nd6.c revision 1.216 1 /* $NetBSD: nd6.c,v 1.216 2016/12/12 03:55:57 ozaki-r Exp $ */
2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.216 2016/12/12 03:55:57 ozaki-r Exp $");
35
36 #ifdef _KERNEL_OPT
37 #include "opt_net_mpsafe.h"
38 #endif
39
40 #include "bridge.h"
41 #include "carp.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/sockio.h>
51 #include <sys/time.h>
52 #include <sys/kernel.h>
53 #include <sys/protosw.h>
54 #include <sys/errno.h>
55 #include <sys/ioctl.h>
56 #include <sys/syslog.h>
57 #include <sys/queue.h>
58 #include <sys/cprng.h>
59 #include <sys/workqueue.h>
60
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_llatbl.h>
64 #include <net/if_types.h>
65 #include <net/route.h>
66 #include <net/if_ether.h>
67 #include <net/if_fddi.h>
68 #include <net/if_arc.h>
69
70 #include <netinet/in.h>
71 #include <netinet6/in6_var.h>
72 #include <netinet/ip6.h>
73 #include <netinet6/ip6_var.h>
74 #include <netinet6/scope6_var.h>
75 #include <netinet6/nd6.h>
76 #include <netinet6/in6_ifattach.h>
77 #include <netinet/icmp6.h>
78 #include <netinet6/icmp6_private.h>
79
80 #include <net/net_osdep.h>
81
82 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
83 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
84
85 /* timer values */
86 int nd6_prune = 1; /* walk list every 1 seconds */
87 int nd6_delay = 5; /* delay first probe time 5 second */
88 int nd6_umaxtries = 3; /* maximum unicast query */
89 int nd6_mmaxtries = 3; /* maximum multicast query */
90 int nd6_useloopback = 1; /* use loopback interface for local traffic */
91 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
92
93 /* preventing too many loops in ND option parsing */
94 int nd6_maxndopt = 10; /* max # of ND options allowed */
95
96 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
97
98 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
99
100 #ifdef ND6_DEBUG
101 int nd6_debug = 1;
102 #else
103 int nd6_debug = 0;
104 #endif
105
106 struct nd_drhead nd_defrouter;
107 struct nd_prhead nd_prefix = { 0 };
108
109 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
110
111 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
112 static void nd6_slowtimo(void *);
113 static int regen_tmpaddr(const struct in6_ifaddr *);
114 static void nd6_free(struct llentry *, int);
115 static void nd6_llinfo_timer(void *);
116 static void nd6_timer(void *);
117 static void nd6_timer_work(struct work *, void *);
118 static void clear_llinfo_pqueue(struct llentry *);
119
120 static callout_t nd6_slowtimo_ch;
121 static callout_t nd6_timer_ch;
122 static struct workqueue *nd6_timer_wq;
123 static struct work nd6_timer_wk;
124
125 static int fill_drlist(void *, size_t *, size_t);
126 static int fill_prlist(void *, size_t *, size_t);
127
128 static struct ifnet *nd6_defifp;
129 static int nd6_defifindex;
130
131 static int nd6_setdefaultiface(int);
132
133 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
134
135 void
136 nd6_init(void)
137 {
138 int error;
139
140 /* initialization of the default router list */
141 ND_DEFROUTER_LIST_INIT();
142
143 callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE);
144 callout_init(&nd6_timer_ch, CALLOUT_MPSAFE);
145
146 error = workqueue_create(&nd6_timer_wq, "nd6_timer",
147 nd6_timer_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
148 if (error)
149 panic("%s: workqueue_create failed (%d)\n", __func__, error);
150
151 /* start timer */
152 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
153 nd6_slowtimo, NULL);
154 callout_reset(&nd6_timer_ch, hz, nd6_timer, NULL);
155 }
156
157 struct nd_ifinfo *
158 nd6_ifattach(struct ifnet *ifp)
159 {
160 struct nd_ifinfo *nd;
161
162 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO);
163
164 nd->initialized = 1;
165
166 nd->chlim = IPV6_DEFHLIM;
167 nd->basereachable = REACHABLE_TIME;
168 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
169 nd->retrans = RETRANS_TIMER;
170
171 nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV;
172
173 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
174 * A bridge interface should not have ND6_IFF_AUTO_LINKLOCAL
175 * because one of its members should. */
176 if ((ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
177 (ifp->if_flags & IFF_LOOPBACK))
178 nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
179
180 /* A loopback interface does not need to accept RTADV.
181 * A bridge interface should not accept RTADV
182 * because one of its members should. */
183 if (ip6_accept_rtadv &&
184 !(ifp->if_flags & IFF_LOOPBACK) &&
185 !(ifp->if_type != IFT_BRIDGE))
186 nd->flags |= ND6_IFF_ACCEPT_RTADV;
187
188 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
189 nd6_setmtu0(ifp, nd);
190
191 return nd;
192 }
193
194 void
195 nd6_ifdetach(struct ifnet *ifp, struct in6_ifextra *ext)
196 {
197
198 nd6_purge(ifp, ext);
199 free(ext->nd_ifinfo, M_IP6NDP);
200 }
201
202 void
203 nd6_setmtu(struct ifnet *ifp)
204 {
205 nd6_setmtu0(ifp, ND_IFINFO(ifp));
206 }
207
208 void
209 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
210 {
211 u_int32_t omaxmtu;
212
213 omaxmtu = ndi->maxmtu;
214
215 switch (ifp->if_type) {
216 case IFT_ARCNET:
217 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
218 break;
219 case IFT_FDDI:
220 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
221 break;
222 default:
223 ndi->maxmtu = ifp->if_mtu;
224 break;
225 }
226
227 /*
228 * Decreasing the interface MTU under IPV6 minimum MTU may cause
229 * undesirable situation. We thus notify the operator of the change
230 * explicitly. The check for omaxmtu is necessary to restrict the
231 * log to the case of changing the MTU, not initializing it.
232 */
233 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
234 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
235 " small for IPv6 which needs %lu\n",
236 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
237 IPV6_MMTU);
238 }
239
240 if (ndi->maxmtu > in6_maxmtu)
241 in6_setmaxmtu(); /* check all interfaces just in case */
242 }
243
244 void
245 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
246 {
247
248 memset(ndopts, 0, sizeof(*ndopts));
249 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
250 ndopts->nd_opts_last
251 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
252
253 if (icmp6len == 0) {
254 ndopts->nd_opts_done = 1;
255 ndopts->nd_opts_search = NULL;
256 }
257 }
258
259 /*
260 * Take one ND option.
261 */
262 struct nd_opt_hdr *
263 nd6_option(union nd_opts *ndopts)
264 {
265 struct nd_opt_hdr *nd_opt;
266 int olen;
267
268 KASSERT(ndopts != NULL);
269 KASSERT(ndopts->nd_opts_last != NULL);
270
271 if (ndopts->nd_opts_search == NULL)
272 return NULL;
273 if (ndopts->nd_opts_done)
274 return NULL;
275
276 nd_opt = ndopts->nd_opts_search;
277
278 /* make sure nd_opt_len is inside the buffer */
279 if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) {
280 memset(ndopts, 0, sizeof(*ndopts));
281 return NULL;
282 }
283
284 olen = nd_opt->nd_opt_len << 3;
285 if (olen == 0) {
286 /*
287 * Message validation requires that all included
288 * options have a length that is greater than zero.
289 */
290 memset(ndopts, 0, sizeof(*ndopts));
291 return NULL;
292 }
293
294 ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen);
295 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
296 /* option overruns the end of buffer, invalid */
297 memset(ndopts, 0, sizeof(*ndopts));
298 return NULL;
299 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
300 /* reached the end of options chain */
301 ndopts->nd_opts_done = 1;
302 ndopts->nd_opts_search = NULL;
303 }
304 return nd_opt;
305 }
306
307 /*
308 * Parse multiple ND options.
309 * This function is much easier to use, for ND routines that do not need
310 * multiple options of the same type.
311 */
312 int
313 nd6_options(union nd_opts *ndopts)
314 {
315 struct nd_opt_hdr *nd_opt;
316 int i = 0;
317
318 KASSERT(ndopts != NULL);
319 KASSERT(ndopts->nd_opts_last != NULL);
320
321 if (ndopts->nd_opts_search == NULL)
322 return 0;
323
324 while (1) {
325 nd_opt = nd6_option(ndopts);
326 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
327 /*
328 * Message validation requires that all included
329 * options have a length that is greater than zero.
330 */
331 ICMP6_STATINC(ICMP6_STAT_ND_BADOPT);
332 memset(ndopts, 0, sizeof(*ndopts));
333 return -1;
334 }
335
336 if (nd_opt == NULL)
337 goto skip1;
338
339 switch (nd_opt->nd_opt_type) {
340 case ND_OPT_SOURCE_LINKADDR:
341 case ND_OPT_TARGET_LINKADDR:
342 case ND_OPT_MTU:
343 case ND_OPT_REDIRECTED_HEADER:
344 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
345 nd6log(LOG_INFO,
346 "duplicated ND6 option found (type=%d)\n",
347 nd_opt->nd_opt_type);
348 /* XXX bark? */
349 } else {
350 ndopts->nd_opt_array[nd_opt->nd_opt_type]
351 = nd_opt;
352 }
353 break;
354 case ND_OPT_PREFIX_INFORMATION:
355 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
356 ndopts->nd_opt_array[nd_opt->nd_opt_type]
357 = nd_opt;
358 }
359 ndopts->nd_opts_pi_end =
360 (struct nd_opt_prefix_info *)nd_opt;
361 break;
362 default:
363 /*
364 * Unknown options must be silently ignored,
365 * to accommodate future extension to the protocol.
366 */
367 nd6log(LOG_DEBUG,
368 "nd6_options: unsupported option %d - "
369 "option ignored\n", nd_opt->nd_opt_type);
370 }
371
372 skip1:
373 i++;
374 if (i > nd6_maxndopt) {
375 ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT);
376 nd6log(LOG_INFO, "too many loop in nd opt\n");
377 break;
378 }
379
380 if (ndopts->nd_opts_done)
381 break;
382 }
383
384 return 0;
385 }
386
387 /*
388 * ND6 timer routine to handle ND6 entries
389 */
390 void
391 nd6_llinfo_settimer(struct llentry *ln, time_t xtick)
392 {
393
394 CTASSERT(sizeof(time_t) > sizeof(int));
395 LLE_WLOCK_ASSERT(ln);
396
397 if (xtick < 0) {
398 ln->ln_expire = 0;
399 ln->ln_ntick = 0;
400 callout_halt(&ln->ln_timer_ch, &ln->lle_lock);
401 } else {
402 ln->ln_expire = time_uptime + xtick / hz;
403 LLE_ADDREF(ln);
404 if (xtick > INT_MAX) {
405 ln->ln_ntick = xtick - INT_MAX;
406 callout_reset(&ln->ln_timer_ch, INT_MAX,
407 nd6_llinfo_timer, ln);
408 } else {
409 ln->ln_ntick = 0;
410 callout_reset(&ln->ln_timer_ch, xtick,
411 nd6_llinfo_timer, ln);
412 }
413 }
414 }
415
416 /*
417 * Gets source address of the first packet in hold queue
418 * and stores it in @src.
