in6 sin6;
    899 	struct llentry *ln;
    900 
    901 	sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
    902 
    903 	IF_AFDATA_RLOCK(ifp);
    904 	ln = lla_lookup(LLTABLE6(ifp), wlock ? LLE_EXCLUSIVE : 0,
    905 	    sin6tosa(&sin6));
    906 	IF_AFDATA_RUNLOCK(ifp);
    907 
    908 	return ln;
    909 }
    910 
    911 struct llentry *
    912 nd6_create(const struct in6_addr *addr6, const struct ifnet *ifp)
    913 {
    914 	struct sockaddr_in6 sin6;
    915 	struct llentry *ln;
    916 
    917 	sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
    918 
    919 	IF_AFDATA_WLOCK(ifp);
    920 	ln = lla_create(LLTABLE6(ifp), LLE_EXCLUSIVE,
    921 	    sin6tosa(&sin6));
    922 	IF_AFDATA_WUNLOCK(ifp);
    923 
    924 	if (ln != NULL)
    925 		ln->ln_state = ND6_LLINFO_NOSTATE;
    926 
    927 	return ln;
    928 }
    929 
    930 /*
    931  * Test whether a given IPv6 address is a neighbor or not, ignoring
    932  * the actual neighbor cache.  The neighbor cache is ignored in order
    933  * to not reenter the routing code from within itself.
    934  */
    935 static int
    936 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
    937 {
    938 	struct nd_prefix *pr;
    939 	struct ifaddr *dstaddr;
    940 	int s;
    941 
    942 	/*
    943 	 * A link-local address is always a neighbor.
    944 	 * XXX: a link does not necessarily specify a single interface.
    945 	 */
    946 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
    947 		struct sockaddr_in6 sin6_copy;
    948 		u_int32_t zone;
    949 
    950 		/*
    951 		 * We need sin6_copy since sa6_recoverscope() may modify the
    952 		 * content (XXX).
    953 		 */
    954 		sin6_copy = *addr;
    955 		if (sa6_recoverscope(&sin6_copy))
    956 			return 0; /* XXX: should be impossible */
    957 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
    958 			return 0;
    959 		if (sin6_copy.sin6_scope_id == zone)
    960 			return 1;
    961 		else
    962 			return 0;
    963 	}
    964 
    965 	/*
    966 	 * If the address matches one of our addresses,
    967 	 * it should be a neighbor.
    968 	 * If the address matches one of our on-link prefixes, it should be a
    969 	 * neighbor.
    970 	 */
    971 	LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
    972 		if (pr->ndpr_ifp != ifp)
    973 			continue;
    974 
    975 		if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) {
    976 			struct rtentry *rt;
    977 
    978 			rt = rtalloc1(sin6tosa(&pr->ndpr_prefix), 0);
    979 			if (rt == NULL)
    980 				continue;
    981 			/*
    982 			 * This is the case where multiple interfaces
    983 			 * have the same prefix, but only one is installed
    984 			 * into the routing table and that prefix entry
    985 			 * is not the one being examined here. In the case
    986 			 * where RADIX_MPATH is enabled, multiple route
    987 			 * entries (of the same rt_key value) will be
    988 			 * installed because the interface addresses all
    989 			 * differ.
    990 			 */
    991 			if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
    992 			    &satocsin6(rt_getkey(rt))->sin6_addr)) {
    993 				continue;
    994 			}
    995 		}
    996 
    997 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
    998 		    &addr->sin6_addr, &pr->ndpr_mask))
    999 			return 1;
   1000 	}
   1001 
   1002 	/*
   1003 	 * If the address is assigned on the node of the other side of
   1004 	 * a p2p interface, the address should be a neighbor.
   1005 	 */
   1006 	s = pserialize_read_enter();
   1007 	dstaddr = ifa_ifwithdstaddr(sin6tocsa(addr));
   1008 	if (dstaddr != NULL) {
   1009 		if (dstaddr->ifa_ifp == ifp) {
   1010 			pserialize_read_exit(s);
   1011 			return 1;
   1012 		}
   1013 	}
   1014 	pserialize_read_exit(s);
   1015 
   1016 	/*
   1017 	 * If the default router list is empty, all addresses are regarded
   1018 	 * as on-link, and thus, as a neighbor.
   1019 	 */
   1020 	if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
   1021 	    TAILQ_EMPTY(&nd_defrouter) &&
   1022 	    nd6_defifindex == ifp->if_index) {
   1023 		return 1;
   1024 	}
   1025 
   1026 	return 0;
   1027 }
   1028 
   1029 /*
   1030  * Detect if a given IPv6 address identifies a neighbor on a given link.
   1031  * XXX: should take care of the destination of a p2p link?
   1032  */
   1033 int
   1034 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
   1035 {
   1036 	struct nd_prefix *pr;
   1037 	struct llentry *ln;
   1038 	struct rtentry *rt;
   1039 
   1040 	/*
   1041 	 * A link-local address is always a neighbor.
   1042 	 * XXX: a link does not necessarily specify a single interface.
   1043 	 */
   1044 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
   1045 		struct sockaddr_in6 sin6_copy;
   1046 		u_int32_t zone;
   1047 
   1048 		/*
   1049 		 * We need sin6_copy since sa6_recoverscope() may modify the
   1050 		 * content (XXX).
   1051 		 */
   1052 		sin6_copy = *addr;
   1053 		if (sa6_recoverscope(&sin6_copy))
   1054 			return 0; /* XXX: should be impossible */
   1055 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
   1056 			return 0;
   1057 		if (sin6_copy.sin6_scope_id == zone)
   1058 			return 1;
   1059 		else
   1060 			return 0;
   1061 	}
   1062 
   1063 	/*
   1064 	 * If the address matches one of our on-link prefixes, it should be a
   1065 	 * neighbor.
   1066 	 */
   1067 	LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
   1068 		if (pr->ndpr_ifp != ifp)
   1069 			continue;
   1070 
   1071 		if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
   1072 			continue;
   1073 
   1074 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
   1075 		    &addr->sin6_addr, &pr->ndpr_mask))
   1076 			return 1;
   1077 	}
   1078 
   1079 	/*
   1080 	 * If the default router list is empty, all addresses are regarded
   1081 	 * as on-link, and thus, as a neighbor.
   1082 	 * XXX: we restrict the condition to hosts, because routers usually do
   1083 	 * not have the "default router list".
   1084 	 */
   1085 	if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
   1086 	    nd6_defifindex == ifp->if_index) {
   1087 		return 1;
   1088 	}
   1089 
   1090 	IF_AFDATA_UNLOCK_ASSERT(ifp);
   1091 	if (nd6_is_new_addr_neighbor(addr, ifp))
   1092 		return 1;
   1093 
   1094 	/*
   1095 	 * Even if the address matches none of our addresses, it might be
   1096 	 * in the neighbor cache or a connected route.
   1097 	 */
   1098 	ln = nd6_lookup(&addr->sin6_addr, ifp, false);
   1099 	if (ln != NULL) {
   1100 		LLE_RUNLOCK(ln);
   1101 		return 1;
   1102 	}
   1103 
   1104 	rt = rtalloc1(sin6tocsa(addr), 0);
   1105 	if (rt == NULL)
   1106 		return 0;
   1107 
   1108 	if ((rt->rt_flags & RTF_CONNECTED) && (rt->rt_ifp == ifp
   1109 #if NBRIDGE > 0
   1110 	    || rt->rt_ifp->if_bridge == ifp->if_bridge
   1111 #endif
   1112 #if NCARP > 0
   1113 	    || (ifp->if_type == IFT_CARP && rt->rt_ifp == ifp->if_carpdev) ||
   1114 	    (rt->rt_ifp->if_type == IFT_CARP && rt->rt_ifp->if_carpdev == ifp)||
   1115 	    (ifp->if_type == IFT_CARP && rt->rt_ifp->if_type == IFT_CARP &&
   1116 	    rt->rt_ifp->if_carpdev == ifp->if_carpdev)
   1117 #endif
   1118 	    )) {
   1119 		rtfree(rt);
   1120 		return 1;
   1121 	}
   1122 	rtfree(rt);
   1123 
   1124 	return 0;
   1125 }
   1126 
   1127 /*
   1128  * Free an nd6 llinfo entry.
   1129  * Since the function would cause significant changes in the kernel, DO NOT
   1130  * make it global, unless you have a strong reason for the change, and are sure
   1131  * that the change is safe.
   1132  */
   1133 static void
   1134 nd6_free(struct llentry *ln, int gc)
   1135 {
   1136 	struct nd_defrouter *dr;
   1137 	struct ifnet *ifp;
   1138 	struct in6_addr *in6;
   1139 
   1140 	KASSERT(ln != NULL);
   1141 	LLE_WLOCK_ASSERT(ln);
   1142 
   1143 	ifp = ln->lle_tbl->llt_ifp;
   1144 	in6 = &ln->r_l3addr.addr6;
   1145 	/*
   1146 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
   1147 	 * even though it is not harmful, it was not really necessary.
