nd6.c revision 1.219 1 /* $NetBSD: nd6.c,v 1.219 2016/12/19 04:52:17 ozaki-r Exp $ */
2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.219 2016/12/19 04:52:17 ozaki-r Exp $");
35
36 #ifdef _KERNEL_OPT
37 #include "opt_net_mpsafe.h"
38 #endif
39
40 #include "bridge.h"
41 #include "carp.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/sockio.h>
51 #include <sys/time.h>
52 #include <sys/kernel.h>
53 #include <sys/protosw.h>
54 #include <sys/errno.h>
55 #include <sys/ioctl.h>
56 #include <sys/syslog.h>
57 #include <sys/queue.h>
58 #include <sys/cprng.h>
59 #include <sys/workqueue.h>
60
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_llatbl.h>
64 #include <net/if_types.h>
65 #include <net/route.h>
66 #include <net/if_ether.h>
67 #include <net/if_fddi.h>
68 #include <net/if_arc.h>
69
70 #include <netinet/in.h>
71 #include <netinet6/in6_var.h>
72 #include <netinet/ip6.h>
73 #include <netinet6/ip6_var.h>
74 #include <netinet6/scope6_var.h>
75 #include <netinet6/nd6.h>
76 #include <netinet6/in6_ifattach.h>
77 #include <netinet/icmp6.h>
78 #include <netinet6/icmp6_private.h>
79
80 #include <net/net_osdep.h>
81
82 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
83 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
84
85 /* timer values */
86 int nd6_prune = 1; /* walk list every 1 seconds */
87 int nd6_delay = 5; /* delay first probe time 5 second */
88 int nd6_umaxtries = 3; /* maximum unicast query */
89 int nd6_mmaxtries = 3; /* maximum multicast query */
90 int nd6_useloopback = 1; /* use loopback interface for local traffic */
91 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
92
93 /* preventing too many loops in ND option parsing */
94 int nd6_maxndopt = 10; /* max # of ND options allowed */
95
96 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
97
98 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
99
100 #ifdef ND6_DEBUG
101 int nd6_debug = 1;
102 #else
103 int nd6_debug = 0;
104 #endif
105
106 struct nd_drhead nd_defrouter;
107 struct nd_prhead nd_prefix = { 0 };
108
109 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
110
111 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
112 static void nd6_slowtimo(void *);
113 static int regen_tmpaddr(const struct in6_ifaddr *);
114 static void nd6_free(struct llentry *, int);
115 static void nd6_llinfo_timer(void *);
116 static void nd6_timer(void *);
117 static void nd6_timer_work(struct work *, void *);
118 static void clear_llinfo_pqueue(struct llentry *);
119 static struct nd_opt_hdr *nd6_option(union nd_opts *);
120
121 static callout_t nd6_slowtimo_ch;
122 static callout_t nd6_timer_ch;
123 static struct workqueue *nd6_timer_wq;
124 static struct work nd6_timer_wk;
125
126 static int fill_drlist(void *, size_t *, size_t);
127 static int fill_prlist(void *, size_t *, size_t);
128
129 static struct ifnet *nd6_defifp;
130 static int nd6_defifindex;
131
132 static int nd6_setdefaultiface(int);
133
134 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
135
136 void
137 nd6_init(void)
138 {
139 int error;
140
141 /* initialization of the default router list */
142 ND_DEFROUTER_LIST_INIT();
143
144 callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE);
145 callout_init(&nd6_timer_ch, CALLOUT_MPSAFE);
146
147 error = workqueue_create(&nd6_timer_wq, "nd6_timer",
148 nd6_timer_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
149 if (error)
150 panic("%s: workqueue_create failed (%d)\n", __func__, error);
151
152 /* start timer */
153 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
154 nd6_slowtimo, NULL);
155 callout_reset(&nd6_timer_ch, hz, nd6_timer, NULL);
156 }
157
158 struct nd_ifinfo *
159 nd6_ifattach(struct ifnet *ifp)
160 {
161 struct nd_ifinfo *nd;
162
163 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO);
164
165 nd->initialized = 1;
166
167 nd->chlim = IPV6_DEFHLIM;
168 nd->basereachable = REACHABLE_TIME;
169 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
170 nd->retrans = RETRANS_TIMER;
171
172 nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV;
173
174 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
175 * A bridge interface should not have ND6_IFF_AUTO_LINKLOCAL
176 * because one of its members should. */
177 if ((ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
178 (ifp->if_flags & IFF_LOOPBACK))
179 nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
180
181 /* A loopback interface does not need to accept RTADV.
182 * A bridge interface should not accept RTADV
183 * because one of its members should. */
184 if (ip6_accept_rtadv &&
185 !(ifp->if_flags & IFF_LOOPBACK) &&
186 !(ifp->if_type != IFT_BRIDGE))
187 nd->flags |= ND6_IFF_ACCEPT_RTADV;
188
189 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
190 nd6_setmtu0(ifp, nd);
191
192 return nd;
193 }
194
195 void
196 nd6_ifdetach(struct ifnet *ifp, struct in6_ifextra *ext)
197 {
198
199 /* Ensure all IPv6 addresses are purged before calling nd6_purge */
200 if_purgeaddrs(ifp, AF_INET6, in6_purgeaddr);
201 nd6_purge(ifp, ext);
202 free(ext->nd_ifinfo, M_IP6NDP);
203 }
204
205 void
206 nd6_setmtu(struct ifnet *ifp)
207 {
208 nd6_setmtu0(ifp, ND_IFINFO(ifp));
209 }
210
211 void
212 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
213 {
214 u_int32_t omaxmtu;
215
216 omaxmtu = ndi->maxmtu;
217
218 switch (ifp->if_type) {
219 case IFT_ARCNET:
220 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
221 break;
222 case IFT_FDDI:
223 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
224 break;
225 default:
226 ndi->maxmtu = ifp->if_mtu;
227 break;
228 }
229
230 /*
231 * Decreasing the interface MTU under IPV6 minimum MTU may cause
232 * undesirable situation. We thus notify the operator of the change
233 * explicitly. The check for omaxmtu is necessary to restrict the
234 * log to the case of changing the MTU, not initializing it.
235 */
236 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
237 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
238 " small for IPv6 which needs %lu\n",
239 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
240 IPV6_MMTU);
241 }
242
243 if (ndi->maxmtu > in6_maxmtu)
244 in6_setmaxmtu(); /* check all interfaces just in case */
245 }
246
247 void
248 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
249 {
250
251 memset(ndopts, 0, sizeof(*ndopts));
252 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
253 ndopts->nd_opts_last
254 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
255
256 if (icmp6len == 0) {
257 ndopts->nd_opts_done = 1;
258 ndopts->nd_opts_search = NULL;
259 }
260 }
261
262 /*
263 * Take one ND option.
264 */
265 static struct nd_opt_hdr *
266 nd6_option(union nd_opts *ndopts)
267 {
268 struct nd_opt_hdr *nd_opt;
269 int olen;
270
271 KASSERT(ndopts != NULL);
272 KASSERT(ndopts->nd_opts_last != NULL);
273
274 if (ndopts->nd_opts_search == NULL)
275 return NULL;
276 if (ndopts->nd_opts_done)
277 return NULL;
278
279 nd_opt = ndopts->nd_opts_search;
280
281 /* make sure nd_opt_len is inside the buffer */
282 if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) {
283 memset(ndopts, 0, sizeof(*ndopts));
284 return NULL;
285 }
286
287 olen = nd_opt->nd_opt_len << 3;
288 if (olen == 0) {
289 /*
290 * Message validation requires that all included
291 * options have a length that is greater than zero.
292 */
293 memset(ndopts, 0, sizeof(*ndopts));
294 return NULL;
295 }
296
297 ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen);
298 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
299 /* option overruns the end of buffer, invalid */
300 memset(ndopts, 0, sizeof(*ndopts));
301 return NULL;
302 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
303 /* reached the end of options chain */
304 ndopts->nd_opts_done = 1;
305 ndopts->nd_opts_search = NULL;
306 }
307 return nd_opt;
308 }
309
310 /*
311 * Parse multiple ND options.
312 * This function is much easier to use, for ND routines that do not need
313 * multiple options of the same type.
314 */
315 int
316 nd6_options(union nd_opts *ndopts)
317 {
318 struct nd_opt_hdr *nd_opt;
319 int i = 0;
320
321 KASSERT(ndopts != NULL);
322 KASSERT(ndopts->nd_opts_last != NULL);
323
324 if (ndopts->nd_opts_search == NULL)
325 return 0;
326
327 while (1) {
328 nd_opt = nd6_option(ndopts);
329 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
330 /*
331 * Message validation requires that all included
332 * options have a length that is greater than zero.
333 */
334 ICMP6_STATINC(ICMP6_STAT_ND_BADOPT);
335 memset(ndopts, 0, sizeof(*ndopts));
336 return -1;
337 }
338
339 if (nd_opt == NULL)
340 goto skip1;
341
342 switch (nd_opt->nd_opt_type) {
343 case ND_OPT_SOURCE_LINKADDR:
344 case ND_OPT_TARGET_LINKADDR:
345 case ND_OPT_MTU:
346 case ND_OPT_REDIRECTED_HEADER:
347 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
348 nd6log(LOG_INFO,
349 "duplicated ND6 option found (type=%d)\n",
350 nd_opt->nd_opt_type);
351 /* XXX bark? */
352 } else {
353 ndopts->nd_opt_array[nd_opt->nd_opt_type]
354 = nd_opt;
355 }
356 break;
357 case ND_OPT_PREFIX_INFORMATION:
358 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
359 ndopts->nd_opt_array[nd_opt->nd_opt_type]
360 = nd_opt;
361 }
362 ndopts->nd_opts_pi_end =
363 (struct nd_opt_prefix_info *)nd_opt;
364 break;
365 default:
366 /*
367 * Unknown options must be silently ignored,
368 * to accommodate future extension to the protocol.
369 */
370 nd6log(LOG_DEBUG,
371 "nd6_options: unsupported option %d - "
372 "option ignored\n", nd_opt->nd_opt_type);
373 }
374
375 skip1:
376 i++;
377 if (i > nd6_maxndopt) {
378 ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT);
379 nd6log(LOG_INFO, "too many loop in nd opt\n");
380 break;
381 }
382
383 if (ndopts->nd_opts_done)
384 break;
385 }
386
387 return 0;
388 }
389
390 /*
391 * ND6 timer routine to handle ND6 entries
392 */
393 void
394 nd6_llinfo_settimer(struct llentry *ln, time_t xtick)
395 {
396
397 CTASSERT(sizeof(time_t) > sizeof(int));
398 LLE_WLOCK_ASSERT(ln);
399
400 if (xtick < 0) {
401 ln->ln_expire = 0;
402 ln->ln_ntick = 0;
403 callout_halt(&ln->ln_timer_ch, &ln->lle_lock);
404 } else {
405 ln->ln_expire = time_uptime + xtick / hz;
406 LLE_ADDREF(ln);
407 if (xtick > INT_MAX) {
408 ln->ln_ntick = xtick - INT_MAX;
409 callout_reset(&ln->ln_timer_ch, INT_MAX,
410 nd6_llinfo_timer, ln);
411 } else {
412 ln->ln_ntick = 0;
413 callout_reset(&ln->ln_timer_ch, xtick,
414 nd6_llinfo_timer, ln);
415 }
416 }
417 }
418
419 /*
420 * Gets source address of the first packet in hold queue
421 * and stores it in @src.
