nd6.c revision 1.226 1 /* $NetBSD: nd6.c,v 1.226 2017/01/16 15:44:47 christos Exp $ */
2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.226 2017/01/16 15:44:47 christos Exp $");
35
36 #ifdef _KERNEL_OPT
37 #include "opt_net_mpsafe.h"
38 #endif
39
40 #include "bridge.h"
41 #include "carp.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/malloc.h>
47 #include <sys/mbuf.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/sockio.h>
51 #include <sys/time.h>
52 #include <sys/kernel.h>
53 #include <sys/errno.h>
54 #include <sys/ioctl.h>
55 #include <sys/syslog.h>
56 #include <sys/queue.h>
57 #include <sys/cprng.h>
58 #include <sys/workqueue.h>
59
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_llatbl.h>
63 #include <net/if_types.h>
64 #include <net/route.h>
65 #include <net/if_ether.h>
66 #include <net/if_fddi.h>
67 #include <net/if_arc.h>
68
69 #include <netinet/in.h>
70 #include <netinet6/in6_var.h>
71 #include <netinet/ip6.h>
72 #include <netinet6/ip6_var.h>
73 #include <netinet6/scope6_var.h>
74 #include <netinet6/nd6.h>
75 #include <netinet6/in6_ifattach.h>
76 #include <netinet/icmp6.h>
77 #include <netinet6/icmp6_private.h>
78
79 #include <net/net_osdep.h>
80
81 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
82 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
83
84 /* timer values */
85 int nd6_prune = 1; /* walk list every 1 seconds */
86 int nd6_delay = 5; /* delay first probe time 5 second */
87 int nd6_umaxtries = 3; /* maximum unicast query */
88 int nd6_mmaxtries = 3; /* maximum multicast query */
89 int nd6_useloopback = 1; /* use loopback interface for local traffic */
90 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
91
92 /* preventing too many loops in ND option parsing */
93 int nd6_maxndopt = 10; /* max # of ND options allowed */
94
95 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
96
97 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
98
99 #ifdef ND6_DEBUG
100 int nd6_debug = 1;
101 #else
102 int nd6_debug = 0;
103 #endif
104
105 krwlock_t nd6_lock __cacheline_aligned;
106
107 struct nd_drhead nd_defrouter;
108 struct nd_prhead nd_prefix = { 0 };
109
110 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
111
112 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
113 static void nd6_slowtimo(void *);
114 static int regen_tmpaddr(const struct in6_ifaddr *);
115 static void nd6_free(struct llentry *, int);
116 static void nd6_llinfo_timer(void *);
117 static void nd6_timer(void *);
118 static void nd6_timer_work(struct work *, void *);
119 static void clear_llinfo_pqueue(struct llentry *);
120 static struct nd_opt_hdr *nd6_option(union nd_opts *);
121
122 static callout_t nd6_slowtimo_ch;
123 static callout_t nd6_timer_ch;
124 static struct workqueue *nd6_timer_wq;
125 static struct work nd6_timer_wk;
126
127 static int fill_drlist(void *, size_t *, size_t);
128 static int fill_prlist(void *, size_t *, size_t);
129
130 static struct ifnet *nd6_defifp;
131 static int nd6_defifindex;
132
133 static int nd6_setdefaultiface(int);
134
135 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
136
137 void
138 nd6_init(void)
139 {
140 int error;
141
142 rw_init(&nd6_lock);
143
144 /* initialization of the default router list */
145 ND_DEFROUTER_LIST_INIT();
146
147 callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE);
148 callout_init(&nd6_timer_ch, CALLOUT_MPSAFE);
149
150 error = workqueue_create(&nd6_timer_wq, "nd6_timer",
151 nd6_timer_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
152 if (error)
153 panic("%s: workqueue_create failed (%d)\n", __func__, error);
154
155 /* start timer */
156 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
157 nd6_slowtimo, NULL);
158 callout_reset(&nd6_timer_ch, hz, nd6_timer, NULL);
159 }
160
161 struct nd_ifinfo *
162 nd6_ifattach(struct ifnet *ifp)
163 {
164 struct nd_ifinfo *nd;
165
166 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO);
167
168 nd->initialized = 1;
169
170 nd->chlim = IPV6_DEFHLIM;
171 nd->basereachable = REACHABLE_TIME;
172 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
173 nd->retrans = RETRANS_TIMER;
174
175 nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV;
176
177 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
178 * A bridge interface should not have ND6_IFF_AUTO_LINKLOCAL
179 * because one of its members should. */
180 if ((ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
181 (ifp->if_flags & IFF_LOOPBACK))
182 nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
183
184 /* A loopback interface does not need to accept RTADV.
185 * A bridge interface should not accept RTADV
186 * because one of its members should. */
187 if (ip6_accept_rtadv &&
188 !(ifp->if_flags & IFF_LOOPBACK) &&
189 !(ifp->if_type != IFT_BRIDGE))
190 nd->flags |= ND6_IFF_ACCEPT_RTADV;
191
192 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
193 nd6_setmtu0(ifp, nd);
194
195 return nd;
196 }
197
198 void
199 nd6_ifdetach(struct ifnet *ifp, struct in6_ifextra *ext)
200 {
201
202 /* Ensure all IPv6 addresses are purged before calling nd6_purge */
203 if_purgeaddrs(ifp, AF_INET6, in6_purgeaddr);
204 nd6_purge(ifp, ext);
205 free(ext->nd_ifinfo, M_IP6NDP);
206 }
207
208 void
209 nd6_setmtu(struct ifnet *ifp)
210 {
211 nd6_setmtu0(ifp, ND_IFINFO(ifp));
212 }
213
214 void
215 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
216 {
217 u_int32_t omaxmtu;
218
219 omaxmtu = ndi->maxmtu;
220
221 switch (ifp->if_type) {
222 case IFT_ARCNET:
223 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
224 break;
225 case IFT_FDDI:
226 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
227 break;
228 default:
229 ndi->maxmtu = ifp->if_mtu;
230 break;
231 }
232
233 /*
234 * Decreasing the interface MTU under IPV6 minimum MTU may cause
235 * undesirable situation. We thus notify the operator of the change
236 * explicitly. The check for omaxmtu is necessary to restrict the
237 * log to the case of changing the MTU, not initializing it.
238 */
239 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
240 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
241 " small for IPv6 which needs %lu\n",
242 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
243 IPV6_MMTU);
244 }
245
246 if (ndi->maxmtu > in6_maxmtu)
247 in6_setmaxmtu(); /* check all interfaces just in case */
248 }
249
250 void
251 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
252 {
253
254 memset(ndopts, 0, sizeof(*ndopts));
255 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
256 ndopts->nd_opts_last
257 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
258
259 if (icmp6len == 0) {
260 ndopts->nd_opts_done = 1;
261 ndopts->nd_opts_search = NULL;
262 }
263 }
264
265 /*
266 * Take one ND option.
267 */
268 static struct nd_opt_hdr *
269 nd6_option(union nd_opts *ndopts)
270 {
271 struct nd_opt_hdr *nd_opt;
272 int olen;
273
274 KASSERT(ndopts != NULL);
275 KASSERT(ndopts->nd_opts_last != NULL);
276
277 if (ndopts->nd_opts_search == NULL)
278 return NULL;
279 if (ndopts->nd_opts_done)
280 return NULL;
281
282 nd_opt = ndopts->nd_opts_search;
283
284 /* make sure nd_opt_len is inside the buffer */
285 if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) {
286 memset(ndopts, 0, sizeof(*ndopts));
287 return NULL;
288 }
289
290 olen = nd_opt->nd_opt_len << 3;
291 if (olen == 0) {
292 /*
293 * Message validation requires that all included
294 * options have a length that is greater than zero.
295 */
296 memset(ndopts, 0, sizeof(*ndopts));
297 return NULL;
298 }
299
300 ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen);
301 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
302 /* option overruns the end of buffer, invalid */
303 memset(ndopts, 0, sizeof(*ndopts));
304 return NULL;
305 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
306 /* reached the end of options chain */
307 ndopts->nd_opts_done = 1;
308 ndopts->nd_opts_search = NULL;
309 }
310 return nd_opt;
311 }
312
313 /*
314 * Parse multiple ND options.
315 * This function is much easier to use, for ND routines that do not need
316 * multiple options of the same type.
317 */
318 int
319 nd6_options(union nd_opts *ndopts)
320 {
321 struct nd_opt_hdr *nd_opt;
322 int i = 0;
323
324 KASSERT(ndopts != NULL);
325 KASSERT(ndopts->nd_opts_last != NULL);
326
327 if (ndopts->nd_opts_search == NULL)
328 return 0;
329
330 while (1) {
331 nd_opt = nd6_option(ndopts);
332 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
333 /*
334 * Message validation requires that all included
335 * options have a length that is greater than zero.
336 */
337 ICMP6_STATINC(ICMP6_STAT_ND_BADOPT);
338 memset(ndopts, 0, sizeof(*ndopts));
339 return -1;
340 }
341
342 if (nd_opt == NULL)
343 goto skip1;
344
345 switch (nd_opt->nd_opt_type) {
346 case ND_OPT_SOURCE_LINKADDR:
347 case ND_OPT_TARGET_LINKADDR:
348 case ND_OPT_MTU:
349 case ND_OPT_REDIRECTED_HEADER:
350 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
351 nd6log(LOG_INFO,
352 "duplicated ND6 option found (type=%d)\n",
353 nd_opt->nd_opt_type);
354 /* XXX bark? */
355 } else {
356 ndopts->nd_opt_array[nd_opt->nd_opt_type]
357 = nd_opt;
358 }
359 break;
360 case ND_OPT_PREFIX_INFORMATION:
361 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
362 ndopts->nd_opt_array[nd_opt->nd_opt_type]
363 = nd_opt;
364 }
365 ndopts->nd_opts_pi_end =
366 (struct nd_opt_prefix_info *)nd_opt;
367 break;
368 default:
369 /*
370 * Unknown options must be silently ignored,
371 * to accommodate future extension to the protocol.
372 */
373 nd6log(LOG_DEBUG,
374 "nd6_options: unsupported option %d - "
375 "option ignored\n", nd_opt->nd_opt_type);
376 }
377
378 skip1:
379 i++;
380 if (i > nd6_maxndopt) {
381 ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT);
382 nd6log(LOG_INFO, "too many loop in nd opt\n");
383 break;
384 }
385
386 if (ndopts->nd_opts_done)
387 break;
388 }
389
390 return 0;
391 }
392
393 /*
394 * ND6 timer routine to handle ND6 entries
395 */
396 void
397 nd6_llinfo_settimer(struct llentry *ln, time_t xtick)
398 {
399
400 CTASSERT(sizeof(time_t) > sizeof(int));
401 LLE_WLOCK_ASSERT(ln);
402
403 KASSERT(xtick >= 0);
404
405 ln->ln_expire = time_uptime + xtick / hz;
406 LLE_ADDREF(ln);
407 if (xtick > INT_MAX) {
408 ln->ln_ntick = xtick - INT_MAX;
409 callout_reset(&ln->ln_timer_ch, INT_MAX,
410 nd6_llinfo_timer, ln);
411 } else {
412 ln->ln_ntick = 0;
413 callout_reset(&ln->ln_timer_ch, xtick,
414 nd6_llinfo_timer, ln);
415 }
416 }
417
418 /*
419 * Gets source address of the first packet in hold queue
420 * and stores it in @src.
421 * Returns pointer to @src (if hold queue is not empty) or NULL.