419 * Returns pointer to @src (if hold queue is not empty) or NULL.
420 */
421 static struct in6_addr *
422 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
423 {
424 struct ip6_hdr *hip6;
425
426 if (ln == NULL || ln->ln_hold == NULL)
427 return NULL;
428
429 /*
430 * assuming every packet in ln_hold has the same IP header
431 */
432 hip6 = mtod(ln->ln_hold, struct ip6_hdr *);
433 /* XXX pullup? */
434 if (sizeof(*hip6) < ln->ln_hold->m_len)
435 *src = hip6->ip6_src;
436 else
437 src = NULL;
438
439 return src;
440 }
441
442 static void
443 nd6_llinfo_timer(void *arg)
444 {
445 struct llentry *ln = arg;
446 struct ifnet *ifp;
447 struct nd_ifinfo *ndi = NULL;
448 bool send_ns = false;
449 const struct in6_addr *daddr6 = NULL;
450
451 #ifndef NET_MPSAFE
452 mutex_enter(softnet_lock);
453 KERNEL_LOCK(1, NULL);
454 #endif
455
456 LLE_WLOCK(ln);
457 if (ln->ln_ntick > 0) {
458 nd6_llinfo_settimer(ln, ln->ln_ntick);
459 goto out;
460 }
461
462 if (callout_pending(&ln->la_timer)) {
463 /*
464 * Here we are a bit odd here in the treatment of
465 * active/pending. If the pending bit is set, it got
466 * rescheduled before I ran. The active
467 * bit we ignore, since if it was stopped
468 * in ll_tablefree() and was currently running
469 * it would have return 0 so the code would
470 * not have deleted it since the callout could
471 * not be stopped so we want to go through
472 * with the delete here now. If the callout
473 * was restarted, the pending bit will be back on and
474 * we just want to bail since the callout_reset would
475 * return 1 and our reference would have been removed
476 * by nd6_llinfo_settimer above since canceled
477 * would have been 1.
478 */
479 goto out;
480 }
481
482 ifp = ln->lle_tbl->llt_ifp;
483
484 KASSERT(ifp != NULL);
485
486 ndi = ND_IFINFO(ifp);
487
488 switch (ln->ln_state) {
489 case ND6_LLINFO_INCOMPLETE:
490 if (ln->ln_asked < nd6_mmaxtries) {
491 ln->ln_asked++;
492 send_ns = true;
493 } else {
494 struct mbuf *m = ln->ln_hold;
495 if (m) {
496 struct mbuf *m0;
497
498 /*
499 * assuming every packet in ln_hold has
500 * the same IP header
501 */
502 m0 = m->m_nextpkt;
503 m->m_nextpkt = NULL;
504 ln->ln_hold = m0;
505 clear_llinfo_pqueue(ln);
506 }
507 nd6_free(ln, 0);
508 ln = NULL;
509 if (m != NULL)
510 icmp6_error2(m, ICMP6_DST_UNREACH,
511 ICMP6_DST_UNREACH_ADDR, 0, ifp);
512 }
513 break;
514 case ND6_LLINFO_REACHABLE:
515 if (!ND6_LLINFO_PERMANENT(ln)) {
516 ln->ln_state = ND6_LLINFO_STALE;
517 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
518 }
519 break;
520
521 case ND6_LLINFO_PURGE:
522 case ND6_LLINFO_STALE:
523 /* Garbage Collection(RFC 2461 5.3) */
524 if (!ND6_LLINFO_PERMANENT(ln)) {
525 nd6_free(ln, 1);
526 ln = NULL;
527 }
528 break;
529
530 case ND6_LLINFO_DELAY:
531 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
532 /* We need NUD */
533 ln->ln_asked = 1;
534 ln->ln_state = ND6_LLINFO_PROBE;
535 daddr6 = &ln->r_l3addr.addr6;
536 send_ns = true;
537 } else {
538 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
539 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
540 }
541 break;
542 case ND6_LLINFO_PROBE:
543 if (ln->ln_asked < nd6_umaxtries) {
544 ln->ln_asked++;
545 daddr6 = &ln->r_l3addr.addr6;
546 send_ns = true;
547 } else {
548 nd6_free(ln, 0);
549 ln = NULL;
550 }
551 break;
552 }
553
554 if (send_ns) {
555 struct in6_addr src, *psrc;
556 const struct in6_addr *taddr6 = &ln->r_l3addr.addr6;
557
558 nd6_llinfo_settimer(ln, ndi->retrans * hz / 1000);
559 psrc = nd6_llinfo_get_holdsrc(ln, &src);
560 LLE_FREE_LOCKED(ln);
561 ln = NULL;
562 nd6_ns_output(ifp, daddr6, taddr6, psrc, 0);
563 }
564
565 out:
566 if (ln != NULL)
567 LLE_FREE_LOCKED(ln);
568 #ifndef NET_MPSAFE
569 KERNEL_UNLOCK_ONE(NULL);
570 mutex_exit(softnet_lock);
571 #endif
572 }
573
574 /*
575 * ND6 timer routine to expire default route list and prefix list
576 */
577 static void
578 nd6_timer_work(struct work *wk, void *arg)
579 {
580 struct nd_defrouter *next_dr, *dr;
581 struct nd_prefix *next_pr, *pr;
582 struct in6_ifaddr *ia6, *nia6;
583 int s, bound;
584 struct psref psref;
585
586 callout_reset(&nd6_timer_ch, nd6_prune * hz,
587 nd6_timer, NULL);
588
589 #ifndef NET_MPSAFE
590 mutex_enter(softnet_lock);
591 KERNEL_LOCK(1, NULL);
592 #endif
593
594 /* expire default router list */
595
596 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, next_dr) {
597 if (dr->expire && dr->expire < time_uptime) {
598 nd6_defrtrlist_del(dr, NULL);
599 }
600 }
601
602 /*
603 * expire interface addresses.
604 * in the past the loop was inside prefix expiry processing.
605 * However, from a stricter speci-confrmance standpoint, we should
606 * rather separate address lifetimes and prefix lifetimes.
607 */
608 bound = curlwp_bind();
609 addrloop:
610 s = pserialize_read_enter();
611 for (ia6 = IN6_ADDRLIST_READER_FIRST(); ia6; ia6 = nia6) {
612 nia6 = IN6_ADDRLIST_READER_NEXT(ia6);
613
614 ia6_acquire(ia6, &psref);
615 pserialize_read_exit(s);
616
617 /* check address lifetime */
618 if (IFA6_IS_INVALID(ia6)) {
619 int regen = 0;
620
621 /*
622 * If the expiring address is temporary, try
623 * regenerating a new one. This would be useful when
624 * we suspended a laptop PC, then turned it on after a
625 * period that could invalidate all temporary
626 * addresses. Although we may have to restart the
627 * loop (see below), it must be after purging the
628 * address. Otherwise, we'd see an infinite loop of
629 * regeneration.
630 */
631 if (ip6_use_tempaddr &&
632 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
633 if (regen_tmpaddr(ia6) == 0)
634 regen = 1;
635 }
636
637 ia6_release(ia6, &psref);
638 in6_purgeaddr(&ia6->ia_ifa);
639 ia6 = NULL;
640
641 if (regen)
642 goto addrloop; /* XXX: see below */
643 } else if (IFA6_IS_DEPRECATED(ia6)) {
644 int oldflags = ia6->ia6_flags;
645
646 if ((oldflags & IN6_IFF_DEPRECATED) == 0) {
647 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
648 rt_newaddrmsg(RTM_NEWADDR,
649 (struct ifaddr *)ia6, 0, NULL);
650 }
651
652 /*
653 * If a temporary address has just become deprecated,
654 * regenerate a new one if possible.
655 */
656 if (ip6_use_tempaddr &&
657 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
658 (oldflags & IN6_IFF_DEPRECATED) == 0) {
659
660 if (regen_tmpaddr(ia6) == 0) {
661 /*
662 * A new temporary address is
663 * generated.
664 * XXX: this means the address chain
665 * has changed while we are still in
666 * the loop. Although the change
667 * would not cause disaster (because
668 * it's not a deletion, but an
669 * addition,) we'd rather restart the
670 * loop just for safety. Or does this
671 * significantly reduce performance??
672 */
673 ia6_release(ia6, &psref);
674 goto addrloop;
675 }
676 }
677 } else {
678 /*
679 * A new RA might have made a deprecated address
680 * preferred.
681 */
682 if (ia6->ia6_flags & IN6_IFF_DEPRECATED) {
683 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
684 rt_newaddrmsg(RTM_NEWADDR,
685 (struct ifaddr *)ia6, 0, NULL);
686 }
687 }
688 s = pserialize_read_enter();
689 ia6_release(ia6, &psref);
690 }
691 pserialize_read_exit(s);
692 curlwp_bindx(bound);
693
694 /* expire prefix list */
695 ND_PREFIX_LIST_FOREACH_SAFE(pr, next_pr) {
696 /*
697 * check prefix lifetime.
698 * since pltime is just for autoconf, pltime processing for
699 * prefix is not necessary.
700 */
701 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
702 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) {
703
704 /*
705 * address expiration and prefix expiration are
706 * separate. NEVER perform in6_purgeaddr here.
707 */
708
709 nd6_prelist_remove(pr);
710 }
711 }
712
713 #ifndef NET_MPSAFE
714 KERNEL_UNLOCK_ONE(NULL);
715 mutex_exit(softnet_lock);
716 #endif
717 }
718
719 static void
720 nd6_timer(void *ignored_arg)
721 {
722
723 workqueue_enqueue(nd6_timer_wq, &nd6_timer_wk, NULL);
724 }
725
726 /* ia6: deprecated/invalidated temporary address */
727 static int
728 regen_tmpaddr(const struct in6_ifaddr *ia6)
729 {
730 struct ifaddr *ifa;
731 struct ifnet *ifp;
732 struct in6_ifaddr *public_ifa6 = NULL;
733 int s;
734
735 ifp = ia6->ia_ifa.ifa_ifp;
736 s = pserialize_read_enter();
737 IFADDR_READER_FOREACH(ifa, ifp) {
738 struct in6_ifaddr *it6;
739
740 if (ifa->ifa_addr->sa_family != AF_INET6)
741 continue;
742
743 it6 = (struct in6_ifaddr *)ifa;
744
745 /* ignore no autoconf addresses. */
746 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
747 continue;
748
749 /* ignore autoconf addresses with different prefixes. */
750 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
751 continue;
752
753 /*
754 * Now we are looking at an autoconf address with the same
755 * prefix as ours. If the address is temporary and is still
756 * preferred, do not create another one. It would be rare, but
757 * could happen, for example, when we resume a laptop PC after
758 * a long period.
759 */
760 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
761 !IFA6_IS_DEPRECATED(it6)) {
762 public_ifa6 = NULL;
763 break;
764 }
765
766 /*
767 * This is a public autoconf address that has the same prefix
768 * as ours. If it is preferred, keep it. We can't break the
769 * loop here, because there may be a still-preferred temporary
770 * address with the prefix.
771 */
772 if (!IFA6_IS_DEPRECATED(it6))
773 public_ifa6 = it6;
774 }
775
776 if (public_ifa6 != NULL) {
777 int e;
778 struct psref psref;
779
780 ia6_acquire(public_ifa6, &psref);
781 pserialize_read_exit(s);
782 /*
783 * Random factor is introduced in the preferred lifetime, so
784 * we do not need additional delay (3rd arg to in6_tmpifadd).
