nd6.c revision 1.239 1 /* $NetBSD: nd6.c,v 1.239 2017/11/17 07:37:12 ozaki-r Exp $ */
2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.239 2017/11/17 07:37:12 ozaki-r Exp $");
35
36 #ifdef _KERNEL_OPT
37 #include "opt_net_mpsafe.h"
38 #endif
39
40 #include "bridge.h"
41 #include "carp.h"
42
43 #include <sys/param.h>
44 #include <sys/systm.h>
45 #include <sys/callout.h>
46 #include <sys/kmem.h>
47 #include <sys/mbuf.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/sockio.h>
51 #include <sys/time.h>
52 #include <sys/kernel.h>
53 #include <sys/errno.h>
54 #include <sys/ioctl.h>
55 #include <sys/syslog.h>
56 #include <sys/queue.h>
57 #include <sys/cprng.h>
58 #include <sys/workqueue.h>
59
60 #include <net/if.h>
61 #include <net/if_dl.h>
62 #include <net/if_llatbl.h>
63 #include <net/if_types.h>
64 #include <net/route.h>
65 #include <net/if_ether.h>
66 #include <net/if_fddi.h>
67 #include <net/if_arc.h>
68
69 #include <netinet/in.h>
70 #include <netinet6/in6_var.h>
71 #include <netinet/ip6.h>
72 #include <netinet6/ip6_var.h>
73 #include <netinet6/scope6_var.h>
74 #include <netinet6/nd6.h>
75 #include <netinet6/in6_ifattach.h>
76 #include <netinet/icmp6.h>
77 #include <netinet6/icmp6_private.h>
78
79 #include <net/net_osdep.h>
80
81 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
82 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
83
84 /* timer values */
85 int nd6_prune = 1; /* walk list every 1 seconds */
86 int nd6_delay = 5; /* delay first probe time 5 second */
87 int nd6_umaxtries = 3; /* maximum unicast query */
88 int nd6_mmaxtries = 3; /* maximum multicast query */
89 int nd6_useloopback = 1; /* use loopback interface for local traffic */
90 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
91
92 /* preventing too many loops in ND option parsing */
93 int nd6_maxndopt = 10; /* max # of ND options allowed */
94
95 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
96
97 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
98
99 #ifdef ND6_DEBUG
100 int nd6_debug = 1;
101 #else
102 int nd6_debug = 0;
103 #endif
104
105 krwlock_t nd6_lock __cacheline_aligned;
106
107 struct nd_drhead nd_defrouter;
108 struct nd_prhead nd_prefix = { 0 };
109
110 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
111
112 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
113 static void nd6_slowtimo(void *);
114 static int regen_tmpaddr(const struct in6_ifaddr *);
115 static void nd6_free(struct llentry *, int);
116 static void nd6_llinfo_timer(void *);
117 static void nd6_timer(void *);
118 static void nd6_timer_work(struct work *, void *);
119 static void clear_llinfo_pqueue(struct llentry *);
120 static struct nd_opt_hdr *nd6_option(union nd_opts *);
121
122 static callout_t nd6_slowtimo_ch;
123 static callout_t nd6_timer_ch;
124 static struct workqueue *nd6_timer_wq;
125 static struct work nd6_timer_wk;
126
127 static int fill_drlist(void *, size_t *, size_t);
128 static int fill_prlist(void *, size_t *, size_t);
129
130 static struct ifnet *nd6_defifp;
131 static int nd6_defifindex;
132
133 static int nd6_setdefaultiface(int);
134
135 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
136
137 void
138 nd6_init(void)
139 {
140 int error;
141
142 rw_init(&nd6_lock);
143
144 /* initialization of the default router list */
145 ND_DEFROUTER_LIST_INIT();
146
147 callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE);
148 callout_init(&nd6_timer_ch, CALLOUT_MPSAFE);
149
150 error = workqueue_create(&nd6_timer_wq, "nd6_timer",
151 nd6_timer_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
152 if (error)
153 panic("%s: workqueue_create failed (%d)\n", __func__, error);
154
155 /* start timer */
156 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
157 nd6_slowtimo, NULL);
158 callout_reset(&nd6_timer_ch, hz, nd6_timer, NULL);
159 }
160
161 struct nd_ifinfo *
162 nd6_ifattach(struct ifnet *ifp)
163 {
164 struct nd_ifinfo *nd;
165
166 nd = kmem_zalloc(sizeof(*nd), KM_SLEEP);
167
168 nd->initialized = 1;
169
170 nd->chlim = IPV6_DEFHLIM;
171 nd->basereachable = REACHABLE_TIME;
172 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
173 nd->retrans = RETRANS_TIMER;
174
175 nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV;
176
177 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
178 * A bridge interface should not have ND6_IFF_AUTO_LINKLOCAL
179 * because one of its members should. */
180 if ((ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
181 (ifp->if_flags & IFF_LOOPBACK))
182 nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
183
184 /* A loopback interface does not need to accept RTADV.