   1148 	 */
   1149 
   1150 	/* cancel timer */
   1151 	nd6_llinfo_settimer(ln, -1);
   1152 
   1153 	if (!ip6_forwarding) {
   1154 		int s;
   1155 		s = splsoftnet();
   1156 		dr = defrouter_lookup(in6, ifp);
   1157 
   1158 		if (dr != NULL && dr->expire &&
   1159 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
   1160 			/*
   1161 			 * If the reason for the deletion is just garbage
   1162 			 * collection, and the neighbor is an active default
   1163 			 * router, do not delete it.  Instead, reset the GC
   1164 			 * timer using the router's lifetime.
   1165 			 * Simply deleting the entry would affect default
   1166 			 * router selection, which is not necessarily a good
   1167 			 * thing, especially when we're using router preference
   1168 			 * values.
   1169 			 * XXX: the check for ln_state would be redundant,
   1170 			 *      but we intentionally keep it just in case.
   1171 			 */
   1172 			if (dr->expire > time_uptime)
   1173 				nd6_llinfo_settimer(ln,
   1174 				    (dr->expire - time_uptime) * hz);
   1175 			else
   1176 				nd6_llinfo_settimer(ln, nd6_gctimer * hz);
   1177 			splx(s);
   1178 			LLE_WUNLOCK(ln);
   1179 			return;
   1180 		}
   1181 
   1182 		if (ln->ln_router || dr) {
   1183 			/*
   1184 			 * We need to unlock to avoid a LOR with rt6_flush()
   1185 			 * with the rnh and for the calls to
   1186 			 * pfxlist_onlink_check() and defrouter_select() in the
   1187 			 * block further down for calls into nd6_lookup().
   1188 			 * We still hold a ref.
   1189 			 */
   1190 			LLE_WUNLOCK(ln);
   1191 
   1192 			/*
   1193 			 * rt6_flush must be called whether or not the neighbor
   1194 			 * is in the Default Router List.
   1195 			 * See a corresponding comment in nd6_na_input().
   1196 			 */
   1197 			rt6_flush(in6, ifp);
   1198 		}
   1199 
   1200 		if (dr) {
   1201 			/*
   1202 			 * Unreachablity of a router might affect the default
   1203 			 * router selection and on-link detection of advertised
   1204 			 * prefixes.
   1205 			 */
   1206 
   1207 			/*
   1208 			 * Temporarily fake the state to choose a new default
   1209 			 * router and to perform on-link determination of
   1210 			 * prefixes correctly.
   1211 			 * Below the state will be set correctly,
   1212 			 * or the entry itself will be deleted.
   1213 			 */
   1214 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
   1215 
   1216 			/*
   1217 			 * Since defrouter_select() does not affect the
   1218 			 * on-link determination and MIP6 needs the check
   1219 			 * before the default router selection, we perform
   1220 			 * the check now.
   1221 			 */
   1222 			pfxlist_onlink_check();
   1223 
   1224 			/*
   1225 			 * refresh default router list
   1226 			 */
   1227 			defrouter_select();
   1228 		}
   1229 
   1230 #ifdef __FreeBSD__
   1231 		/*
   1232 		 * If this entry was added by an on-link redirect, remove the
   1233 		 * corresponding host route.
   1234 		 */
   1235 		if (ln->la_flags & LLE_REDIRECT)
   1236 			nd6_free_redirect(ln);
   1237 #endif
   1238 
   1239 		if (ln->ln_router || dr)
   1240 			LLE_WLOCK(ln);
   1241 
   1242 		splx(s);
   1243 	}
   1244 
   1245 	/*
   1246 	 * Save to unlock. We still hold an extra reference and will not
   1247 	 * free(9) in llentry_free() if someone else holds one as well.
   1248 	 */
   1249 	LLE_WUNLOCK(ln);
   1250 	IF_AFDATA_LOCK(ifp);
   1251 	LLE_WLOCK(ln);
   1252 
   1253 	/* Guard against race with other llentry_free(). */
   1254 	if (ln->la_flags & LLE_LINKED) {
   1255 		LLE_REMREF(ln);
   1256 		llentry_free(ln);
   1257 	} else
   1258 		LLE_FREE_LOCKED(ln);
   1259 
   1260 	IF_AFDATA_UNLOCK(ifp);
   1261 }
   1262 
   1263 /*
   1264  * Upper-layer reachability hint for Neighbor Unreachability Detection.
   1265  *
   1266  * XXX cost-effective methods?
   1267  */
   1268 void
   1269 nd6_nud_hint(struct rtentry *rt)
   1270 {
   1271 	struct llentry *ln;
   1272 	struct ifnet *ifp;
   1273 
   1274 	if (rt == NULL)
   1275 		return;
   1276 
   1277 	ifp = rt->rt_ifp;
   1278 	ln = nd6_lookup(&(satocsin6(rt_getkey(rt)))->sin6_addr, ifp, true);
   1279 	if (ln == NULL)
   1280 		return;
   1281 
   1282 	if (ln->ln_state < ND6_LLINFO_REACHABLE)
   1283 		goto done;
   1284 
   1285 	/*
   1286 	 * if we get upper-layer reachability confirmation many times,
   1287 	 * it is possible we have false information.
   1288 	 */
   1289 	ln->ln_byhint++;
   1290 	if (ln->ln_byhint > nd6_maxnudhint)
   1291 		goto done;
   1292 
   1293 	ln->ln_state = ND6_LLINFO_REACHABLE;
   1294 	if (!ND6_LLINFO_PERMANENT(ln))
   1295 		nd6_llinfo_settimer(ln, ND_IFINFO(rt->rt_ifp)->reachable * hz);
   1296 
   1297 done:
   1298 	LLE_WUNLOCK(ln);
   1299 
   1300 	return;
   1301 }
   1302 
   1303 static int
   1304 nd6_purge_entry(struct lltable *llt, struct llentry *ln, void *farg)
   1305 {
   1306 	int *n = farg;
   1307 
   1308 	if (*n <= 0)
   1309 		return 0;
   1310 
   1311 	if (ND6_LLINFO_PERMANENT(ln))
   1312 		return 0;
   1313 
   1314 	LLE_WLOCK(ln);
   1315 	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
   1316 		ln->ln_state = ND6_LLINFO_STALE;
   1317 	else
   1318 		ln->ln_state = ND6_LLINFO_PURGE;
   1319 	nd6_llinfo_settimer(ln, 0);
   1320 	LLE_WUNLOCK(ln);
   1321 
   1322 	(*n)--;
   1323 	return 0;
   1324 }
   1325 
   1326 static void
   1327 nd6_gc_neighbors(struct lltable *llt)
   1328 {
   1329 	int max_gc_entries = 10;
   1330 
   1331 	if (ip6_neighborgcthresh >= 0 &&
   1332 	    lltable_get_entry_count(llt) >= ip6_neighborgcthresh) {
   1333 		/*
   1334 		 * XXX entries that are "less recently used" should be
   1335 		 * freed first.
   1336 		 */
   1337 		lltable_foreach_lle(llt, nd6_purge_entry, &max_gc_entries);
   1338 	}
   1339 }
   1340 
   1341 void
   1342 nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
   1343 {
   1344 	struct sockaddr *gate = rt->rt_gateway;
   1345 	struct ifnet *ifp = rt->rt_ifp;
   1346 	uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen;
   1347 	struct ifaddr *ifa;
   1348 
   1349 	RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1350 
   1351 	if (req == RTM_LLINFO_UPD) {
   1352 		int rc;
   1353 		struct in6_addr *in6;
   1354 		struct in6_addr in6_all;
   1355 		int anycast;
   1356 
   1357 		if ((ifa = info->rti_ifa) == NULL)
   1358 			return;
   1359 
   1360 		in6 = &ifatoia6(ifa)->ia_addr.sin6_addr;
   1361 		anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST;
   1362 
   1363 		in6_all = in6addr_linklocal_allnodes;
   1364 		if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) {
   1365 			log(LOG_ERR, "%s: failed to set scope %s "
   1366 			    "(errno=%d)\n", __func__, if_name(ifp), rc);
   1367 			return;
   1368 		}
   1369 
   1370 		/* XXX don't set Override for proxy addresses */
   1371 		nd6_na_output(ifa->ifa_ifp, &in6_all, in6,
   1372 		    (anycast ? 0 : ND_NA_FLAG_OVERRIDE)
   1373 #if 0
   1374 		    | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0)
   1375 #endif
   1376 		    , 1, NULL);
   1377 		return;
   1378 	}
   1379 
   1380 	if ((rt->rt_flags & RTF_GATEWAY) != 0)
   1381 		return;
   1382 
   1383 	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
   1384 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1385 		/*
   1386 		 * This is probably an interface direct route for a link
   1387 		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
   1388 		 * We do not need special treatment below for such a route.
   1389 		 * Moreover, the RTF_LLINFO flag which would be set below
   1390 		 * would annoy the ndp(8) command.