422 * Returns pointer to @src (if hold queue is not empty) or NULL.
423 */
424 static struct in6_addr *
425 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
426 {
427 struct ip6_hdr *hip6;
428
429 if (ln == NULL || ln->ln_hold == NULL)
430 return NULL;
431
432 /*
433 * assuming every packet in ln_hold has the same IP header
434 */
435 hip6 = mtod(ln->ln_hold, struct ip6_hdr *);
436 /* XXX pullup? */
437 if (sizeof(*hip6) < ln->ln_hold->m_len)
438 *src = hip6->ip6_src;
439 else
440 src = NULL;
441
442 return src;
443 }
444
445 static void
446 nd6_llinfo_timer(void *arg)
447 {
448 struct llentry *ln = arg;
449 struct ifnet *ifp;
450 struct nd_ifinfo *ndi = NULL;
451 bool send_ns = false;
452 const struct in6_addr *daddr6 = NULL;
453
454 #ifndef NET_MPSAFE
455 mutex_enter(softnet_lock);
456 KERNEL_LOCK(1, NULL);
457 #endif
458
459 LLE_WLOCK(ln);
460 if (ln->ln_ntick > 0) {
461 nd6_llinfo_settimer(ln, ln->ln_ntick);
462 goto out;
463 }
464
465 if (callout_pending(&ln->la_timer)) {
466 /*
467 * Here we are a bit odd here in the treatment of
468 * active/pending. If the pending bit is set, it got
469 * rescheduled before I ran. The active
470 * bit we ignore, since if it was stopped
471 * in ll_tablefree() and was currently running
472 * it would have return 0 so the code would
473 * not have deleted it since the callout could
474 * not be stopped so we want to go through
475 * with the delete here now. If the callout
476 * was restarted, the pending bit will be back on and
477 * we just want to bail since the callout_reset would
478 * return 1 and our reference would have been removed
479 * by nd6_llinfo_settimer above since canceled
480 * would have been 1.
481 */
482 goto out;
483 }
484
485 ifp = ln->lle_tbl->llt_ifp;
486
487 KASSERT(ifp != NULL);
488
489 ndi = ND_IFINFO(ifp);
490
491 switch (ln->ln_state) {
492 case ND6_LLINFO_INCOMPLETE:
493 if (ln->ln_asked < nd6_mmaxtries) {
494 ln->ln_asked++;
495 send_ns = true;
496 } else {
497 struct mbuf *m = ln->ln_hold;
498 if (m) {
499 struct mbuf *m0;
500
501 /*
502 * assuming every packet in ln_hold has
503 * the same IP header
504 */
505 m0 = m->m_nextpkt;
506 m->m_nextpkt = NULL;
507 ln->ln_hold = m0;
508 clear_llinfo_pqueue(ln);
509 }
510 nd6_free(ln, 0);
511 ln = NULL;
512 if (m != NULL)
513 icmp6_error2(m, ICMP6_DST_UNREACH,
514 ICMP6_DST_UNREACH_ADDR, 0, ifp);
515 }
516 break;
517 case ND6_LLINFO_REACHABLE:
518 if (!ND6_LLINFO_PERMANENT(ln)) {
519 ln->ln_state = ND6_LLINFO_STALE;
520 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
521 }
522 break;
523
524 case ND6_LLINFO_PURGE:
525 case ND6_LLINFO_STALE:
526 /* Garbage Collection(RFC 2461 5.3) */
527 if (!ND6_LLINFO_PERMANENT(ln)) {
528 nd6_free(ln, 1);
529 ln = NULL;
530 }
531 break;
532
533 case ND6_LLINFO_DELAY:
534 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
535 /* We need NUD */
536 ln->ln_asked = 1;
537 ln->ln_state = ND6_LLINFO_PROBE;
538 daddr6 = &ln->r_l3addr.addr6;
539 send_ns = true;
540 } else {
541 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
542 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
543 }
544 break;
545 case ND6_LLINFO_PROBE:
546 if (ln->ln_asked < nd6_umaxtries) {
547 ln->ln_asked++;
548 daddr6 = &ln->r_l3addr.addr6;
549 send_ns = true;
550 } else {
551 nd6_free(ln, 0);
552 ln = NULL;
553 }
554 break;
555 }
556
557 if (send_ns) {
558 struct in6_addr src, *psrc;
559 const struct in6_addr *taddr6 = &ln->r_l3addr.addr6;
560
561 nd6_llinfo_settimer(ln, ndi->retrans * hz / 1000);
562 psrc = nd6_llinfo_get_holdsrc(ln, &src);
563 LLE_FREE_LOCKED(ln);
564 ln = NULL;
565 nd6_ns_output(ifp, daddr6, taddr6, psrc, 0);
566 }
567
568 out:
569 if (ln != NULL)
570 LLE_FREE_LOCKED(ln);
571 #ifndef NET_MPSAFE
572 KERNEL_UNLOCK_ONE(NULL);
573 mutex_exit(softnet_lock);
574 #endif
575 }
576
577 /*
578 * ND6 timer routine to expire default route list and prefix list
579 */
580 static void
581 nd6_timer_work(struct work *wk, void *arg)
582 {
583 struct nd_defrouter *next_dr, *dr;
584 struct nd_prefix *next_pr, *pr;
585 struct in6_ifaddr *ia6, *nia6;
586 int s, bound;
587 struct psref psref;
588
589 callout_reset(&nd6_timer_ch, nd6_prune * hz,
590 nd6_timer, NULL);
591
592 #ifndef NET_MPSAFE
593 mutex_enter(softnet_lock);
594 KERNEL_LOCK(1, NULL);
595 #endif
596
597 /* expire default router list */
598
599 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, next_dr) {
600 if (dr->expire && dr->expire < time_uptime) {
601 nd6_defrtrlist_del(dr, NULL);
602 }
603 }
604
605 /*
606 * expire interface addresses.
607 * in the past the loop was inside prefix expiry processing.
608 * However, from a stricter speci-confrmance standpoint, we should
609 * rather separate address lifetimes and prefix lifetimes.
610 */
611 bound = curlwp_bind();
612 addrloop:
613 s = pserialize_read_enter();
614 for (ia6 = IN6_ADDRLIST_READER_FIRST(); ia6; ia6 = nia6) {
615 nia6 = IN6_ADDRLIST_READER_NEXT(ia6);
616
617 ia6_acquire(ia6, &psref);
618 pserialize_read_exit(s);
619
620 /* check address lifetime */
621 if (IFA6_IS_INVALID(ia6)) {
622 int regen = 0;
623
624 /*
625 * If the expiring address is temporary, try
626 * regenerating a new one. This would be useful when
627 * we suspended a laptop PC, then turned it on after a
628 * period that could invalidate all temporary
629 * addresses. Although we may have to restart the
630 * loop (see below), it must be after purging the
631 * address. Otherwise, we'd see an infinite loop of
632 * regeneration.
633 */
634 if (ip6_use_tempaddr &&
635 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
636 if (regen_tmpaddr(ia6) == 0)
637 regen = 1;
638 }
639
640 ia6_release(ia6, &psref);
641 in6_purgeaddr(&ia6->ia_ifa);
642 ia6 = NULL;
643
644 if (regen)
645 goto addrloop; /* XXX: see below */
646 } else if (IFA6_IS_DEPRECATED(ia6)) {
647 int oldflags = ia6->ia6_flags;
648
649 if ((oldflags & IN6_IFF_DEPRECATED) == 0) {
650 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
651 rt_newaddrmsg(RTM_NEWADDR,
652 (struct ifaddr *)ia6, 0, NULL);
653 }
654
655 /*
656 * If a temporary address has just become deprecated,
657 * regenerate a new one if possible.
658 */
659 if (ip6_use_tempaddr &&
660 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
661 (oldflags & IN6_IFF_DEPRECATED) == 0) {
662
663 if (regen_tmpaddr(ia6) == 0) {
664 /*
665 * A new temporary address is
666 * generated.
667 * XXX: this means the address chain
668 * has changed while we are still in
669 * the loop. Although the change
670 * would not cause disaster (because
671 * it's not a deletion, but an
672 * addition,) we'd rather restart the
673 * loop just for safety. Or does this
674 * significantly reduce performance??
675 */
676 ia6_release(ia6, &psref);
677 goto addrloop;
678 }
679 }
680 } else {
681 /*
682 * A new RA might have made a deprecated address
683 * preferred.
684 */
685 if (ia6->ia6_flags & IN6_IFF_DEPRECATED) {
686 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
687 rt_newaddrmsg(RTM_NEWADDR,
688 (struct ifaddr *)ia6, 0, NULL);
689 }
690 }
691 s = pserialize_read_enter();
692 ia6_release(ia6, &psref);
693 }
694 pserialize_read_exit(s);
695 curlwp_bindx(bound);
696
697 /* expire prefix list */
698 ND_PREFIX_LIST_FOREACH_SAFE(pr, next_pr) {
699 /*
700 * check prefix lifetime.
701 * since pltime is just for autoconf, pltime processing for
702 * prefix is not necessary.
703 */
704 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
705 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) {
706
707 /*
708 * address expiration and prefix expiration are
709 * separate. NEVER perform in6_purgeaddr here.
710 */
711
712 nd6_prelist_remove(pr);
713 }
714 }
715
716 #ifndef NET_MPSAFE
717 KERNEL_UNLOCK_ONE(NULL);
718 mutex_exit(softnet_lock);
719 #endif
720 }
721
722 static void
723 nd6_timer(void *ignored_arg)
724 {
725
726 workqueue_enqueue(nd6_timer_wq, &nd6_timer_wk, NULL);
727 }
728
729 /* ia6: deprecated/invalidated temporary address */
730 static int
731 regen_tmpaddr(const struct in6_ifaddr *ia6)
732 {
733 struct ifaddr *ifa;
734 struct ifnet *ifp;
735 struct in6_ifaddr *public_ifa6 = NULL;
736 int s;
737
738 ifp = ia6->ia_ifa.ifa_ifp;
739 s = pserialize_read_enter();
740 IFADDR_READER_FOREACH(ifa, ifp) {
741 struct in6_ifaddr *it6;
742
743 if (ifa->ifa_addr->sa_family != AF_INET6)
744 continue;
745
746 it6 = (struct in6_ifaddr *)ifa;
747
748 /* ignore no autoconf addresses. */
749 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
750 continue;
751
752 /* ignore autoconf addresses with different prefixes. */
753 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
754 continue;
755
756 /*
757 * Now we are looking at an autoconf address with the same
758 * prefix as ours. If the address is temporary and is still
759 * preferred, do not create another one. It would be rare, but
760 * could happen, for example, when we resume a laptop PC after
761 * a long period.
762 */
763 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
764 !IFA6_IS_DEPRECATED(it6)) {
765 public_ifa6 = NULL;
766 break;
767 }
768
769 /*
770 * This is a public autoconf address that has the same prefix
771 * as ours. If it is preferred, keep it. We can't break the
772 * loop here, because there may be a still-preferred temporary
773 * address with the prefix.