185 * A bridge interface should not accept RTADV
186 * because one of its members should. */
187 if (ip6_accept_rtadv &&
188 !(ifp->if_flags & IFF_LOOPBACK) &&
189 !(ifp->if_type != IFT_BRIDGE))
190 nd->flags |= ND6_IFF_ACCEPT_RTADV;
191
192 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
193 nd6_setmtu0(ifp, nd);
194
195 return nd;
196 }
197
198 void
199 nd6_ifdetach(struct ifnet *ifp, struct in6_ifextra *ext)
200 {
201
202 /* Ensure all IPv6 addresses are purged before calling nd6_purge */
203 if_purgeaddrs(ifp, AF_INET6, in6_purgeaddr);
204 nd6_purge(ifp, ext);
205 kmem_free(ext->nd_ifinfo, sizeof(struct nd_ifinfo));
206 }
207
208 void
209 nd6_setmtu(struct ifnet *ifp)
210 {
211 nd6_setmtu0(ifp, ND_IFINFO(ifp));
212 }
213
214 void
215 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
216 {
217 u_int32_t omaxmtu;
218
219 omaxmtu = ndi->maxmtu;
220
221 switch (ifp->if_type) {
222 case IFT_ARCNET:
223 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
224 break;
225 case IFT_FDDI:
226 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
227 break;
228 default:
229 ndi->maxmtu = ifp->if_mtu;
230 break;
231 }
232
233 /*
234 * Decreasing the interface MTU under IPV6 minimum MTU may cause
235 * undesirable situation. We thus notify the operator of the change
236 * explicitly. The check for omaxmtu is necessary to restrict the
237 * log to the case of changing the MTU, not initializing it.
238 */
239 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
240 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
241 " small for IPv6 which needs %lu\n",
242 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
243 IPV6_MMTU);
244 }
245
246 if (ndi->maxmtu > in6_maxmtu)
247 in6_setmaxmtu(); /* check all interfaces just in case */
248 }
249
250 void
251 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
252 {
253
254 memset(ndopts, 0, sizeof(*ndopts));
255 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
256 ndopts->nd_opts_last
257 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
258
259 if (icmp6len == 0) {
260 ndopts->nd_opts_done = 1;
261 ndopts->nd_opts_search = NULL;
262 }
263 }
264
265 /*
266 * Take one ND option.
267 */
268 static struct nd_opt_hdr *
269 nd6_option(union nd_opts *ndopts)
270 {
271 struct nd_opt_hdr *nd_opt;
272 int olen;
273
274 KASSERT(ndopts != NULL);
275 KASSERT(ndopts->nd_opts_last != NULL);
276
277 if (ndopts->nd_opts_search == NULL)
278 return NULL;
279 if (ndopts->nd_opts_done)
280 return NULL;
281
282 nd_opt = ndopts->nd_opts_search;
283
284 /* make sure nd_opt_len is inside the buffer */
285 if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) {
286 memset(ndopts, 0, sizeof(*ndopts));
287 return NULL;
288 }
289
290 olen = nd_opt->nd_opt_len << 3;
291 if (olen == 0) {
292 /*
293 * Message validation requires that all included
294 * options have a length that is greater than zero.
295 */
296 memset(ndopts, 0, sizeof(*ndopts));
297 return NULL;
298 }
299
300 ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen);
301 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
302 /* option overruns the end of buffer, invalid */
303 memset(ndopts, 0, sizeof(*ndopts));
304 return NULL;
305 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
306 /* reached the end of options chain */
307 ndopts->nd_opts_done = 1;
308 ndopts->nd_opts_search = NULL;
309 }
310 return nd_opt;
311 }
312
313 /*
314 * Parse multiple ND options.