   1391 		 */
   1392 		return;
   1393 	}
   1394 
   1395 	switch (req) {
   1396 	case RTM_ADD: {
   1397 		int s;
   1398 
   1399 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1400 		/*
   1401 		 * There is no backward compatibility :)
   1402 		 *
   1403 		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
   1404 		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
   1405 		 *	   rt->rt_flags |= RTF_CLONING;
   1406 		 */
   1407 		/* XXX should move to route.c? */
   1408 		if (rt->rt_flags & (RTF_CONNECTED | RTF_LOCAL)) {
   1409 			union {
   1410 				struct sockaddr sa;
   1411 				struct sockaddr_dl sdl;
   1412 				struct sockaddr_storage ss;
   1413 			} u;
   1414 			/*
   1415 			 * Case 1: This route should come from a route to
   1416 			 * interface (RTF_CLONING case) or the route should be
   1417 			 * treated as on-link but is currently not
   1418 			 * (RTF_LLINFO && ln == NULL case).
   1419 			 */
   1420 			if (sockaddr_dl_init(&u.sdl, sizeof(u.ss),
   1421 			    ifp->if_index, ifp->if_type,
   1422 			    NULL, namelen, NULL, addrlen) == NULL) {
   1423 				printf("%s.%d: sockaddr_dl_init(, %zu, ) "
   1424 				    "failed on %s\n", __func__, __LINE__,
   1425 				    sizeof(u.ss), if_name(ifp));
   1426 			}
   1427 			rt_setgate(rt, &u.sa);
   1428 			gate = rt->rt_gateway;
   1429 			RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1430 			if (gate == NULL) {
   1431 				log(LOG_ERR,
   1432 				    "%s: rt_setgate failed on %s\n", __func__,
   1433 				    if_name(ifp));
   1434 				break;
   1435 			}
   1436 
   1437 			RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1438 			if ((rt->rt_flags & RTF_CONNECTED) != 0)
   1439 				break;
   1440 		}
   1441 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1442 		/*
   1443 		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
   1444 		 * We don't do that here since llinfo is not ready yet.
   1445 		 *
   1446 		 * There are also couple of other things to be discussed:
   1447 		 * - unsolicited NA code needs improvement beforehand
   1448 		 * - RFC2461 says we MAY send multicast unsolicited NA
   1449 		 *   (7.2.6 paragraph 4), however, it also says that we
   1450 		 *   SHOULD provide a mechanism to prevent multicast NA storm.
   1451 		 *   we don't have anything like it right now.
   1452 		 *   note that the mechanism needs a mutual agreement
   1453 		 *   between proxies, which means that we need to implement
   1454 		 *   a new protocol, or a new kludge.
   1455 		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
   1456 		 *   we need to check ip6forwarding before sending it.
   1457 		 *   (or should we allow proxy ND configuration only for
   1458 		 *   routers?  there's no mention about proxy ND from hosts)
   1459 		 */
   1460 #if 0
   1461 		/* XXX it does not work */
   1462 		if (rt->rt_flags & RTF_ANNOUNCE)
   1463 			nd6_na_output(ifp,
   1464 			      &satocsin6(rt_getkey(rt))->sin6_addr,
   1465 			      &satocsin6(rt_getkey(rt))->sin6_addr,
   1466 			      ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
   1467 			      1, NULL);
   1468 #endif
   1469 
   1470 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
   1471 			RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1472 			/*
   1473 			 * Address resolution isn't necessary for a point to
   1474 			 * point link, so we can skip this test for a p2p link.
   1475 			 */
   1476 			if (gate->sa_family != AF_LINK ||
   1477 			    gate->sa_len <
   1478 			    sockaddr_dl_measure(namelen, addrlen)) {
   1479 				log(LOG_DEBUG,
   1480 				    "nd6_rtrequest: bad gateway value: %s\n",
   1481 				    if_name(ifp));
   1482 				break;
   1483 			}
   1484 			satosdl(gate)->sdl_type = ifp->if_type;
   1485 			satosdl(gate)->sdl_index = ifp->if_index;
   1486 			RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1487 		}
   1488 		RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
   1489 
   1490 		/*
   1491 		 * When called from rt_ifa_addlocal, we cannot depend on that
   1492 		 * the address (rt_getkey(rt)) exits in the address list of the
   1493 		 * interface. So check RTF_LOCAL instead.
   1494 		 */
   1495 		if (rt->rt_flags & RTF_LOCAL) {
   1496 			if (nd6_useloopback)
   1497 				rt->rt_ifp = lo0ifp;	/* XXX */
   1498 			break;
   1499 		}
   1500 
   1501 		/*
   1502 		 * check if rt_getkey(rt) is an address assigned
   1503 		 * to the interface.
   1504 		 */
   1505 		s = pserialize_read_enter();
   1506 		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp,
   1507 		    &satocsin6(rt_getkey(rt))->sin6_addr);
   1508 		if (ifa != NULL) {
   1509 			if (nd6_useloopback) {
   1510 				rt->rt_ifp = lo0ifp;	/* XXX */
   1511 				/*
   1512 				 * Make sure rt_ifa be equal to the ifaddr
   1513 				 * corresponding to the address.
   1514 				 * We need this because when we refer
   1515 				 * rt_ifa->ia6_flags in ip6_input, we assume
   1516 				 * that the rt_ifa points to the address instead
   1517 				 * of the loopback address.
   1518 				 */
   1519 				if (ifa != rt->rt_ifa)
   1520 					rt_replace_ifa(rt, ifa);
   1521 			}
   1522 		} else if (rt->rt_flags & RTF_ANNOUNCE) {
   1523 			/* join solicited node multicast for proxy ND */
   1524 			if (ifp->if_flags & IFF_MULTICAST) {
   1525 				struct in6_addr llsol;
   1526 				int error;
   1527 
   1528 				llsol = satocsin6(rt_getkey(rt))->sin6_addr;
   1529 				llsol.s6_addr32[0] = htonl(0xff020000);
   1530 				llsol.s6_addr32[1] = 0;
   1531 				llsol.s6_addr32[2] = htonl(1);
   1532 				llsol.s6_addr8[12] = 0xff;
   1533 				if (in6_setscope(&llsol, ifp, NULL))
   1534 					goto out;
   1535 				if (!in6_addmulti(&llsol, ifp, &error, 0)) {
   1536 					nd6log(LOG_ERR, "%s: failed to join "
   1537 					    "%s (errno=%d)\n", if_name(ifp),
   1538 					    ip6_sprintf(&llsol), error);
   1539 				}
   1540 			}
   1541 		}
   1542 	out:
   1543 		pserialize_read_exit(s);
   1544 		/*
   1545 		 * If we have too many cache entries, initiate immediate
   1546 		 * purging for some entries.
   1547 		 */
   1548 		if (rt->rt_ifp != NULL)
   1549 			nd6_gc_neighbors(LLTABLE6(rt->rt_ifp));
   1550 		break;
   1551 	    }
   1552 
   1553 	case RTM_DELETE:
   1554 		/* leave from solicited node multicast for proxy ND */
   1555 		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
   1556 		    (ifp->if_flags & IFF_MULTICAST) != 0) {
   1557 			struct in6_addr llsol;
   1558 			struct in6_multi *in6m;
   1559 
   1560 			llsol = satocsin6(rt_getkey(rt))->sin6_addr;
   1561 			llsol.s6_addr32[0] = htonl(0xff020000);
   1562 			llsol.s6_addr32[1] = 0;
   1563 			llsol.s6_addr32[2] = htonl(1);
   1564 			llsol.s6_addr8[12] = 0xff;
   1565 			if (in6_setscope(&llsol, ifp, NULL) == 0) {
   1566 				IN6_LOOKUP_MULTI(llsol, ifp, in6m);
   1567 				if (in6m)
   1568 					in6_delmulti(in6m);
   1569 			}
   1570 		}
   1571 		break;
   1572 	}
   1573 }
   1574 
   1575 int
   1576 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp)
   1577 {
   1578 	struct in6_drlist *drl = (struct in6_drlist *)data;
   1579 	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
   1580 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
   1581 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
   1582 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
   1583 	struct nd_defrouter *dr;
   1584 	struct nd_prefix *pr;
   1585 	int i = 0, error = 0;
   1586 	int s;
   1587 
   1588 	switch (cmd) {
   1589 	case SIOCGDRLST_IN6:
   1590 		/*
   1591 		 * obsolete API, use sysctl under net.inet6.icmp6
   1592 		 */
   1593 		memset(drl, 0, sizeof(*drl));
   1594 		s = splsoftnet();
   1595 		TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
   1596 			if (i >= DRLSTSIZ)
   1597 				break;
   1598 			drl->defrouter[i].rtaddr = dr->rtaddr;
   1599 			in6_clearscope(&drl->defrouter[i].rtaddr);
   1600 
   1601 			drl->defrouter[i].flags = dr->flags;
   1602 			drl->defrouter[i].rtlifetime = dr->rtlifetime;
   1603 			drl->defrouter[i].expire = dr->expire ?