774 */
775 if (!IFA6_IS_DEPRECATED(it6))
776 public_ifa6 = it6;
777 }
778
779 if (public_ifa6 != NULL) {
780 int e;
781 struct psref psref;
782
783 ia6_acquire(public_ifa6, &psref);
784 pserialize_read_exit(s);
785 /*
786 * Random factor is introduced in the preferred lifetime, so
787 * we do not need additional delay (3rd arg to in6_tmpifadd).
788 */
789 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
790 ia6_release(public_ifa6, &psref);
791 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
792 " tmp addr, errno=%d\n", e);
793 return -1;
794 }
795 ia6_release(public_ifa6, &psref);
796 return 0;
797 }
798 pserialize_read_exit(s);
799
800 return -1;
801 }
802
803 bool
804 nd6_accepts_rtadv(const struct nd_ifinfo *ndi)
805 {
806 switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) {
807 case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV:
808 return true;
809 case ND6_IFF_ACCEPT_RTADV:
810 return ip6_accept_rtadv != 0;
811 case ND6_IFF_OVERRIDE_RTADV:
812 case 0:
813 default:
814 return false;
815 }
816 }
817
818 /*
819 * Nuke neighbor cache/prefix/default router management table, right before
820 * ifp goes away.
821 */
822 void
823 nd6_purge(struct ifnet *ifp, struct in6_ifextra *ext)
824 {
825 struct nd_defrouter *dr, *ndr;
826 struct nd_prefix *pr, *npr;
827
828 /*
829 * During detach, the ND info might be already removed, but
830 * then is explitly passed as argument.
831 * Otherwise get it from ifp->if_afdata.
832 */
833 if (ext == NULL)
834 ext = ifp->if_afdata[AF_INET6];
835 if (ext == NULL)
836 return;
837
838 /*
839 * Nuke default router list entries toward ifp.
840 * We defer removal of default router list entries that is installed
841 * in the routing table, in order to keep additional side effects as
842 * small as possible.
843 */
844 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, ndr) {
845 if (dr->installed)
846 continue;
847
848 if (dr->ifp == ifp) {
849 KASSERT(ext != NULL);
850 nd6_defrtrlist_del(dr, ext);
851 }
852 }
853
854 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, ndr) {
855 if (!dr->installed)
856 continue;
857
858 if (dr->ifp == ifp) {
859 KASSERT(ext != NULL);
860 nd6_defrtrlist_del(dr, ext);
861 }
862 }
863
864 /* Nuke prefix list entries toward ifp */
865 ND_PREFIX_LIST_FOREACH_SAFE(pr, npr) {
866 if (pr->ndpr_ifp == ifp) {
867 /*
868 * All addresses referencing pr should be already freed.
869 */
870 KASSERT(pr->ndpr_refcnt == 0);
871 nd6_prelist_remove(pr);
872 }
873 }
874
875 /* cancel default outgoing interface setting */
876 if (nd6_defifindex == ifp->if_index)
877 nd6_setdefaultiface(0);
878
879 /* XXX: too restrictive? */
880 if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) {
881 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
882 if (ndi && nd6_accepts_rtadv(ndi)) {
883 /* refresh default router list */
884 nd6_defrouter_select();
885 }
886 }
887
888 /*
889 * We may not need to nuke the neighbor cache entries here
890 * because the neighbor cache is kept in if_afdata[AF_INET6].
891 * nd6_purge() is invoked by in6_ifdetach() which is called
892 * from if_detach() where everything gets purged. However
893 * in6_ifdetach is directly called from vlan(4), so we still
894 * need to purge entries here.
895 */
896 if (ext->lltable != NULL)
897 lltable_purge_entries(ext->lltable);
898 }
899
900 void
901 nd6_assert_purged(struct ifnet *ifp)
902 {
903 struct nd_defrouter *dr;
904 struct nd_prefix *pr;
905
906 ND_DEFROUTER_LIST_FOREACH(dr) {
907 KASSERTMSG(dr->ifp != ifp,
908 "defrouter %s remains on %s",
909 ip6_sprintf(&dr->rtaddr), ifp->if_xname);
910 }
911
912 ND_PREFIX_LIST_FOREACH(pr) {
913 KASSERTMSG(pr->ndpr_ifp != ifp,
914 "prefix %s/%d remains on %s",
915 ip6_sprintf(&pr->ndpr_prefix.sin6_addr),
916 pr->ndpr_plen, ifp->if_xname);
917 }
918 }
919
920 struct llentry *
921 nd6_lookup(const struct in6_addr *addr6, const struct ifnet *ifp, bool wlock)
922 {
923 struct sockaddr_in6 sin6;
924 struct llentry *ln;
925
926 sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
927
928 IF_AFDATA_RLOCK(ifp);
929 ln = lla_lookup(LLTABLE6(ifp), wlock ? LLE_EXCLUSIVE : 0,
930 sin6tosa(&sin6));
931 IF_AFDATA_RUNLOCK(ifp);
932
933 return ln;
934 }
935
936 struct llentry *
937 nd6_create(const struct in6_addr *addr6, const struct ifnet *ifp)
938 {
939 struct sockaddr_in6 sin6;
940 struct llentry *ln;
941
942 sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
943
944 IF_AFDATA_WLOCK(ifp);
945 ln = lla_create(LLTABLE6(ifp), LLE_EXCLUSIVE,
946 sin6tosa(&sin6));
947 IF_AFDATA_WUNLOCK(ifp);
948
949 if (ln != NULL)
950 ln->ln_state = ND6_LLINFO_NOSTATE;
951
952 return ln;
953 }
954
955 /*
956 * Test whether a given IPv6 address is a neighbor or not, ignoring
957 * the actual neighbor cache. The neighbor cache is ignored in order
958 * to not reenter the routing code from within itself.
959 */
960 static int
961 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
962 {
963 struct nd_prefix *pr;
964 struct ifaddr *dstaddr;
965 int s;
966
967 /*
968 * A link-local address is always a neighbor.
969 * XXX: a link does not necessarily specify a single interface.
970 */
971 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
972 struct sockaddr_in6 sin6_copy;
973 u_int32_t zone;
974
975 /*
976 * We need sin6_copy since sa6_recoverscope() may modify the
977 * content (XXX).
978 */
979 sin6_copy = *addr;
980 if (sa6_recoverscope(&sin6_copy))
981 return 0; /* XXX: should be impossible */
982 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
983 return 0;
984 if (sin6_copy.sin6_scope_id == zone)
985 return 1;
986 else
987 return 0;
988 }
989
990 /*
991 * If the address matches one of our addresses,
992 * it should be a neighbor.
993 * If the address matches one of our on-link prefixes, it should be a
994 * neighbor.
995 */
996 ND_PREFIX_LIST_FOREACH(pr) {
997 if (pr->ndpr_ifp != ifp)
998 continue;
999
1000 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) {
1001 struct rtentry *rt;
1002
1003 rt = rtalloc1(sin6tosa(&pr->ndpr_prefix), 0);
1004 if (rt == NULL)
1005 continue;
1006 /*
1007 * This is the case where multiple interfaces
1008 * have the same prefix, but only one is installed
1009 * into the routing table and that prefix entry
1010 * is not the one being examined here. In the case
1011 * where RADIX_MPATH is enabled, multiple route
1012 * entries (of the same rt_key value) will be
1013 * installed because the interface addresses all
1014 * differ.
1015 */
1016 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1017 &satocsin6(rt_getkey(rt))->sin6_addr)) {
1018 rt_unref(rt);
1019 continue;
1020 }
1021 rt_unref(rt);
1022 }
1023
1024 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1025 &addr->sin6_addr, &pr->ndpr_mask))
1026 return 1;
1027 }
1028
1029 /*
1030 * If the address is assigned on the node of the other side of
1031 * a p2p interface, the address should be a neighbor.
1032 */
1033 s = pserialize_read_enter();
1034 dstaddr = ifa_ifwithdstaddr(sin6tocsa(addr));
1035 if (dstaddr != NULL) {
1036 if (dstaddr->ifa_ifp == ifp) {
1037 pserialize_read_exit(s);
1038 return 1;
1039 }
1040 }
1041 pserialize_read_exit(s);
1042
1043 /*
1044 * If the default router list is empty, all addresses are regarded
1045 * as on-link, and thus, as a neighbor.
1046 */
1047 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
1048 ND_DEFROUTER_LIST_EMPTY() &&
1049 nd6_defifindex == ifp->if_index) {
1050 return 1;
1051 }
1052
1053 return 0;
1054 }
1055
1056 /*
1057 * Detect if a given IPv6 address identifies a neighbor on a given link.
1058 * XXX: should take care of the destination of a p2p link?
1059 */
1060 int
1061 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1062 {
1063 struct nd_prefix *pr;
1064 struct llentry *ln;
1065 struct rtentry *rt;
1066
1067 /*
1068 * A link-local address is always a neighbor.
1069 * XXX: a link does not necessarily specify a single interface.
1070 */
1071 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
1072 struct sockaddr_in6 sin6_copy;
1073 u_int32_t zone;
1074
1075 /*
1076 * We need sin6_copy since sa6_recoverscope() may modify the
1077 * content (XXX).
1078 */
1079 sin6_copy = *addr;
1080 if (sa6_recoverscope(&sin6_copy))
1081 return 0; /* XXX: should be impossible */
1082 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
1083 return 0;
1084 if (sin6_copy.sin6_scope_id == zone)
1085 return 1;
1086 else
1087 return 0;
1088 }
1089
1090 /*
1091 * If the address matches one of our on-link prefixes, it should be a
1092 * neighbor.
1093 */
1094 ND_PREFIX_LIST_FOREACH(pr) {
1095 if (pr->ndpr_ifp != ifp)
1096 continue;
1097
1098 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
1099 continue;
1100
1101 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1102 &addr->sin6_addr, &pr->ndpr_mask))
1103 return 1;
1104 }
1105
1106 /*
1107 * If the default router list is empty, all addresses are regarded
1108 * as on-link, and thus, as a neighbor.
1109 * XXX: we restrict the condition to hosts, because routers usually do
1110 * not have the "default router list".
1111 */
1112 if (!ip6_forwarding && ND_DEFROUTER_LIST_EMPTY() &&
1113 nd6_defifindex == ifp->if_index) {
1114 return 1;
1115 }
1116
1117 IF_AFDATA_UNLOCK_ASSERT(ifp);
1118 if (nd6_is_new_addr_neighbor(addr, ifp))
1119 return 1;
1120
1121 /*
1122 * Even if the address matches none of our addresses, it might be
1123 * in the neighbor cache or a connected route.
1124 */
1125 ln = nd6_lookup(&addr->sin6_addr, ifp, false);
1126 if (ln != NULL) {
1127 LLE_RUNLOCK(ln);
1128 return 1;
1129 }
1130
1131 rt = rtalloc1(sin6tocsa(addr), 0);
1132 if (rt == NULL)
1133 return 0;
1134
1135 if ((rt->rt_flags & RTF_CONNECTED) && (rt->rt_ifp == ifp
1136 #if NBRIDGE > 0
1137 || rt->rt_ifp->if_bridge == ifp->if_bridge
1138 #endif
1139 #if NCARP > 0
1140 || (ifp->if_type == IFT_CARP && rt->rt_ifp == ifp->if_carpdev) ||
1141 (rt->rt_ifp->if_type == IFT_CARP && rt->rt_ifp->if_carpdev == ifp)||
1142 (ifp->if_type == IFT_CARP && rt->rt_ifp->if_type == IFT_CARP &&
1143 rt->rt_ifp->if_carpdev == ifp->if_carpdev)
1144 #endif
1145 )) {
1146 rt_unref(rt);
1147 return 1;
1148 }
1149 rt_unref(rt);
1150
1151 return 0;
1152 }
1153
1154 /*
1155 * Free an nd6 llinfo entry.