315 * This function is much easier to use, for ND routines that do not need
316 * multiple options of the same type.
317 */
318 int
319 nd6_options(union nd_opts *ndopts)
320 {
321 struct nd_opt_hdr *nd_opt;
322 int i = 0;
323
324 KASSERT(ndopts != NULL);
325 KASSERT(ndopts->nd_opts_last != NULL);
326
327 if (ndopts->nd_opts_search == NULL)
328 return 0;
329
330 while (1) {
331 nd_opt = nd6_option(ndopts);
332 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
333 /*
334 * Message validation requires that all included
335 * options have a length that is greater than zero.
336 */
337 ICMP6_STATINC(ICMP6_STAT_ND_BADOPT);
338 memset(ndopts, 0, sizeof(*ndopts));
339 return -1;
340 }
341
342 if (nd_opt == NULL)
343 goto skip1;
344
345 switch (nd_opt->nd_opt_type) {
346 case ND_OPT_SOURCE_LINKADDR:
347 case ND_OPT_TARGET_LINKADDR:
348 case ND_OPT_MTU:
349 case ND_OPT_REDIRECTED_HEADER:
350 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
351 nd6log(LOG_INFO,
352 "duplicated ND6 option found (type=%d)\n",
353 nd_opt->nd_opt_type);
354 /* XXX bark? */
355 } else {
356 ndopts->nd_opt_array[nd_opt->nd_opt_type]
357 = nd_opt;
358 }
359 break;
360 case ND_OPT_PREFIX_INFORMATION:
361 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
362 ndopts->nd_opt_array[nd_opt->nd_opt_type]
363 = nd_opt;
364 }
365 ndopts->nd_opts_pi_end =
366 (struct nd_opt_prefix_info *)nd_opt;
367 break;
368 default:
369 /*
370 * Unknown options must be silently ignored,
371 * to accommodate future extension to the protocol.
372 */
373 nd6log(LOG_DEBUG,
374 "nd6_options: unsupported option %d - "
375 "option ignored\n", nd_opt->nd_opt_type);
376 }
377
378 skip1:
379 i++;
380 if (i > nd6_maxndopt) {
381 ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT);
382 nd6log(LOG_INFO, "too many loop in nd opt\n");
383 break;
384 }
385
386 if (ndopts->nd_opts_done)
387 break;
388 }
389
390 return 0;
391 }
392
393 /*
394 * ND6 timer routine to handle ND6 entries
395 */
396 void
397 nd6_llinfo_settimer(struct llentry *ln, time_t xtick)
398 {
399
400 CTASSERT(sizeof(time_t) > sizeof(int));
401 LLE_WLOCK_ASSERT(ln);
402
403 KASSERT(xtick >= 0);
404
405 ln->ln_expire = time_uptime + xtick / hz;
406 LLE_ADDREF(ln);
407 if (xtick > INT_MAX) {
408 ln->ln_ntick = xtick - INT_MAX;
409 callout_reset(&ln->ln_timer_ch, INT_MAX,
410 nd6_llinfo_timer, ln);
411 } else {
412 ln->ln_ntick = 0;
413 callout_reset(&ln->ln_timer_ch, xtick,
414 nd6_llinfo_timer, ln);
415 }
416 }
417
418 /*
419 * Gets source address of the first packet in hold queue
420 * and stores it in @src.
421 * Returns pointer to @src (if hold queue is not empty) or NULL.