422 */
423 static struct in6_addr *
424 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
425 {
426 struct ip6_hdr *hip6;
427
428 if (ln == NULL || ln->ln_hold == NULL)
429 return NULL;
430
431 /*
432 * assuming every packet in ln_hold has the same IP header
433 */
434 hip6 = mtod(ln->ln_hold, struct ip6_hdr *);
435 /* XXX pullup? */
436 if (sizeof(*hip6) < ln->ln_hold->m_len)
437 *src = hip6->ip6_src;
438 else
439 src = NULL;
440
441 return src;
442 }
443
444 static void
445 nd6_llinfo_timer(void *arg)
446 {
447 struct llentry *ln = arg;
448 struct ifnet *ifp;
449 struct nd_ifinfo *ndi = NULL;
450 bool send_ns = false;
451 const struct in6_addr *daddr6 = NULL;
452
453 LLE_WLOCK(ln);
454 if ((ln->la_flags & LLE_LINKED) == 0)
455 goto out;
456 if (ln->ln_ntick > 0) {
457 nd6_llinfo_settimer(ln, ln->ln_ntick);
458 goto out;
459 }
460
461 if (callout_pending(&ln->la_timer)) {
462 /*
463 * Here we are a bit odd here in the treatment of
464 * active/pending. If the pending bit is set, it got
465 * rescheduled before I ran. The active
466 * bit we ignore, since if it was stopped
467 * in ll_tablefree() and was currently running
468 * it would have return 0 so the code would
469 * not have deleted it since the callout could
470 * not be stopped so we want to go through
471 * with the delete here now. If the callout
472 * was restarted, the pending bit will be back on and
473 * we just want to bail since the callout_reset would
474 * return 1 and our reference would have been removed
475 * by nd6_llinfo_settimer above since canceled
476 * would have been 1.
477 */
478 goto out;
479 }
480
481 ifp = ln->lle_tbl->llt_ifp;
482
483 KASSERT(ifp != NULL);
484
485 ndi = ND_IFINFO(ifp);
486
487 switch (ln->ln_state) {
488 case ND6_LLINFO_INCOMPLETE:
489 if (ln->ln_asked < nd6_mmaxtries) {
490 ln->ln_asked++;
491 send_ns = true;
492 } else {
493 struct mbuf *m = ln->ln_hold;
494 if (m) {
495 struct mbuf *m0;
496
497 /*
498 * assuming every packet in ln_hold has
499 * the same IP header
500 */
501 m0 = m->m_nextpkt;
502 m->m_nextpkt = NULL;
503 ln->ln_hold = m0;
504 clear_llinfo_pqueue(ln);
505 }
506 nd6_free(ln, 0);
507 ln = NULL;
508 if (m != NULL) {
509 #ifndef NET_MPSAFE
510 mutex_enter(softnet_lock);
511 KERNEL_LOCK(1, NULL);
512 #endif
513 icmp6_error2(m, ICMP6_DST_UNREACH,
514 ICMP6_DST_UNREACH_ADDR, 0, ifp);
515 #ifndef NET_MPSAFE
516 KERNEL_UNLOCK_ONE(NULL);
517 mutex_exit(softnet_lock);
518 #endif
519 }
520 }
521 break;
522 case ND6_LLINFO_REACHABLE:
523 if (!ND6_LLINFO_PERMANENT(ln)) {
524 ln->ln_state = ND6_LLINFO_STALE;
525 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
526 }
527 break;
528
529 case ND6_LLINFO_PURGE:
530 case ND6_LLINFO_STALE:
531 /* Garbage Collection(RFC 2461 5.3) */
532 if (!ND6_LLINFO_PERMANENT(ln)) {
533 nd6_free(ln, 1);
534 ln = NULL;
535 }
536 break;
537
538 case ND6_LLINFO_DELAY:
539 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
540 /* We need NUD */
541 ln->ln_asked = 1;
542 ln->ln_state = ND6_LLINFO_PROBE;
543 daddr6 = &ln->r_l3addr.addr6;
544 send_ns = true;
545 } else {
546 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
547 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
548 }
549 break;
550 case ND6_LLINFO_PROBE:
551 if (ln->ln_asked < nd6_umaxtries) {
552 ln->ln_asked++;
553 daddr6 = &ln->r_l3addr.addr6;
554 send_ns = true;
555 } else {
556 nd6_free(ln, 0);
557 ln = NULL;
558 }
559 break;
560 }
561
562 if (send_ns) {
563 struct in6_addr src, *psrc;
564 const struct in6_addr *taddr6 = &ln->r_l3addr.addr6;
565
566 nd6_llinfo_settimer(ln, ndi->retrans * hz / 1000);
567 psrc = nd6_llinfo_get_holdsrc(ln, &src);
568 LLE_FREE_LOCKED(ln);
569 ln = NULL;
570 #ifndef NET_MPSAFE
571 mutex_enter(softnet_lock);
572 KERNEL_LOCK(1, NULL);
573 #endif
574 nd6_ns_output(ifp, daddr6, taddr6, psrc, 0);
575 #ifndef NET_MPSAFE
576 KERNEL_UNLOCK_ONE(NULL);
577 mutex_exit(softnet_lock);
578 #endif
579 }
580
581 out:
582 if (ln != NULL)
583 LLE_FREE_LOCKED(ln);
584 }
585
586 /*
587 * ND6 timer routine to expire default route list and prefix list
588 */
589 static void
590 nd6_timer_work(struct work *wk, void *arg)
591 {
592 struct nd_defrouter *next_dr, *dr;
593 struct nd_prefix *next_pr, *pr;
594 struct in6_ifaddr *ia6, *nia6;
595 int s, bound;
596 struct psref psref;
597
598 callout_reset(&nd6_timer_ch, nd6_prune * hz,
599 nd6_timer, NULL);
600
601 #ifndef NET_MPSAFE
602 mutex_enter(softnet_lock);
603 KERNEL_LOCK(1, NULL);
604 #endif
605
606 /* expire default router list */
607
608 ND6_WLOCK();
609 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, next_dr) {
610 if (dr->expire && dr->expire < time_uptime) {
611 nd6_defrtrlist_del(dr, NULL);
612 }
613 }
614 ND6_UNLOCK();
615
616 /*
617 * expire interface addresses.
618 * in the past the loop was inside prefix expiry processing.
619 * However, from a stricter speci-confrmance standpoint, we should
620 * rather separate address lifetimes and prefix lifetimes.
621 */
622 bound = curlwp_bind();
623 addrloop:
624 s = pserialize_read_enter();
625 for (ia6 = IN6_ADDRLIST_READER_FIRST(); ia6; ia6 = nia6) {
626 nia6 = IN6_ADDRLIST_READER_NEXT(ia6);
627
628 ia6_acquire(ia6, &psref);
629 pserialize_read_exit(s);
630
631 /* check address lifetime */
632 if (IFA6_IS_INVALID(ia6)) {
633 int regen = 0;
634
635 /*
636 * If the expiring address is temporary, try
637 * regenerating a new one. This would be useful when
638 * we suspended a laptop PC, then turned it on after a
639 * period that could invalidate all temporary
640 * addresses. Although we may have to restart the
641 * loop (see below), it must be after purging the
642 * address. Otherwise, we'd see an infinite loop of
643 * regeneration.
644 */
645 if (ip6_use_tempaddr &&
646 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
647 if (regen_tmpaddr(ia6) == 0)
648 regen = 1;
649 }
650
651 ia6_release(ia6, &psref);
652 in6_purgeaddr(&ia6->ia_ifa);
653 ia6 = NULL;
654
655 if (regen)
656 goto addrloop; /* XXX: see below */
657 } else if (IFA6_IS_DEPRECATED(ia6)) {
658 int oldflags = ia6->ia6_flags;
659
660 if ((oldflags & IN6_IFF_DEPRECATED) == 0) {
661 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
662 rt_newaddrmsg(RTM_NEWADDR,
663 (struct ifaddr *)ia6, 0, NULL);
664 }
665
666 /*
667 * If a temporary address has just become deprecated,
668 * regenerate a new one if possible.
669 */
670 if (ip6_use_tempaddr &&
671 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
672 (oldflags & IN6_IFF_DEPRECATED) == 0) {
673
674 if (regen_tmpaddr(ia6) == 0) {
675 /*
676 * A new temporary address is
677 * generated.
678 * XXX: this means the address chain
679 * has changed while we are still in
680 * the loop. Although the change
681 * would not cause disaster (because
682 * it's not a deletion, but an
683 * addition,) we'd rather restart the
684 * loop just for safety. Or does this
685 * significantly reduce performance??
686 */
687 ia6_release(ia6, &psref);
688 goto addrloop;
689 }
690 }
691 } else {
692 /*
693 * A new RA might have made a deprecated address
694 * preferred.
695 */
696 if (ia6->ia6_flags & IN6_IFF_DEPRECATED) {
697 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
698 rt_newaddrmsg(RTM_NEWADDR,
699 (struct ifaddr *)ia6, 0, NULL);
700 }
701 }
702 s = pserialize_read_enter();
703 ia6_release(ia6, &psref);
704 }
705 pserialize_read_exit(s);
706 curlwp_bindx(bound);
707
708 /* expire prefix list */
709 ND6_WLOCK();
710 ND_PREFIX_LIST_FOREACH_SAFE(pr, next_pr) {
711 /*
712 * check prefix lifetime.
713 * since pltime is just for autoconf, pltime processing for
714 * prefix is not necessary.
715 */
716 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
717 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) {
718
719 /*
720 * address expiration and prefix expiration are
721 * separate. NEVER perform in6_purgeaddr here.
722 */
723
724 nd6_prelist_remove(pr);
725 }
726 }
727 ND6_UNLOCK();
728
729 #ifndef NET_MPSAFE
730 KERNEL_UNLOCK_ONE(NULL);
731 mutex_exit(softnet_lock);
732 #endif
733 }
734
735 static void
736 nd6_timer(void *ignored_arg)
737 {
738
739 workqueue_enqueue(nd6_timer_wq, &nd6_timer_wk, NULL);
740 }
741
742 /* ia6: deprecated/invalidated temporary address */
743 static int
744 regen_tmpaddr(const struct in6_ifaddr *ia6)
745 {
746 struct ifaddr *ifa;
747 struct ifnet *ifp;
748 struct in6_ifaddr *public_ifa6 = NULL;
749 int s;
750
751 ifp = ia6->ia_ifa.ifa_ifp;
752 s = pserialize_read_enter();
753 IFADDR_READER_FOREACH(ifa, ifp) {
754 struct in6_ifaddr *it6;
755
756 if (ifa->ifa_addr->sa_family != AF_INET6)
757 continue;
758
759 it6 = (struct in6_ifaddr *)ifa;
760
761 /* ignore no autoconf addresses. */
762 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
763 continue;
764
765 /* ignore autoconf addresses with different prefixes. */
766 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
767 continue;
768
769 /*
770 * Now we are looking at an autoconf address with the same
771 * prefix as ours. If the address is temporary and is still
772 * preferred, do not create another one. It would be rare, but
773 * could happen, for example, when we resume a laptop PC after
774 * a long period.
775 */
776 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
777 !IFA6_IS_DEPRECATED(it6)) {
778 public_ifa6 = NULL;
779 break;
780 }
781
782 /*
783 * This is a public autoconf address that has the same prefix
784 * as ours. If it is preferred, keep it. We can't break the
785 * loop here, because there may be a still-preferred temporary
786 * address with the prefix.