785 */
786 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
787 ia6_release(public_ifa6, &psref);
788 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
789 " tmp addr, errno=%d\n", e);
790 return -1;
791 }
792 ia6_release(public_ifa6, &psref);
793 return 0;
794 }
795 pserialize_read_exit(s);
796
797 return -1;
798 }
799
800 bool
801 nd6_accepts_rtadv(const struct nd_ifinfo *ndi)
802 {
803 switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) {
804 case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV:
805 return true;
806 case ND6_IFF_ACCEPT_RTADV:
807 return ip6_accept_rtadv != 0;
808 case ND6_IFF_OVERRIDE_RTADV:
809 case 0:
810 default:
811 return false;
812 }
813 }
814
815 /*
816 * Nuke neighbor cache/prefix/default router management table, right before
817 * ifp goes away.
818 */
819 void
820 nd6_purge(struct ifnet *ifp, struct in6_ifextra *ext)
821 {
822 struct nd_defrouter *dr, *ndr;
823 struct nd_prefix *pr, *npr;
824
825 /*
826 * During detach, the ND info might be already removed, but
827 * then is explitly passed as argument.
828 * Otherwise get it from ifp->if_afdata.
829 */
830 if (ext == NULL)
831 ext = ifp->if_afdata[AF_INET6];
832 if (ext == NULL)
833 return;
834
835 /*
836 * Nuke default router list entries toward ifp.
837 * We defer removal of default router list entries that is installed
838 * in the routing table, in order to keep additional side effects as
839 * small as possible.
840 */
841 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, ndr) {
842 if (dr->installed)
843 continue;
844
845 if (dr->ifp == ifp) {
846 KASSERT(ext != NULL);
847 nd6_defrtrlist_del(dr, ext);
848 }
849 }
850
851 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, ndr) {
852 if (!dr->installed)
853 continue;
854
855 if (dr->ifp == ifp) {
856 KASSERT(ext != NULL);
857 nd6_defrtrlist_del(dr, ext);
858 }
859 }
860
861 /* Nuke prefix list entries toward ifp */
862 ND_PREFIX_LIST_FOREACH_SAFE(pr, npr) {
863 if (pr->ndpr_ifp == ifp) {
864 /*
865 * Because if_detach() does *not* release prefixes
866 * while purging addresses the reference count will
867 * still be above zero. We therefore reset it to
868 * make sure that the prefix really gets purged.
869 */
870 pr->ndpr_refcnt = 0;
871 /*
872 * Previously, pr->ndpr_addr is removed as well,
873 * but I strongly believe we don't have to do it.
874 * nd6_purge() is only called from in6_ifdetach(),
875 * which removes all the associated interface addresses
876 * by itself.
877 * (jinmei (at) kame.net 20010129)
878 */
879 nd6_prelist_remove(pr);
880 }
881 }
882
883 /* cancel default outgoing interface setting */
884 if (nd6_defifindex == ifp->if_index)
885 nd6_setdefaultiface(0);
886
887 /* XXX: too restrictive? */
888 if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) {
889 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
890 if (ndi && nd6_accepts_rtadv(ndi)) {
891 /* refresh default router list */
892 nd6_defrouter_select();
893 }
894 }
895
896 /*
897 * We may not need to nuke the neighbor cache entries here
898 * because the neighbor cache is kept in if_afdata[AF_INET6].
899 * nd6_purge() is invoked by in6_ifdetach() which is called
900 * from if_detach() where everything gets purged. However
901 * in6_ifdetach is directly called from vlan(4), so we still
902 * need to purge entries here.
903 */
904 if (ext->lltable != NULL)
905 lltable_purge_entries(ext->lltable);
906 }
907
908 struct llentry *
909 nd6_lookup(const struct in6_addr *addr6, const struct ifnet *ifp, bool wlock)
910 {
911 struct sockaddr_in6 sin6;
912 struct llentry *ln;
913
914 sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
915
916 IF_AFDATA_RLOCK(ifp);
917 ln = lla_lookup(LLTABLE6(ifp), wlock ? LLE_EXCLUSIVE : 0,
918 sin6tosa(&sin6));
919 IF_AFDATA_RUNLOCK(ifp);
920
921 return ln;
922 }
923
924 struct llentry *
925 nd6_create(const struct in6_addr *addr6, const struct ifnet *ifp)
926 {
927 struct sockaddr_in6 sin6;
928 struct llentry *ln;
929
930 sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
931
932 IF_AFDATA_WLOCK(ifp);
933 ln = lla_create(LLTABLE6(ifp), LLE_EXCLUSIVE,
934 sin6tosa(&sin6));
935 IF_AFDATA_WUNLOCK(ifp);
936
937 if (ln != NULL)
938 ln->ln_state = ND6_LLINFO_NOSTATE;
939
940 return ln;
941 }
942
943 /*
944 * Test whether a given IPv6 address is a neighbor or not, ignoring
945 * the actual neighbor cache. The neighbor cache is ignored in order
946 * to not reenter the routing code from within itself.
947 */
948 static int
949 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
950 {
951 struct nd_prefix *pr;
952 struct ifaddr *dstaddr;
953 int s;
954
955 /*
956 * A link-local address is always a neighbor.
957 * XXX: a link does not necessarily specify a single interface.
958 */
959 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
960 struct sockaddr_in6 sin6_copy;
961 u_int32_t zone;
962
963 /*
964 * We need sin6_copy since sa6_recoverscope() may modify the
965 * content (XXX).
966 */
967 sin6_copy = *addr;
968 if (sa6_recoverscope(&sin6_copy))
969 return 0; /* XXX: should be impossible */
970 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
971 return 0;
972 if (sin6_copy.sin6_scope_id == zone)
973 return 1;
974 else
975 return 0;
976 }
977
978 /*
979 * If the address matches one of our addresses,
980 * it should be a neighbor.
981 * If the address matches one of our on-link prefixes, it should be a
982 * neighbor.
983 */
984 ND_PREFIX_LIST_FOREACH(pr) {
985 if (pr->ndpr_ifp != ifp)
986 continue;
987
988 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) {
989 struct rtentry *rt;
990
991 rt = rtalloc1(sin6tosa(&pr->ndpr_prefix), 0);
992 if (rt == NULL)
993 continue;
994 /*
995 * This is the case where multiple interfaces
996 * have the same prefix, but only one is installed
997 * into the routing table and that prefix entry
998 * is not the one being examined here. In the case
999 * where RADIX_MPATH is enabled, multiple route
1000 * entries (of the same rt_key value) will be
1001 * installed because the interface addresses all
1002 * differ.
1003 */
1004 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1005 &satocsin6(rt_getkey(rt))->sin6_addr)) {
1006 rt_unref(rt);
1007 continue;
1008 }
1009 rt_unref(rt);
1010 }
1011
1012 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1013 &addr->sin6_addr, &pr->ndpr_mask))
1014 return 1;
1015 }
1016
1017 /*
1018 * If the address is assigned on the node of the other side of
1019 * a p2p interface, the address should be a neighbor.
1020 */
1021 s = pserialize_read_enter();
1022 dstaddr = ifa_ifwithdstaddr(sin6tocsa(addr));
1023 if (dstaddr != NULL) {
1024 if (dstaddr->ifa_ifp == ifp) {
1025 pserialize_read_exit(s);
1026 return 1;
1027 }
1028 }
1029 pserialize_read_exit(s);
1030
1031 /*
1032 * If the default router list is empty, all addresses are regarded
1033 * as on-link, and thus, as a neighbor.
1034 */
1035 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
1036 ND_DEFROUTER_LIST_EMPTY() &&
1037 nd6_defifindex == ifp->if_index) {
1038 return 1;
1039 }
1040
1041 return 0;
1042 }
1043
1044 /*
1045 * Detect if a given IPv6 address identifies a neighbor on a given link.
1046 * XXX: should take care of the destination of a p2p link?
1047 */
1048 int
1049 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1050 {
1051 struct nd_prefix *pr;
1052 struct llentry *ln;
1053 struct rtentry *rt;
1054
1055 /*
1056 * A link-local address is always a neighbor.
1057 * XXX: a link does not necessarily specify a single interface.
1058 */
1059 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
1060 struct sockaddr_in6 sin6_copy;
1061 u_int32_t zone;
1062
1063 /*
1064 * We need sin6_copy since sa6_recoverscope() may modify the
1065 * content (XXX).
1066 */
1067 sin6_copy = *addr;
1068 if (sa6_recoverscope(&sin6_copy))
1069 return 0; /* XXX: should be impossible */
1070 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
1071 return 0;
1072 if (sin6_copy.sin6_scope_id == zone)
1073 return 1;
1074 else
1075 return 0;
1076 }
1077
1078 /*
1079 * If the address matches one of our on-link prefixes, it should be a
1080 * neighbor.
1081 */
1082 ND_PREFIX_LIST_FOREACH(pr) {
1083 if (pr->ndpr_ifp != ifp)
1084 continue;
1085
1086 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
1087 continue;
1088
1089 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1090 &addr->sin6_addr, &pr->ndpr_mask))
1091 return 1;
1092 }
1093
1094 /*
1095 * If the default router list is empty, all addresses are regarded
1096 * as on-link, and thus, as a neighbor.
1097 * XXX: we restrict the condition to hosts, because routers usually do
1098 * not have the "default router list".
1099 */
1100 if (!ip6_forwarding && ND_DEFROUTER_LIST_EMPTY() &&
1101 nd6_defifindex == ifp->if_index) {
1102 return 1;
1103 }
1104
1105 IF_AFDATA_UNLOCK_ASSERT(ifp);
1106 if (nd6_is_new_addr_neighbor(addr, ifp))
1107 return 1;
1108
1109 /*
1110 * Even if the address matches none of our addresses, it might be
1111 * in the neighbor cache or a connected route.
1112 */
1113 ln = nd6_lookup(&addr->sin6_addr, ifp, false);
1114 if (ln != NULL) {
1115 LLE_RUNLOCK(ln);
1116 return 1;
1117 }
1118
1119 rt = rtalloc1(sin6tocsa(addr), 0);
1120 if (rt == NULL)
1121 return 0;
1122
1123 if ((rt->rt_flags & RTF_CONNECTED) && (rt->rt_ifp == ifp
1124 #if NBRIDGE > 0
1125 || rt->rt_ifp->if_bridge == ifp->if_bridge
1126 #endif
1127 #if NCARP > 0
1128 || (ifp->if_type == IFT_CARP && rt->rt_ifp == ifp->if_carpdev) ||
1129 (rt->rt_ifp->if_type == IFT_CARP && rt->rt_ifp->if_carpdev == ifp)||
1130 (ifp->if_type == IFT_CARP && rt->rt_ifp->if_type == IFT_CARP &&
1131 rt->rt_ifp->if_carpdev == ifp->if_carpdev)
1132 #endif
1133 )) {
1134 rt_unref(rt);
1135 return 1;
1136 }
1137 rt_unref(rt);
1138
1139 return 0;
1140 }
1141
1142 /*
1143 * Free an nd6 llinfo entry.