422 */
423 static struct in6_addr *
424 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
425 {
426 struct ip6_hdr *hip6;
427
428 if (ln == NULL || ln->ln_hold == NULL)
429 return NULL;
430
431 /*
432 * assuming every packet in ln_hold has the same IP header
433 */
434 hip6 = mtod(ln->ln_hold, struct ip6_hdr *);
435 /* XXX pullup? */
436 if (sizeof(*hip6) < ln->ln_hold->m_len)
437 *src = hip6->ip6_src;
438 else
439 src = NULL;
440
441 return src;
442 }
443
444 static void
445 nd6_llinfo_timer(void *arg)
446 {
447 struct llentry *ln = arg;
448 struct ifnet *ifp;
449 struct nd_ifinfo *ndi = NULL;
450 bool send_ns = false;
451 const struct in6_addr *daddr6 = NULL;
452
453 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
454 LLE_WLOCK(ln);
455 if ((ln->la_flags & LLE_LINKED) == 0)
456 goto out;
457 if (ln->ln_ntick > 0) {
458 nd6_llinfo_settimer(ln, ln->ln_ntick);
459 goto out;
460 }
461
462 if (callout_pending(&ln->la_timer)) {
463 /*
464 * Here we are a bit odd here in the treatment of
465 * active/pending. If the pending bit is set, it got
466 * rescheduled before I ran. The active
467 * bit we ignore, since if it was stopped
468 * in ll_tablefree() and was currently running
469 * it would have return 0 so the code would
470 * not have deleted it since the callout could
471 * not be stopped so we want to go through
472 * with the delete here now. If the callout
473 * was restarted, the pending bit will be back on and
474 * we just want to bail since the callout_reset would
475 * return 1 and our reference would have been removed
476 * by nd6_llinfo_settimer above since canceled
477 * would have been 1.
478 */
479 goto out;
480 }
481
482 ifp = ln->lle_tbl->llt_ifp;
483
484 KASSERT(ifp != NULL);
485
486 ndi = ND_IFINFO(ifp);
487
488 switch (ln->ln_state) {
489 case ND6_LLINFO_INCOMPLETE:
490 if (ln->ln_asked < nd6_mmaxtries) {
491 ln->ln_asked++;
492 send_ns = true;
493 } else {
494 struct mbuf *m = ln->ln_hold;
495 if (m) {
496 struct mbuf *m0;
497
498 /*
499 * assuming every packet in ln_hold has
500 * the same IP header
501 */
502 m0 = m->m_nextpkt;
503 m->m_nextpkt = NULL;
504 ln->ln_hold = m0;
505 clear_llinfo_pqueue(ln);
506 }
507 nd6_free(ln, 0);
508 ln = NULL;
509 if (m != NULL) {
510 icmp6_error2(m, ICMP6_DST_UNREACH,
511 ICMP6_DST_UNREACH_ADDR, 0, ifp);
512 }
513 }
514 break;
515 case ND6_LLINFO_REACHABLE:
516 if (!ND6_LLINFO_PERMANENT(ln)) {
517 ln->ln_state = ND6_LLINFO_STALE;
518 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
519 }
520 break;
521
522 case ND6_LLINFO_PURGE:
523 case ND6_LLINFO_STALE:
524 /* Garbage Collection(RFC 2461 5.3) */
525 if (!ND6_LLINFO_PERMANENT(ln)) {
526 nd6_free(ln, 1);
527 ln = NULL;
528 }
529 break;
530
531 case ND6_LLINFO_DELAY:
532 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
533 /* We need NUD */
534 ln->ln_asked = 1;
535 ln->ln_state = ND6_LLINFO_PROBE;
536 daddr6 = &ln->r_l3addr.addr6;
537 send_ns = true;
538 } else {
539 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
540 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
541 }
542 break;
543 case ND6_LLINFO_PROBE:
544 if (ln->ln_asked < nd6_umaxtries) {
545 ln->ln_asked++;
546 daddr6 = &ln->r_l3addr.addr6;
547 send_ns = true;
548 } else {
549 nd6_free(ln, 0);
550 ln = NULL;
551 }
552 break;
553 }
554
555 if (send_ns) {
556 struct in6_addr src, *psrc;
557 const struct in6_addr *taddr6 = &ln->r_l3addr.addr6;
558
559 nd6_llinfo_settimer(ln, ndi->retrans * hz / 1000);
560 psrc = nd6_llinfo_get_holdsrc(ln, &src);
561 LLE_FREE_LOCKED(ln);
562 ln = NULL;
563 nd6_ns_output(ifp, daddr6, taddr6, psrc, 0);
564 }
565
566 out:
567 if (ln != NULL)
568 LLE_FREE_LOCKED(ln);
569 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
570 }
571
572 /*
573 * ND6 timer routine to expire default route list and prefix list
574 */
575 static void
576 nd6_timer_work(struct work *wk, void *arg)
577 {
578 struct nd_defrouter *next_dr, *dr;
579 struct nd_prefix *next_pr, *pr;
580 struct in6_ifaddr *ia6, *nia6;
581 int s, bound;
582 struct psref psref;
583
584 callout_reset(&nd6_timer_ch, nd6_prune * hz,
585 nd6_timer, NULL);
586
587 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
588
589 /* expire default router list */
590
591 ND6_WLOCK();
592 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, next_dr) {
593 if (dr->expire && dr->expire < time_uptime) {
594 nd6_defrtrlist_del(dr, NULL);
595 }
596 }
597 ND6_UNLOCK();
598
599 /*
600 * expire interface addresses.