787 */
788 if (!IFA6_IS_DEPRECATED(it6))
789 public_ifa6 = it6;
790 }
791
792 if (public_ifa6 != NULL) {
793 int e;
794 struct psref psref;
795
796 ia6_acquire(public_ifa6, &psref);
797 pserialize_read_exit(s);
798 /*
799 * Random factor is introduced in the preferred lifetime, so
800 * we do not need additional delay (3rd arg to in6_tmpifadd).
801 */
802 ND6_WLOCK();
803 e = in6_tmpifadd(public_ifa6, 0, 0);
804 ND6_UNLOCK();
805 if (e != 0) {
806 ia6_release(public_ifa6, &psref);
807 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
808 " tmp addr, errno=%d\n", e);
809 return -1;
810 }
811 ia6_release(public_ifa6, &psref);
812 return 0;
813 }
814 pserialize_read_exit(s);
815
816 return -1;
817 }
818
819 bool
820 nd6_accepts_rtadv(const struct nd_ifinfo *ndi)
821 {
822 switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) {
823 case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV:
824 return true;
825 case ND6_IFF_ACCEPT_RTADV:
826 return ip6_accept_rtadv != 0;
827 case ND6_IFF_OVERRIDE_RTADV:
828 case 0:
829 default:
830 return false;
831 }
832 }
833
834 /*
835 * Nuke neighbor cache/prefix/default router management table, right before
836 * ifp goes away.
837 */
838 void
839 nd6_purge(struct ifnet *ifp, struct in6_ifextra *ext)
840 {
841 struct nd_defrouter *dr, *ndr;
842 struct nd_prefix *pr, *npr;
843
844 /*
845 * During detach, the ND info might be already removed, but
846 * then is explitly passed as argument.
847 * Otherwise get it from ifp->if_afdata.
848 */
849 if (ext == NULL)
850 ext = ifp->if_afdata[AF_INET6];
851 if (ext == NULL)
852 return;
853
854 ND6_WLOCK();
855 /*
856 * Nuke default router list entries toward ifp.
857 * We defer removal of default router list entries that is installed
858 * in the routing table, in order to keep additional side effects as
859 * small as possible.
860 */
861 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, ndr) {
862 if (dr->installed)
863 continue;
864
865 if (dr->ifp == ifp) {
866 KASSERT(ext != NULL);
867 nd6_defrtrlist_del(dr, ext);
868 }
869 }
870
871 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, ndr) {
872 if (!dr->installed)
873 continue;
874
875 if (dr->ifp == ifp) {
876 KASSERT(ext != NULL);
877 nd6_defrtrlist_del(dr, ext);
878 }
879 }
880
881 /* Nuke prefix list entries toward ifp */
882 ND_PREFIX_LIST_FOREACH_SAFE(pr, npr) {
883 if (pr->ndpr_ifp == ifp) {
884 /*
885 * All addresses referencing pr should be already freed.
886 */
887 KASSERT(pr->ndpr_refcnt == 0);
888 nd6_prelist_remove(pr);
889 }
890 }
891
892 /* cancel default outgoing interface setting */
893 if (nd6_defifindex == ifp->if_index)
894 nd6_setdefaultiface(0);
895
896 /* XXX: too restrictive? */
897 if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) {
898 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
899 if (ndi && nd6_accepts_rtadv(ndi)) {
900 /* refresh default router list */
901 nd6_defrouter_select();
902 }
903 }
904 ND6_UNLOCK();
905
906 /*
907 * We may not need to nuke the neighbor cache entries here
908 * because the neighbor cache is kept in if_afdata[AF_INET6].
909 * nd6_purge() is invoked by in6_ifdetach() which is called
910 * from if_detach() where everything gets purged. However
911 * in6_ifdetach is directly called from vlan(4), so we still
912 * need to purge entries here.
913 */
914 if (ext->lltable != NULL)
915 lltable_purge_entries(ext->lltable);
916 }
917
918 void
919 nd6_assert_purged(struct ifnet *ifp)
920 {
921 struct nd_defrouter *dr;
922 struct nd_prefix *pr;
923 char ip6buf[INET6_ADDRSTRLEN] __diagused;
924
925 ND6_RLOCK();
926 ND_DEFROUTER_LIST_FOREACH(dr) {
927 KASSERTMSG(dr->ifp != ifp,
928 "defrouter %s remains on %s",
929 IN6_PRINT(ip6buf, &dr->rtaddr), ifp->if_xname);
930 }
931
932 ND_PREFIX_LIST_FOREACH(pr) {
933 KASSERTMSG(pr->ndpr_ifp != ifp,
934 "prefix %s/%d remains on %s",
935 IN6_PRINT(ip6buf, &pr->ndpr_prefix.sin6_addr),
936 pr->ndpr_plen, ifp->if_xname);
937 }
938 ND6_UNLOCK();
939 }
940
941 struct llentry *
942 nd6_lookup(const struct in6_addr *addr6, const struct ifnet *ifp, bool wlock)
943 {
944 struct sockaddr_in6 sin6;
945 struct llentry *ln;
946
947 sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
948
949 IF_AFDATA_RLOCK(ifp);
950 ln = lla_lookup(LLTABLE6(ifp), wlock ? LLE_EXCLUSIVE : 0,
951 sin6tosa(&sin6));
952 IF_AFDATA_RUNLOCK(ifp);
953
954 return ln;
955 }
956
957 struct llentry *
958 nd6_create(const struct in6_addr *addr6, const struct ifnet *ifp)
959 {
960 struct sockaddr_in6 sin6;
961 struct llentry *ln;
962
963 sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
964
965 IF_AFDATA_WLOCK(ifp);
966 ln = lla_create(LLTABLE6(ifp), LLE_EXCLUSIVE,
967 sin6tosa(&sin6));
968 IF_AFDATA_WUNLOCK(ifp);
969
970 if (ln != NULL)
971 ln->ln_state = ND6_LLINFO_NOSTATE;
972
973 return ln;
974 }
975
976 /*
977 * Test whether a given IPv6 address is a neighbor or not, ignoring
978 * the actual neighbor cache. The neighbor cache is ignored in order
979 * to not reenter the routing code from within itself.
980 */
981 static int
982 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
983 {
984 struct nd_prefix *pr;
985 struct ifaddr *dstaddr;
986 int s;
987
988 /*
989 * A link-local address is always a neighbor.
990 * XXX: a link does not necessarily specify a single interface.
991 */
992 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
993 struct sockaddr_in6 sin6_copy;
994 u_int32_t zone;
995
996 /*
997 * We need sin6_copy since sa6_recoverscope() may modify the
998 * content (XXX).
999 */
1000 sin6_copy = *addr;
1001 if (sa6_recoverscope(&sin6_copy))
1002 return 0; /* XXX: should be impossible */
1003 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
1004 return 0;
1005 if (sin6_copy.sin6_scope_id == zone)
1006 return 1;
1007 else
1008 return 0;
1009 }
1010
1011 /*
1012 * If the address matches one of our addresses,
1013 * it should be a neighbor.
1014 * If the address matches one of our on-link prefixes, it should be a
1015 * neighbor.
1016 */
1017 ND6_RLOCK();
1018 ND_PREFIX_LIST_FOREACH(pr) {
1019 if (pr->ndpr_ifp != ifp)
1020 continue;
1021
1022 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) {
1023 struct rtentry *rt;
1024
1025 rt = rtalloc1(sin6tosa(&pr->ndpr_prefix), 0);
1026 if (rt == NULL)
1027 continue;
1028 /*
1029 * This is the case where multiple interfaces
1030 * have the same prefix, but only one is installed
1031 * into the routing table and that prefix entry
1032 * is not the one being examined here. In the case
1033 * where RADIX_MPATH is enabled, multiple route
1034 * entries (of the same rt_key value) will be
1035 * installed because the interface addresses all
1036 * differ.
1037 */
1038 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1039 &satocsin6(rt_getkey(rt))->sin6_addr)) {
1040 rt_unref(rt);
1041 continue;
1042 }
1043 rt_unref(rt);
1044 }
1045
1046 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1047 &addr->sin6_addr, &pr->ndpr_mask)) {
1048 ND6_UNLOCK();
1049 return 1;
1050 }
1051 }
1052 ND6_UNLOCK();
1053
1054 /*
1055 * If the address is assigned on the node of the other side of
1056 * a p2p interface, the address should be a neighbor.
1057 */
1058 s = pserialize_read_enter();
1059 dstaddr = ifa_ifwithdstaddr(sin6tocsa(addr));
1060 if (dstaddr != NULL) {
1061 if (dstaddr->ifa_ifp == ifp) {
1062 pserialize_read_exit(s);
1063 return 1;
1064 }
1065 }
1066 pserialize_read_exit(s);
1067
1068 /*
1069 * If the default router list is empty, all addresses are regarded
1070 * as on-link, and thus, as a neighbor.
1071 */
1072 ND6_RLOCK();
1073 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
1074 ND_DEFROUTER_LIST_EMPTY() && nd6_defifindex == ifp->if_index) {
1075 ND6_UNLOCK();
1076 return 1;
1077 }
1078 ND6_UNLOCK();
1079
1080 return 0;
1081 }
1082
1083 /*
1084 * Detect if a given IPv6 address identifies a neighbor on a given link.
1085 * XXX: should take care of the destination of a p2p link?
1086 */
1087 int
1088 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1089 {
1090 struct nd_prefix *pr;
1091 struct llentry *ln;
1092 struct rtentry *rt;
1093
1094 /*
1095 * A link-local address is always a neighbor.
1096 * XXX: a link does not necessarily specify a single interface.
1097 */
1098 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
1099 struct sockaddr_in6 sin6_copy;
1100 u_int32_t zone;
1101
1102 /*
1103 * We need sin6_copy since sa6_recoverscope() may modify the
1104 * content (XXX).
1105 */
1106 sin6_copy = *addr;
1107 if (sa6_recoverscope(&sin6_copy))
1108 return 0; /* XXX: should be impossible */
1109 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
1110 return 0;
1111 if (sin6_copy.sin6_scope_id == zone)
1112 return 1;
1113 else
1114 return 0;
1115 }
1116
1117 /*
1118 * If the address matches one of our on-link prefixes, it should be a
1119 * neighbor.
1120 */
1121 ND6_RLOCK();
1122 ND_PREFIX_LIST_FOREACH(pr) {
1123 if (pr->ndpr_ifp != ifp)
1124 continue;
1125
1126 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
1127 continue;
1128
1129 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1130 &addr->sin6_addr, &pr->ndpr_mask)) {
1131 ND6_UNLOCK();
1132 return 1;
1133 }
1134 }
1135
1136 /*
1137 * If the default router list is empty, all addresses are regarded
1138 * as on-link, and thus, as a neighbor.
1139 * XXX: we restrict the condition to hosts, because routers usually do
1140 * not have the "default router list".
1141 */
1142 if (!ip6_forwarding && ND_DEFROUTER_LIST_EMPTY() &&
1143 nd6_defifindex == ifp->if_index) {
1144 ND6_UNLOCK();
1145 return 1;
1146 }
1147 ND6_UNLOCK();
1148
1149 if (nd6_is_new_addr_neighbor(addr, ifp))
1150 return 1;
1151
1152 /*
1153 * Even if the address matches none of our addresses, it might be
1154 * in the neighbor cache or a connected route.