   1604 			    time_mono_to_wall(dr->expire) : 0;
   1605 			drl->defrouter[i].if_index = dr->ifp->if_index;
   1606 			i++;
   1607 		}
   1608 		splx(s);
   1609 		break;
   1610 	case SIOCGPRLST_IN6:
   1611 		/*
   1612 		 * obsolete API, use sysctl under net.inet6.icmp6
   1613 		 *
   1614 		 * XXX the structure in6_prlist was changed in backward-
   1615 		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
   1616 		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
   1617 		 */
   1618 		/*
   1619 		 * XXX meaning of fields, especialy "raflags", is very
   1620 		 * differnet between RA prefix list and RR/static prefix list.
   1621 		 * how about separating ioctls into two?
   1622 		 */
   1623 		memset(oprl, 0, sizeof(*oprl));
   1624 		s = splsoftnet();
   1625 		LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
   1626 			struct nd_pfxrouter *pfr;
   1627 			int j;
   1628 
   1629 			if (i >= PRLSTSIZ)
   1630 				break;
   1631 			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
   1632 			oprl->prefix[i].raflags = pr->ndpr_raf;
   1633 			oprl->prefix[i].prefixlen = pr->ndpr_plen;
   1634 			oprl->prefix[i].vltime = pr->ndpr_vltime;
   1635 			oprl->prefix[i].pltime = pr->ndpr_pltime;
   1636 			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
   1637 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
   1638 				oprl->prefix[i].expire = 0;
   1639 			else {
   1640 				time_t maxexpire;
   1641 
   1642 				/* XXX: we assume time_t is signed. */
   1643 				maxexpire = (-1) &
   1644 				    ~((time_t)1 <<
   1645 				    ((sizeof(maxexpire) * 8) - 1));
   1646 				if (pr->ndpr_vltime <
   1647 				    maxexpire - pr->ndpr_lastupdate) {
   1648 					time_t expire;
   1649 					expire = pr->ndpr_lastupdate +
   1650 					    pr->ndpr_vltime;
   1651 					oprl->prefix[i].expire = expire ?
   1652 					    time_mono_to_wall(expire) : 0;
   1653 				} else
   1654 					oprl->prefix[i].expire = maxexpire;
   1655 			}
   1656 
   1657 			j = 0;
   1658 			LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
   1659 				if (j < DRLSTSIZ) {
   1660 #define RTRADDR oprl->prefix[i].advrtr[j]
   1661 					RTRADDR = pfr->router->rtaddr;
   1662 					in6_clearscope(&RTRADDR);
   1663 #undef RTRADDR
   1664 				}
   1665 				j++;
   1666 			}
   1667 			oprl->prefix[i].advrtrs = j;
   1668 			oprl->prefix[i].origin = PR_ORIG_RA;
   1669 
   1670 			i++;
   1671 		}
   1672 		splx(s);
   1673 
   1674 		break;
   1675 	case OSIOCGIFINFO_IN6:
   1676 #define ND	ndi->ndi
   1677 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
   1678 		memset(&ND, 0, sizeof(ND));
   1679 		ND.linkmtu = IN6_LINKMTU(ifp);
   1680 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
   1681 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
   1682 		ND.reachable = ND_IFINFO(ifp)->reachable;
   1683 		ND.retrans = ND_IFINFO(ifp)->retrans;
   1684 		ND.flags = ND_IFINFO(ifp)->flags;
   1685 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
   1686 		ND.chlim = ND_IFINFO(ifp)->chlim;
   1687 		break;
   1688 	case SIOCGIFINFO_IN6:
   1689 		ND = *ND_IFINFO(ifp);
   1690 		break;
   1691 	case SIOCSIFINFO_IN6:
   1692 		/*
   1693 		 * used to change host variables from userland.
   1694 		 * intented for a use on router to reflect RA configurations.
   1695 		 */
   1696 		/* 0 means 'unspecified' */
   1697 		if (ND.linkmtu != 0) {
   1698 			if (ND.linkmtu < IPV6_MMTU ||
   1699 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
   1700 				error = EINVAL;
   1701 				break;
   1702 			}
   1703 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
   1704 		}
   1705 
   1706 		if (ND.basereachable != 0) {
   1707 			int obasereachable = ND_IFINFO(ifp)->basereachable;
   1708 
   1709 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
   1710 			if (ND.basereachable != obasereachable)
   1711 				ND_IFINFO(ifp)->reachable =
   1712 				    ND_COMPUTE_RTIME(ND.basereachable);
   1713 		}
   1714 		if (ND.retrans != 0)
   1715 			ND_IFINFO(ifp)->retrans = ND.retrans;
   1716 		if (ND.chlim != 0)
   1717 			ND_IFINFO(ifp)->chlim = ND.chlim;
   1718 		/* FALLTHROUGH */
   1719 	case SIOCSIFINFO_FLAGS:
   1720 	{
   1721 		struct ifaddr *ifa;
   1722 		struct in6_ifaddr *ia;
   1723 
   1724 		if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
   1725 		    !(ND.flags & ND6_IFF_IFDISABLED))
   1726 		{
   1727 			/*
   1728 			 * If the interface is marked as ND6_IFF_IFDISABLED and
   1729 			 * has a link-local address with IN6_IFF_DUPLICATED,
   1730 			 * do not clear ND6_IFF_IFDISABLED.
   1731 			 * See RFC 4862, section 5.4.5.
   1732 			 */
   1733 			int duplicated_linklocal = 0;
   1734 
   1735 			s = pserialize_read_enter();
   1736 			IFADDR_READER_FOREACH(ifa, ifp) {
   1737 				if (ifa->ifa_addr->sa_family != AF_INET6)
   1738 					continue;
   1739 				ia = (struct in6_ifaddr *)ifa;
   1740 				if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
   1741 				    IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
   1742 				{
   1743 					duplicated_linklocal = 1;
   1744 					break;
   1745 				}
   1746 			}
   1747 			pserialize_read_exit(s);
   1748 
   1749 			if (duplicated_linklocal) {
   1750 				ND.flags |= ND6_IFF_IFDISABLED;
   1751 				log(LOG_ERR, "Cannot enable an interface"
   1752 				    " with a link-local address marked"
   1753 				    " duplicate.\n");
   1754 			} else {
   1755 				ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
   1756 				if (ifp->if_flags & IFF_UP)
   1757 					in6_if_up(ifp);
   1758 			}
   1759 		} else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
   1760 		    (ND.flags & ND6_IFF_IFDISABLED)) {
   1761 			int bound = curlwp_bind();
   1762 			/* Mark all IPv6 addresses as tentative. */
   1763 
   1764 			ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
   1765 			s = pserialize_read_enter();
   1766 			IFADDR_READER_FOREACH(ifa, ifp) {
   1767 				struct psref psref;
   1768 				if (ifa->ifa_addr->sa_family != AF_INET6)
   1769 					continue;
   1770 				ifa_acquire(ifa, &psref);
   1771 				pserialize_read_exit(s);
   1772 
   1773 				nd6_dad_stop(ifa);
   1774 
   1775 				ia = (struct in6_ifaddr *)ifa;
   1776 				ia->ia6_flags |= IN6_IFF_TENTATIVE;
   1777 
   1778 				s = pserialize_read_enter();
   1779 				ifa_release(ifa, &psref);
   1780 			}
   1781 			pserialize_read_exit(s);
   1782 			curlwp_bindx(bound);
   1783 		}
   1784 
   1785 		if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
   1786 			if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
   1787 				/* auto_linklocal 0->1 transition */
   1788 
   1789 				ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
   1790 				in6_ifattach(ifp, NULL);
   1791 			} else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
   1792 			    ifp->if_flags & IFF_UP)
   1793 			{
   1794 				/*
   1795 				 * When the IF already has
   1796 				 * ND6_IFF_AUTO_LINKLOCAL, no link-local
   1797 				 * address is assigned, and IFF_UP, try to
   1798 				 * assign one.