1144 * Since the function would cause significant changes in the kernel, DO NOT
1145 * make it global, unless you have a strong reason for the change, and are sure
1146 * that the change is safe.
1147 */
1148 static void
1149 nd6_free(struct llentry *ln, int gc)
1150 {
1151 struct nd_defrouter *dr;
1152 struct ifnet *ifp;
1153 struct in6_addr *in6;
1154
1155 KASSERT(ln != NULL);
1156 LLE_WLOCK_ASSERT(ln);
1157
1158 ifp = ln->lle_tbl->llt_ifp;
1159 in6 = &ln->r_l3addr.addr6;
1160 /*
1161 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1162 * even though it is not harmful, it was not really necessary.
1163 */
1164
1165 /* cancel timer */
1166 nd6_llinfo_settimer(ln, -1);
1167
1168 if (!ip6_forwarding) {
1169 int s;
1170 s = splsoftnet();
1171 dr = nd6_defrouter_lookup(in6, ifp);
1172
1173 if (dr != NULL && dr->expire &&
1174 ln->ln_state == ND6_LLINFO_STALE && gc) {
1175 /*
1176 * If the reason for the deletion is just garbage
1177 * collection, and the neighbor is an active default
1178 * router, do not delete it. Instead, reset the GC
1179 * timer using the router's lifetime.
1180 * Simply deleting the entry would affect default
1181 * router selection, which is not necessarily a good
1182 * thing, especially when we're using router preference
1183 * values.
1184 * XXX: the check for ln_state would be redundant,
1185 * but we intentionally keep it just in case.
1186 */
1187 if (dr->expire > time_uptime)
1188 nd6_llinfo_settimer(ln,
1189 (dr->expire - time_uptime) * hz);
1190 else
1191 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
1192 splx(s);
1193 LLE_WUNLOCK(ln);
1194 return;
1195 }
1196
1197 if (ln->ln_router || dr) {
1198 /*
1199 * We need to unlock to avoid a LOR with nd6_rt_flush()
1200 * with the rnh and for the calls to
1201 * nd6_pfxlist_onlink_check() and nd6_defrouter_select() in the
1202 * block further down for calls into nd6_lookup().
1203 * We still hold a ref.
1204 */
1205 LLE_WUNLOCK(ln);
1206
1207 /*
1208 * nd6_rt_flush must be called whether or not the neighbor
1209 * is in the Default Router List.
1210 * See a corresponding comment in nd6_na_input().
1211 */
1212 nd6_rt_flush(in6, ifp);
1213 }
1214
1215 if (dr) {
1216 /*
1217 * Unreachablity of a router might affect the default
1218 * router selection and on-link detection of advertised
1219 * prefixes.
1220 */
1221
1222 /*
1223 * Temporarily fake the state to choose a new default
1224 * router and to perform on-link determination of
1225 * prefixes correctly.
1226 * Below the state will be set correctly,
1227 * or the entry itself will be deleted.
1228 */
1229 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1230
1231 /*
1232 * Since nd6_defrouter_select() does not affect the
1233 * on-link determination and MIP6 needs the check
1234 * before the default router selection, we perform
1235 * the check now.
1236 */
1237 nd6_pfxlist_onlink_check();
1238
1239 /*
1240 * refresh default router list
1241 */
1242 nd6_defrouter_select();
1243 }
1244
1245 #ifdef __FreeBSD__
1246 /*
1247 * If this entry was added by an on-link redirect, remove the
1248 * corresponding host route.
1249 */
1250 if (ln->la_flags & LLE_REDIRECT)
1251 nd6_free_redirect(ln);
1252 #endif
1253
1254 if (ln->ln_router || dr)
1255 LLE_WLOCK(ln);
1256
1257 splx(s);
1258 }
1259
1260 /*
1261 * Save to unlock. We still hold an extra reference and will not
1262 * free(9) in llentry_free() if someone else holds one as well.
1263 */
1264 LLE_WUNLOCK(ln);
1265 IF_AFDATA_LOCK(ifp);
1266 LLE_WLOCK(ln);
1267
1268 /* Guard against race with other llentry_free(). */
1269 if (ln->la_flags & LLE_LINKED) {
1270 LLE_REMREF(ln);
1271 llentry_free(ln);
1272 } else
1273 LLE_FREE_LOCKED(ln);
1274
1275 IF_AFDATA_UNLOCK(ifp);
1276 }
1277
1278 /*
1279 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1280 *
1281 * XXX cost-effective methods?
1282 */
1283 void
1284 nd6_nud_hint(struct rtentry *rt)
1285 {
1286 struct llentry *ln;
1287 struct ifnet *ifp;
1288
1289 if (rt == NULL)
1290 return;
1291
1292 ifp = rt->rt_ifp;
1293 ln = nd6_lookup(&(satocsin6(rt_getkey(rt)))->sin6_addr, ifp, true);
1294 if (ln == NULL)
1295 return;
1296
1297 if (ln->ln_state < ND6_LLINFO_REACHABLE)
1298 goto done;
1299
1300 /*
1301 * if we get upper-layer reachability confirmation many times,
1302 * it is possible we have false information.
1303 */
1304 ln->ln_byhint++;
1305 if (ln->ln_byhint > nd6_maxnudhint)
1306 goto done;
1307
1308 ln->ln_state = ND6_LLINFO_REACHABLE;
1309 if (!ND6_LLINFO_PERMANENT(ln))
1310 nd6_llinfo_settimer(ln, ND_IFINFO(rt->rt_ifp)->reachable * hz);
1311
1312 done:
1313 LLE_WUNLOCK(ln);
1314
1315 return;
1316 }
1317
1318 struct gc_args {
1319 int gc_entries;
1320 const struct in6_addr *skip_in6;
1321 };
1322
1323 static int
1324 nd6_purge_entry(struct lltable *llt, struct llentry *ln, void *farg)
1325 {
1326 struct gc_args *args = farg;
1327 int *n = &args->gc_entries;
1328 const struct in6_addr *skip_in6 = args->skip_in6;
1329
1330 if (*n <= 0)
1331 return 0;
1332
1333 if (ND6_LLINFO_PERMANENT(ln))
1334 return 0;
1335
1336 if (IN6_ARE_ADDR_EQUAL(&ln->r_l3addr.addr6, skip_in6))
1337 return 0;
1338
1339 LLE_WLOCK(ln);
1340 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1341 ln->ln_state = ND6_LLINFO_STALE;
1342 else
1343 ln->ln_state = ND6_LLINFO_PURGE;
1344 nd6_llinfo_settimer(ln, 0);
1345 LLE_WUNLOCK(ln);
1346
1347 (*n)--;
1348 return 0;
1349 }
1350
1351 static void
1352 nd6_gc_neighbors(struct lltable *llt, const struct in6_addr *in6)
1353 {
1354
1355 if (ip6_neighborgcthresh >= 0 &&
1356 lltable_get_entry_count(llt) >= ip6_neighborgcthresh) {
1357 struct gc_args gc_args = {10, in6};
1358 /*
1359 * XXX entries that are "less recently used" should be
1360 * freed first.
1361 */
1362 lltable_foreach_lle(llt, nd6_purge_entry, &gc_args);
1363 }
1364 }
1365
1366 void
1367 nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
1368 {
1369 struct sockaddr *gate = rt->rt_gateway;
1370 struct ifnet *ifp = rt->rt_ifp;
1371 uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen;
1372 struct ifaddr *ifa;
1373
1374 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1375
1376 if (req == RTM_LLINFO_UPD) {
1377 int rc;
1378 struct in6_addr *in6;
1379 struct in6_addr in6_all;
1380 int anycast;
1381
1382 if ((ifa = info->rti_ifa) == NULL)
1383 return;
1384
1385 in6 = &ifatoia6(ifa)->ia_addr.sin6_addr;
1386 anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST;
1387
1388 in6_all = in6addr_linklocal_allnodes;
1389 if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) {
1390 log(LOG_ERR, "%s: failed to set scope %s "
1391 "(errno=%d)\n", __func__, if_name(ifp), rc);
1392 return;
1393 }
1394
1395 /* XXX don't set Override for proxy addresses */
1396 nd6_na_output(ifa->ifa_ifp, &in6_all, in6,
1397 (anycast ? 0 : ND_NA_FLAG_OVERRIDE)
1398 #if 0
1399 | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0)
1400 #endif
1401 , 1, NULL);
1402 return;
1403 }
1404
1405 if ((rt->rt_flags & RTF_GATEWAY) != 0)
1406 return;
1407
1408 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1409 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1410 /*
1411 * This is probably an interface direct route for a link
1412 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1413 * We do not need special treatment below for such a route.
1414 * Moreover, the RTF_LLINFO flag which would be set below
1415 * would annoy the ndp(8) command.
1416 */
1417 return;
1418 }
1419
1420 switch (req) {
1421 case RTM_ADD: {
1422 int s;
1423
1424 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1425 /*
1426 * There is no backward compatibility :)
1427 *
1428 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1429 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1430 * rt->rt_flags |= RTF_CLONING;
1431 */
1432 /* XXX should move to route.c? */
1433 if (rt->rt_flags & (RTF_CONNECTED | RTF_LOCAL)) {
1434 union {
1435 struct sockaddr sa;
1436 struct sockaddr_dl sdl;
1437 struct sockaddr_storage ss;
1438 } u;
1439 /*
1440 * Case 1: This route should come from a route to
1441 * interface (RTF_CLONING case) or the route should be
1442 * treated as on-link but is currently not
1443 * (RTF_LLINFO && ln == NULL case).
1444 */
1445 if (sockaddr_dl_init(&u.sdl, sizeof(u.ss),
1446 ifp->if_index, ifp->if_type,
1447 NULL, namelen, NULL, addrlen) == NULL) {
1448 printf("%s.%d: sockaddr_dl_init(, %zu, ) "
1449 "failed on %s\n", __func__, __LINE__,
1450 sizeof(u.ss), if_name(ifp));
1451 }
1452 rt_setgate(rt, &u.sa);
1453 gate = rt->rt_gateway;
1454 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1455 if (gate == NULL) {
1456 log(LOG_ERR,
1457 "%s: rt_setgate failed on %s\n", __func__,
1458 if_name(ifp));
1459 break;
1460 }
1461
1462 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1463 if ((rt->rt_flags & RTF_CONNECTED) != 0)
1464 break;
1465 }
1466 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1467 /*
1468 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1469 * We don't do that here since llinfo is not ready yet.
1470 *
1471 * There are also couple of other things to be discussed:
1472 * - unsolicited NA code needs improvement beforehand
1473 * - RFC2461 says we MAY send multicast unsolicited NA
1474 * (7.2.6 paragraph 4), however, it also says that we
1475 * SHOULD provide a mechanism to prevent multicast NA storm.
1476 * we don't have anything like it right now.
1477 * note that the mechanism needs a mutual agreement
1478 * between proxies, which means that we need to implement
1479 * a new protocol, or a new kludge.
1480 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1481 * we need to check ip6forwarding before sending it.