1155 */
1156 ln = nd6_lookup(&addr->sin6_addr, ifp, false);
1157 if (ln != NULL) {
1158 LLE_RUNLOCK(ln);
1159 return 1;
1160 }
1161
1162 rt = rtalloc1(sin6tocsa(addr), 0);
1163 if (rt == NULL)
1164 return 0;
1165
1166 if ((rt->rt_flags & RTF_CONNECTED) && (rt->rt_ifp == ifp
1167 #if NBRIDGE > 0
1168 || rt->rt_ifp->if_bridge == ifp->if_bridge
1169 #endif
1170 #if NCARP > 0
1171 || (ifp->if_type == IFT_CARP && rt->rt_ifp == ifp->if_carpdev) ||
1172 (rt->rt_ifp->if_type == IFT_CARP && rt->rt_ifp->if_carpdev == ifp)||
1173 (ifp->if_type == IFT_CARP && rt->rt_ifp->if_type == IFT_CARP &&
1174 rt->rt_ifp->if_carpdev == ifp->if_carpdev)
1175 #endif
1176 )) {
1177 rt_unref(rt);
1178 return 1;
1179 }
1180 rt_unref(rt);
1181
1182 return 0;
1183 }
1184
1185 /*
1186 * Free an nd6 llinfo entry.
1187 * Since the function would cause significant changes in the kernel, DO NOT
1188 * make it global, unless you have a strong reason for the change, and are sure
1189 * that the change is safe.
1190 */
1191 static void
1192 nd6_free(struct llentry *ln, int gc)
1193 {
1194 struct nd_defrouter *dr;
1195 struct ifnet *ifp;
1196 struct in6_addr *in6;
1197
1198 KASSERT(ln != NULL);
1199 LLE_WLOCK_ASSERT(ln);
1200
1201 ifp = ln->lle_tbl->llt_ifp;
1202 in6 = &ln->r_l3addr.addr6;
1203 /*
1204 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1205 * even though it is not harmful, it was not really necessary.
1206 */
1207
1208 if (!ip6_forwarding) {
1209 ND6_WLOCK();
1210 dr = nd6_defrouter_lookup(in6, ifp);
1211
1212 if (dr != NULL && dr->expire &&
1213 ln->ln_state == ND6_LLINFO_STALE && gc) {
1214 /*
1215 * If the reason for the deletion is just garbage
1216 * collection, and the neighbor is an active default
1217 * router, do not delete it. Instead, reset the GC
1218 * timer using the router's lifetime.
1219 * Simply deleting the entry would affect default
1220 * router selection, which is not necessarily a good
1221 * thing, especially when we're using router preference
1222 * values.
1223 * XXX: the check for ln_state would be redundant,
1224 * but we intentionally keep it just in case.
1225 */
1226 if (dr->expire > time_uptime)
1227 nd6_llinfo_settimer(ln,
1228 (dr->expire - time_uptime) * hz);
1229 else
1230 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
1231 ND6_UNLOCK();
1232 LLE_WUNLOCK(ln);
1233 return;
1234 }
1235
1236 if (ln->ln_router || dr) {
1237 /*
1238 * We need to unlock to avoid a LOR with nd6_rt_flush()
1239 * with the rnh and for the calls to
1240 * nd6_pfxlist_onlink_check() and nd6_defrouter_select() in the
1241 * block further down for calls into nd6_lookup().
1242 * We still hold a ref.
1243 */
1244 LLE_WUNLOCK(ln);
1245
1246 /*
1247 * nd6_rt_flush must be called whether or not the neighbor
1248 * is in the Default Router List.
1249 * See a corresponding comment in nd6_na_input().
1250 */
1251 nd6_rt_flush(in6, ifp);
1252 }
1253
1254 if (dr) {
1255 /*
1256 * Unreachablity of a router might affect the default
1257 * router selection and on-link detection of advertised
1258 * prefixes.
1259 */
1260
1261 /*
1262 * Temporarily fake the state to choose a new default
1263 * router and to perform on-link determination of
1264 * prefixes correctly.
1265 * Below the state will be set correctly,
1266 * or the entry itself will be deleted.
1267 */
1268 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1269
1270 /*
1271 * Since nd6_defrouter_select() does not affect the
1272 * on-link determination and MIP6 needs the check
1273 * before the default router selection, we perform
1274 * the check now.
1275 */
1276 nd6_pfxlist_onlink_check();
1277
1278 /*
1279 * refresh default router list
1280 */
1281 nd6_defrouter_select();
1282 }
1283
1284 #ifdef __FreeBSD__
1285 /*
1286 * If this entry was added by an on-link redirect, remove the
1287 * corresponding host route.
1288 */
1289 if (ln->la_flags & LLE_REDIRECT)
1290 nd6_free_redirect(ln);
1291 #endif
1292 ND6_UNLOCK();
1293
1294 if (ln->ln_router || dr)
1295 LLE_WLOCK(ln);
1296 }
1297
1298 /*
1299 * Save to unlock. We still hold an extra reference and will not
1300 * free(9) in llentry_free() if someone else holds one as well.
1301 */
1302 LLE_WUNLOCK(ln);
1303 IF_AFDATA_LOCK(ifp);
1304 LLE_WLOCK(ln);
1305
1306 lltable_free_entry(LLTABLE6(ifp), ln);
1307
1308 IF_AFDATA_UNLOCK(ifp);
1309 }
1310
1311 /*
1312 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1313 *
1314 * XXX cost-effective methods?
1315 */
1316 void
1317 nd6_nud_hint(struct rtentry *rt)
1318 {
1319 struct llentry *ln;
1320 struct ifnet *ifp;
1321
1322 if (rt == NULL)
1323 return;
1324
1325 ifp = rt->rt_ifp;
1326 ln = nd6_lookup(&(satocsin6(rt_getkey(rt)))->sin6_addr, ifp, true);
1327 if (ln == NULL)
1328 return;
1329
1330 if (ln->ln_state < ND6_LLINFO_REACHABLE)
1331 goto done;
1332
1333 /*
1334 * if we get upper-layer reachability confirmation many times,
1335 * it is possible we have false information.
1336 */
1337 ln->ln_byhint++;
1338 if (ln->ln_byhint > nd6_maxnudhint)
1339 goto done;
1340
1341 ln->ln_state = ND6_LLINFO_REACHABLE;
1342 if (!ND6_LLINFO_PERMANENT(ln))
1343 nd6_llinfo_settimer(ln, ND_IFINFO(rt->rt_ifp)->reachable * hz);
1344
1345 done:
1346 LLE_WUNLOCK(ln);
1347
1348 return;
1349 }
1350
1351 struct gc_args {
1352 int gc_entries;
1353 const struct in6_addr *skip_in6;
1354 };
1355
1356 static int
1357 nd6_purge_entry(struct lltable *llt, struct llentry *ln, void *farg)
1358 {
1359 struct gc_args *args = farg;
1360 int *n = &args->gc_entries;
1361 const struct in6_addr *skip_in6 = args->skip_in6;
1362
1363 if (*n <= 0)
1364 return 0;
1365
1366 if (ND6_LLINFO_PERMANENT(ln))
1367 return 0;
1368
1369 if (IN6_ARE_ADDR_EQUAL(&ln->r_l3addr.addr6, skip_in6))
1370 return 0;
1371
1372 LLE_WLOCK(ln);
1373 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1374 ln->ln_state = ND6_LLINFO_STALE;
1375 else
1376 ln->ln_state = ND6_LLINFO_PURGE;
1377 nd6_llinfo_settimer(ln, 0);
1378 LLE_WUNLOCK(ln);
1379
1380 (*n)--;
1381 return 0;
1382 }
1383
1384 static void
1385 nd6_gc_neighbors(struct lltable *llt, const struct in6_addr *in6)
1386 {
1387
1388 if (ip6_neighborgcthresh >= 0 &&
1389 lltable_get_entry_count(llt) >= ip6_neighborgcthresh) {
1390 struct gc_args gc_args = {10, in6};
1391 /*
1392 * XXX entries that are "less recently used" should be
1393 * freed first.
1394 */
1395 lltable_foreach_lle(llt, nd6_purge_entry, &gc_args);
1396 }
1397 }
1398
1399 void
1400 nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
1401 {
1402 struct sockaddr *gate = rt->rt_gateway;
1403 struct ifnet *ifp = rt->rt_ifp;
1404 uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen;
1405 struct ifaddr *ifa;
1406
1407 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1408
1409 if (req == RTM_LLINFO_UPD) {
1410 int rc;
1411 struct in6_addr *in6;
1412 struct in6_addr in6_all;
1413 int anycast;
1414
1415 if ((ifa = info->rti_ifa) == NULL)
1416 return;
1417
1418 in6 = &ifatoia6(ifa)->ia_addr.sin6_addr;
1419 anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST;
1420
1421 in6_all = in6addr_linklocal_allnodes;
1422 if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) {
1423 log(LOG_ERR, "%s: failed to set scope %s "
1424 "(errno=%d)\n", __func__, if_name(ifp), rc);
1425 return;
1426 }
1427
1428 /* XXX don't set Override for proxy addresses */
1429 nd6_na_output(ifa->ifa_ifp, &in6_all, in6,
1430 (anycast ? 0 : ND_NA_FLAG_OVERRIDE)
1431 #if 0
1432 | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0)
1433 #endif
1434 , 1, NULL);
1435 return;
1436 }
1437
1438 if ((rt->rt_flags & RTF_GATEWAY) != 0)
1439 return;
1440
1441 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1442 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1443 /*
1444 * This is probably an interface direct route for a link
1445 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1446 * We do not need special treatment below for such a route.
1447 * Moreover, the RTF_LLINFO flag which would be set below
1448 * would annoy the ndp(8) command.
1449 */
1450 return;
1451 }
1452
1453 switch (req) {
1454 case RTM_ADD: {
1455 int s;
1456
1457 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1458 /*
1459 * There is no backward compatibility :)
1460 *
1461 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1462 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1463 * rt->rt_flags |= RTF_CLONING;
1464 */
1465 /* XXX should move to route.c? */
1466 if (rt->rt_flags & (RTF_CONNECTED | RTF_LOCAL)) {
1467 union {
1468 struct sockaddr sa;
1469 struct sockaddr_dl sdl;
1470 struct sockaddr_storage ss;
1471 } u;
1472 /*
1473 * Case 1: This route should come from a route to
1474 * interface (RTF_CLONING case) or the route should be
1475 * treated as on-link but is currently not
1476 * (RTF_LLINFO && ln == NULL case).
1477 */
1478 if (sockaddr_dl_init(&u.sdl, sizeof(u.ss),
1479 ifp->if_index, ifp->if_type,
1480 NULL, namelen, NULL, addrlen) == NULL) {
1481 printf("%s.%d: sockaddr_dl_init(, %zu, ) "
1482 "failed on %s\n", __func__, __LINE__,
1483 sizeof(u.ss), if_name(ifp));
1484 }
1485 rt_setgate(rt, &u.sa);
1486 gate = rt->rt_gateway;
1487 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1488 if (gate == NULL) {
1489 log(LOG_ERR,
1490 "%s: rt_setgate failed on %s\n", __func__,
1491 if_name(ifp));
1492 break;
1493 }
1494
1495 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1496 if ((rt->rt_flags & RTF_CONNECTED) != 0)
1497 break;
1498 }
1499 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1500 /*
1501 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1502 * We don't do that here since llinfo is not ready yet.
1503 *
1504 * There are also couple of other things to be discussed:
1505 * - unsolicited NA code needs improvement beforehand
1506 * - RFC2461 says we MAY send multicast unsolicited NA
1507 * (7.2.6 paragraph 4), however, it also says that we
1508 * SHOULD provide a mechanism to prevent multicast NA storm.
1509 * we don't have anything like it right now.