   1799 				 */
   1800 				int haslinklocal = 0;
   1801 
   1802 				s = pserialize_read_enter();
   1803 				IFADDR_READER_FOREACH(ifa, ifp) {
   1804 					if (ifa->ifa_addr->sa_family !=AF_INET6)
   1805 						continue;
   1806 					ia = (struct in6_ifaddr *)ifa;
   1807 					if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))){
   1808 						haslinklocal = 1;
   1809 						break;
   1810 					}
   1811 				}
   1812 				pserialize_read_exit(s);
   1813 				if (!haslinklocal)
   1814 					in6_ifattach(ifp, NULL);
   1815 			}
   1816 		}
   1817 	}
   1818 		ND_IFINFO(ifp)->flags = ND.flags;
   1819 		break;
   1820 #undef ND
   1821 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
   1822 		/* sync kernel routing table with the default router list */
   1823 		defrouter_reset();
   1824 		defrouter_select();
   1825 		break;
   1826 	case SIOCSPFXFLUSH_IN6:
   1827 	{
   1828 		/* flush all the prefix advertised by routers */
   1829 		struct nd_prefix *pfx, *next;
   1830 
   1831 		s = splsoftnet();
   1832 		LIST_FOREACH_SAFE(pfx, &nd_prefix, ndpr_entry, next) {
   1833 			struct in6_ifaddr *ia, *ia_next;
   1834 			int _s;
   1835 
   1836 			if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
   1837 				continue; /* XXX */
   1838 
   1839 			/* do we really have to remove addresses as well? */
   1840 		restart:
   1841 			_s = pserialize_read_enter();
   1842 			for (ia = IN6_ADDRLIST_READER_FIRST(); ia;
   1843 			     ia = ia_next) {
   1844 				/* ia might be removed.  keep the next ptr. */
   1845 				ia_next = IN6_ADDRLIST_READER_NEXT(ia);
   1846 
   1847 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
   1848 					continue;
   1849 
   1850 				if (ia->ia6_ndpr == pfx) {
   1851 					pserialize_read_exit(_s);
   1852 					/* XXX NOMPSAFE? */
   1853 					in6_purgeaddr(&ia->ia_ifa);
   1854 					goto restart;
   1855 				}
   1856 			}
   1857 			pserialize_read_exit(_s);
   1858 			prelist_remove(pfx);
   1859 		}
   1860 		splx(s);
   1861 		break;
   1862 	}
   1863 	case SIOCSRTRFLUSH_IN6:
   1864 	{
   1865 		/* flush all the default routers */
   1866 		struct nd_defrouter *drtr, *next;
   1867 
   1868 		s = splsoftnet();
   1869 		defrouter_reset();
   1870 		TAILQ_FOREACH_SAFE(drtr, &nd_defrouter, dr_entry, next) {
   1871 			defrtrlist_del(drtr, NULL);
   1872 		}
   1873 		defrouter_select();
   1874 		splx(s);
   1875 		break;
   1876 	}
   1877 	case SIOCGNBRINFO_IN6:
   1878 	{
   1879 		struct llentry *ln;
   1880 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
   1881 
   1882 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
   1883 			return error;
   1884 
   1885 		ln = nd6_lookup(&nb_addr, ifp, false);
   1886 		if (ln == NULL) {
   1887 			error = EINVAL;
   1888 			break;
   1889 		}
   1890 		nbi->state = ln->ln_state;
   1891 		nbi->asked = ln->ln_asked;
   1892 		nbi->isrouter = ln->ln_router;
   1893 		nbi->expire = ln->ln_expire ?
   1894 		    time_mono_to_wall(ln->ln_expire) : 0;
   1895 		LLE_RUNLOCK(ln);
   1896 
   1897 		break;
   1898 	}
   1899 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
   1900 		ndif->ifindex = nd6_defifindex;
   1901 		break;
   1902 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
   1903 		return nd6_setdefaultiface(ndif->ifindex);
   1904 	}
   1905 	return error;
   1906 }
   1907 
   1908 void
   1909 nd6_llinfo_release_pkts(struct llentry *ln, struct ifnet *ifp)
   1910 {
   1911 	struct mbuf *m_hold, *m_hold_next;
   1912 	struct sockaddr_in6 sin6;
   1913 
   1914 	LLE_WLOCK_ASSERT(ln);
   1915 
   1916 	sockaddr_in6_init(&sin6, &ln->r_l3addr.addr6, 0, 0, 0);
   1917 
   1918 	m_hold = ln->la_hold, ln->la_hold = NULL, ln->la_numheld = 0;
   1919 
   1920 	LLE_WUNLOCK(ln);
   1921 	for (; m_hold != NULL; m_hold = m_hold_next) {
   1922 		m_hold_next = m_hold->m_nextpkt;
   1923 		m_hold->m_nextpkt = NULL;
   1924 
   1925 		/*
   1926 		 * we assume ifp is not a p2p here, so
   1927 		 * just set the 2nd argument as the
   1928 		 * 1st one.
   1929 		 */
   1930 		nd6_output(ifp, ifp, m_hold, &sin6, NULL);
   1931 	}
   1932 	LLE_WLOCK(ln);
   1933 }
   1934 
   1935 /*
   1936  * Create neighbor cache entry and cache link-layer address,
   1937  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
   1938  */
   1939 void
   1940 nd6_cache_lladdr(
   1941     struct ifnet *ifp,
   1942     struct in6_addr *from,
   1943     char *lladdr,
   1944     int lladdrlen,
   1945     int type,	/* ICMP6 type */
   1946     int code	/* type dependent information */
   1947 )
   1948 {
   1949 	struct nd_ifinfo *ndi = ND_IFINFO(ifp);
   1950 	struct llentry *ln = NULL;
   1951 	int is_newentry;
   1952 	int do_update;
   1953 	int olladdr;
   1954 	int llchange;
   1955 	int newstate = 0;
   1956 	uint16_t router = 0;
   1957 
   1958 	KASSERT(ifp != NULL);
   1959 	KASSERT(from != NULL);
   1960 
   1961 	/* nothing must be updated for unspecified address */
   1962 	if (IN6_IS_ADDR_UNSPECIFIED(from))
   1963 		return;
   1964 
   1965 	/*
   1966 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
   1967 	 * the caller.
   1968 	 *
   1969 	 * XXX If the link does not have link-layer adderss, what should
   1970 	 * we do? (ifp->if_addrlen == 0)
   1971 	 * Spec says nothing in sections for RA, RS and NA.  There's small
   1972 	 * description on it in NS section (RFC 2461 7.2.3).
   1973 	 */
   1974 
   1975 	ln = nd6_lookup(from, ifp, true);
   1976 	if (ln == NULL) {
   1977 #if 0
   1978 		/* nothing must be done if there's no lladdr */
   1979 		if (!lladdr || !lladdrlen)
   1980 			return NULL;
   1981 #endif
   1982 
   1983 		ln = nd6_create(from, ifp);
   1984 		is_newentry = 1;
   1985 	} else {
   1986 		/* do nothing if static ndp is set */
   1987 		if (ln->la_flags & LLE_STATIC) {
   1988 			LLE_WUNLOCK(ln);
   1989 			return;
   1990 		}
   1991 		is_newentry = 0;
   1992 	}
   1993 
   1994 	if (ln == NULL)
   1995 		return;
   1996 
   1997 	olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
   1998 	if (olladdr && lladdr) {
   1999 		llchange = memcmp(lladdr, &ln->ll_addr, ifp->if_addrlen);
   2000 	} else
   2001 		llchange = 0;
   2002 
   2003 	/*
   2004 	 * newentry olladdr  lladdr  llchange	(*=record)
   2005 	 *	0	n	n	--	(1)
   2006 	 *	0	y	n	--	(2)
   2007 	 *	0	n	y	--	(3) * STALE
   2008 	 *	0	y	y	n	(4) *
   2009 	 *	0	y	y	y	(5) * STALE
   2010 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
   2011 	 *	1	--	y	--	(7) * STALE
   2012 	 */
   2013 
   2014 	if (lladdr) {		/* (3-5) and (7) */
   2015 		/*
   2016 		 * Record source link-layer address
   2017 		 * XXX is it dependent to ifp->if_type?
   2018 		 */
   2019 		memcpy(&ln->ll_addr, lladdr, ifp->if_addrlen);
   2020 		ln->la_flags |= LLE_VALID;
   2021 	}
   2022 
   2023 	if (!is_newentry) {
   2024 		if ((!olladdr && lladdr) ||		/* (3) */
   2025 		    (olladdr && lladdr && llchange)) {	/* (5) */
   2026 			do_update = 1;
   2027 			newstate = ND6_LLINFO_STALE;
   2028 		} else					/* (1-2,4) */
   2029 			do_update = 0;
   2030 	} else {
   2031 		do_update = 1;
   2032 		if (lladdr == NULL)			/* (6) */
   2033 			newstate = ND6_LLINFO_NOSTATE;
   2034 		else					/* (7) */
   2035 			newstate = ND6_LLINFO_STALE;
   2036 	}
   2037 
   2038 	if (do_update) {
   2039 		/*
   2040 		 * Update the state of the neighbor cache.
   2041 		 */
   2042 		ln->ln_state = newstate;
   2043 
   2044 		if (ln->ln_state == ND6_LLINFO_STALE) {
   2045 			/*
   2046 			 * XXX: since nd6_output() below will cause
   2047 			 * state tansition to DELAY and reset the timer,
   2048 			 * we must set the timer now, although it is actually
   2049 			 * meaningless.
   2050 			 */
   2051 			nd6_llinfo_settimer(ln, nd6_gctimer * hz);
   2052 
   2053 			nd6_llinfo_release_pkts(ln, ifp);
   2054 		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
   2055 			/* probe right away */
   2056 			nd6_llinfo_settimer((void *)ln, 0);
   2057 		}
   2058 	}
   2059 
   2060 	/*
   2061 	 * ICMP6 type dependent behavior.