1482 * (or should we allow proxy ND configuration only for
1483 * routers? there's no mention about proxy ND from hosts)
1484 */
1485 #if 0
1486 /* XXX it does not work */
1487 if (rt->rt_flags & RTF_ANNOUNCE)
1488 nd6_na_output(ifp,
1489 &satocsin6(rt_getkey(rt))->sin6_addr,
1490 &satocsin6(rt_getkey(rt))->sin6_addr,
1491 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1492 1, NULL);
1493 #endif
1494
1495 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1496 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1497 /*
1498 * Address resolution isn't necessary for a point to
1499 * point link, so we can skip this test for a p2p link.
1500 */
1501 if (gate->sa_family != AF_LINK ||
1502 gate->sa_len <
1503 sockaddr_dl_measure(namelen, addrlen)) {
1504 log(LOG_DEBUG,
1505 "nd6_rtrequest: bad gateway value: %s\n",
1506 if_name(ifp));
1507 break;
1508 }
1509 satosdl(gate)->sdl_type = ifp->if_type;
1510 satosdl(gate)->sdl_index = ifp->if_index;
1511 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1512 }
1513 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1514
1515 /*
1516 * When called from rt_ifa_addlocal, we cannot depend on that
1517 * the address (rt_getkey(rt)) exits in the address list of the
1518 * interface. So check RTF_LOCAL instead.
1519 */
1520 if (rt->rt_flags & RTF_LOCAL) {
1521 if (nd6_useloopback)
1522 rt->rt_ifp = lo0ifp; /* XXX */
1523 break;
1524 }
1525
1526 /*
1527 * check if rt_getkey(rt) is an address assigned
1528 * to the interface.
1529 */
1530 s = pserialize_read_enter();
1531 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp,
1532 &satocsin6(rt_getkey(rt))->sin6_addr);
1533 if (ifa != NULL) {
1534 if (nd6_useloopback) {
1535 rt->rt_ifp = lo0ifp; /* XXX */
1536 /*
1537 * Make sure rt_ifa be equal to the ifaddr
1538 * corresponding to the address.
1539 * We need this because when we refer
1540 * rt_ifa->ia6_flags in ip6_input, we assume
1541 * that the rt_ifa points to the address instead
1542 * of the loopback address.
1543 */
1544 if (ifa != rt->rt_ifa)
1545 rt_replace_ifa(rt, ifa);
1546 }
1547 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1548 /* join solicited node multicast for proxy ND */
1549 if (ifp->if_flags & IFF_MULTICAST) {
1550 struct in6_addr llsol;
1551 int error;
1552
1553 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1554 llsol.s6_addr32[0] = htonl(0xff020000);
1555 llsol.s6_addr32[1] = 0;
1556 llsol.s6_addr32[2] = htonl(1);
1557 llsol.s6_addr8[12] = 0xff;
1558 if (in6_setscope(&llsol, ifp, NULL))
1559 goto out;
1560 if (!in6_addmulti(&llsol, ifp, &error, 0)) {
1561 nd6log(LOG_ERR, "%s: failed to join "
1562 "%s (errno=%d)\n", if_name(ifp),
1563 ip6_sprintf(&llsol), error);
1564 }
1565 }
1566 }
1567 out:
1568 pserialize_read_exit(s);
1569 /*
1570 * If we have too many cache entries, initiate immediate
1571 * purging for some entries.
1572 */
1573 if (rt->rt_ifp != NULL)
1574 nd6_gc_neighbors(LLTABLE6(rt->rt_ifp), NULL);
1575 break;
1576 }
1577
1578 case RTM_DELETE:
1579 /* leave from solicited node multicast for proxy ND */
1580 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1581 (ifp->if_flags & IFF_MULTICAST) != 0) {
1582 struct in6_addr llsol;
1583 struct in6_multi *in6m;
1584
1585 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1586 llsol.s6_addr32[0] = htonl(0xff020000);
1587 llsol.s6_addr32[1] = 0;
1588 llsol.s6_addr32[2] = htonl(1);
1589 llsol.s6_addr8[12] = 0xff;
1590 if (in6_setscope(&llsol, ifp, NULL) == 0) {
1591 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1592 if (in6m)
1593 in6_delmulti(in6m);
1594 }
1595 }
1596 break;
1597 }
1598 }
1599
1600 int
1601 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp)
1602 {
1603 struct in6_drlist *drl = (struct in6_drlist *)data;
1604 struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1605 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1606 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1607 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1608 struct nd_defrouter *dr;
1609 struct nd_prefix *pr;
1610 int i = 0, error = 0;
1611 int s;
1612
1613 switch (cmd) {
1614 case SIOCGDRLST_IN6:
1615 /*
1616 * obsolete API, use sysctl under net.inet6.icmp6
1617 */
1618 memset(drl, 0, sizeof(*drl));
1619 s = splsoftnet();
1620 ND_DEFROUTER_LIST_FOREACH(dr) {
1621 if (i >= DRLSTSIZ)
1622 break;
1623 drl->defrouter[i].rtaddr = dr->rtaddr;
1624 in6_clearscope(&drl->defrouter[i].rtaddr);
1625
1626 drl->defrouter[i].flags = dr->flags;
1627 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1628 drl->defrouter[i].expire = dr->expire ?
1629 time_mono_to_wall(dr->expire) : 0;
1630 drl->defrouter[i].if_index = dr->ifp->if_index;
1631 i++;
1632 }
1633 splx(s);
1634 break;
1635 case SIOCGPRLST_IN6:
1636 /*
1637 * obsolete API, use sysctl under net.inet6.icmp6
1638 *
1639 * XXX the structure in6_prlist was changed in backward-
1640 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1641 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1642 */
1643 /*
1644 * XXX meaning of fields, especialy "raflags", is very
1645 * differnet between RA prefix list and RR/static prefix list.
1646 * how about separating ioctls into two?
1647 */
1648 memset(oprl, 0, sizeof(*oprl));
1649 s = splsoftnet();
1650 ND_PREFIX_LIST_FOREACH(pr) {
1651 struct nd_pfxrouter *pfr;
1652 int j;
1653
1654 if (i >= PRLSTSIZ)
1655 break;
1656 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1657 oprl->prefix[i].raflags = pr->ndpr_raf;
1658 oprl->prefix[i].prefixlen = pr->ndpr_plen;
1659 oprl->prefix[i].vltime = pr->ndpr_vltime;
1660 oprl->prefix[i].pltime = pr->ndpr_pltime;
1661 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1662 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1663 oprl->prefix[i].expire = 0;
1664 else {
1665 time_t maxexpire;
1666
1667 /* XXX: we assume time_t is signed. */
1668 maxexpire = (-1) &
1669 ~((time_t)1 <<
1670 ((sizeof(maxexpire) * 8) - 1));
1671 if (pr->ndpr_vltime <
1672 maxexpire - pr->ndpr_lastupdate) {
1673 time_t expire;
1674 expire = pr->ndpr_lastupdate +
1675 pr->ndpr_vltime;
1676 oprl->prefix[i].expire = expire ?
1677 time_mono_to_wall(expire) : 0;
1678 } else
1679 oprl->prefix[i].expire = maxexpire;
1680 }
1681
1682 j = 0;
1683 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
1684 if (j < DRLSTSIZ) {
1685 #define RTRADDR oprl->prefix[i].advrtr[j]
1686 RTRADDR = pfr->router->rtaddr;
1687 in6_clearscope(&RTRADDR);
1688 #undef RTRADDR
1689 }
1690 j++;
1691 }
1692 oprl->prefix[i].advrtrs = j;
1693 oprl->prefix[i].origin = PR_ORIG_RA;
1694
1695 i++;
1696 }
1697 splx(s);
1698
1699 break;
1700 case OSIOCGIFINFO_IN6:
1701 #define ND ndi->ndi
1702 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1703 memset(&ND, 0, sizeof(ND));
1704 ND.linkmtu = IN6_LINKMTU(ifp);
1705 ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1706 ND.basereachable = ND_IFINFO(ifp)->basereachable;
1707 ND.reachable = ND_IFINFO(ifp)->reachable;
1708 ND.retrans = ND_IFINFO(ifp)->retrans;
1709 ND.flags = ND_IFINFO(ifp)->flags;
1710 ND.recalctm = ND_IFINFO(ifp)->recalctm;
1711 ND.chlim = ND_IFINFO(ifp)->chlim;
1712 break;
1713 case SIOCGIFINFO_IN6:
1714 ND = *ND_IFINFO(ifp);
1715 break;
1716 case SIOCSIFINFO_IN6:
1717 /*
1718 * used to change host variables from userland.
1719 * intented for a use on router to reflect RA configurations.
1720 */
1721 /* 0 means 'unspecified' */
1722 if (ND.linkmtu != 0) {
1723 if (ND.linkmtu < IPV6_MMTU ||
1724 ND.linkmtu > IN6_LINKMTU(ifp)) {
1725 error = EINVAL;
1726 break;
1727 }
1728 ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1729 }
1730
1731 if (ND.basereachable != 0) {
1732 int obasereachable = ND_IFINFO(ifp)->basereachable;
1733
1734 ND_IFINFO(ifp)->basereachable = ND.basereachable;
1735 if (ND.basereachable != obasereachable)
1736 ND_IFINFO(ifp)->reachable =
1737 ND_COMPUTE_RTIME(ND.basereachable);
1738 }
1739 if (ND.retrans != 0)
1740 ND_IFINFO(ifp)->retrans = ND.retrans;
1741 if (ND.chlim != 0)
1742 ND_IFINFO(ifp)->chlim = ND.chlim;
1743 /* FALLTHROUGH */
1744 case SIOCSIFINFO_FLAGS:
1745 {
1746 struct ifaddr *ifa;
1747 struct in6_ifaddr *ia;
1748
1749 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1750 !(ND.flags & ND6_IFF_IFDISABLED))
1751 {
1752 /*
1753 * If the interface is marked as ND6_IFF_IFDISABLED and
1754 * has a link-local address with IN6_IFF_DUPLICATED,
1755 * do not clear ND6_IFF_IFDISABLED.
1756 * See RFC 4862, section 5.4.5.
1757 */
1758 int duplicated_linklocal = 0;
1759
1760 s = pserialize_read_enter();
1761 IFADDR_READER_FOREACH(ifa, ifp) {
1762 if (ifa->ifa_addr->sa_family != AF_INET6)
1763 continue;
1764 ia = (struct in6_ifaddr *)ifa;
1765 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1766 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1767 {
1768 duplicated_linklocal = 1;
1769 break;
1770 }
1771 }
1772 pserialize_read_exit(s);
1773
1774 if (duplicated_linklocal) {
1775 ND.flags |= ND6_IFF_IFDISABLED;
1776 log(LOG_ERR, "Cannot enable an interface"
1777 " with a link-local address marked"
1778 " duplicate.\n");
1779 } else {
1780 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1781 if (ifp->if_flags & IFF_UP)
1782 in6_if_up(ifp);
1783 }
1784 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1785 (ND.flags & ND6_IFF_IFDISABLED)) {
1786 int bound = curlwp_bind();
1787 /* Mark all IPv6 addresses as tentative. */
1788
1789 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1790 s = pserialize_read_enter();
1791 IFADDR_READER_FOREACH(ifa, ifp) {
1792 struct psref psref;
1793 if (ifa->ifa_addr->sa_family != AF_INET6)
1794 continue;
1795 ifa_acquire(ifa, &psref);
1796 pserialize_read_exit(s);
1797
1798 nd6_dad_stop(ifa);
1799
1800 ia = (struct in6_ifaddr *)ifa;
1801 ia->ia6_flags |= IN6_IFF_TENTATIVE;
1802
1803 s = pserialize_read_enter();
1804 ifa_release(ifa, &psref);
1805 }
1806 pserialize_read_exit(s);
1807 curlwp_bindx(bound);
1808 }
1809
1810 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1811 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1812 /* auto_linklocal 0->1 transition */
1813
1814 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1815 in6_ifattach(ifp, NULL);
1816 } else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1817 ifp->if_flags & IFF_UP)
1818 {
1819 /*
1820 * When the IF already has
1821 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1822 * address is assigned, and IFF_UP, try to
1823 * assign one.