1156 * Since the function would cause significant changes in the kernel, DO NOT
1157 * make it global, unless you have a strong reason for the change, and are sure
1158 * that the change is safe.
1159 */
1160 static void
1161 nd6_free(struct llentry *ln, int gc)
1162 {
1163 struct nd_defrouter *dr;
1164 struct ifnet *ifp;
1165 struct in6_addr *in6;
1166
1167 KASSERT(ln != NULL);
1168 LLE_WLOCK_ASSERT(ln);
1169
1170 ifp = ln->lle_tbl->llt_ifp;
1171 in6 = &ln->r_l3addr.addr6;
1172 /*
1173 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1174 * even though it is not harmful, it was not really necessary.
1175 */
1176
1177 /* cancel timer */
1178 nd6_llinfo_settimer(ln, -1);
1179
1180 if (!ip6_forwarding) {
1181 int s;
1182 s = splsoftnet();
1183 dr = nd6_defrouter_lookup(in6, ifp);
1184
1185 if (dr != NULL && dr->expire &&
1186 ln->ln_state == ND6_LLINFO_STALE && gc) {
1187 /*
1188 * If the reason for the deletion is just garbage
1189 * collection, and the neighbor is an active default
1190 * router, do not delete it. Instead, reset the GC
1191 * timer using the router's lifetime.
1192 * Simply deleting the entry would affect default
1193 * router selection, which is not necessarily a good
1194 * thing, especially when we're using router preference
1195 * values.
1196 * XXX: the check for ln_state would be redundant,
1197 * but we intentionally keep it just in case.
1198 */
1199 if (dr->expire > time_uptime)
1200 nd6_llinfo_settimer(ln,
1201 (dr->expire - time_uptime) * hz);
1202 else
1203 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
1204 splx(s);
1205 LLE_WUNLOCK(ln);
1206 return;
1207 }
1208
1209 if (ln->ln_router || dr) {
1210 /*
1211 * We need to unlock to avoid a LOR with nd6_rt_flush()
1212 * with the rnh and for the calls to
1213 * nd6_pfxlist_onlink_check() and nd6_defrouter_select() in the
1214 * block further down for calls into nd6_lookup().
1215 * We still hold a ref.
1216 */
1217 LLE_WUNLOCK(ln);
1218
1219 /*
1220 * nd6_rt_flush must be called whether or not the neighbor
1221 * is in the Default Router List.
1222 * See a corresponding comment in nd6_na_input().
1223 */
1224 nd6_rt_flush(in6, ifp);
1225 }
1226
1227 if (dr) {
1228 /*
1229 * Unreachablity of a router might affect the default
1230 * router selection and on-link detection of advertised
1231 * prefixes.
1232 */
1233
1234 /*
1235 * Temporarily fake the state to choose a new default
1236 * router and to perform on-link determination of
1237 * prefixes correctly.
1238 * Below the state will be set correctly,
1239 * or the entry itself will be deleted.
1240 */
1241 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1242
1243 /*
1244 * Since nd6_defrouter_select() does not affect the
1245 * on-link determination and MIP6 needs the check
1246 * before the default router selection, we perform
1247 * the check now.
1248 */
1249 nd6_pfxlist_onlink_check();
1250
1251 /*
1252 * refresh default router list
1253 */
1254 nd6_defrouter_select();
1255 }
1256
1257 #ifdef __FreeBSD__
1258 /*
1259 * If this entry was added by an on-link redirect, remove the
1260 * corresponding host route.
1261 */
1262 if (ln->la_flags & LLE_REDIRECT)
1263 nd6_free_redirect(ln);
1264 #endif
1265
1266 if (ln->ln_router || dr)
1267 LLE_WLOCK(ln);
1268
1269 splx(s);
1270 }
1271
1272 /*
1273 * Save to unlock. We still hold an extra reference and will not
1274 * free(9) in llentry_free() if someone else holds one as well.
1275 */
1276 LLE_WUNLOCK(ln);
1277 IF_AFDATA_LOCK(ifp);
1278 LLE_WLOCK(ln);
1279
1280 /* Guard against race with other llentry_free(). */
1281 if (ln->la_flags & LLE_LINKED) {
1282 LLE_REMREF(ln);
1283 llentry_free(ln);
1284 } else
1285 LLE_FREE_LOCKED(ln);
1286
1287 IF_AFDATA_UNLOCK(ifp);
1288 }
1289
1290 /*
1291 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1292 *
1293 * XXX cost-effective methods?
1294 */
1295 void
1296 nd6_nud_hint(struct rtentry *rt)
1297 {
1298 struct llentry *ln;
1299 struct ifnet *ifp;
1300
1301 if (rt == NULL)
1302 return;
1303
1304 ifp = rt->rt_ifp;
1305 ln = nd6_lookup(&(satocsin6(rt_getkey(rt)))->sin6_addr, ifp, true);
1306 if (ln == NULL)
1307 return;
1308
1309 if (ln->ln_state < ND6_LLINFO_REACHABLE)
1310 goto done;
1311
1312 /*
1313 * if we get upper-layer reachability confirmation many times,
1314 * it is possible we have false information.
1315 */
1316 ln->ln_byhint++;
1317 if (ln->ln_byhint > nd6_maxnudhint)
1318 goto done;
1319
1320 ln->ln_state = ND6_LLINFO_REACHABLE;
1321 if (!ND6_LLINFO_PERMANENT(ln))
1322 nd6_llinfo_settimer(ln, ND_IFINFO(rt->rt_ifp)->reachable * hz);
1323
1324 done:
1325 LLE_WUNLOCK(ln);
1326
1327 return;
1328 }
1329
1330 struct gc_args {
1331 int gc_entries;
1332 const struct in6_addr *skip_in6;
1333 };
1334
1335 static int
1336 nd6_purge_entry(struct lltable *llt, struct llentry *ln, void *farg)
1337 {
1338 struct gc_args *args = farg;
1339 int *n = &args->gc_entries;
1340 const struct in6_addr *skip_in6 = args->skip_in6;
1341
1342 if (*n <= 0)
1343 return 0;
1344
1345 if (ND6_LLINFO_PERMANENT(ln))
1346 return 0;
1347
1348 if (IN6_ARE_ADDR_EQUAL(&ln->r_l3addr.addr6, skip_in6))
1349 return 0;
1350
1351 LLE_WLOCK(ln);
1352 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1353 ln->ln_state = ND6_LLINFO_STALE;
1354 else
1355 ln->ln_state = ND6_LLINFO_PURGE;
1356 nd6_llinfo_settimer(ln, 0);
1357 LLE_WUNLOCK(ln);
1358
1359 (*n)--;
1360 return 0;
1361 }
1362
1363 static void
1364 nd6_gc_neighbors(struct lltable *llt, const struct in6_addr *in6)
1365 {
1366
1367 if (ip6_neighborgcthresh >= 0 &&
1368 lltable_get_entry_count(llt) >= ip6_neighborgcthresh) {
1369 struct gc_args gc_args = {10, in6};
1370 /*
1371 * XXX entries that are "less recently used" should be
1372 * freed first.
1373 */
1374 lltable_foreach_lle(llt, nd6_purge_entry, &gc_args);
1375 }
1376 }
1377
1378 void
1379 nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
1380 {
1381 struct sockaddr *gate = rt->rt_gateway;
1382 struct ifnet *ifp = rt->rt_ifp;
1383 uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen;
1384 struct ifaddr *ifa;
1385
1386 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1387
1388 if (req == RTM_LLINFO_UPD) {
1389 int rc;
1390 struct in6_addr *in6;
1391 struct in6_addr in6_all;
1392 int anycast;
1393
1394 if ((ifa = info->rti_ifa) == NULL)
1395 return;
1396
1397 in6 = &ifatoia6(ifa)->ia_addr.sin6_addr;
1398 anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST;
1399
1400 in6_all = in6addr_linklocal_allnodes;
1401 if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) {
1402 log(LOG_ERR, "%s: failed to set scope %s "
1403 "(errno=%d)\n", __func__, if_name(ifp), rc);
1404 return;
1405 }
1406
1407 /* XXX don't set Override for proxy addresses */
1408 nd6_na_output(ifa->ifa_ifp, &in6_all, in6,
1409 (anycast ? 0 : ND_NA_FLAG_OVERRIDE)
1410 #if 0
1411 | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0)
1412 #endif
1413 , 1, NULL);
1414 return;
1415 }
1416
1417 if ((rt->rt_flags & RTF_GATEWAY) != 0)
1418 return;
1419
1420 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1421 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1422 /*
1423 * This is probably an interface direct route for a link
1424 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1425 * We do not need special treatment below for such a route.
1426 * Moreover, the RTF_LLINFO flag which would be set below
1427 * would annoy the ndp(8) command.
1428 */
1429 return;
1430 }
1431
1432 switch (req) {
1433 case RTM_ADD: {
1434 int s;
1435
1436 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1437 /*
1438 * There is no backward compatibility :)
1439 *
1440 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1441 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1442 * rt->rt_flags |= RTF_CLONING;
1443 */
1444 /* XXX should move to route.c? */
1445 if (rt->rt_flags & (RTF_CONNECTED | RTF_LOCAL)) {
1446 union {
1447 struct sockaddr sa;
1448 struct sockaddr_dl sdl;
1449 struct sockaddr_storage ss;
1450 } u;
1451 /*
1452 * Case 1: This route should come from a route to
1453 * interface (RTF_CLONING case) or the route should be
1454 * treated as on-link but is currently not
1455 * (RTF_LLINFO && ln == NULL case).
1456 */
1457 if (sockaddr_dl_init(&u.sdl, sizeof(u.ss),
1458 ifp->if_index, ifp->if_type,
1459 NULL, namelen, NULL, addrlen) == NULL) {
1460 printf("%s.%d: sockaddr_dl_init(, %zu, ) "
1461 "failed on %s\n", __func__, __LINE__,
1462 sizeof(u.ss), if_name(ifp));
1463 }
1464 rt_setgate(rt, &u.sa);
1465 gate = rt->rt_gateway;
1466 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1467 if (gate == NULL) {
1468 log(LOG_ERR,
1469 "%s: rt_setgate failed on %s\n", __func__,
1470 if_name(ifp));
1471 break;
1472 }
1473
1474 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1475 if ((rt->rt_flags & RTF_CONNECTED) != 0)
1476 break;
1477 }
1478 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1479 /*
1480 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1481 * We don't do that here since llinfo is not ready yet.
1482 *
1483 * There are also couple of other things to be discussed:
1484 * - unsolicited NA code needs improvement beforehand
1485 * - RFC2461 says we MAY send multicast unsolicited NA
1486 * (7.2.6 paragraph 4), however, it also says that we
1487 * SHOULD provide a mechanism to prevent multicast NA storm.
1488 * we don't have anything like it right now.
1489 * note that the mechanism needs a mutual agreement
1490 * between proxies, which means that we need to implement
1491 * a new protocol, or a new kludge.