1510 * note that the mechanism needs a mutual agreement
1511 * between proxies, which means that we need to implement
1512 * a new protocol, or a new kludge.
1513 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1514 * we need to check ip6forwarding before sending it.
1515 * (or should we allow proxy ND configuration only for
1516 * routers? there's no mention about proxy ND from hosts)
1517 */
1518 #if 0
1519 /* XXX it does not work */
1520 if (rt->rt_flags & RTF_ANNOUNCE)
1521 nd6_na_output(ifp,
1522 &satocsin6(rt_getkey(rt))->sin6_addr,
1523 &satocsin6(rt_getkey(rt))->sin6_addr,
1524 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1525 1, NULL);
1526 #endif
1527
1528 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1529 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1530 /*
1531 * Address resolution isn't necessary for a point to
1532 * point link, so we can skip this test for a p2p link.
1533 */
1534 if (gate->sa_family != AF_LINK ||
1535 gate->sa_len <
1536 sockaddr_dl_measure(namelen, addrlen)) {
1537 log(LOG_DEBUG,
1538 "nd6_rtrequest: bad gateway value: %s\n",
1539 if_name(ifp));
1540 break;
1541 }
1542 satosdl(gate)->sdl_type = ifp->if_type;
1543 satosdl(gate)->sdl_index = ifp->if_index;
1544 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1545 }
1546 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1547
1548 /*
1549 * When called from rt_ifa_addlocal, we cannot depend on that
1550 * the address (rt_getkey(rt)) exits in the address list of the
1551 * interface. So check RTF_LOCAL instead.
1552 */
1553 if (rt->rt_flags & RTF_LOCAL) {
1554 if (nd6_useloopback)
1555 rt->rt_ifp = lo0ifp; /* XXX */
1556 break;
1557 }
1558
1559 /*
1560 * check if rt_getkey(rt) is an address assigned
1561 * to the interface.
1562 */
1563 s = pserialize_read_enter();
1564 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp,
1565 &satocsin6(rt_getkey(rt))->sin6_addr);
1566 if (ifa != NULL) {
1567 if (nd6_useloopback) {
1568 rt->rt_ifp = lo0ifp; /* XXX */
1569 /*
1570 * Make sure rt_ifa be equal to the ifaddr
1571 * corresponding to the address.
1572 * We need this because when we refer
1573 * rt_ifa->ia6_flags in ip6_input, we assume
1574 * that the rt_ifa points to the address instead
1575 * of the loopback address.
1576 */
1577 if (ifa != rt->rt_ifa)
1578 rt_replace_ifa(rt, ifa);
1579 }
1580 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1581 /* join solicited node multicast for proxy ND */
1582 if (ifp->if_flags & IFF_MULTICAST) {
1583 struct in6_addr llsol;
1584 int error;
1585
1586 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1587 llsol.s6_addr32[0] = htonl(0xff020000);
1588 llsol.s6_addr32[1] = 0;
1589 llsol.s6_addr32[2] = htonl(1);
1590 llsol.s6_addr8[12] = 0xff;
1591 if (in6_setscope(&llsol, ifp, NULL))
1592 goto out;
1593 if (!in6_addmulti(&llsol, ifp, &error, 0)) {
1594 char ip6buf[INET6_ADDRSTRLEN];
1595 nd6log(LOG_ERR, "%s: failed to join "
1596 "%s (errno=%d)\n", if_name(ifp),
1597 IN6_PRINT(ip6buf, &llsol), error);
1598 }
1599 }
1600 }
1601 out:
1602 pserialize_read_exit(s);
1603 /*
1604 * If we have too many cache entries, initiate immediate
1605 * purging for some entries.
1606 */
1607 if (rt->rt_ifp != NULL)
1608 nd6_gc_neighbors(LLTABLE6(rt->rt_ifp), NULL);
1609 break;
1610 }
1611
1612 case RTM_DELETE:
1613 /* leave from solicited node multicast for proxy ND */
1614 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1615 (ifp->if_flags & IFF_MULTICAST) != 0) {
1616 struct in6_addr llsol;
1617 struct in6_multi *in6m;
1618
1619 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1620 llsol.s6_addr32[0] = htonl(0xff020000);
1621 llsol.s6_addr32[1] = 0;
1622 llsol.s6_addr32[2] = htonl(1);
1623 llsol.s6_addr8[12] = 0xff;
1624 if (in6_setscope(&llsol, ifp, NULL) == 0) {
1625 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1626 if (in6m)
1627 in6_delmulti(in6m);
1628 }
1629 }
1630 break;
1631 }
1632 }
1633
1634 int
1635 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp)
1636 {
1637 struct in6_drlist *drl = (struct in6_drlist *)data;
1638 struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1639 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1640 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1641 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1642 struct nd_defrouter *dr;
1643 struct nd_prefix *pr;
1644 int i = 0, error = 0;
1645
1646 switch (cmd) {
1647 case SIOCGDRLST_IN6:
1648 /*
1649 * obsolete API, use sysctl under net.inet6.icmp6
1650 */
1651 memset(drl, 0, sizeof(*drl));
1652 ND6_RLOCK();
1653 ND_DEFROUTER_LIST_FOREACH(dr) {
1654 if (i >= DRLSTSIZ)
1655 break;
1656 drl->defrouter[i].rtaddr = dr->rtaddr;
1657 in6_clearscope(&drl->defrouter[i].rtaddr);
1658
1659 drl->defrouter[i].flags = dr->flags;
1660 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1661 drl->defrouter[i].expire = dr->expire ?
1662 time_mono_to_wall(dr->expire) : 0;
1663 drl->defrouter[i].if_index = dr->ifp->if_index;
1664 i++;
1665 }
1666 ND6_UNLOCK();
1667 break;
1668 case SIOCGPRLST_IN6:
1669 /*
1670 * obsolete API, use sysctl under net.inet6.icmp6
1671 *
1672 * XXX the structure in6_prlist was changed in backward-
1673 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1674 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1675 */
1676 /*
1677 * XXX meaning of fields, especialy "raflags", is very
1678 * differnet between RA prefix list and RR/static prefix list.
1679 * how about separating ioctls into two?
1680 */
1681 memset(oprl, 0, sizeof(*oprl));
1682 ND6_RLOCK();
1683 ND_PREFIX_LIST_FOREACH(pr) {
1684 struct nd_pfxrouter *pfr;
1685 int j;
1686
1687 if (i >= PRLSTSIZ)
1688 break;
1689 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1690 oprl->prefix[i].raflags = pr->ndpr_raf;
1691 oprl->prefix[i].prefixlen = pr->ndpr_plen;
1692 oprl->prefix[i].vltime = pr->ndpr_vltime;
1693 oprl->prefix[i].pltime = pr->ndpr_pltime;
1694 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1695 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1696 oprl->prefix[i].expire = 0;
1697 else {
1698 time_t maxexpire;
1699
1700 /* XXX: we assume time_t is signed. */
1701 maxexpire = (-1) &
1702 ~((time_t)1 <<
1703 ((sizeof(maxexpire) * 8) - 1));
1704 if (pr->ndpr_vltime <
1705 maxexpire - pr->ndpr_lastupdate) {
1706 time_t expire;
1707 expire = pr->ndpr_lastupdate +
1708 pr->ndpr_vltime;
1709 oprl->prefix[i].expire = expire ?
1710 time_mono_to_wall(expire) : 0;
1711 } else
1712 oprl->prefix[i].expire = maxexpire;
1713 }
1714
1715 j = 0;
1716 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
1717 if (j < DRLSTSIZ) {
1718 #define RTRADDR oprl->prefix[i].advrtr[j]
1719 RTRADDR = pfr->router->rtaddr;
1720 in6_clearscope(&RTRADDR);
1721 #undef RTRADDR
1722 }
1723 j++;
1724 }
1725 oprl->prefix[i].advrtrs = j;
1726 oprl->prefix[i].origin = PR_ORIG_RA;
1727
1728 i++;
1729 }
1730 ND6_UNLOCK();
1731
1732 break;
1733 case OSIOCGIFINFO_IN6:
1734 #define ND ndi->ndi
1735 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1736 memset(&ND, 0, sizeof(ND));
1737 ND.linkmtu = IN6_LINKMTU(ifp);
1738 ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1739 ND.basereachable = ND_IFINFO(ifp)->basereachable;
1740 ND.reachable = ND_IFINFO(ifp)->reachable;
1741 ND.retrans = ND_IFINFO(ifp)->retrans;
1742 ND.flags = ND_IFINFO(ifp)->flags;
1743 ND.recalctm = ND_IFINFO(ifp)->recalctm;
1744 ND.chlim = ND_IFINFO(ifp)->chlim;
1745 break;
1746 case SIOCGIFINFO_IN6:
1747 ND = *ND_IFINFO(ifp);
1748 break;
1749 case SIOCSIFINFO_IN6:
1750 /*
1751 * used to change host variables from userland.
1752 * intented for a use on router to reflect RA configurations.
1753 */
1754 /* 0 means 'unspecified' */
1755 if (ND.linkmtu != 0) {
1756 if (ND.linkmtu < IPV6_MMTU ||
1757 ND.linkmtu > IN6_LINKMTU(ifp)) {
1758 error = EINVAL;
1759 break;
1760 }
1761 ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1762 }
1763
1764 if (ND.basereachable != 0) {
1765 int obasereachable = ND_IFINFO(ifp)->basereachable;
1766
1767 ND_IFINFO(ifp)->basereachable = ND.basereachable;
1768 if (ND.basereachable != obasereachable)
1769 ND_IFINFO(ifp)->reachable =
1770 ND_COMPUTE_RTIME(ND.basereachable);
1771 }
1772 if (ND.retrans != 0)
1773 ND_IFINFO(ifp)->retrans = ND.retrans;
1774 if (ND.chlim != 0)
1775 ND_IFINFO(ifp)->chlim = ND.chlim;
1776 /* FALLTHROUGH */
1777 case SIOCSIFINFO_FLAGS:
1778 {
1779 struct ifaddr *ifa;
1780 struct in6_ifaddr *ia;
1781 int s;
1782
1783 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1784 !(ND.flags & ND6_IFF_IFDISABLED))
1785 {
1786 /*
1787 * If the interface is marked as ND6_IFF_IFDISABLED and
1788 * has a link-local address with IN6_IFF_DUPLICATED,
1789 * do not clear ND6_IFF_IFDISABLED.
1790 * See RFC 4862, section 5.4.5.
1791 */
1792 int duplicated_linklocal = 0;
1793
1794 s = pserialize_read_enter();
1795 IFADDR_READER_FOREACH(ifa, ifp) {
1796 if (ifa->ifa_addr->sa_family != AF_INET6)
1797 continue;
1798 ia = (struct in6_ifaddr *)ifa;
1799 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1800 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1801 {
1802 duplicated_linklocal = 1;
1803 break;
1804 }
1805 }
1806 pserialize_read_exit(s);
1807
1808 if (duplicated_linklocal) {
1809 ND.flags |= ND6_IFF_IFDISABLED;
1810 log(LOG_ERR, "Cannot enable an interface"
1811 " with a link-local address marked"
1812 " duplicate.\n");
1813 } else {
1814 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1815 if (ifp->if_flags & IFF_UP)
1816 in6_if_up(ifp);
1817 }
1818 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1819 (ND.flags & ND6_IFF_IFDISABLED)) {
1820 int bound = curlwp_bind();
1821 /* Mark all IPv6 addresses as tentative. */
1822
1823 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1824 s = pserialize_read_enter();
1825 IFADDR_READER_FOREACH(ifa, ifp) {
1826 struct psref psref;
1827 if (ifa->ifa_addr->sa_family != AF_INET6)
1828 continue;
1829 ifa_acquire(ifa, &psref);
1830 pserialize_read_exit(s);
1831
1832 nd6_dad_stop(ifa);
1833
1834 ia = (struct in6_ifaddr *)ifa;
1835 ia->ia6_flags |= IN6_IFF_TENTATIVE;
1836
1837 s = pserialize_read_enter();
1838 ifa_release(ifa, &psref);
1839 }
1840 pserialize_read_exit(s);
1841 curlwp_bindx(bound);
1842 }
1843
1844 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1845 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1846 /* auto_linklocal 0->1 transition */
1847
1848 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1849 in6_ifattach(ifp, NULL);
1850 } else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1851 ifp->if_flags & IFF_UP)
1852 {
1853 /*
1854 * When the IF already has
1855 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1856 * address is assigned, and IFF_UP, try to
1857 * assign one.