1824 */
1825 int haslinklocal = 0;
1826
1827 s = pserialize_read_enter();
1828 IFADDR_READER_FOREACH(ifa, ifp) {
1829 if (ifa->ifa_addr->sa_family !=AF_INET6)
1830 continue;
1831 ia = (struct in6_ifaddr *)ifa;
1832 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))){
1833 haslinklocal = 1;
1834 break;
1835 }
1836 }
1837 pserialize_read_exit(s);
1838 if (!haslinklocal)
1839 in6_ifattach(ifp, NULL);
1840 }
1841 }
1842 }
1843 ND_IFINFO(ifp)->flags = ND.flags;
1844 break;
1845 #undef ND
1846 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1847 /* sync kernel routing table with the default router list */
1848 nd6_defrouter_reset();
1849 nd6_defrouter_select();
1850 break;
1851 case SIOCSPFXFLUSH_IN6:
1852 {
1853 /* flush all the prefix advertised by routers */
1854 struct nd_prefix *pfx, *next;
1855
1856 s = splsoftnet();
1857 ND_PREFIX_LIST_FOREACH_SAFE(pfx, next) {
1858 struct in6_ifaddr *ia, *ia_next;
1859 int _s;
1860
1861 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
1862 continue; /* XXX */
1863
1864 /* do we really have to remove addresses as well? */
1865 restart:
1866 _s = pserialize_read_enter();
1867 for (ia = IN6_ADDRLIST_READER_FIRST(); ia;
1868 ia = ia_next) {
1869 /* ia might be removed. keep the next ptr. */
1870 ia_next = IN6_ADDRLIST_READER_NEXT(ia);
1871
1872 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1873 continue;
1874
1875 if (ia->ia6_ndpr == pfx) {
1876 pserialize_read_exit(_s);
1877 /* XXX NOMPSAFE? */
1878 in6_purgeaddr(&ia->ia_ifa);
1879 goto restart;
1880 }
1881 }
1882 pserialize_read_exit(_s);
1883 nd6_prelist_remove(pfx);
1884 }
1885 splx(s);
1886 break;
1887 }
1888 case SIOCSRTRFLUSH_IN6:
1889 {
1890 /* flush all the default routers */
1891 struct nd_defrouter *drtr, *next;
1892
1893 s = splsoftnet();
1894 nd6_defrouter_reset();
1895 ND_DEFROUTER_LIST_FOREACH_SAFE(drtr, next) {
1896 nd6_defrtrlist_del(drtr, NULL);
1897 }
1898 nd6_defrouter_select();
1899 splx(s);
1900 break;
1901 }
1902 case SIOCGNBRINFO_IN6:
1903 {
1904 struct llentry *ln;
1905 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1906
1907 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1908 return error;
1909
1910 ln = nd6_lookup(&nb_addr, ifp, false);
1911 if (ln == NULL) {
1912 error = EINVAL;
1913 break;
1914 }
1915 nbi->state = ln->ln_state;
1916 nbi->asked = ln->ln_asked;
1917 nbi->isrouter = ln->ln_router;
1918 nbi->expire = ln->ln_expire ?
1919 time_mono_to_wall(ln->ln_expire) : 0;
1920 LLE_RUNLOCK(ln);
1921
1922 break;
1923 }
1924 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1925 ndif->ifindex = nd6_defifindex;
1926 break;
1927 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1928 return nd6_setdefaultiface(ndif->ifindex);
1929 }
1930 return error;
1931 }
1932
1933 void
1934 nd6_llinfo_release_pkts(struct llentry *ln, struct ifnet *ifp)
1935 {
1936 struct mbuf *m_hold, *m_hold_next;
1937 struct sockaddr_in6 sin6;
1938
1939 LLE_WLOCK_ASSERT(ln);
1940
1941 sockaddr_in6_init(&sin6, &ln->r_l3addr.addr6, 0, 0, 0);
1942
1943 m_hold = ln->la_hold, ln->la_hold = NULL, ln->la_numheld = 0;
1944
1945 LLE_WUNLOCK(ln);
1946 for (; m_hold != NULL; m_hold = m_hold_next) {
1947 m_hold_next = m_hold->m_nextpkt;
1948 m_hold->m_nextpkt = NULL;
1949
1950 /*
1951 * we assume ifp is not a p2p here, so
1952 * just set the 2nd argument as the
1953 * 1st one.
1954 */
1955 nd6_output(ifp, ifp, m_hold, &sin6, NULL);
1956 }
1957 LLE_WLOCK(ln);
1958 }
1959
1960 /*
1961 * Create neighbor cache entry and cache link-layer address,
1962 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1963 */
1964 void
1965 nd6_cache_lladdr(
1966 struct ifnet *ifp,
1967 struct in6_addr *from,
1968 char *lladdr,
1969 int lladdrlen,
1970 int type, /* ICMP6 type */
1971 int code /* type dependent information */
1972 )
1973 {
1974 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
1975 struct llentry *ln = NULL;
1976 int is_newentry;
1977 int do_update;
1978 int olladdr;
1979 int llchange;
1980 int newstate = 0;
1981 uint16_t router = 0;
1982
1983 KASSERT(ifp != NULL);
1984 KASSERT(from != NULL);
1985
1986 /* nothing must be updated for unspecified address */
1987 if (IN6_IS_ADDR_UNSPECIFIED(from))
1988 return;
1989
1990 /*
1991 * Validation about ifp->if_addrlen and lladdrlen must be done in
1992 * the caller.
1993 *
1994 * XXX If the link does not have link-layer adderss, what should
1995 * we do? (ifp->if_addrlen == 0)
1996 * Spec says nothing in sections for RA, RS and NA. There's small
1997 * description on it in NS section (RFC 2461 7.2.3).
1998 */
1999
2000 ln = nd6_lookup(from, ifp, true);
2001 if (ln == NULL) {
2002 #if 0
2003 /* nothing must be done if there's no lladdr */
2004 if (!lladdr || !lladdrlen)
2005 return NULL;
2006 #endif
2007
2008 ln = nd6_create(from, ifp);
2009 is_newentry = 1;
2010 } else {
2011 /* do nothing if static ndp is set */
2012 if (ln->la_flags & LLE_STATIC) {
2013 LLE_WUNLOCK(ln);
2014 return;
2015 }
2016 is_newentry = 0;
2017 }
2018
2019 if (ln == NULL)
2020 return;
2021
2022 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
2023 if (olladdr && lladdr) {
2024 llchange = memcmp(lladdr, &ln->ll_addr, ifp->if_addrlen);
2025 } else
2026 llchange = 0;
2027
2028 /*
2029 * newentry olladdr lladdr llchange (*=record)
2030 * 0 n n -- (1)
2031 * 0 y n -- (2)
2032 * 0 n y -- (3) * STALE
2033 * 0 y y n (4) *
2034 * 0 y y y (5) * STALE
2035 * 1 -- n -- (6) NOSTATE(= PASSIVE)
2036 * 1 -- y -- (7) * STALE
2037 */
2038
2039 if (lladdr) { /* (3-5) and (7) */
2040 /*
2041 * Record source link-layer address
2042 * XXX is it dependent to ifp->if_type?
2043 */
2044 memcpy(&ln->ll_addr, lladdr, ifp->if_addrlen);
2045 ln->la_flags |= LLE_VALID;
2046 }
2047
2048 if (!is_newentry) {
2049 if ((!olladdr && lladdr) || /* (3) */
2050 (olladdr && lladdr && llchange)) { /* (5) */
2051 do_update = 1;
2052 newstate = ND6_LLINFO_STALE;
2053 } else /* (1-2,4) */
2054 do_update = 0;
2055 } else {
2056 do_update = 1;
2057 if (lladdr == NULL) /* (6) */
2058 newstate = ND6_LLINFO_NOSTATE;
2059 else /* (7) */
2060 newstate = ND6_LLINFO_STALE;
2061 }
2062
2063 if (do_update) {
2064 /*
2065 * Update the state of the neighbor cache.
2066 */
2067 ln->ln_state = newstate;
2068
2069 if (ln->ln_state == ND6_LLINFO_STALE) {
2070 /*
2071 * XXX: since nd6_output() below will cause
2072 * state tansition to DELAY and reset the timer,
2073 * we must set the timer now, although it is actually
2074 * meaningless.
2075 */
2076 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
2077
2078 nd6_llinfo_release_pkts(ln, ifp);
2079 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
2080 /* probe right away */
2081 nd6_llinfo_settimer((void *)ln, 0);
2082 }
2083 }
2084
2085 /*
2086 * ICMP6 type dependent behavior.
2087 *
2088 * NS: clear IsRouter if new entry
2089 * RS: clear IsRouter
2090 * RA: set IsRouter if there's lladdr
2091 * redir: clear IsRouter if new entry
2092 *
2093 * RA case, (1):
2094 * The spec says that we must set IsRouter in the following cases:
2095 * - If lladdr exist, set IsRouter. This means (1-5).
2096 * - If it is old entry (!newentry), set IsRouter. This means (7).
2097 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
2098 * A quetion arises for (1) case. (1) case has no lladdr in the
2099 * neighbor cache, this is similar to (6).
2100 * This case is rare but we figured that we MUST NOT set IsRouter.
2101 *
2102 * newentry olladdr lladdr llchange NS RS RA redir
2103 * D R
2104 * 0 n n -- (1) c ? s
2105 * 0 y n -- (2) c s s
2106 * 0 n y -- (3) c s s
2107 * 0 y y n (4) c s s
2108 * 0 y y y (5) c s s
2109 * 1 -- n -- (6) c c c s
2110 * 1 -- y -- (7) c c s c s
2111 *
2112 * (c=clear s=set)
2113 */
2114 switch (type & 0xff) {
2115 case ND_NEIGHBOR_SOLICIT:
2116 /*
2117 * New entry must have is_router flag cleared.
2118 */
2119 if (is_newentry) /* (6-7) */
2120 ln->ln_router = 0;
2121 break;
2122 case ND_REDIRECT:
2123 /*
2124 * If the icmp is a redirect to a better router, always set the
2125 * is_router flag. Otherwise, if the entry is newly created,
2126 * clear the flag. [RFC 2461, sec 8.3]
2127 */
2128 if (code == ND_REDIRECT_ROUTER)
2129 ln->ln_router = 1;
2130 else if (is_newentry) /* (6-7) */
2131 ln->ln_router = 0;
2132 break;
2133 case ND_ROUTER_SOLICIT:
2134 /*
2135 * is_router flag must always be cleared.