1492 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1493 * we need to check ip6forwarding before sending it.
1494 * (or should we allow proxy ND configuration only for
1495 * routers? there's no mention about proxy ND from hosts)
1496 */
1497 #if 0
1498 /* XXX it does not work */
1499 if (rt->rt_flags & RTF_ANNOUNCE)
1500 nd6_na_output(ifp,
1501 &satocsin6(rt_getkey(rt))->sin6_addr,
1502 &satocsin6(rt_getkey(rt))->sin6_addr,
1503 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1504 1, NULL);
1505 #endif
1506
1507 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1508 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1509 /*
1510 * Address resolution isn't necessary for a point to
1511 * point link, so we can skip this test for a p2p link.
1512 */
1513 if (gate->sa_family != AF_LINK ||
1514 gate->sa_len <
1515 sockaddr_dl_measure(namelen, addrlen)) {
1516 log(LOG_DEBUG,
1517 "nd6_rtrequest: bad gateway value: %s\n",
1518 if_name(ifp));
1519 break;
1520 }
1521 satosdl(gate)->sdl_type = ifp->if_type;
1522 satosdl(gate)->sdl_index = ifp->if_index;
1523 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1524 }
1525 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1526
1527 /*
1528 * When called from rt_ifa_addlocal, we cannot depend on that
1529 * the address (rt_getkey(rt)) exits in the address list of the
1530 * interface. So check RTF_LOCAL instead.
1531 */
1532 if (rt->rt_flags & RTF_LOCAL) {
1533 if (nd6_useloopback)
1534 rt->rt_ifp = lo0ifp; /* XXX */
1535 break;
1536 }
1537
1538 /*
1539 * check if rt_getkey(rt) is an address assigned
1540 * to the interface.
1541 */
1542 s = pserialize_read_enter();
1543 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp,
1544 &satocsin6(rt_getkey(rt))->sin6_addr);
1545 if (ifa != NULL) {
1546 if (nd6_useloopback) {
1547 rt->rt_ifp = lo0ifp; /* XXX */
1548 /*
1549 * Make sure rt_ifa be equal to the ifaddr
1550 * corresponding to the address.
1551 * We need this because when we refer
1552 * rt_ifa->ia6_flags in ip6_input, we assume
1553 * that the rt_ifa points to the address instead
1554 * of the loopback address.
1555 */
1556 if (ifa != rt->rt_ifa)
1557 rt_replace_ifa(rt, ifa);
1558 }
1559 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1560 /* join solicited node multicast for proxy ND */
1561 if (ifp->if_flags & IFF_MULTICAST) {
1562 struct in6_addr llsol;
1563 int error;
1564
1565 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1566 llsol.s6_addr32[0] = htonl(0xff020000);
1567 llsol.s6_addr32[1] = 0;
1568 llsol.s6_addr32[2] = htonl(1);
1569 llsol.s6_addr8[12] = 0xff;
1570 if (in6_setscope(&llsol, ifp, NULL))
1571 goto out;
1572 if (!in6_addmulti(&llsol, ifp, &error, 0)) {
1573 nd6log(LOG_ERR, "%s: failed to join "
1574 "%s (errno=%d)\n", if_name(ifp),
1575 ip6_sprintf(&llsol), error);
1576 }
1577 }
1578 }
1579 out:
1580 pserialize_read_exit(s);
1581 /*
1582 * If we have too many cache entries, initiate immediate
1583 * purging for some entries.
1584 */
1585 if (rt->rt_ifp != NULL)
1586 nd6_gc_neighbors(LLTABLE6(rt->rt_ifp), NULL);
1587 break;
1588 }
1589
1590 case RTM_DELETE:
1591 /* leave from solicited node multicast for proxy ND */
1592 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1593 (ifp->if_flags & IFF_MULTICAST) != 0) {
1594 struct in6_addr llsol;
1595 struct in6_multi *in6m;
1596
1597 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1598 llsol.s6_addr32[0] = htonl(0xff020000);
1599 llsol.s6_addr32[1] = 0;
1600 llsol.s6_addr32[2] = htonl(1);
1601 llsol.s6_addr8[12] = 0xff;
1602 if (in6_setscope(&llsol, ifp, NULL) == 0) {
1603 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1604 if (in6m)
1605 in6_delmulti(in6m);
1606 }
1607 }
1608 break;
1609 }
1610 }
1611
1612 int
1613 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp)
1614 {
1615 struct in6_drlist *drl = (struct in6_drlist *)data;
1616 struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1617 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1618 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1619 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1620 struct nd_defrouter *dr;
1621 struct nd_prefix *pr;
1622 int i = 0, error = 0;
1623 int s;
1624
1625 switch (cmd) {
1626 case SIOCGDRLST_IN6:
1627 /*
1628 * obsolete API, use sysctl under net.inet6.icmp6
1629 */
1630 memset(drl, 0, sizeof(*drl));
1631 s = splsoftnet();
1632 ND_DEFROUTER_LIST_FOREACH(dr) {
1633 if (i >= DRLSTSIZ)
1634 break;
1635 drl->defrouter[i].rtaddr = dr->rtaddr;
1636 in6_clearscope(&drl->defrouter[i].rtaddr);
1637
1638 drl->defrouter[i].flags = dr->flags;
1639 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1640 drl->defrouter[i].expire = dr->expire ?
1641 time_mono_to_wall(dr->expire) : 0;
1642 drl->defrouter[i].if_index = dr->ifp->if_index;
1643 i++;
1644 }
1645 splx(s);
1646 break;
1647 case SIOCGPRLST_IN6:
1648 /*
1649 * obsolete API, use sysctl under net.inet6.icmp6
1650 *
1651 * XXX the structure in6_prlist was changed in backward-
1652 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1653 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1654 */
1655 /*
1656 * XXX meaning of fields, especialy "raflags", is very
1657 * differnet between RA prefix list and RR/static prefix list.
1658 * how about separating ioctls into two?
1659 */
1660 memset(oprl, 0, sizeof(*oprl));
1661 s = splsoftnet();
1662 ND_PREFIX_LIST_FOREACH(pr) {
1663 struct nd_pfxrouter *pfr;
1664 int j;
1665
1666 if (i >= PRLSTSIZ)
1667 break;
1668 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1669 oprl->prefix[i].raflags = pr->ndpr_raf;
1670 oprl->prefix[i].prefixlen = pr->ndpr_plen;
1671 oprl->prefix[i].vltime = pr->ndpr_vltime;
1672 oprl->prefix[i].pltime = pr->ndpr_pltime;
1673 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1674 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1675 oprl->prefix[i].expire = 0;
1676 else {
1677 time_t maxexpire;
1678
1679 /* XXX: we assume time_t is signed. */
1680 maxexpire = (-1) &
1681 ~((time_t)1 <<
1682 ((sizeof(maxexpire) * 8) - 1));
1683 if (pr->ndpr_vltime <
1684 maxexpire - pr->ndpr_lastupdate) {
1685 time_t expire;
1686 expire = pr->ndpr_lastupdate +
1687 pr->ndpr_vltime;
1688 oprl->prefix[i].expire = expire ?
1689 time_mono_to_wall(expire) : 0;
1690 } else
1691 oprl->prefix[i].expire = maxexpire;
1692 }
1693
1694 j = 0;
1695 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
1696 if (j < DRLSTSIZ) {
1697 #define RTRADDR oprl->prefix[i].advrtr[j]
1698 RTRADDR = pfr->router->rtaddr;
1699 in6_clearscope(&RTRADDR);
1700 #undef RTRADDR
1701 }
1702 j++;
1703 }
1704 oprl->prefix[i].advrtrs = j;
1705 oprl->prefix[i].origin = PR_ORIG_RA;
1706
1707 i++;
1708 }
1709 splx(s);
1710
1711 break;
1712 case OSIOCGIFINFO_IN6:
1713 #define ND ndi->ndi
1714 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1715 memset(&ND, 0, sizeof(ND));
1716 ND.linkmtu = IN6_LINKMTU(ifp);
1717 ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1718 ND.basereachable = ND_IFINFO(ifp)->basereachable;
1719 ND.reachable = ND_IFINFO(ifp)->reachable;
1720 ND.retrans = ND_IFINFO(ifp)->retrans;
1721 ND.flags = ND_IFINFO(ifp)->flags;
1722 ND.recalctm = ND_IFINFO(ifp)->recalctm;
1723 ND.chlim = ND_IFINFO(ifp)->chlim;
1724 break;
1725 case SIOCGIFINFO_IN6:
1726 ND = *ND_IFINFO(ifp);
1727 break;
1728 case SIOCSIFINFO_IN6:
1729 /*
1730 * used to change host variables from userland.
1731 * intented for a use on router to reflect RA configurations.
1732 */
1733 /* 0 means 'unspecified' */
1734 if (ND.linkmtu != 0) {
1735 if (ND.linkmtu < IPV6_MMTU ||
1736 ND.linkmtu > IN6_LINKMTU(ifp)) {
1737 error = EINVAL;
1738 break;
1739 }
1740 ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1741 }
1742
1743 if (ND.basereachable != 0) {
1744 int obasereachable = ND_IFINFO(ifp)->basereachable;
1745
1746 ND_IFINFO(ifp)->basereachable = ND.basereachable;
1747 if (ND.basereachable != obasereachable)
1748 ND_IFINFO(ifp)->reachable =
1749 ND_COMPUTE_RTIME(ND.basereachable);
1750 }
1751 if (ND.retrans != 0)
1752 ND_IFINFO(ifp)->retrans = ND.retrans;
1753 if (ND.chlim != 0)
1754 ND_IFINFO(ifp)->chlim = ND.chlim;
1755 /* FALLTHROUGH */
1756 case SIOCSIFINFO_FLAGS:
1757 {
1758 struct ifaddr *ifa;
1759 struct in6_ifaddr *ia;
1760
1761 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1762 !(ND.flags & ND6_IFF_IFDISABLED))
1763 {
1764 /*
1765 * If the interface is marked as ND6_IFF_IFDISABLED and
1766 * has a link-local address with IN6_IFF_DUPLICATED,
1767 * do not clear ND6_IFF_IFDISABLED.
1768 * See RFC 4862, section 5.4.5.
1769 */
1770 int duplicated_linklocal = 0;
1771
1772 s = pserialize_read_enter();
1773 IFADDR_READER_FOREACH(ifa, ifp) {
1774 if (ifa->ifa_addr->sa_family != AF_INET6)
1775 continue;
1776 ia = (struct in6_ifaddr *)ifa;
1777 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1778 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1779 {
1780 duplicated_linklocal = 1;
1781 break;
1782 }
1783 }
1784 pserialize_read_exit(s);
1785
1786 if (duplicated_linklocal) {
1787 ND.flags |= ND6_IFF_IFDISABLED;
1788 log(LOG_ERR, "Cannot enable an interface"
1789 " with a link-local address marked"
1790 " duplicate.\n");
1791 } else {
1792 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1793 if (ifp->if_flags & IFF_UP)
1794 in6_if_up(ifp);
1795 }
1796 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1797 (ND.flags & ND6_IFF_IFDISABLED)) {
1798 int bound = curlwp_bind();
1799 /* Mark all IPv6 addresses as tentative. */
1800
1801 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1802 s = pserialize_read_enter();
1803 IFADDR_READER_FOREACH(ifa, ifp) {
1804 struct psref psref;
1805 if (ifa->ifa_addr->sa_family != AF_INET6)
1806 continue;
1807 ifa_acquire(ifa, &psref);
1808 pserialize_read_exit(s);
1809
1810 nd6_dad_stop(ifa);
1811
1812 ia = (struct in6_ifaddr *)ifa;
1813 ia->ia6_flags |= IN6_IFF_TENTATIVE;
1814
1815 s = pserialize_read_enter();
1816 ifa_release(ifa, &psref);
1817 }
1818 pserialize_read_exit(s);
1819 curlwp_bindx(bound);
1820 }
1821
1822 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1823 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1824 /* auto_linklocal 0->1 transition */
1825
1826 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1827 in6_ifattach(ifp, NULL);
1828 } else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1829 ifp->if_flags & IFF_UP)
1830 {
1831 /*
1832 * When the IF already has
1833 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1834 * address is assigned, and IFF_UP, try to
1835 * assign one.