   2062 	 *
   2063 	 * NS: clear IsRouter if new entry
   2064 	 * RS: clear IsRouter
   2065 	 * RA: set IsRouter if there's lladdr
   2066 	 * redir: clear IsRouter if new entry
   2067 	 *
   2068 	 * RA case, (1):
   2069 	 * The spec says that we must set IsRouter in the following cases:
   2070 	 * - If lladdr exist, set IsRouter.  This means (1-5).
   2071 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
   2072 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
   2073 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
   2074 	 * neighbor cache, this is similar to (6).
   2075 	 * This case is rare but we figured that we MUST NOT set IsRouter.
   2076 	 *
   2077 	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
   2078 	 *							D R
   2079 	 *	0	n	n	--	(1)	c   ?     s
   2080 	 *	0	y	n	--	(2)	c   s     s
   2081 	 *	0	n	y	--	(3)	c   s     s
   2082 	 *	0	y	y	n	(4)	c   s     s
   2083 	 *	0	y	y	y	(5)	c   s     s
   2084 	 *	1	--	n	--	(6) c	c 	c s
   2085 	 *	1	--	y	--	(7) c	c   s	c s
   2086 	 *
   2087 	 *					(c=clear s=set)
   2088 	 */
   2089 	switch (type & 0xff) {
   2090 	case ND_NEIGHBOR_SOLICIT:
   2091 		/*
   2092 		 * New entry must have is_router flag cleared.
   2093 		 */
   2094 		if (is_newentry)	/* (6-7) */
   2095 			ln->ln_router = 0;
   2096 		break;
   2097 	case ND_REDIRECT:
   2098 		/*
   2099 		 * If the icmp is a redirect to a better router, always set the
   2100 		 * is_router flag.  Otherwise, if the entry is newly created,
   2101 		 * clear the flag.  [RFC 2461, sec 8.3]
   2102 		 */
   2103 		if (code == ND_REDIRECT_ROUTER)
   2104 			ln->ln_router = 1;
   2105 		else if (is_newentry) /* (6-7) */
   2106 			ln->ln_router = 0;
   2107 		break;
   2108 	case ND_ROUTER_SOLICIT:
   2109 		/*
   2110 		 * is_router flag must always be cleared.
   2111 		 */
   2112 		ln->ln_router = 0;
   2113 		break;
   2114 	case ND_ROUTER_ADVERT:
   2115 		/*
   2116 		 * Mark an entry with lladdr as a router.
   2117 		 */
   2118 		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
   2119 		    (is_newentry && lladdr)) {			/* (7) */
   2120 			ln->ln_router = 1;
   2121 		}
   2122 		break;
   2123 	}
   2124 
   2125 #if 0
   2126 	/* XXX should we send rtmsg as it used to be? */
   2127 	if (do_update)
   2128 		rt_newmsg(RTM_CHANGE, rt);  /* tell user process */
   2129 #endif
   2130 
   2131 	if (ln != NULL) {
   2132 		router = ln->ln_router;
   2133 		LLE_WUNLOCK(ln);
   2134 	}
   2135 
   2136 	/*
   2137 	 * If we have too many cache entries, initiate immediate
   2138 	 * purging for some entries.
   2139 	 */
   2140 	if (is_newentry)
   2141 		nd6_gc_neighbors(LLTABLE6(ifp));
   2142 
   2143 	/*
   2144 	 * When the link-layer address of a router changes, select the
   2145 	 * best router again.  In particular, when the neighbor entry is newly
   2146 	 * created, it might affect the selection policy.
   2147 	 * Question: can we restrict the first condition to the "is_newentry"
   2148 	 * case?
   2149 	 * XXX: when we hear an RA from a new router with the link-layer
   2150 	 * address option, defrouter_select() is called twice, since
   2151 	 * defrtrlist_update called the function as well.  However, I believe
   2152 	 * we can compromise the overhead, since it only happens the first
   2153 	 * time.
   2154 	 * XXX: although defrouter_select() should not have a bad effect
   2155 	 * for those are not autoconfigured hosts, we explicitly avoid such
   2156 	 * cases for safety.
   2157 	 */
   2158 	if (do_update && router && !ip6_forwarding &&
   2159 	    nd6_accepts_rtadv(ndi))
   2160 		defrouter_select();
   2161 }
   2162 
   2163 static void
   2164 nd6_slowtimo(void *ignored_arg)
   2165 {
   2166 	struct nd_ifinfo *nd6if;
   2167 	struct ifnet *ifp;
   2168 	int s;
   2169 
   2170 	mutex_enter(softnet_lock);
   2171 	KERNEL_LOCK(1, NULL);
   2172 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
   2173 	    nd6_slowtimo, NULL);
   2174 
   2175 	s = pserialize_read_enter();
   2176 	IFNET_READER_FOREACH(ifp) {
   2177 		nd6if = ND_IFINFO(ifp);
   2178 		if (nd6if->basereachable && /* already initialized */
   2179 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
   2180 			/*
   2181 			 * Since reachable time rarely changes by router
   2182 			 * advertisements, we SHOULD insure that a new random
   2183 			 * value gets recomputed at least once every few hours.
   2184 			 * (RFC 2461, 6.3.4)
   2185 			 */
   2186 			nd6if->recalctm = nd6_recalc_reachtm_interval;
   2187 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
   2188 		}
   2189 	}
   2190 	pserialize_read_exit(s);
   2191 
   2192 	KERNEL_UNLOCK_ONE(NULL);
   2193 	mutex_exit(softnet_lock);
   2194 }
   2195 
   2196 int
   2197 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
   2198     const struct sockaddr_in6 *dst, struct rtentry *rt)
   2199 {
   2200 #define senderr(e) { error = (e); goto bad;}
   2201 	struct llentry *ln = NULL;
   2202 	int error = 0;
   2203 	bool created = false;
   2204 
   2205 	if (rt != NULL) {
   2206 		error = rt_check_reject_route(rt, ifp);
   2207 		if (error != 0) {
   2208 			m_freem(m);
   2209 			return error;
   2210 		}
   2211 	}
   2212 
   2213 	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
   2214 		goto sendpkt;
   2215 
   2216 	if (nd6_need_cache(ifp) == 0)
   2217 		goto sendpkt;
   2218 
   2219 	if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) != 0) {
   2220 		struct sockaddr_in6 *gw6 = satosin6(rt->rt_gateway);
   2221 		int s;
   2222 
   2223 		/* XXX remain the check to keep the original behavior. */
   2224 		/*
   2225 		 * We skip link-layer address resolution and NUD
   2226 		 * if the gateway is not a neighbor from ND point
   2227 		 * of view, regardless of the value of nd_ifinfo.flags.
   2228 		 * The second condition is a bit tricky; we skip
   2229 		 * if the gateway is our own address, which is
   2230 		 * sometimes used to install a route to a p2p link.
   2231 		 */
   2232 		s = pserialize_read_enter();
   2233 		if (!nd6_is_addr_neighbor(gw6, ifp) ||
   2234 		    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
   2235 			/*
   2236 			 * We allow this kind of tricky route only
   2237 			 * when the outgoing interface is p2p.
   2238 			 * XXX: we may need a more generic rule here.
   2239 			 */
   2240 			if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
   2241 				senderr(EHOSTUNREACH);
   2242 
   2243 			pserialize_read_exit(s);
   2244 			goto sendpkt;
   2245 		}
   2246 		pserialize_read_exit(s);
   2247 	}
   2248 
   2249 	/*
   2250 	 * Address resolution or Neighbor Unreachability Detection
   2251 	 * for the next hop.
   2252 	 * At this point, the destination of the packet must be a unicast
   2253 	 * or an anycast address(i.e. not a multicast).
   2254 	 */
   2255 
   2256 	/* Look up the neighbor cache for the nexthop */
   2257 	ln = nd6_lookup(&dst->sin6_addr, ifp, true);
   2258 	if ((ln == NULL) && nd6_is_addr_neighbor(dst, ifp))  {
   2259 		/*
   2260 		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
   2261 		 * the condition below is not very efficient.  But we believe
   2262 		 * it is tolerable, because this should be a rare case.
   2263 		 */
   2264 		ln = nd6_create(&dst->sin6_addr, ifp);
   2265 		if (ln != NULL)
   2266 			created = true;
   2267 	}
   2268 
   2269 	if (ln == NULL) {
   2270 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
   2271 		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
   2272 			log(LOG_DEBUG,
   2273 			    "nd6_output: can't allocate llinfo for %s "
   2274 			    "(ln=%p, rt=%p)\n",
   2275 			    ip6_sprintf(&dst->sin6_addr), ln, rt);
   2276 			senderr(EIO);	/* XXX: good error? */
   2277 		}
   2278 		goto sendpkt;	/* send anyway */
   2279 	}
   2280 
   2281 	LLE_WLOCK_ASSERT(ln);
   2282 
   2283 	/* We don't have to do link-layer address resolution on a p2p link. */
   2284 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
   2285 	    ln->ln_state < ND6_LLINFO_REACHABLE) {
   2286 		ln->ln_state = ND6_LLINFO_STALE;
   2287 		nd6_llinfo_settimer(ln, nd6_gctimer * hz);
   2288 	}
   2289 
   2290 	/*
   2291 	 * The first time we send a packet to a neighbor whose entry is
   2292 	 * STALE, we have to change the state to DELAY and a sets a timer to
   2293 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
   2294 	 * neighbor unreachability detection on expiration.