1858 */
1859 int haslinklocal = 0;
1860
1861 s = pserialize_read_enter();
1862 IFADDR_READER_FOREACH(ifa, ifp) {
1863 if (ifa->ifa_addr->sa_family !=AF_INET6)
1864 continue;
1865 ia = (struct in6_ifaddr *)ifa;
1866 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))){
1867 haslinklocal = 1;
1868 break;
1869 }
1870 }
1871 pserialize_read_exit(s);
1872 if (!haslinklocal)
1873 in6_ifattach(ifp, NULL);
1874 }
1875 }
1876 }
1877 ND_IFINFO(ifp)->flags = ND.flags;
1878 break;
1879 #undef ND
1880 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1881 /* sync kernel routing table with the default router list */
1882 ND6_WLOCK();
1883 nd6_defrouter_reset();
1884 nd6_defrouter_select();
1885 ND6_UNLOCK();
1886 break;
1887 case SIOCSPFXFLUSH_IN6:
1888 {
1889 /* flush all the prefix advertised by routers */
1890 struct nd_prefix *pfx, *next;
1891
1892 restart:
1893 ND6_WLOCK();
1894 ND_PREFIX_LIST_FOREACH_SAFE(pfx, next) {
1895 struct in6_ifaddr *ia, *ia_next;
1896 int _s;
1897
1898 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
1899 continue; /* XXX */
1900
1901 /* do we really have to remove addresses as well? */
1902 _s = pserialize_read_enter();
1903 for (ia = IN6_ADDRLIST_READER_FIRST(); ia;
1904 ia = ia_next) {
1905 /* ia might be removed. keep the next ptr. */
1906 ia_next = IN6_ADDRLIST_READER_NEXT(ia);
1907
1908 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1909 continue;
1910
1911 if (ia->ia6_ndpr == pfx) {
1912 pserialize_read_exit(_s);
1913 ND6_UNLOCK();
1914 /* XXX NOMPSAFE? */
1915 /* in6_purgeaddr may destroy pfx. */
1916 in6_purgeaddr(&ia->ia_ifa);
1917 goto restart;
1918 }
1919 }
1920 pserialize_read_exit(_s);
1921
1922 KASSERT(pfx->ndpr_refcnt == 0);
1923 nd6_prelist_remove(pfx);
1924 }
1925 ND6_UNLOCK();
1926 break;
1927 }
1928 case SIOCSRTRFLUSH_IN6:
1929 {
1930 /* flush all the default routers */
1931 struct nd_defrouter *drtr, *next;
1932
1933 ND6_WLOCK();
1934 nd6_defrouter_reset();
1935 ND_DEFROUTER_LIST_FOREACH_SAFE(drtr, next) {
1936 nd6_defrtrlist_del(drtr, NULL);
1937 }
1938 nd6_defrouter_select();
1939 ND6_UNLOCK();
1940 break;
1941 }
1942 case SIOCGNBRINFO_IN6:
1943 {
1944 struct llentry *ln;
1945 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1946
1947 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1948 return error;
1949
1950 ln = nd6_lookup(&nb_addr, ifp, false);
1951 if (ln == NULL) {
1952 error = EINVAL;
1953 break;
1954 }
1955 nbi->state = ln->ln_state;
1956 nbi->asked = ln->ln_asked;
1957 nbi->isrouter = ln->ln_router;
1958 nbi->expire = ln->ln_expire ?
1959 time_mono_to_wall(ln->ln_expire) : 0;
1960 LLE_RUNLOCK(ln);
1961
1962 break;
1963 }
1964 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1965 ndif->ifindex = nd6_defifindex;
1966 break;
1967 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1968 return nd6_setdefaultiface(ndif->ifindex);
1969 }
1970 return error;
1971 }
1972
1973 void
1974 nd6_llinfo_release_pkts(struct llentry *ln, struct ifnet *ifp)
1975 {
1976 struct mbuf *m_hold, *m_hold_next;
1977 struct sockaddr_in6 sin6;
1978
1979 LLE_WLOCK_ASSERT(ln);
1980
1981 sockaddr_in6_init(&sin6, &ln->r_l3addr.addr6, 0, 0, 0);
1982
1983 m_hold = ln->la_hold, ln->la_hold = NULL, ln->la_numheld = 0;
1984
1985 LLE_WUNLOCK(ln);
1986 for (; m_hold != NULL; m_hold = m_hold_next) {
1987 m_hold_next = m_hold->m_nextpkt;
1988 m_hold->m_nextpkt = NULL;
1989
1990 /*
1991 * we assume ifp is not a p2p here, so
1992 * just set the 2nd argument as the
1993 * 1st one.
1994 */
1995 nd6_output(ifp, ifp, m_hold, &sin6, NULL);
1996 }
1997 LLE_WLOCK(ln);
1998 }
1999
2000 /*
2001 * Create neighbor cache entry and cache link-layer address,
2002 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
2003 */
2004 void
2005 nd6_cache_lladdr(
2006 struct ifnet *ifp,
2007 struct in6_addr *from,
2008 char *lladdr,
2009 int lladdrlen,
2010 int type, /* ICMP6 type */
2011 int code /* type dependent information */
2012 )
2013 {
2014 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
2015 struct llentry *ln = NULL;
2016 int is_newentry;
2017 int do_update;
2018 int olladdr;
2019 int llchange;
2020 int newstate = 0;
2021 uint16_t router = 0;
2022
2023 KASSERT(ifp != NULL);
2024 KASSERT(from != NULL);
2025
2026 /* nothing must be updated for unspecified address */
2027 if (IN6_IS_ADDR_UNSPECIFIED(from))
2028 return;
2029
2030 /*
2031 * Validation about ifp->if_addrlen and lladdrlen must be done in
2032 * the caller.
2033 *
2034 * XXX If the link does not have link-layer adderss, what should
2035 * we do? (ifp->if_addrlen == 0)
2036 * Spec says nothing in sections for RA, RS and NA. There's small
2037 * description on it in NS section (RFC 2461 7.2.3).
2038 */
2039
2040 ln = nd6_lookup(from, ifp, true);
2041 if (ln == NULL) {
2042 #if 0
2043 /* nothing must be done if there's no lladdr */
2044 if (!lladdr || !lladdrlen)
2045 return NULL;
2046 #endif
2047
2048 ln = nd6_create(from, ifp);
2049 is_newentry = 1;
2050 } else {
2051 /* do nothing if static ndp is set */
2052 if (ln->la_flags & LLE_STATIC) {
2053 LLE_WUNLOCK(ln);
2054 return;
2055 }
2056 is_newentry = 0;
2057 }
2058
2059 if (ln == NULL)
2060 return;
2061
2062 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
2063 if (olladdr && lladdr) {
2064 llchange = memcmp(lladdr, &ln->ll_addr, ifp->if_addrlen);
2065 } else
2066 llchange = 0;
2067
2068 /*
2069 * newentry olladdr lladdr llchange (*=record)
2070 * 0 n n -- (1)
2071 * 0 y n -- (2)
2072 * 0 n y -- (3) * STALE
2073 * 0 y y n (4) *
2074 * 0 y y y (5) * STALE
2075 * 1 -- n -- (6) NOSTATE(= PASSIVE)
2076 * 1 -- y -- (7) * STALE
2077 */
2078
2079 if (lladdr) { /* (3-5) and (7) */
2080 /*
2081 * Record source link-layer address
2082 * XXX is it dependent to ifp->if_type?
2083 */
2084 memcpy(&ln->ll_addr, lladdr, ifp->if_addrlen);
2085 ln->la_flags |= LLE_VALID;
2086 }
2087
2088 if (!is_newentry) {
2089 if ((!olladdr && lladdr) || /* (3) */
2090 (olladdr && lladdr && llchange)) { /* (5) */
2091 do_update = 1;
2092 newstate = ND6_LLINFO_STALE;
2093 } else /* (1-2,4) */
2094 do_update = 0;
2095 } else {
2096 do_update = 1;
2097 if (lladdr == NULL) /* (6) */
2098 newstate = ND6_LLINFO_NOSTATE;
2099 else /* (7) */
2100 newstate = ND6_LLINFO_STALE;
2101 }
2102
2103 if (do_update) {
2104 /*
2105 * Update the state of the neighbor cache.
2106 */
2107 ln->ln_state = newstate;
2108
2109 if (ln->ln_state == ND6_LLINFO_STALE) {
2110 /*
2111 * XXX: since nd6_output() below will cause
2112 * state tansition to DELAY and reset the timer,
2113 * we must set the timer now, although it is actually
2114 * meaningless.
2115 */
2116 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
2117
2118 nd6_llinfo_release_pkts(ln, ifp);
2119 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
2120 /* probe right away */
2121 nd6_llinfo_settimer((void *)ln, 0);
2122 }
2123 }
2124
2125 /*
2126 * ICMP6 type dependent behavior.
2127 *
2128 * NS: clear IsRouter if new entry
2129 * RS: clear IsRouter
2130 * RA: set IsRouter if there's lladdr
2131 * redir: clear IsRouter if new entry
2132 *
2133 * RA case, (1):
2134 * The spec says that we must set IsRouter in the following cases:
2135 * - If lladdr exist, set IsRouter. This means (1-5).
2136 * - If it is old entry (!newentry), set IsRouter. This means (7).
2137 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
2138 * A quetion arises for (1) case. (1) case has no lladdr in the
2139 * neighbor cache, this is similar to (6).
2140 * This case is rare but we figured that we MUST NOT set IsRouter.
2141 *
2142 * newentry olladdr lladdr llchange NS RS RA redir
2143 * D R
2144 * 0 n n -- (1) c ? s
2145 * 0 y n -- (2) c s s
2146 * 0 n y -- (3) c s s
2147 * 0 y y n (4) c s s
2148 * 0 y y y (5) c s s
2149 * 1 -- n -- (6) c c c s
2150 * 1 -- y -- (7) c c s c s
2151 *
2152 * (c=clear s=set)
2153 */
2154 switch (type & 0xff) {
2155 case ND_NEIGHBOR_SOLICIT:
2156 /*
2157 * New entry must have is_router flag cleared.
2158 */
2159 if (is_newentry) /* (6-7) */
2160 ln->ln_router = 0;
2161 break;
2162 case ND_REDIRECT:
2163 /*
2164 * If the icmp is a redirect to a better router, always set the
2165 * is_router flag. Otherwise, if the entry is newly created,
2166 * clear the flag. [RFC 2461, sec 8.3]
2167 */
2168 if (code == ND_REDIRECT_ROUTER)
2169 ln->ln_router = 1;
2170 else if (is_newentry) /* (6-7) */
2171 ln->ln_router = 0;
2172 break;
2173 case ND_ROUTER_SOLICIT:
2174 /*
2175 * is_router flag must always be cleared.