1836 */
1837 int haslinklocal = 0;
1838
1839 s = pserialize_read_enter();
1840 IFADDR_READER_FOREACH(ifa, ifp) {
1841 if (ifa->ifa_addr->sa_family !=AF_INET6)
1842 continue;
1843 ia = (struct in6_ifaddr *)ifa;
1844 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))){
1845 haslinklocal = 1;
1846 break;
1847 }
1848 }
1849 pserialize_read_exit(s);
1850 if (!haslinklocal)
1851 in6_ifattach(ifp, NULL);
1852 }
1853 }
1854 }
1855 ND_IFINFO(ifp)->flags = ND.flags;
1856 break;
1857 #undef ND
1858 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1859 /* sync kernel routing table with the default router list */
1860 nd6_defrouter_reset();
1861 nd6_defrouter_select();
1862 break;
1863 case SIOCSPFXFLUSH_IN6:
1864 {
1865 /* flush all the prefix advertised by routers */
1866 struct nd_prefix *pfx, *next;
1867
1868 s = splsoftnet();
1869 ND_PREFIX_LIST_FOREACH_SAFE(pfx, next) {
1870 struct in6_ifaddr *ia, *ia_next;
1871 int _s;
1872
1873 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
1874 continue; /* XXX */
1875
1876 /* do we really have to remove addresses as well? */
1877 restart:
1878 _s = pserialize_read_enter();
1879 for (ia = IN6_ADDRLIST_READER_FIRST(); ia;
1880 ia = ia_next) {
1881 /* ia might be removed. keep the next ptr. */
1882 ia_next = IN6_ADDRLIST_READER_NEXT(ia);
1883
1884 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1885 continue;
1886
1887 if (ia->ia6_ndpr == pfx) {
1888 pserialize_read_exit(_s);
1889 /* XXX NOMPSAFE? */
1890 in6_purgeaddr(&ia->ia_ifa);
1891 goto restart;
1892 }
1893 }
1894 pserialize_read_exit(_s);
1895 nd6_prelist_remove(pfx);
1896 }
1897 splx(s);
1898 break;
1899 }
1900 case SIOCSRTRFLUSH_IN6:
1901 {
1902 /* flush all the default routers */
1903 struct nd_defrouter *drtr, *next;
1904
1905 s = splsoftnet();
1906 nd6_defrouter_reset();
1907 ND_DEFROUTER_LIST_FOREACH_SAFE(drtr, next) {
1908 nd6_defrtrlist_del(drtr, NULL);
1909 }
1910 nd6_defrouter_select();
1911 splx(s);
1912 break;
1913 }
1914 case SIOCGNBRINFO_IN6:
1915 {
1916 struct llentry *ln;
1917 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1918
1919 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1920 return error;
1921
1922 ln = nd6_lookup(&nb_addr, ifp, false);
1923 if (ln == NULL) {
1924 error = EINVAL;
1925 break;
1926 }
1927 nbi->state = ln->ln_state;
1928 nbi->asked = ln->ln_asked;
1929 nbi->isrouter = ln->ln_router;
1930 nbi->expire = ln->ln_expire ?
1931 time_mono_to_wall(ln->ln_expire) : 0;
1932 LLE_RUNLOCK(ln);
1933
1934 break;
1935 }
1936 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1937 ndif->ifindex = nd6_defifindex;
1938 break;
1939 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1940 return nd6_setdefaultiface(ndif->ifindex);
1941 }
1942 return error;
1943 }
1944
1945 void
1946 nd6_llinfo_release_pkts(struct llentry *ln, struct ifnet *ifp)
1947 {
1948 struct mbuf *m_hold, *m_hold_next;
1949 struct sockaddr_in6 sin6;
1950
1951 LLE_WLOCK_ASSERT(ln);
1952
1953 sockaddr_in6_init(&sin6, &ln->r_l3addr.addr6, 0, 0, 0);
1954
1955 m_hold = ln->la_hold, ln->la_hold = NULL, ln->la_numheld = 0;
1956
1957 LLE_WUNLOCK(ln);
1958 for (; m_hold != NULL; m_hold = m_hold_next) {
1959 m_hold_next = m_hold->m_nextpkt;
1960 m_hold->m_nextpkt = NULL;
1961
1962 /*
1963 * we assume ifp is not a p2p here, so
1964 * just set the 2nd argument as the
1965 * 1st one.
1966 */
1967 nd6_output(ifp, ifp, m_hold, &sin6, NULL);
1968 }
1969 LLE_WLOCK(ln);
1970 }
1971
1972 /*
1973 * Create neighbor cache entry and cache link-layer address,
1974 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1975 */
1976 void
1977 nd6_cache_lladdr(
1978 struct ifnet *ifp,
1979 struct in6_addr *from,
1980 char *lladdr,
1981 int lladdrlen,
1982 int type, /* ICMP6 type */
1983 int code /* type dependent information */
1984 )
1985 {
1986 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
1987 struct llentry *ln = NULL;
1988 int is_newentry;
1989 int do_update;
1990 int olladdr;
1991 int llchange;
1992 int newstate = 0;
1993 uint16_t router = 0;
1994
1995 KASSERT(ifp != NULL);
1996 KASSERT(from != NULL);
1997
1998 /* nothing must be updated for unspecified address */
1999 if (IN6_IS_ADDR_UNSPECIFIED(from))
2000 return;
2001
2002 /*
2003 * Validation about ifp->if_addrlen and lladdrlen must be done in
2004 * the caller.
2005 *
2006 * XXX If the link does not have link-layer adderss, what should
2007 * we do? (ifp->if_addrlen == 0)
2008 * Spec says nothing in sections for RA, RS and NA. There's small
2009 * description on it in NS section (RFC 2461 7.2.3).
2010 */
2011
2012 ln = nd6_lookup(from, ifp, true);
2013 if (ln == NULL) {
2014 #if 0
2015 /* nothing must be done if there's no lladdr */
2016 if (!lladdr || !lladdrlen)
2017 return NULL;
2018 #endif
2019
2020 ln = nd6_create(from, ifp);
2021 is_newentry = 1;
2022 } else {
2023 /* do nothing if static ndp is set */
2024 if (ln->la_flags & LLE_STATIC) {
2025 LLE_WUNLOCK(ln);
2026 return;
2027 }
2028 is_newentry = 0;
2029 }
2030
2031 if (ln == NULL)
2032 return;
2033
2034 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
2035 if (olladdr && lladdr) {
2036 llchange = memcmp(lladdr, &ln->ll_addr, ifp->if_addrlen);
2037 } else
2038 llchange = 0;
2039
2040 /*
2041 * newentry olladdr lladdr llchange (*=record)
2042 * 0 n n -- (1)
2043 * 0 y n -- (2)
2044 * 0 n y -- (3) * STALE
2045 * 0 y y n (4) *
2046 * 0 y y y (5) * STALE
2047 * 1 -- n -- (6) NOSTATE(= PASSIVE)
2048 * 1 -- y -- (7) * STALE
2049 */
2050
2051 if (lladdr) { /* (3-5) and (7) */
2052 /*
2053 * Record source link-layer address
2054 * XXX is it dependent to ifp->if_type?
2055 */
2056 memcpy(&ln->ll_addr, lladdr, ifp->if_addrlen);
2057 ln->la_flags |= LLE_VALID;
2058 }
2059
2060 if (!is_newentry) {
2061 if ((!olladdr && lladdr) || /* (3) */
2062 (olladdr && lladdr && llchange)) { /* (5) */
2063 do_update = 1;
2064 newstate = ND6_LLINFO_STALE;
2065 } else /* (1-2,4) */
2066 do_update = 0;
2067 } else {
2068 do_update = 1;
2069 if (lladdr == NULL) /* (6) */
2070 newstate = ND6_LLINFO_NOSTATE;
2071 else /* (7) */
2072 newstate = ND6_LLINFO_STALE;
2073 }
2074
2075 if (do_update) {
2076 /*
2077 * Update the state of the neighbor cache.
2078 */
2079 ln->ln_state = newstate;
2080
2081 if (ln->ln_state == ND6_LLINFO_STALE) {
2082 /*
2083 * XXX: since nd6_output() below will cause
2084 * state tansition to DELAY and reset the timer,
2085 * we must set the timer now, although it is actually
2086 * meaningless.
2087 */
2088 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
2089
2090 nd6_llinfo_release_pkts(ln, ifp);
2091 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
2092 /* probe right away */
2093 nd6_llinfo_settimer((void *)ln, 0);
2094 }
2095 }
2096
2097 /*
2098 * ICMP6 type dependent behavior.
2099 *
2100 * NS: clear IsRouter if new entry
2101 * RS: clear IsRouter
2102 * RA: set IsRouter if there's lladdr
2103 * redir: clear IsRouter if new entry
2104 *
2105 * RA case, (1):
2106 * The spec says that we must set IsRouter in the following cases:
2107 * - If lladdr exist, set IsRouter. This means (1-5).
2108 * - If it is old entry (!newentry), set IsRouter. This means (7).
2109 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
2110 * A quetion arises for (1) case. (1) case has no lladdr in the
2111 * neighbor cache, this is similar to (6).
2112 * This case is rare but we figured that we MUST NOT set IsRouter.
2113 *
2114 * newentry olladdr lladdr llchange NS RS RA redir
2115 * D R
2116 * 0 n n -- (1) c ? s
2117 * 0 y n -- (2) c s s
2118 * 0 n y -- (3) c s s
2119 * 0 y y n (4) c s s
2120 * 0 y y y (5) c s s
2121 * 1 -- n -- (6) c c c s
2122 * 1 -- y -- (7) c c s c s
2123 *
2124 * (c=clear s=set)
2125 */
2126 switch (type & 0xff) {
2127 case ND_NEIGHBOR_SOLICIT:
2128 /*
2129 * New entry must have is_router flag cleared.
2130 */
2131 if (is_newentry) /* (6-7) */
2132 ln->ln_router = 0;
2133 break;
2134 case ND_REDIRECT:
2135 /*
2136 * If the icmp is a redirect to a better router, always set the
2137 * is_router flag. Otherwise, if the entry is newly created,
2138 * clear the flag. [RFC 2461, sec 8.3]
2139 */
2140 if (code == ND_REDIRECT_ROUTER)
2141 ln->ln_router = 1;
2142 else if (is_newentry) /* (6-7) */
2143 ln->ln_router = 0;
2144 break;
2145 case ND_ROUTER_SOLICIT:
2146 /*
2147 * is_router flag must always be cleared.