   2295 	 * (RFC 2461 7.3.3)
   2296 	 */
   2297 	if (ln->ln_state == ND6_LLINFO_STALE) {
   2298 		ln->ln_asked = 0;
   2299 		ln->ln_state = ND6_LLINFO_DELAY;
   2300 		nd6_llinfo_settimer(ln, nd6_delay * hz);
   2301 	}
   2302 
   2303 	/*
   2304 	 * If the neighbor cache entry has a state other than INCOMPLETE
   2305 	 * (i.e. its link-layer address is already resolved), just
   2306 	 * send the packet.
   2307 	 */
   2308 	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
   2309 		goto sendpkt;
   2310 
   2311 	/*
   2312 	 * There is a neighbor cache entry, but no ethernet address
   2313 	 * response yet.  Append this latest packet to the end of the
   2314 	 * packet queue in the mbuf, unless the number of the packet
   2315 	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
   2316 	 * the oldest packet in the queue will be removed.
   2317 	 */
   2318 	if (ln->ln_state == ND6_LLINFO_NOSTATE)
   2319 		ln->ln_state = ND6_LLINFO_INCOMPLETE;
   2320 	if (ln->ln_hold) {
   2321 		struct mbuf *m_hold;
   2322 		int i;
   2323 
   2324 		i = 0;
   2325 		for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
   2326 			i++;
   2327 			if (m_hold->m_nextpkt == NULL) {
   2328 				m_hold->m_nextpkt = m;
   2329 				break;
   2330 			}
   2331 		}
   2332 		while (i >= nd6_maxqueuelen) {
   2333 			m_hold = ln->ln_hold;
   2334 			ln->ln_hold = ln->ln_hold->m_nextpkt;
   2335 			m_freem(m_hold);
   2336 			i--;
   2337 		}
   2338 	} else {
   2339 		ln->ln_hold = m;
   2340 	}
   2341 
   2342 	/*
   2343 	 * If there has been no NS for the neighbor after entering the
   2344 	 * INCOMPLETE state, send the first solicitation.
   2345 	 */
   2346 	if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
   2347 		struct in6_addr src, *psrc;
   2348 
   2349 		ln->ln_asked++;
   2350 		nd6_llinfo_settimer(ln, ND_IFINFO(ifp)->retrans * hz / 1000);
   2351 		psrc = nd6_llinfo_get_holdsrc(ln, &src);
   2352 		LLE_WUNLOCK(ln);
   2353 		ln = NULL;
   2354 		nd6_ns_output(ifp, NULL, &dst->sin6_addr, psrc, 0);
   2355 	} else {
   2356 		/* We did the lookup so we need to do the unlock here. */
   2357 		LLE_WUNLOCK(ln);
   2358 	}
   2359 
   2360 	error = 0;
   2361 	goto exit;
   2362 
   2363   sendpkt:
   2364 	/* discard the packet if IPv6 operation is disabled on the interface */
   2365 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
   2366 		error = ENETDOWN; /* better error? */
   2367 		goto bad;
   2368 	}
   2369 
   2370 	if (ln != NULL)
   2371 		LLE_WUNLOCK(ln);
   2372 
   2373 	if ((ifp->if_flags & IFF_LOOPBACK) != 0)
   2374 		error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt);
   2375 	else
   2376 		error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt);
   2377 	goto exit;
   2378 
   2379   bad:
   2380 	if (m != NULL)
   2381 		m_freem(m);
   2382   exit:
   2383 	if (created)
   2384 		nd6_gc_neighbors(LLTABLE6(ifp));
   2385 
   2386 	return error;
   2387 #undef senderr
   2388 }
   2389 
   2390 int
   2391 nd6_need_cache(struct ifnet *ifp)
   2392 {
   2393 	/*
   2394 	 * XXX: we currently do not make neighbor cache on any interface
   2395 	 * other than ARCnet, Ethernet, FDDI and GIF.
   2396 	 *
   2397 	 * RFC2893 says:
   2398 	 * - unidirectional tunnels needs no ND
   2399 	 */
   2400 	switch (ifp->if_type) {
   2401 	case IFT_ARCNET:
   2402 	case IFT_ETHER:
   2403 	case IFT_FDDI:
   2404 	case IFT_IEEE1394:
   2405 	case IFT_CARP:
   2406 	case IFT_GIF:		/* XXX need more cases? */
   2407 	case IFT_PPP:
   2408 	case IFT_TUNNEL:
   2409 		return 1;
   2410 	default:
   2411 		return 0;
   2412 	}
   2413 }
   2414 
   2415 /*
   2416  * Add pernament ND6 link-layer record for given
   2417  * interface address.
   2418  *
   2419  * Very similar to IPv4 arp_ifinit(), but:
   2420  * 1) IPv6 DAD is performed in different place
   2421  * 2) It is called by IPv6 protocol stack in contrast to
   2422  * arp_ifinit() which is typically called in SIOCSIFADDR
   2423  * driver ioctl handler.
   2424  *
   2425  */
   2426 int
   2427 nd6_add_ifa_lle(struct in6_ifaddr *ia)
   2428 {
   2429 	struct ifnet *ifp;
   2430 	struct llentry *ln;
   2431 
   2432 	ifp = ia->ia_ifa.ifa_ifp;
   2433 	if (nd6_need_cache(ifp) == 0)
   2434 		return 0;
   2435 	ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
   2436 	ia->ia_ifa.ifa_flags = RTF_CONNECTED;
   2437 
   2438 	IF_AFDATA_WLOCK(ifp);
   2439 	ln = lla_create(LLTABLE6(ifp), LLE_IFADDR | LLE_EXCLUSIVE,
   2440 	    sin6tosa(&ia->ia_addr));
   2441 	IF_AFDATA_WUNLOCK(ifp);
   2442 	if (ln == NULL)
   2443 		return ENOBUFS;
   2444 
   2445 	ln->la_expire = 0;  /* for IPv6 this means permanent */
   2446 	ln->ln_state = ND6_LLINFO_REACHABLE;
   2447 
   2448 	LLE_WUNLOCK(ln);
   2449 	return 0;
   2450 }
   2451 
   2452 /*
   2453  * Removes ALL lle records for interface address prefix.
   2454  * XXXME: That's probably not we really want to do, we need
   2455  * to remove address record only and keep other records
   2456  * until we determine if given prefix is really going
   2457  * to be removed.