2136 */
2137 ln->ln_router = 0;
2138 break;
2139 case ND_ROUTER_ADVERT:
2140 /*
2141 * Mark an entry with lladdr as a router.
2142 */
2143 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
2144 (is_newentry && lladdr)) { /* (7) */
2145 ln->ln_router = 1;
2146 }
2147 break;
2148 }
2149
2150 #if 0
2151 /* XXX should we send rtmsg as it used to be? */
2152 if (do_update)
2153 rt_newmsg(RTM_CHANGE, rt); /* tell user process */
2154 #endif
2155
2156 if (ln != NULL) {
2157 router = ln->ln_router;
2158 LLE_WUNLOCK(ln);
2159 }
2160
2161 /*
2162 * If we have too many cache entries, initiate immediate
2163 * purging for some entries.
2164 */
2165 if (is_newentry)
2166 nd6_gc_neighbors(LLTABLE6(ifp), &ln->r_l3addr.addr6);
2167
2168 /*
2169 * When the link-layer address of a router changes, select the
2170 * best router again. In particular, when the neighbor entry is newly
2171 * created, it might affect the selection policy.
2172 * Question: can we restrict the first condition to the "is_newentry"
2173 * case?
2174 * XXX: when we hear an RA from a new router with the link-layer
2175 * address option, nd6_defrouter_select() is called twice, since
2176 * defrtrlist_update called the function as well. However, I believe
2177 * we can compromise the overhead, since it only happens the first
2178 * time.
2179 * XXX: although nd6_defrouter_select() should not have a bad effect
2180 * for those are not autoconfigured hosts, we explicitly avoid such
2181 * cases for safety.
2182 */
2183 if (do_update && router && !ip6_forwarding &&
2184 nd6_accepts_rtadv(ndi))
2185 nd6_defrouter_select();
2186 }
2187
2188 static void
2189 nd6_slowtimo(void *ignored_arg)
2190 {
2191 struct nd_ifinfo *nd6if;
2192 struct ifnet *ifp;
2193 int s;
2194
2195 #ifndef NET_MPSAFE
2196 mutex_enter(softnet_lock);
2197 KERNEL_LOCK(1, NULL);
2198 #endif
2199 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
2200 nd6_slowtimo, NULL);
2201
2202 s = pserialize_read_enter();
2203 IFNET_READER_FOREACH(ifp) {
2204 nd6if = ND_IFINFO(ifp);
2205 if (nd6if->basereachable && /* already initialized */
2206 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
2207 /*
2208 * Since reachable time rarely changes by router
2209 * advertisements, we SHOULD insure that a new random
2210 * value gets recomputed at least once every few hours.
2211 * (RFC 2461, 6.3.4)
2212 */
2213 nd6if->recalctm = nd6_recalc_reachtm_interval;
2214 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
2215 }
2216 }
2217 pserialize_read_exit(s);
2218
2219 #ifndef NET_MPSAFE
2220 KERNEL_UNLOCK_ONE(NULL);
2221 mutex_exit(softnet_lock);
2222 #endif
2223 }
2224
2225 int
2226 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
2227 const struct sockaddr_in6 *dst, struct rtentry *rt)
2228 {
2229 #define senderr(e) { error = (e); goto bad;}
2230 struct llentry *ln = NULL;
2231 int error = 0;
2232 bool created = false;
2233
2234 if (rt != NULL) {
2235 error = rt_check_reject_route(rt, ifp);
2236 if (error != 0) {
2237 m_freem(m);
2238 return error;
2239 }
2240 }
2241
2242 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
2243 goto sendpkt;
2244
2245 if (nd6_need_cache(ifp) == 0)
2246 goto sendpkt;
2247
2248 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) != 0) {
2249 struct sockaddr_in6 *gw6 = satosin6(rt->rt_gateway);
2250 int s;
2251
2252 /* XXX remain the check to keep the original behavior. */
2253 /*
2254 * We skip link-layer address resolution and NUD
2255 * if the gateway is not a neighbor from ND point
2256 * of view, regardless of the value of nd_ifinfo.flags.
2257 * The second condition is a bit tricky; we skip
2258 * if the gateway is our own address, which is
2259 * sometimes used to install a route to a p2p link.
2260 */
2261 s = pserialize_read_enter();
2262 if (!nd6_is_addr_neighbor(gw6, ifp) ||
2263 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
2264 /*
2265 * We allow this kind of tricky route only
2266 * when the outgoing interface is p2p.
2267 * XXX: we may need a more generic rule here.
2268 */
2269 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) {
2270 pserialize_read_exit(s);
2271 senderr(EHOSTUNREACH);
2272 }
2273
2274 pserialize_read_exit(s);
2275 goto sendpkt;
2276 }
2277 pserialize_read_exit(s);
2278 }
2279
2280 /*
2281 * Address resolution or Neighbor Unreachability Detection
2282 * for the next hop.
2283 * At this point, the destination of the packet must be a unicast
2284 * or an anycast address(i.e. not a multicast).
2285 */
2286
2287 /* Look up the neighbor cache for the nexthop */
2288 ln = nd6_lookup(&dst->sin6_addr, ifp, true);
2289 if ((ln == NULL) && nd6_is_addr_neighbor(dst, ifp)) {
2290 /*
2291 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2292 * the condition below is not very efficient. But we believe
2293 * it is tolerable, because this should be a rare case.
2294 */
2295 ln = nd6_create(&dst->sin6_addr, ifp);
2296 if (ln != NULL)
2297 created = true;
2298 }
2299
2300 if (ln == NULL) {
2301 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2302 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2303 log(LOG_DEBUG,
2304 "nd6_output: can't allocate llinfo for %s "
2305 "(ln=%p, rt=%p)\n",
2306 ip6_sprintf(&dst->sin6_addr), ln, rt);
2307 senderr(EIO); /* XXX: good error? */
2308 }
2309 goto sendpkt; /* send anyway */
2310 }
2311
2312 LLE_WLOCK_ASSERT(ln);
2313
2314 /* We don't have to do link-layer address resolution on a p2p link. */
2315 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2316 ln->ln_state < ND6_LLINFO_REACHABLE) {
2317 ln->ln_state = ND6_LLINFO_STALE;
2318 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
2319 }
2320
2321 /*
2322 * The first time we send a packet to a neighbor whose entry is
2323 * STALE, we have to change the state to DELAY and a sets a timer to
2324 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2325 * neighbor unreachability detection on expiration.
2326 * (RFC 2461 7.3.3)
2327 */
2328 if (ln->ln_state == ND6_LLINFO_STALE) {
2329 ln->ln_asked = 0;
2330 ln->ln_state = ND6_LLINFO_DELAY;
2331 nd6_llinfo_settimer(ln, nd6_delay * hz);
2332 }
2333
2334 /*
2335 * If the neighbor cache entry has a state other than INCOMPLETE
2336 * (i.e. its link-layer address is already resolved), just
2337 * send the packet.
2338 */
2339 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2340 goto sendpkt;
2341
2342 /*
2343 * There is a neighbor cache entry, but no ethernet address
2344 * response yet. Append this latest packet to the end of the
2345 * packet queue in the mbuf, unless the number of the packet
2346 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen,
2347 * the oldest packet in the queue will be removed.
2348 */
2349 if (ln->ln_state == ND6_LLINFO_NOSTATE)
2350 ln->ln_state = ND6_LLINFO_INCOMPLETE;
2351 if (ln->ln_hold) {
2352 struct mbuf *m_hold;
2353 int i;
2354
2355 i = 0;
2356 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2357 i++;
2358 if (m_hold->m_nextpkt == NULL) {
2359 m_hold->m_nextpkt = m;
2360 break;
2361 }
2362 }
2363 while (i >= nd6_maxqueuelen) {
2364 m_hold = ln->ln_hold;
2365 ln->ln_hold = ln->ln_hold->m_nextpkt;
2366 m_freem(m_hold);
2367 i--;
2368 }
2369 } else {
2370 ln->ln_hold = m;
2371 }
2372
2373 /*
2374 * If there has been no NS for the neighbor after entering the
2375 * INCOMPLETE state, send the first solicitation.
2376 */
2377 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2378 struct in6_addr src, *psrc;
2379
2380 ln->ln_asked++;
2381 nd6_llinfo_settimer(ln, ND_IFINFO(ifp)->retrans * hz / 1000);
2382 psrc = nd6_llinfo_get_holdsrc(ln, &src);
2383 LLE_WUNLOCK(ln);
2384 ln = NULL;
2385 nd6_ns_output(ifp, NULL, &dst->sin6_addr, psrc, 0);
2386 } else {
2387 /* We did the lookup so we need to do the unlock here. */
2388 LLE_WUNLOCK(ln);
2389 }
2390
2391 error = 0;
2392 goto exit;
2393
2394 sendpkt:
2395 /* discard the packet if IPv6 operation is disabled on the interface */
2396 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2397 error = ENETDOWN; /* better error? */
2398 goto bad;
2399 }
2400
2401 if (ln != NULL)
2402 LLE_WUNLOCK(ln);
2403
2404 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2405 error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt);
2406 else
2407 error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt);
2408 goto exit;
2409
2410 bad:
2411 if (m != NULL)
2412 m_freem(m);
2413 exit:
2414 if (created)
2415 nd6_gc_neighbors(LLTABLE6(ifp), &dst->sin6_addr);
2416
2417 return error;
2418 #undef senderr
2419 }
2420
2421 int
2422 nd6_need_cache(struct ifnet *ifp)
2423 {
2424 /*
2425 * XXX: we currently do not make neighbor cache on any interface
2426 * other than ARCnet, Ethernet, FDDI and GIF.
2427 *
2428 * RFC2893 says:
2429 * - unidirectional tunnels needs no ND
2430 */
2431 switch (ifp->if_type) {
2432 case IFT_ARCNET:
2433 case IFT_ETHER:
2434 case IFT_FDDI:
2435 case IFT_IEEE1394:
2436 case IFT_CARP:
2437 case IFT_GIF: /* XXX need more cases? */
2438 case IFT_PPP:
2439 case IFT_TUNNEL:
2440 return 1;
2441 default:
2442 return 0;
2443 }
2444 }
2445
2446 /*
2447 * Add pernament ND6 link-layer record for given
2448 * interface address.
2449 *
2450 * Very similar to IPv4 arp_ifinit(), but:
2451 * 1) IPv6 DAD is performed in different place
2452 * 2) It is called by IPv6 protocol stack in contrast to
2453 * arp_ifinit() which is typically called in SIOCSIFADDR
2454 * driver ioctl handler.
2455 *
2456 */
2457 int
2458 nd6_add_ifa_lle(struct in6_ifaddr *ia)
2459 {
2460 struct ifnet *ifp;
2461 struct llentry *ln;
2462
2463 ifp = ia->ia_ifa.ifa_ifp;
2464 if (nd6_need_cache(ifp) == 0)
2465 return 0;
2466 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
2467 ia->ia_ifa.ifa_flags |= RTF_CONNECTED;
2468
2469 IF_AFDATA_WLOCK(ifp);
2470 ln = lla_create(LLTABLE6(ifp), LLE_IFADDR | LLE_EXCLUSIVE,
2471 sin6tosa(&ia->ia_addr));
2472 IF_AFDATA_WUNLOCK(ifp);
2473 if (ln == NULL)
2474 return ENOBUFS;
2475
2476 ln->la_expire = 0; /* for IPv6 this means permanent */
2477 ln->ln_state = ND6_LLINFO_REACHABLE;
2478
2479 LLE_WUNLOCK(ln);
2480 return 0;
2481 }
2482
2483 /*
2484 * Removes ALL lle records for interface address prefix.