2148 */
2149 ln->ln_router = 0;
2150 break;
2151 case ND_ROUTER_ADVERT:
2152 /*
2153 * Mark an entry with lladdr as a router.
2154 */
2155 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
2156 (is_newentry && lladdr)) { /* (7) */
2157 ln->ln_router = 1;
2158 }
2159 break;
2160 }
2161
2162 #if 0
2163 /* XXX should we send rtmsg as it used to be? */
2164 if (do_update)
2165 rt_newmsg(RTM_CHANGE, rt); /* tell user process */
2166 #endif
2167
2168 if (ln != NULL) {
2169 router = ln->ln_router;
2170 LLE_WUNLOCK(ln);
2171 }
2172
2173 /*
2174 * If we have too many cache entries, initiate immediate
2175 * purging for some entries.
2176 */
2177 if (is_newentry)
2178 nd6_gc_neighbors(LLTABLE6(ifp), &ln->r_l3addr.addr6);
2179
2180 /*
2181 * When the link-layer address of a router changes, select the
2182 * best router again. In particular, when the neighbor entry is newly
2183 * created, it might affect the selection policy.
2184 * Question: can we restrict the first condition to the "is_newentry"
2185 * case?
2186 * XXX: when we hear an RA from a new router with the link-layer
2187 * address option, nd6_defrouter_select() is called twice, since
2188 * defrtrlist_update called the function as well. However, I believe
2189 * we can compromise the overhead, since it only happens the first
2190 * time.
2191 * XXX: although nd6_defrouter_select() should not have a bad effect
2192 * for those are not autoconfigured hosts, we explicitly avoid such
2193 * cases for safety.
2194 */
2195 if (do_update && router && !ip6_forwarding &&
2196 nd6_accepts_rtadv(ndi))
2197 nd6_defrouter_select();
2198 }
2199
2200 static void
2201 nd6_slowtimo(void *ignored_arg)
2202 {
2203 struct nd_ifinfo *nd6if;
2204 struct ifnet *ifp;
2205 int s;
2206
2207 #ifndef NET_MPSAFE
2208 mutex_enter(softnet_lock);
2209 KERNEL_LOCK(1, NULL);
2210 #endif
2211 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
2212 nd6_slowtimo, NULL);
2213
2214 s = pserialize_read_enter();
2215 IFNET_READER_FOREACH(ifp) {
2216 nd6if = ND_IFINFO(ifp);
2217 if (nd6if->basereachable && /* already initialized */
2218 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
2219 /*
2220 * Since reachable time rarely changes by router
2221 * advertisements, we SHOULD insure that a new random
2222 * value gets recomputed at least once every few hours.
2223 * (RFC 2461, 6.3.4)
2224 */
2225 nd6if->recalctm = nd6_recalc_reachtm_interval;
2226 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
2227 }
2228 }
2229 pserialize_read_exit(s);
2230
2231 #ifndef NET_MPSAFE
2232 KERNEL_UNLOCK_ONE(NULL);
2233 mutex_exit(softnet_lock);
2234 #endif
2235 }
2236
2237 int
2238 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
2239 const struct sockaddr_in6 *dst, struct rtentry *rt)
2240 {
2241 #define senderr(e) { error = (e); goto bad;}
2242 struct llentry *ln = NULL;
2243 int error = 0;
2244 bool created = false;
2245
2246 if (rt != NULL) {
2247 error = rt_check_reject_route(rt, ifp);
2248 if (error != 0) {
2249 m_freem(m);
2250 return error;
2251 }
2252 }
2253
2254 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
2255 goto sendpkt;
2256
2257 if (nd6_need_cache(ifp) == 0)
2258 goto sendpkt;
2259
2260 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) != 0) {
2261 struct sockaddr_in6 *gw6 = satosin6(rt->rt_gateway);
2262 int s;
2263
2264 /* XXX remain the check to keep the original behavior. */
2265 /*
2266 * We skip link-layer address resolution and NUD
2267 * if the gateway is not a neighbor from ND point
2268 * of view, regardless of the value of nd_ifinfo.flags.
2269 * The second condition is a bit tricky; we skip
2270 * if the gateway is our own address, which is
2271 * sometimes used to install a route to a p2p link.
2272 */
2273 s = pserialize_read_enter();
2274 if (!nd6_is_addr_neighbor(gw6, ifp) ||
2275 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
2276 /*
2277 * We allow this kind of tricky route only
2278 * when the outgoing interface is p2p.
2279 * XXX: we may need a more generic rule here.
2280 */
2281 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) {
2282 pserialize_read_exit(s);
2283 senderr(EHOSTUNREACH);
2284 }
2285
2286 pserialize_read_exit(s);
2287 goto sendpkt;
2288 }
2289 pserialize_read_exit(s);
2290 }
2291
2292 /*
2293 * Address resolution or Neighbor Unreachability Detection
2294 * for the next hop.
2295 * At this point, the destination of the packet must be a unicast
2296 * or an anycast address(i.e. not a multicast).
2297 */
2298
2299 /* Look up the neighbor cache for the nexthop */
2300 ln = nd6_lookup(&dst->sin6_addr, ifp, true);
2301 if ((ln == NULL) && nd6_is_addr_neighbor(dst, ifp)) {
2302 /*
2303 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2304 * the condition below is not very efficient. But we believe
2305 * it is tolerable, because this should be a rare case.
2306 */
2307 ln = nd6_create(&dst->sin6_addr, ifp);
2308 if (ln != NULL)
2309 created = true;
2310 }
2311
2312 if (ln == NULL) {
2313 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2314 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2315 log(LOG_DEBUG,
2316 "nd6_output: can't allocate llinfo for %s "
2317 "(ln=%p, rt=%p)\n",
2318 ip6_sprintf(&dst->sin6_addr), ln, rt);
2319 senderr(EIO); /* XXX: good error? */
2320 }
2321 goto sendpkt; /* send anyway */
2322 }
2323
2324 LLE_WLOCK_ASSERT(ln);
2325
2326 /* We don't have to do link-layer address resolution on a p2p link. */
2327 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2328 ln->ln_state < ND6_LLINFO_REACHABLE) {
2329 ln->ln_state = ND6_LLINFO_STALE;
2330 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
2331 }
2332
2333 /*
2334 * The first time we send a packet to a neighbor whose entry is
2335 * STALE, we have to change the state to DELAY and a sets a timer to
2336 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2337 * neighbor unreachability detection on expiration.
2338 * (RFC 2461 7.3.3)
2339 */
2340 if (ln->ln_state == ND6_LLINFO_STALE) {
2341 ln->ln_asked = 0;
2342 ln->ln_state = ND6_LLINFO_DELAY;
2343 nd6_llinfo_settimer(ln, nd6_delay * hz);
2344 }
2345
2346 /*
2347 * If the neighbor cache entry has a state other than INCOMPLETE
2348 * (i.e. its link-layer address is already resolved), just
2349 * send the packet.
2350 */
2351 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2352 goto sendpkt;
2353
2354 /*
2355 * There is a neighbor cache entry, but no ethernet address
2356 * response yet. Append this latest packet to the end of the
2357 * packet queue in the mbuf, unless the number of the packet
2358 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen,
2359 * the oldest packet in the queue will be removed.
2360 */
2361 if (ln->ln_state == ND6_LLINFO_NOSTATE)
2362 ln->ln_state = ND6_LLINFO_INCOMPLETE;
2363 if (ln->ln_hold) {
2364 struct mbuf *m_hold;
2365 int i;
2366
2367 i = 0;
2368 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2369 i++;
2370 if (m_hold->m_nextpkt == NULL) {
2371 m_hold->m_nextpkt = m;
2372 break;
2373 }
2374 }
2375 while (i >= nd6_maxqueuelen) {
2376 m_hold = ln->ln_hold;
2377 ln->ln_hold = ln->ln_hold->m_nextpkt;
2378 m_freem(m_hold);
2379 i--;
2380 }
2381 } else {
2382 ln->ln_hold = m;
2383 }
2384
2385 /*
2386 * If there has been no NS for the neighbor after entering the
2387 * INCOMPLETE state, send the first solicitation.
2388 */
2389 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2390 struct in6_addr src, *psrc;
2391
2392 ln->ln_asked++;
2393 nd6_llinfo_settimer(ln, ND_IFINFO(ifp)->retrans * hz / 1000);
2394 psrc = nd6_llinfo_get_holdsrc(ln, &src);
2395 LLE_WUNLOCK(ln);
2396 ln = NULL;
2397 nd6_ns_output(ifp, NULL, &dst->sin6_addr, psrc, 0);
2398 } else {
2399 /* We did the lookup so we need to do the unlock here. */
2400 LLE_WUNLOCK(ln);
2401 }
2402
2403 error = 0;
2404 goto exit;
2405
2406 sendpkt:
2407 /* discard the packet if IPv6 operation is disabled on the interface */
2408 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2409 error = ENETDOWN; /* better error? */
2410 goto bad;
2411 }
2412
2413 if (ln != NULL)
2414 LLE_WUNLOCK(ln);
2415
2416 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2417 error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt);
2418 else
2419 error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt);
2420 goto exit;
2421
2422 bad:
2423 if (m != NULL)
2424 m_freem(m);
2425 exit:
2426 if (created)
2427 nd6_gc_neighbors(LLTABLE6(ifp), &dst->sin6_addr);
2428
2429 return error;
2430 #undef senderr
2431 }
2432
2433 int
2434 nd6_need_cache(struct ifnet *ifp)
2435 {
2436 /*
2437 * XXX: we currently do not make neighbor cache on any interface
2438 * other than ARCnet, Ethernet, FDDI and GIF.
2439 *
2440 * RFC2893 says:
2441 * - unidirectional tunnels needs no ND
2442 */
2443 switch (ifp->if_type) {
2444 case IFT_ARCNET:
2445 case IFT_ETHER:
2446 case IFT_FDDI:
2447 case IFT_IEEE1394:
2448 case IFT_CARP:
2449 case IFT_GIF: /* XXX need more cases? */
2450 case IFT_PPP:
2451 case IFT_TUNNEL:
2452 return 1;
2453 default:
2454 return 0;
2455 }
2456 }
2457
2458 /*
2459 * Add pernament ND6 link-layer record for given
2460 * interface address.
2461 *
2462 * Very similar to IPv4 arp_ifinit(), but:
2463 * 1) IPv6 DAD is performed in different place
2464 * 2) It is called by IPv6 protocol stack in contrast to
2465 * arp_ifinit() which is typically called in SIOCSIFADDR
2466 * driver ioctl handler.
2467 *
2468 */
2469 int
2470 nd6_add_ifa_lle(struct in6_ifaddr *ia)
2471 {
2472 struct ifnet *ifp;
2473 struct llentry *ln;
2474
2475 ifp = ia->ia_ifa.ifa_ifp;
2476 if (nd6_need_cache(ifp) == 0)
2477 return 0;
2478 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
2479 ia->ia_ifa.ifa_flags |= RTF_CONNECTED;
2480
2481 IF_AFDATA_WLOCK(ifp);
2482 ln = lla_create(LLTABLE6(ifp), LLE_IFADDR | LLE_EXCLUSIVE,
2483 sin6tosa(&ia->ia_addr));
2484 IF_AFDATA_WUNLOCK(ifp);
2485 if (ln == NULL)
2486 return ENOBUFS;
2487
2488 ln->la_expire = 0; /* for IPv6 this means permanent */
2489 ln->ln_state = ND6_LLINFO_REACHABLE;
2490
2491 LLE_WUNLOCK(ln);
2492 return 0;
2493 }
2494
2495 /*
2496 * Removes ALL lle records for interface address prefix.