   2458  */
   2459 void
   2460 nd6_rem_ifa_lle(struct in6_ifaddr *ia)
   2461 {
   2462 	struct sockaddr_in6 mask, addr;
   2463 
   2464 	memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
   2465 	memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
   2466 	lltable_prefix_free(AF_INET6, sin6tosa(&addr), sin6tosa(&mask),
   2467 	    LLE_STATIC);
   2468 }
   2469 
   2470 int
   2471 nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt,
   2472     struct mbuf *m, const struct sockaddr *dst, uint8_t *lldst,
   2473     size_t dstsize)
   2474 {
   2475 	struct llentry *ln;
   2476 
   2477 	if (m->m_flags & M_MCAST) {
   2478 		switch (ifp->if_type) {
   2479 		case IFT_ETHER:
   2480 		case IFT_FDDI:
   2481 			ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
   2482 			    lldst);
   2483 			return 1;
   2484 		case IFT_IEEE1394:
   2485 			memcpy(lldst, ifp->if_broadcastaddr,
   2486 			    MIN(dstsize, ifp->if_addrlen));
   2487 			return 1;
   2488 		case IFT_ARCNET:
   2489 			*lldst = 0;
   2490 			return 1;
   2491 		default:
   2492 			m_freem(m);
   2493 			return 0;
   2494 		}
   2495 	}
   2496 
   2497 	/*
   2498 	 * the entry should have been created in nd6_store_lladdr
   2499 	 */
   2500 	ln = nd6_lookup(&satocsin6(dst)->sin6_addr, ifp, false);
   2501 	if ((ln == NULL) || !(ln->la_flags & LLE_VALID)) {
   2502 		if (ln != NULL)
   2503 			LLE_RUNLOCK(ln);
   2504 		/* this could happen, if we could not allocate memory */
   2505 		m_freem(m);
   2506 		return 0;
   2507 	}
   2508 
   2509 	/* XXX llentry should have addrlen? */
   2510 #if 0
   2511 	sdl = satocsdl(rt->rt_gateway);
   2512 	if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) {
   2513 		char sbuf[INET6_ADDRSTRLEN];
   2514 		char dbuf[LINK_ADDRSTRLEN];
   2515 		/* this should be impossible, but we bark here for debugging */
   2516 		printf("%s: sdl_alen == %" PRIu8 ", if=%s, dst=%s, sdl=%s\n",
   2517 		    __func__, sdl->sdl_alen, if_name(ifp),
   2518 		    IN6_PRINT(sbuf, &satocsin6(dst)->sin6_addr),
   2519 		    DL_PRINT(dbuf, &sdl->sdl_addr));
   2520 		m_freem(m);
   2521 		return 0;
   2522 	}
   2523 #endif
   2524 
   2525 	memcpy(lldst, &ln->ll_addr, MIN(dstsize, ifp->if_addrlen));
   2526 
   2527 	LLE_RUNLOCK(ln);
   2528 
   2529 	return 1;
   2530 }
   2531 
   2532 static void
   2533 clear_llinfo_pqueue(struct llentry *ln)
   2534 {
   2535 	struct mbuf *m_hold, *m_hold_next;
   2536 
   2537 	for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
   2538 		m_hold_next = m_hold->m_nextpkt;
   2539 		m_hold->m_nextpkt = NULL;
   2540 		m_freem(m_hold);
   2541 	}
   2542 
   2543 	ln->ln_hold = NULL;
   2544 	return;
   2545 }
   2546 
   2547 int
   2548 nd6_sysctl(
   2549     int name,
   2550     void *oldp,	/* syscall arg, need copyout */
   2551     size_t *oldlenp,
   2552     void *newp,	/* syscall arg, need copyin */
   2553     size_t newlen
   2554 )
   2555 {
   2556 	void *p;
   2557 	size_t ol;
   2558 	int error;
   2559 
   2560 	error = 0;
   2561 
   2562 	if (newp)
   2563 		return EPERM;
   2564 	if (oldp && !oldlenp)
   2565 		return EINVAL;
   2566 	ol = oldlenp ? *oldlenp : 0;
   2567 
   2568 	if (oldp) {
   2569 		p = malloc(*oldlenp, M_TEMP, M_WAITOK);
   2570 		if (p == NULL)
   2571 			return ENOMEM;
   2572 	} else
   2573 		p = NULL;
   2574 	switch (name) {
   2575 	case ICMPV6CTL_ND6_DRLIST:
   2576 		error = fill_drlist(p, oldlenp, ol);
   2577 		if (!error && p != NULL && oldp != NULL)
   2578 			error = copyout(p, oldp, *oldlenp);
   2579 		break;
   2580 
   2581 	case ICMPV6CTL_ND6_PRLIST:
   2582 		error = fill_prlist(p, oldlenp, ol);
   2583 		if (!error && p != NULL && oldp != NULL)
   2584 			error = copyout(p, oldp, *oldlenp);
   2585 		break;
   2586 
   2587 	case ICMPV6CTL_ND6_MAXQLEN:
   2588 		break;
   2589 
   2590 	default:
   2591 		error = ENOPROTOOPT;
   2592 		break;
   2593 	}
   2594 	if (p)
   2595 		free(p, M_TEMP);
   2596 
   2597 	return error;
   2598 }
   2599 
   2600 static int
   2601 fill_drlist(void *oldp, size_t *oldlenp, size_t ol)
   2602 {
   2603 	int error = 0, s;
   2604 	struct in6_defrouter *d = NULL, *de = NULL;
   2605 	struct nd_defrouter *dr;
   2606 	size_t l;
   2607 
   2608 	s = splsoftnet();
   2609 
   2610 	if (oldp) {
   2611 		d = (struct in6_defrouter *)oldp;
   2612 		de = (struct in6_defrouter *)((char *)oldp + *oldlenp);
   2613 	}
   2614 	l = 0;
   2615 
   2616 	TAILQ_FOREACH(dr, &nd_defrouter, dr_entry) {
   2617 
   2618 		if (oldp && d + 1 <= de) {
   2619 			memset(d, 0, sizeof(*d));
   2620 			sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0);
   2621 			if (sa6_recoverscope(&d->rtaddr)) {
   2622 				log(LOG_ERR,
   2623 				    "scope error in router list (%s)\n",
   2624 				    ip6_sprintf(&d->rtaddr.sin6_addr));
   2625 				/* XXX: press on... */
   2626 			}
   2627 			d->flags = dr->flags;
   2628 			d->rtlifetime = dr->rtlifetime;
   2629 			d->expire = dr->expire ?
   2630 			    time_mono_to_wall(dr->expire) : 0;
   2631 			d->if_index = dr->ifp->if_index;
   2632 		}
   2633 
   2634 		l += sizeof(*d);
   2635 		if (d)
   2636 			d++;
   2637 	}
   2638 
   2639 	if (oldp) {
   2640 		if (l > ol)
   2641 			error = ENOMEM;
   2642 	}
   2643 	if (oldlenp)
   2644 		*oldlenp = l;	/* (void *)d - (void *)oldp */
   2645 
   2646 	splx(s);
   2647 
   2648 	return error;
   2649 }
   2650 
   2651 static int
   2652 fill_prlist(void *oldp, size_t *oldlenp, size_t ol)
   2653 {
   2654 	int error = 0, s;
   2655 	struct nd_prefix *pr;
   2656 	uint8_t *p = NULL, *ps = NULL;
   2657 	uint8_t *pe = NULL;
   2658 	size_t l;
   2659 
   2660 	s = splsoftnet();
   2661 
   2662 	if (oldp) {
   2663 		ps = p = (uint8_t*)oldp;
   2664 		pe = (uint8_t*)oldp + *oldlenp;
   2665 	}
   2666 	l = 0;
   2667 
   2668 	LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
   2669 		u_short advrtrs;
   2670 		struct sockaddr_in6 sin6;
   2671 		struct nd_pfxrouter *pfr;
   2672 		struct in6_prefix pfx;
   2673 
   2674 		if (oldp && p + sizeof(struct in6_prefix) <= pe)
   2675 		{
   2676 			memset(&pfx, 0, sizeof(pfx));
   2677 			ps = p;
   2678 			pfx.prefix = pr->ndpr_prefix;
   2679 
   2680 			if (sa6_recoverscope(&pfx.prefix)) {
   2681 				log(LOG_ERR,
   2682 				    "scope error in prefix list (%s)\n",
   2683 				    ip6_sprintf(&pfx.prefix.sin6_addr));
   2684 				/* XXX: press on... */
   2685 			}
   2686 			pfx.raflags = pr->ndpr_raf;
   2687 			pfx.prefixlen = pr->ndpr_plen;
   2688 			pfx.vltime = pr->ndpr_vltime;
   2689 			pfx.pltime = pr->ndpr_pltime;
   2690 			pfx.if_index = pr->ndpr_ifp->if_index;
   2691 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
   2692 				pfx.expire = 0;
   2693 			else {
   2694 				time_t maxexpire;
   2695 
   2696 				/* XXX: we assume time_t is signed. */
   2697 				maxexpire = (-1) &
   2698 				    ~((time_t)1 <<
   2699 				    ((sizeof(maxexpire) * 8) - 1));
   2700 				if (pr->ndpr_vltime <
   2701 				    maxexpire - pr->ndpr_lastupdate) {
   2702 					pfx.expire = pr->ndpr_lastupdate +
   2703 						pr->ndpr_vltime;
   2704 				} else
   2705 					pfx.expire = maxexpire;
   2706 			}
   2707 			pfx.refcnt = pr->ndpr_refcnt;
   2708 			pfx.flags = pr->ndpr_stateflags;
   2709 			pfx.origin = PR_ORIG_RA;
   2710 
   2711 			p += sizeof(pfx); l += sizeof(pfx);
   2712 
   2713 			advrtrs = 0;
   2714 			LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
   2715 				if (p + sizeof(sin6) > pe) {
   2716 					advrtrs++;
   2717 					continue;
   2718 				}
   2719 
   2720 				sockaddr_in6_init(&sin6, &pfr->router->rtaddr,
   2721 				    0, 0, 0);
   2722 				if (sa6_recoverscope(&sin6)) {
   2723 					log(LOG_ERR,
   2724 					    "scope error in "
   2725 					    "prefix list (%s)\n",
   2726 					    ip6_sprintf(&pfr->router->rtaddr));
   2727 				}
   2728 				advrtrs++;
   2729 				memcpy(p, &sin6, sizeof(sin6));
   2730 				p += sizeof(sin6);
   2731 				l += sizeof(sin6);
   2732 			}
   2733 			pfx.advrtrs = advrtrs;
   2734 			memcpy(ps, &pfx, sizeof(pfx));
   2735 		}
   2736 		else {
   2737 			l += sizeof(pfx);
   2738 			advrtrs = 0;
   2739 			LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
   2740 				advrtrs++;
   2741 				l += sizeof(sin6);
   2742 			}
   2743 		}
   2744 	}
   2745 
   2746 	if (oldp) {
   2747 		*oldlenp = l;	/* (void *)d - (void *)oldp */
   2748 		if (l > ol)
   2749 			error = ENOMEM;
   2750 	} else
   2751 		*oldlenp = l;
   2752 
   2753 	splx(s);
   2754 
   2755 	return error;
   2756 }
   2757