2176 */
2177 ln->ln_router = 0;
2178 break;
2179 case ND_ROUTER_ADVERT:
2180 /*
2181 * Mark an entry with lladdr as a router.
2182 */
2183 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
2184 (is_newentry && lladdr)) { /* (7) */
2185 ln->ln_router = 1;
2186 }
2187 break;
2188 }
2189
2190 #if 0
2191 /* XXX should we send rtmsg as it used to be? */
2192 if (do_update)
2193 rt_newmsg(RTM_CHANGE, rt); /* tell user process */
2194 #endif
2195
2196 if (ln != NULL) {
2197 router = ln->ln_router;
2198 LLE_WUNLOCK(ln);
2199 }
2200
2201 /*
2202 * If we have too many cache entries, initiate immediate
2203 * purging for some entries.
2204 */
2205 if (is_newentry)
2206 nd6_gc_neighbors(LLTABLE6(ifp), &ln->r_l3addr.addr6);
2207
2208 /*
2209 * When the link-layer address of a router changes, select the
2210 * best router again. In particular, when the neighbor entry is newly
2211 * created, it might affect the selection policy.
2212 * Question: can we restrict the first condition to the "is_newentry"
2213 * case?
2214 * XXX: when we hear an RA from a new router with the link-layer
2215 * address option, nd6_defrouter_select() is called twice, since
2216 * defrtrlist_update called the function as well. However, I believe
2217 * we can compromise the overhead, since it only happens the first
2218 * time.
2219 * XXX: although nd6_defrouter_select() should not have a bad effect
2220 * for those are not autoconfigured hosts, we explicitly avoid such
2221 * cases for safety.
2222 */
2223 if (do_update && router && !ip6_forwarding &&
2224 nd6_accepts_rtadv(ndi)) {
2225 ND6_WLOCK();
2226 nd6_defrouter_select();
2227 ND6_UNLOCK();
2228 }
2229 }
2230
2231 static void
2232 nd6_slowtimo(void *ignored_arg)
2233 {
2234 struct nd_ifinfo *nd6if;
2235 struct ifnet *ifp;
2236 int s;
2237
2238 #ifndef NET_MPSAFE
2239 mutex_enter(softnet_lock);
2240 KERNEL_LOCK(1, NULL);
2241 #endif
2242 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
2243 nd6_slowtimo, NULL);
2244
2245 s = pserialize_read_enter();
2246 IFNET_READER_FOREACH(ifp) {
2247 nd6if = ND_IFINFO(ifp);
2248 if (nd6if->basereachable && /* already initialized */
2249 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
2250 /*
2251 * Since reachable time rarely changes by router
2252 * advertisements, we SHOULD insure that a new random
2253 * value gets recomputed at least once every few hours.
2254 * (RFC 2461, 6.3.4)
2255 */
2256 nd6if->recalctm = nd6_recalc_reachtm_interval;
2257 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
2258 }
2259 }
2260 pserialize_read_exit(s);
2261
2262 #ifndef NET_MPSAFE
2263 KERNEL_UNLOCK_ONE(NULL);
2264 mutex_exit(softnet_lock);
2265 #endif
2266 }
2267
2268 int
2269 nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
2270 const struct sockaddr_in6 *dst, struct rtentry *rt)
2271 {
2272 #define senderr(e) { error = (e); goto bad;}
2273 struct llentry *ln = NULL;
2274 int error = 0;
2275 bool created = false;
2276
2277 if (rt != NULL) {
2278 error = rt_check_reject_route(rt, ifp);
2279 if (error != 0) {
2280 m_freem(m);
2281 return error;
2282 }
2283 }
2284
2285 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
2286 goto sendpkt;
2287
2288 if (nd6_need_cache(ifp) == 0)
2289 goto sendpkt;
2290
2291 if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) != 0) {
2292 struct sockaddr_in6 *gw6 = satosin6(rt->rt_gateway);
2293 int s;
2294
2295 /* XXX remain the check to keep the original behavior. */
2296 /*
2297 * We skip link-layer address resolution and NUD
2298 * if the gateway is not a neighbor from ND point
2299 * of view, regardless of the value of nd_ifinfo.flags.
2300 * The second condition is a bit tricky; we skip
2301 * if the gateway is our own address, which is
2302 * sometimes used to install a route to a p2p link.
2303 */
2304 s = pserialize_read_enter();
2305 if (!nd6_is_addr_neighbor(gw6, ifp) ||
2306 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
2307 /*
2308 * We allow this kind of tricky route only
2309 * when the outgoing interface is p2p.
2310 * XXX: we may need a more generic rule here.
2311 */
2312 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) {
2313 pserialize_read_exit(s);
2314 senderr(EHOSTUNREACH);
2315 }
2316
2317 pserialize_read_exit(s);
2318 goto sendpkt;
2319 }
2320 pserialize_read_exit(s);
2321 }
2322
2323 /*
2324 * Address resolution or Neighbor Unreachability Detection
2325 * for the next hop.
2326 * At this point, the destination of the packet must be a unicast
2327 * or an anycast address(i.e. not a multicast).
2328 */
2329
2330 /* Look up the neighbor cache for the nexthop */
2331 ln = nd6_lookup(&dst->sin6_addr, ifp, true);
2332 if ((ln == NULL) && nd6_is_addr_neighbor(dst, ifp)) {
2333 /*
2334 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2335 * the condition below is not very efficient. But we believe
2336 * it is tolerable, because this should be a rare case.
2337 */
2338 ln = nd6_create(&dst->sin6_addr, ifp);
2339 if (ln != NULL)
2340 created = true;
2341 }
2342
2343 if (ln == NULL) {
2344 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
2345 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2346 char ip6buf[INET6_ADDRSTRLEN];
2347 log(LOG_DEBUG,
2348 "nd6_output: can't allocate llinfo for %s "
2349 "(ln=%p, rt=%p)\n",
2350 IN6_PRINT(ip6buf, &dst->sin6_addr), ln, rt);
2351 senderr(EIO); /* XXX: good error? */
2352 }
2353 goto sendpkt; /* send anyway */
2354 }
2355
2356 LLE_WLOCK_ASSERT(ln);
2357
2358 /* We don't have to do link-layer address resolution on a p2p link. */
2359 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2360 ln->ln_state < ND6_LLINFO_REACHABLE) {
2361 ln->ln_state = ND6_LLINFO_STALE;
2362 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
2363 }
2364
2365 /*
2366 * The first time we send a packet to a neighbor whose entry is
2367 * STALE, we have to change the state to DELAY and a sets a timer to
2368 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2369 * neighbor unreachability detection on expiration.
2370 * (RFC 2461 7.3.3)
2371 */
2372 if (ln->ln_state == ND6_LLINFO_STALE) {
2373 ln->ln_asked = 0;
2374 ln->ln_state = ND6_LLINFO_DELAY;
2375 nd6_llinfo_settimer(ln, nd6_delay * hz);
2376 }
2377
2378 /*
2379 * If the neighbor cache entry has a state other than INCOMPLETE
2380 * (i.e. its link-layer address is already resolved), just
2381 * send the packet.
2382 */
2383 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2384 goto sendpkt;
2385
2386 /*
2387 * There is a neighbor cache entry, but no ethernet address
2388 * response yet. Append this latest packet to the end of the
2389 * packet queue in the mbuf, unless the number of the packet
2390 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen,
2391 * the oldest packet in the queue will be removed.
2392 */
2393 if (ln->ln_state == ND6_LLINFO_NOSTATE)
2394 ln->ln_state = ND6_LLINFO_INCOMPLETE;
2395 if (ln->ln_hold) {
2396 struct mbuf *m_hold;
2397 int i;
2398
2399 i = 0;
2400 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2401 i++;
2402 if (m_hold->m_nextpkt == NULL) {
2403 m_hold->m_nextpkt = m;
2404 break;
2405 }
2406 }
2407 while (i >= nd6_maxqueuelen) {
2408 m_hold = ln->ln_hold;
2409 ln->ln_hold = ln->ln_hold->m_nextpkt;
2410 m_freem(m_hold);
2411 i--;
2412 }
2413 } else {
2414 ln->ln_hold = m;
2415 }
2416
2417 /*
2418 * If there has been no NS for the neighbor after entering the
2419 * INCOMPLETE state, send the first solicitation.
2420 */
2421 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2422 struct in6_addr src, *psrc;
2423
2424 ln->ln_asked++;
2425 nd6_llinfo_settimer(ln, ND_IFINFO(ifp)->retrans * hz / 1000);
2426 psrc = nd6_llinfo_get_holdsrc(ln, &src);
2427 LLE_WUNLOCK(ln);
2428 ln = NULL;
2429 nd6_ns_output(ifp, NULL, &dst->sin6_addr, psrc, 0);
2430 } else {
2431 /* We did the lookup so we need to do the unlock here. */
2432 LLE_WUNLOCK(ln);
2433 }
2434
2435 error = 0;
2436 goto exit;
2437
2438 sendpkt:
2439 /* discard the packet if IPv6 operation is disabled on the interface */
2440 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2441 error = ENETDOWN; /* better error? */
2442 goto bad;
2443 }
2444
2445 if (ln != NULL)
2446 LLE_WUNLOCK(ln);
2447
2448 if ((ifp->if_flags & IFF_LOOPBACK) != 0)
2449 error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt);
2450 else
2451 error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt);
2452 goto exit;
2453
2454 bad:
2455 if (m != NULL)
2456 m_freem(m);
2457 exit:
2458 if (created)
2459 nd6_gc_neighbors(LLTABLE6(ifp), &dst->sin6_addr);
2460
2461 return error;
2462 #undef senderr
2463 }
2464
2465 int
2466 nd6_need_cache(struct ifnet *ifp)
2467 {
2468 /*
2469 * XXX: we currently do not make neighbor cache on any interface
2470 * other than ARCnet, Ethernet, FDDI and GIF.
2471 *
2472 * RFC2893 says:
2473 * - unidirectional tunnels needs no ND
2474 */
2475 switch (ifp->if_type) {
2476 case IFT_ARCNET:
2477 case IFT_ETHER:
2478 case IFT_FDDI:
2479 case IFT_IEEE1394:
2480 case IFT_CARP:
2481 case IFT_GIF: /* XXX need more cases? */
2482 case IFT_PPP:
2483 case IFT_TUNNEL:
2484 return 1;
2485 default:
2486 return 0;
2487 }
2488 }
2489
2490 /*
2491 * Add pernament ND6 link-layer record for given
2492 * interface address.
2493 *
2494 * Very similar to IPv4 arp_ifinit(), but:
2495 * 1) IPv6 DAD is performed in different place
2496 * 2) It is called by IPv6 protocol stack in contrast to
2497 * arp_ifinit() which is typically called in SIOCSIFADDR
2498 * driver ioctl handler.
2499 *
2500 */
2501 int
2502 nd6_add_ifa_lle(struct in6_ifaddr *ia)
2503 {
2504 struct ifnet *ifp;
2505 struct llentry *ln;
2506
2507 ifp = ia->ia_ifa.ifa_ifp;
2508 if (nd6_need_cache(ifp) == 0)
2509 return 0;
2510 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
2511 ia->ia_ifa.ifa_flags |= RTF_CONNECTED;
2512
2513 IF_AFDATA_WLOCK(ifp);
2514 ln = lla_create(LLTABLE6(ifp), LLE_IFADDR | LLE_EXCLUSIVE,
2515 sin6tosa(&ia->ia_addr));
2516 IF_AFDATA_WUNLOCK(ifp);
2517 if (ln == NULL)
2518 return ENOBUFS;
2519
2520 ln->la_expire = 0; /* for IPv6 this means permanent */
2521 ln->ln_state = ND6_LLINFO_REACHABLE;
2522
2523 LLE_WUNLOCK(ln);
2524 return 0;
2525 }
2526
2527 /*
2528 * Removes ALL lle records for interface address prefix.