2497 * XXXME: That's probably not we really want to do, we need
2498 * to remove address record only and keep other records
2499 * until we determine if given prefix is really going
2500 * to be removed.
2501 */
2502 void
2503 nd6_rem_ifa_lle(struct in6_ifaddr *ia)
2504 {
2505 struct sockaddr_in6 mask, addr;
2506
2507 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
2508 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
2509 lltable_prefix_free(AF_INET6, sin6tosa(&addr), sin6tosa(&mask),
2510 LLE_STATIC);
2511 }
2512
2513 int
2514 nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt,
2515 struct mbuf *m, const struct sockaddr *dst, uint8_t *lldst,
2516 size_t dstsize)
2517 {
2518 struct llentry *ln;
2519
2520 if (m->m_flags & M_MCAST) {
2521 switch (ifp->if_type) {
2522 case IFT_ETHER:
2523 case IFT_FDDI:
2524 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
2525 lldst);
2526 return 1;
2527 case IFT_IEEE1394:
2528 memcpy(lldst, ifp->if_broadcastaddr,
2529 MIN(dstsize, ifp->if_addrlen));
2530 return 1;
2531 case IFT_ARCNET:
2532 *lldst = 0;
2533 return 1;
2534 default:
2535 m_freem(m);
2536 return 0;
2537 }
2538 }
2539
2540 /*
2541 * the entry should have been created in nd6_store_lladdr
2542 */
2543 ln = nd6_lookup(&satocsin6(dst)->sin6_addr, ifp, false);
2544 if ((ln == NULL) || !(ln->la_flags & LLE_VALID)) {
2545 if (ln != NULL)
2546 LLE_RUNLOCK(ln);
2547 /* this could happen, if we could not allocate memory */
2548 m_freem(m);
2549 return 0;
2550 }
2551
2552 /* XXX llentry should have addrlen? */
2553 #if 0
2554 sdl = satocsdl(rt->rt_gateway);
2555 if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) {
2556 char sbuf[INET6_ADDRSTRLEN];
2557 char dbuf[LINK_ADDRSTRLEN];
2558 /* this should be impossible, but we bark here for debugging */
2559 printf("%s: sdl_alen == %" PRIu8 ", if=%s, dst=%s, sdl=%s\n",
2560 __func__, sdl->sdl_alen, if_name(ifp),
2561 IN6_PRINT(sbuf, &satocsin6(dst)->sin6_addr),
2562 DL_PRINT(dbuf, &sdl->sdl_addr));
2563 m_freem(m);
2564 return 0;
2565 }
2566 #endif
2567
2568 memcpy(lldst, &ln->ll_addr, MIN(dstsize, ifp->if_addrlen));
2569
2570 LLE_RUNLOCK(ln);
2571
2572 return 1;
2573 }
2574
2575 static void
2576 clear_llinfo_pqueue(struct llentry *ln)
2577 {
2578 struct mbuf *m_hold, *m_hold_next;
2579
2580 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2581 m_hold_next = m_hold->m_nextpkt;
2582 m_hold->m_nextpkt = NULL;
2583 m_freem(m_hold);
2584 }
2585
2586 ln->ln_hold = NULL;
2587 return;
2588 }
2589
2590 int
2591 nd6_sysctl(
2592 int name,
2593 void *oldp, /* syscall arg, need copyout */
2594 size_t *oldlenp,
2595 void *newp, /* syscall arg, need copyin */
2596 size_t newlen
2597 )
2598 {
2599 void *p;
2600 size_t ol;
2601 int error;
2602
2603 error = 0;
2604
2605 if (newp)
2606 return EPERM;
2607 if (oldp && !oldlenp)
2608 return EINVAL;
2609 ol = oldlenp ? *oldlenp : 0;
2610
2611 if (oldp) {
2612 p = malloc(*oldlenp, M_TEMP, M_WAITOK);
2613 if (p == NULL)
2614 return ENOMEM;
2615 } else
2616 p = NULL;
2617 switch (name) {
2618 case ICMPV6CTL_ND6_DRLIST:
2619 error = fill_drlist(p, oldlenp, ol);
2620 if (!error && p != NULL && oldp != NULL)
2621 error = copyout(p, oldp, *oldlenp);
2622 break;
2623
2624 case ICMPV6CTL_ND6_PRLIST:
2625 error = fill_prlist(p, oldlenp, ol);
2626 if (!error && p != NULL && oldp != NULL)
2627 error = copyout(p, oldp, *oldlenp);
2628 break;
2629
2630 case ICMPV6CTL_ND6_MAXQLEN:
2631 break;
2632
2633 default:
2634 error = ENOPROTOOPT;
2635 break;
2636 }
2637 if (p)
2638 free(p, M_TEMP);
2639
2640 return error;
2641 }
2642
2643 static int
2644 fill_drlist(void *oldp, size_t *oldlenp, size_t ol)
2645 {
2646 int error = 0, s;
2647 struct in6_defrouter *d = NULL, *de = NULL;
2648 struct nd_defrouter *dr;
2649 size_t l;
2650
2651 s = splsoftnet();
2652
2653 if (oldp) {
2654 d = (struct in6_defrouter *)oldp;
2655 de = (struct in6_defrouter *)((char *)oldp + *oldlenp);
2656 }
2657 l = 0;
2658
2659 ND_DEFROUTER_LIST_FOREACH(dr) {
2660
2661 if (oldp && d + 1 <= de) {
2662 memset(d, 0, sizeof(*d));
2663 sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0);
2664 if (sa6_recoverscope(&d->rtaddr)) {
2665 log(LOG_ERR,
2666 "scope error in router list (%s)\n",
2667 ip6_sprintf(&d->rtaddr.sin6_addr));
2668 /* XXX: press on... */
2669 }
2670 d->flags = dr->flags;
2671 d->rtlifetime = dr->rtlifetime;
2672 d->expire = dr->expire ?
2673 time_mono_to_wall(dr->expire) : 0;
2674 d->if_index = dr->ifp->if_index;
2675 }
2676
2677 l += sizeof(*d);
2678 if (d)
2679 d++;
2680 }
2681
2682 if (oldp) {
2683 if (l > ol)
2684 error = ENOMEM;
2685 }
2686 if (oldlenp)
2687 *oldlenp = l; /* (void *)d - (void *)oldp */
2688
2689 splx(s);
2690
2691 return error;
2692 }
2693
2694 static int
2695 fill_prlist(void *oldp, size_t *oldlenp, size_t ol)
2696 {
2697 int error = 0, s;
2698 struct nd_prefix *pr;
2699 uint8_t *p = NULL, *ps = NULL;
2700 uint8_t *pe = NULL;
2701 size_t l;
2702
2703 s = splsoftnet();
2704
2705 if (oldp) {
2706 ps = p = (uint8_t*)oldp;
2707 pe = (uint8_t*)oldp + *oldlenp;
2708 }
2709 l = 0;
2710
2711 ND_PREFIX_LIST_FOREACH(pr) {
2712 u_short advrtrs;
2713 struct sockaddr_in6 sin6;
2714 struct nd_pfxrouter *pfr;
2715 struct in6_prefix pfx;
2716
2717 if (oldp && p + sizeof(struct in6_prefix) <= pe)
2718 {
2719 memset(&pfx, 0, sizeof(pfx));
2720 ps = p;
2721 pfx.prefix = pr->ndpr_prefix;
2722
2723 if (sa6_recoverscope(&pfx.prefix)) {
2724 log(LOG_ERR,
2725 "scope error in prefix list (%s)\n",
2726 ip6_sprintf(&pfx.prefix.sin6_addr));
2727 /* XXX: press on... */
2728 }
2729 pfx.raflags = pr->ndpr_raf;
2730 pfx.prefixlen = pr->ndpr_plen;
2731 pfx.vltime = pr->ndpr_vltime;
2732 pfx.pltime = pr->ndpr_pltime;
2733 pfx.if_index = pr->ndpr_ifp->if_index;
2734 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2735 pfx.expire = 0;
2736 else {
2737 time_t maxexpire;
2738
2739 /* XXX: we assume time_t is signed. */
2740 maxexpire = (-1) &
2741 ~((time_t)1 <<
2742 ((sizeof(maxexpire) * 8) - 1));
2743 if (pr->ndpr_vltime <
2744 maxexpire - pr->ndpr_lastupdate) {
2745 pfx.expire = pr->ndpr_lastupdate +
2746 pr->ndpr_vltime;
2747 } else
2748 pfx.expire = maxexpire;
2749 }
2750 pfx.refcnt = pr->ndpr_refcnt;
2751 pfx.flags = pr->ndpr_stateflags;
2752 pfx.origin = PR_ORIG_RA;
2753
2754 p += sizeof(pfx); l += sizeof(pfx);
2755
2756 advrtrs = 0;
2757 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2758 if (p + sizeof(sin6) > pe) {
2759 advrtrs++;
2760 continue;
2761 }
2762
2763 sockaddr_in6_init(&sin6, &pfr->router->rtaddr,
2764 0, 0, 0);
2765 if (sa6_recoverscope(&sin6)) {
2766 log(LOG_ERR,
2767 "scope error in "
2768 "prefix list (%s)\n",
2769 ip6_sprintf(&pfr->router->rtaddr));
2770 }
2771 advrtrs++;
2772 memcpy(p, &sin6, sizeof(sin6));
2773 p += sizeof(sin6);
2774 l += sizeof(sin6);
2775 }
2776 pfx.advrtrs = advrtrs;
2777 memcpy(ps, &pfx, sizeof(pfx));
2778 }
2779 else {
2780 l += sizeof(pfx);
2781 advrtrs = 0;
2782 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2783 advrtrs++;
2784 l += sizeof(sin6);
2785 }
2786 }
2787 }
2788
2789 if (oldp) {
2790 *oldlenp = l; /* (void *)d - (void *)oldp */
2791 if (l > ol)
2792 error = ENOMEM;
2793 } else
2794 *oldlenp = l;
2795
2796 splx(s);
2797
2798 return error;
2799 }
2800
2801 static int
2802 nd6_setdefaultiface(int ifindex)
2803 {
2804 ifnet_t *ifp;
2805 int error = 0;
2806 int s;
2807
2808 s = pserialize_read_enter();
2809 ifp = if_byindex(ifindex);
2810 if (ifp == NULL) {
2811 pserialize_read_exit(s);
2812 return EINVAL;
2813 }
2814 if (nd6_defifindex != ifindex) {
2815 nd6_defifindex = ifindex;
2816 nd6_defifp = nd6_defifindex > 0 ? ifp : NULL;
2817
2818 /*
2819 * Our current implementation assumes one-to-one maping between
2820 * interfaces and links, so it would be natural to use the
2821 * default interface as the default link.
2822 */
2823 scope6_setdefault(nd6_defifp);
2824 }
2825 pserialize_read_exit(s);
2826
2827 return (error);
2828 }
2829