2485 * XXXME: That's probably not we really want to do, we need
2486 * to remove address record only and keep other records
2487 * until we determine if given prefix is really going
2488 * to be removed.
2489 */
2490 void
2491 nd6_rem_ifa_lle(struct in6_ifaddr *ia)
2492 {
2493 struct sockaddr_in6 mask, addr;
2494
2495 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
2496 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
2497 lltable_prefix_free(AF_INET6, sin6tosa(&addr), sin6tosa(&mask),
2498 LLE_STATIC);
2499 }
2500
2501 int
2502 nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt,
2503 struct mbuf *m, const struct sockaddr *dst, uint8_t *lldst,
2504 size_t dstsize)
2505 {
2506 struct llentry *ln;
2507
2508 if (m->m_flags & M_MCAST) {
2509 switch (ifp->if_type) {
2510 case IFT_ETHER:
2511 case IFT_FDDI:
2512 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
2513 lldst);
2514 return 1;
2515 case IFT_IEEE1394:
2516 memcpy(lldst, ifp->if_broadcastaddr,
2517 MIN(dstsize, ifp->if_addrlen));
2518 return 1;
2519 case IFT_ARCNET:
2520 *lldst = 0;
2521 return 1;
2522 default:
2523 m_freem(m);
2524 return 0;
2525 }
2526 }
2527
2528 /*
2529 * the entry should have been created in nd6_store_lladdr
2530 */
2531 ln = nd6_lookup(&satocsin6(dst)->sin6_addr, ifp, false);
2532 if ((ln == NULL) || !(ln->la_flags & LLE_VALID)) {
2533 if (ln != NULL)
2534 LLE_RUNLOCK(ln);
2535 /* this could happen, if we could not allocate memory */
2536 m_freem(m);
2537 return 0;
2538 }
2539
2540 /* XXX llentry should have addrlen? */
2541 #if 0
2542 sdl = satocsdl(rt->rt_gateway);
2543 if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) {
2544 char sbuf[INET6_ADDRSTRLEN];
2545 char dbuf[LINK_ADDRSTRLEN];
2546 /* this should be impossible, but we bark here for debugging */
2547 printf("%s: sdl_alen == %" PRIu8 ", if=%s, dst=%s, sdl=%s\n",
2548 __func__, sdl->sdl_alen, if_name(ifp),
2549 IN6_PRINT(sbuf, &satocsin6(dst)->sin6_addr),
2550 DL_PRINT(dbuf, &sdl->sdl_addr));
2551 m_freem(m);
2552 return 0;
2553 }
2554 #endif
2555
2556 memcpy(lldst, &ln->ll_addr, MIN(dstsize, ifp->if_addrlen));
2557
2558 LLE_RUNLOCK(ln);
2559
2560 return 1;
2561 }
2562
2563 static void
2564 clear_llinfo_pqueue(struct llentry *ln)
2565 {
2566 struct mbuf *m_hold, *m_hold_next;
2567
2568 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2569 m_hold_next = m_hold->m_nextpkt;
2570 m_hold->m_nextpkt = NULL;
2571 m_freem(m_hold);
2572 }
2573
2574 ln->ln_hold = NULL;
2575 return;
2576 }
2577
2578 int
2579 nd6_sysctl(
2580 int name,
2581 void *oldp, /* syscall arg, need copyout */
2582 size_t *oldlenp,
2583 void *newp, /* syscall arg, need copyin */
2584 size_t newlen
2585 )
2586 {
2587 void *p;
2588 size_t ol;
2589 int error;
2590
2591 error = 0;
2592
2593 if (newp)
2594 return EPERM;
2595 if (oldp && !oldlenp)
2596 return EINVAL;
2597 ol = oldlenp ? *oldlenp : 0;
2598
2599 if (oldp) {
2600 p = malloc(*oldlenp, M_TEMP, M_WAITOK);
2601 if (p == NULL)
2602 return ENOMEM;
2603 } else
2604 p = NULL;
2605 switch (name) {
2606 case ICMPV6CTL_ND6_DRLIST:
2607 error = fill_drlist(p, oldlenp, ol);
2608 if (!error && p != NULL && oldp != NULL)
2609 error = copyout(p, oldp, *oldlenp);
2610 break;
2611
2612 case ICMPV6CTL_ND6_PRLIST:
2613 error = fill_prlist(p, oldlenp, ol);
2614 if (!error && p != NULL && oldp != NULL)
2615 error = copyout(p, oldp, *oldlenp);
2616 break;
2617
2618 case ICMPV6CTL_ND6_MAXQLEN:
2619 break;
2620
2621 default:
2622 error = ENOPROTOOPT;
2623 break;
2624 }
2625 if (p)
2626 free(p, M_TEMP);
2627
2628 return error;
2629 }
2630
2631 static int
2632 fill_drlist(void *oldp, size_t *oldlenp, size_t ol)
2633 {
2634 int error = 0, s;
2635 struct in6_defrouter *d = NULL, *de = NULL;
2636 struct nd_defrouter *dr;
2637 size_t l;
2638
2639 s = splsoftnet();
2640
2641 if (oldp) {
2642 d = (struct in6_defrouter *)oldp;
2643 de = (struct in6_defrouter *)((char *)oldp + *oldlenp);
2644 }
2645 l = 0;
2646
2647 ND_DEFROUTER_LIST_FOREACH(dr) {
2648
2649 if (oldp && d + 1 <= de) {
2650 memset(d, 0, sizeof(*d));
2651 sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0);
2652 if (sa6_recoverscope(&d->rtaddr)) {
2653 log(LOG_ERR,
2654 "scope error in router list (%s)\n",
2655 ip6_sprintf(&d->rtaddr.sin6_addr));
2656 /* XXX: press on... */
2657 }
2658 d->flags = dr->flags;
2659 d->rtlifetime = dr->rtlifetime;
2660 d->expire = dr->expire ?
2661 time_mono_to_wall(dr->expire) : 0;
2662 d->if_index = dr->ifp->if_index;
2663 }
2664
2665 l += sizeof(*d);
2666 if (d)
2667 d++;
2668 }
2669
2670 if (oldp) {
2671 if (l > ol)
2672 error = ENOMEM;
2673 }
2674 if (oldlenp)
2675 *oldlenp = l; /* (void *)d - (void *)oldp */
2676
2677 splx(s);
2678
2679 return error;
2680 }
2681
2682 static int
2683 fill_prlist(void *oldp, size_t *oldlenp, size_t ol)
2684 {
2685 int error = 0, s;
2686 struct nd_prefix *pr;
2687 uint8_t *p = NULL, *ps = NULL;
2688 uint8_t *pe = NULL;
2689 size_t l;
2690
2691 s = splsoftnet();
2692
2693 if (oldp) {
2694 ps = p = (uint8_t*)oldp;
2695 pe = (uint8_t*)oldp + *oldlenp;
2696 }
2697 l = 0;
2698
2699 ND_PREFIX_LIST_FOREACH(pr) {
2700 u_short advrtrs;
2701 struct sockaddr_in6 sin6;
2702 struct nd_pfxrouter *pfr;
2703 struct in6_prefix pfx;
2704
2705 if (oldp && p + sizeof(struct in6_prefix) <= pe)
2706 {
2707 memset(&pfx, 0, sizeof(pfx));
2708 ps = p;
2709 pfx.prefix = pr->ndpr_prefix;
2710
2711 if (sa6_recoverscope(&pfx.prefix)) {
2712 log(LOG_ERR,
2713 "scope error in prefix list (%s)\n",
2714 ip6_sprintf(&pfx.prefix.sin6_addr));
2715 /* XXX: press on... */
2716 }
2717 pfx.raflags = pr->ndpr_raf;
2718 pfx.prefixlen = pr->ndpr_plen;
2719 pfx.vltime = pr->ndpr_vltime;
2720 pfx.pltime = pr->ndpr_pltime;
2721 pfx.if_index = pr->ndpr_ifp->if_index;
2722 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2723 pfx.expire = 0;
2724 else {
2725 time_t maxexpire;
2726
2727 /* XXX: we assume time_t is signed. */
2728 maxexpire = (-1) &
2729 ~((time_t)1 <<
2730 ((sizeof(maxexpire) * 8) - 1));
2731 if (pr->ndpr_vltime <
2732 maxexpire - pr->ndpr_lastupdate) {
2733 pfx.expire = pr->ndpr_lastupdate +
2734 pr->ndpr_vltime;
2735 } else
2736 pfx.expire = maxexpire;
2737 }
2738 pfx.refcnt = pr->ndpr_refcnt;
2739 pfx.flags = pr->ndpr_stateflags;
2740 pfx.origin = PR_ORIG_RA;
2741
2742 p += sizeof(pfx); l += sizeof(pfx);
2743
2744 advrtrs = 0;
2745 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2746 if (p + sizeof(sin6) > pe) {
2747 advrtrs++;
2748 continue;
2749 }
2750
2751 sockaddr_in6_init(&sin6, &pfr->router->rtaddr,
2752 0, 0, 0);
2753 if (sa6_recoverscope(&sin6)) {
2754 log(LOG_ERR,
2755 "scope error in "
2756 "prefix list (%s)\n",
2757 ip6_sprintf(&pfr->router->rtaddr));
2758 }
2759 advrtrs++;
2760 memcpy(p, &sin6, sizeof(sin6));
2761 p += sizeof(sin6);
2762 l += sizeof(sin6);
2763 }
2764 pfx.advrtrs = advrtrs;
2765 memcpy(ps, &pfx, sizeof(pfx));
2766 }
2767 else {
2768 l += sizeof(pfx);
2769 advrtrs = 0;
2770 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2771 advrtrs++;
2772 l += sizeof(sin6);
2773 }
2774 }
2775 }
2776
2777 if (oldp) {
2778 *oldlenp = l; /* (void *)d - (void *)oldp */
2779 if (l > ol)
2780 error = ENOMEM;
2781 } else
2782 *oldlenp = l;
2783
2784 splx(s);
2785
2786 return error;
2787 }
2788
2789 static int
2790 nd6_setdefaultiface(int ifindex)
2791 {
2792 ifnet_t *ifp;
2793 int error = 0;
2794 int s;
2795
2796 s = pserialize_read_enter();
2797 ifp = if_byindex(ifindex);
2798 if (ifp == NULL) {
2799 pserialize_read_exit(s);
2800 return EINVAL;
2801 }
2802 if (nd6_defifindex != ifindex) {
2803 nd6_defifindex = ifindex;
2804 nd6_defifp = nd6_defifindex > 0 ? ifp : NULL;
2805
2806 /*
2807 * Our current implementation assumes one-to-one maping between
2808 * interfaces and links, so it would be natural to use the
2809 * default interface as the default link.
2810 */
2811 scope6_setdefault(nd6_defifp);
2812 }
2813 pserialize_read_exit(s);
2814
2815 return (error);
2816 }
2817