2529 * XXXME: That's probably not we really want to do, we need
2530 * to remove address record only and keep other records
2531 * until we determine if given prefix is really going
2532 * to be removed.
2533 */
2534 void
2535 nd6_rem_ifa_lle(struct in6_ifaddr *ia)
2536 {
2537 struct sockaddr_in6 mask, addr;
2538
2539 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
2540 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
2541 lltable_prefix_free(AF_INET6, sin6tosa(&addr), sin6tosa(&mask),
2542 LLE_STATIC);
2543 }
2544
2545 int
2546 nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt,
2547 struct mbuf *m, const struct sockaddr *dst, uint8_t *lldst,
2548 size_t dstsize)
2549 {
2550 struct llentry *ln;
2551
2552 if (m->m_flags & M_MCAST) {
2553 switch (ifp->if_type) {
2554 case IFT_ETHER:
2555 case IFT_FDDI:
2556 ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
2557 lldst);
2558 return 1;
2559 case IFT_IEEE1394:
2560 memcpy(lldst, ifp->if_broadcastaddr,
2561 MIN(dstsize, ifp->if_addrlen));
2562 return 1;
2563 case IFT_ARCNET:
2564 *lldst = 0;
2565 return 1;
2566 default:
2567 m_freem(m);
2568 return 0;
2569 }
2570 }
2571
2572 /*
2573 * the entry should have been created in nd6_store_lladdr
2574 */
2575 ln = nd6_lookup(&satocsin6(dst)->sin6_addr, ifp, false);
2576 if ((ln == NULL) || !(ln->la_flags & LLE_VALID)) {
2577 if (ln != NULL)
2578 LLE_RUNLOCK(ln);
2579 /* this could happen, if we could not allocate memory */
2580 m_freem(m);
2581 return 0;
2582 }
2583
2584 /* XXX llentry should have addrlen? */
2585 #if 0
2586 sdl = satocsdl(rt->rt_gateway);
2587 if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) {
2588 char sbuf[INET6_ADDRSTRLEN];
2589 char dbuf[LINK_ADDRSTRLEN];
2590 /* this should be impossible, but we bark here for debugging */
2591 printf("%s: sdl_alen == %" PRIu8 ", if=%s, dst=%s, sdl=%s\n",
2592 __func__, sdl->sdl_alen, if_name(ifp),
2593 IN6_PRINT(sbuf, &satocsin6(dst)->sin6_addr),
2594 DL_PRINT(dbuf, &sdl->sdl_addr));
2595 m_freem(m);
2596 return 0;
2597 }
2598 #endif
2599
2600 memcpy(lldst, &ln->ll_addr, MIN(dstsize, ifp->if_addrlen));
2601
2602 LLE_RUNLOCK(ln);
2603
2604 return 1;
2605 }
2606
2607 static void
2608 clear_llinfo_pqueue(struct llentry *ln)
2609 {
2610 struct mbuf *m_hold, *m_hold_next;
2611
2612 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2613 m_hold_next = m_hold->m_nextpkt;
2614 m_hold->m_nextpkt = NULL;
2615 m_freem(m_hold);
2616 }
2617
2618 ln->ln_hold = NULL;
2619 return;
2620 }
2621
2622 int
2623 nd6_sysctl(
2624 int name,
2625 void *oldp, /* syscall arg, need copyout */
2626 size_t *oldlenp,
2627 void *newp, /* syscall arg, need copyin */
2628 size_t newlen
2629 )
2630 {
2631 void *p;
2632 size_t ol;
2633 int error;
2634
2635 error = 0;
2636
2637 if (newp)
2638 return EPERM;
2639 if (oldp && !oldlenp)
2640 return EINVAL;
2641 ol = oldlenp ? *oldlenp : 0;
2642
2643 if (oldp) {
2644 p = malloc(*oldlenp, M_TEMP, M_WAITOK);
2645 if (p == NULL)
2646 return ENOMEM;
2647 } else
2648 p = NULL;
2649 switch (name) {
2650 case ICMPV6CTL_ND6_DRLIST:
2651 error = fill_drlist(p, oldlenp, ol);
2652 if (!error && p != NULL && oldp != NULL)
2653 error = copyout(p, oldp, *oldlenp);
2654 break;
2655
2656 case ICMPV6CTL_ND6_PRLIST:
2657 error = fill_prlist(p, oldlenp, ol);
2658 if (!error && p != NULL && oldp != NULL)
2659 error = copyout(p, oldp, *oldlenp);
2660 break;
2661
2662 case ICMPV6CTL_ND6_MAXQLEN:
2663 break;
2664
2665 default:
2666 error = ENOPROTOOPT;
2667 break;
2668 }
2669 if (p)
2670 free(p, M_TEMP);
2671
2672 return error;
2673 }
2674
2675 static int
2676 fill_drlist(void *oldp, size_t *oldlenp, size_t ol)
2677 {
2678 int error = 0;
2679 struct in6_defrouter *d = NULL, *de = NULL;
2680 struct nd_defrouter *dr;
2681 size_t l;
2682
2683 if (oldp) {
2684 d = (struct in6_defrouter *)oldp;
2685 de = (struct in6_defrouter *)((char *)oldp + *oldlenp);
2686 }
2687 l = 0;
2688
2689 ND6_RLOCK();
2690 ND_DEFROUTER_LIST_FOREACH(dr) {
2691
2692 if (oldp && d + 1 <= de) {
2693 memset(d, 0, sizeof(*d));
2694 sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0);
2695 if (sa6_recoverscope(&d->rtaddr)) {
2696 char ip6buf[INET6_ADDRSTRLEN];
2697 log(LOG_ERR,
2698 "scope error in router list (%s)\n",
2699 IN6_PRINT(ip6buf, &d->rtaddr.sin6_addr));
2700 /* XXX: press on... */
2701 }
2702 d->flags = dr->flags;
2703 d->rtlifetime = dr->rtlifetime;
2704 d->expire = dr->expire ?
2705 time_mono_to_wall(dr->expire) : 0;
2706 d->if_index = dr->ifp->if_index;
2707 }
2708
2709 l += sizeof(*d);
2710 if (d)
2711 d++;
2712 }
2713 ND6_UNLOCK();
2714
2715 if (oldp) {
2716 if (l > ol)
2717 error = ENOMEM;
2718 }
2719 if (oldlenp)
2720 *oldlenp = l; /* (void *)d - (void *)oldp */
2721
2722 return error;
2723 }
2724
2725 static int
2726 fill_prlist(void *oldp, size_t *oldlenp, size_t ol)
2727 {
2728 int error = 0;
2729 struct nd_prefix *pr;
2730 uint8_t *p = NULL, *ps = NULL;
2731 uint8_t *pe = NULL;
2732 size_t l;
2733 char ip6buf[INET6_ADDRSTRLEN];
2734
2735 if (oldp) {
2736 ps = p = (uint8_t*)oldp;
2737 pe = (uint8_t*)oldp + *oldlenp;
2738 }
2739 l = 0;
2740
2741 ND6_RLOCK();
2742 ND_PREFIX_LIST_FOREACH(pr) {
2743 u_short advrtrs;
2744 struct sockaddr_in6 sin6;
2745 struct nd_pfxrouter *pfr;
2746 struct in6_prefix pfx;
2747
2748 if (oldp && p + sizeof(struct in6_prefix) <= pe)
2749 {
2750 memset(&pfx, 0, sizeof(pfx));
2751 ps = p;
2752 pfx.prefix = pr->ndpr_prefix;
2753
2754 if (sa6_recoverscope(&pfx.prefix)) {
2755 log(LOG_ERR,
2756 "scope error in prefix list (%s)\n",
2757 IN6_PRINT(ip6buf, &pfx.prefix.sin6_addr));
2758 /* XXX: press on... */
2759 }
2760 pfx.raflags = pr->ndpr_raf;
2761 pfx.prefixlen = pr->ndpr_plen;
2762 pfx.vltime = pr->ndpr_vltime;
2763 pfx.pltime = pr->ndpr_pltime;
2764 pfx.if_index = pr->ndpr_ifp->if_index;
2765 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2766 pfx.expire = 0;
2767 else {
2768 time_t maxexpire;
2769
2770 /* XXX: we assume time_t is signed. */
2771 maxexpire = (-1) &
2772 ~((time_t)1 <<
2773 ((sizeof(maxexpire) * 8) - 1));
2774 if (pr->ndpr_vltime <
2775 maxexpire - pr->ndpr_lastupdate) {
2776 pfx.expire = pr->ndpr_lastupdate +
2777 pr->ndpr_vltime;
2778 } else
2779 pfx.expire = maxexpire;
2780 }
2781 pfx.refcnt = pr->ndpr_refcnt;
2782 pfx.flags = pr->ndpr_stateflags;
2783 pfx.origin = PR_ORIG_RA;
2784
2785 p += sizeof(pfx); l += sizeof(pfx);
2786
2787 advrtrs = 0;
2788 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2789 if (p + sizeof(sin6) > pe) {
2790 advrtrs++;
2791 continue;
2792 }
2793
2794 sockaddr_in6_init(&sin6, &pfr->router->rtaddr,
2795 0, 0, 0);
2796 if (sa6_recoverscope(&sin6)) {
2797 log(LOG_ERR,
2798 "scope error in "
2799 "prefix list (%s)\n",
2800 IN6_PRINT(ip6buf,
2801 &pfr->router->rtaddr));
2802 }
2803 advrtrs++;
2804 memcpy(p, &sin6, sizeof(sin6));
2805 p += sizeof(sin6);
2806 l += sizeof(sin6);
2807 }
2808 pfx.advrtrs = advrtrs;
2809 memcpy(ps, &pfx, sizeof(pfx));
2810 }
2811 else {
2812 l += sizeof(pfx);
2813 advrtrs = 0;
2814 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2815 advrtrs++;
2816 l += sizeof(sin6);
2817 }
2818 }
2819 }
2820 ND6_UNLOCK();
2821
2822 if (oldp) {
2823 *oldlenp = l; /* (void *)d - (void *)oldp */
2824 if (l > ol)
2825 error = ENOMEM;
2826 } else
2827 *oldlenp = l;
2828
2829 return error;
2830 }
2831
2832 static int
2833 nd6_setdefaultiface(int ifindex)
2834 {
2835 ifnet_t *ifp;
2836 int error = 0;
2837 int s;
2838
2839 s = pserialize_read_enter();
2840 ifp = if_byindex(ifindex);
2841 if (ifp == NULL) {
2842 pserialize_read_exit(s);
2843 return EINVAL;
2844 }
2845 if (nd6_defifindex != ifindex) {
2846 nd6_defifindex = ifindex;
2847 nd6_defifp = nd6_defifindex > 0 ? ifp : NULL;
2848
2849 /*
2850 * Our current implementation assumes one-to-one maping between
2851 * interfaces and links, so it would be natural to use the
2852 * default interface as the default link.
2853 */
2854 scope6_setdefault(nd6_defifp);
2855 }
2856 pserialize_read_exit(s);
2857
2858 return (error);
2859 }
2860