601 * in the past the loop was inside prefix expiry processing.
602 * However, from a stricter speci-confrmance standpoint, we should
603 * rather separate address lifetimes and prefix lifetimes.
604 */
605 bound = curlwp_bind();
606 addrloop:
607 s = pserialize_read_enter();
608 for (ia6 = IN6_ADDRLIST_READER_FIRST(); ia6; ia6 = nia6) {
609 nia6 = IN6_ADDRLIST_READER_NEXT(ia6);
610
611 ia6_acquire(ia6, &psref);
612 pserialize_read_exit(s);
613
614 /* check address lifetime */
615 if (IFA6_IS_INVALID(ia6)) {
616 int regen = 0;
617
618 /*
619 * If the expiring address is temporary, try
620 * regenerating a new one. This would be useful when
621 * we suspended a laptop PC, then turned it on after a
622 * period that could invalidate all temporary
623 * addresses. Although we may have to restart the
624 * loop (see below), it must be after purging the
625 * address. Otherwise, we'd see an infinite loop of
626 * regeneration.
627 */
628 if (ip6_use_tempaddr &&
629 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
630 if (regen_tmpaddr(ia6) == 0)
631 regen = 1;
632 }
633
634 ia6_release(ia6, &psref);
635 in6_purgeaddr(&ia6->ia_ifa);
636 ia6 = NULL;
637
638 if (regen)
639 goto addrloop; /* XXX: see below */
640 } else if (IFA6_IS_DEPRECATED(ia6)) {
641 int oldflags = ia6->ia6_flags;
642
643 if ((oldflags & IN6_IFF_DEPRECATED) == 0) {
644 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
645 rt_newaddrmsg(RTM_NEWADDR,
646 (struct ifaddr *)ia6, 0, NULL);
647 }
648
649 /*
650 * If a temporary address has just become deprecated,
651 * regenerate a new one if possible.
652 */
653 if (ip6_use_tempaddr &&
654 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
655 (oldflags & IN6_IFF_DEPRECATED) == 0) {
656
657 if (regen_tmpaddr(ia6) == 0) {
658 /*
659 * A new temporary address is
660 * generated.
661 * XXX: this means the address chain
662 * has changed while we are still in
663 * the loop. Although the change
664 * would not cause disaster (because
665 * it's not a deletion, but an
666 * addition,) we'd rather restart the
667 * loop just for safety. Or does this
668 * significantly reduce performance??
669 */
670 ia6_release(ia6, &psref);
671 goto addrloop;
672 }
673 }
674 } else {
675 /*
676 * A new RA might have made a deprecated address
677 * preferred.
678 */
679 if (ia6->ia6_flags & IN6_IFF_DEPRECATED) {
680 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
681 rt_newaddrmsg(RTM_NEWADDR,
682 (struct ifaddr *)ia6, 0, NULL);
683 }
684 }
685 s = pserialize_read_enter();
686 ia6_release(ia6, &psref);
687 }
688 pserialize_read_exit(s);
689 curlwp_bindx(bound);
690
691 /* expire prefix list */
692 ND6_WLOCK();
693 ND_PREFIX_LIST_FOREACH_SAFE(pr, next_pr) {
694 /*
695 * check prefix lifetime.
696 * since pltime is just for autoconf, pltime processing for
697 * prefix is not necessary.
698 */
699 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
700 time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) {
701 /*
702 * Just invalidate the prefix here. Removing it
703 * will be done when purging an associated address.
704 */
705 KASSERT(pr->ndpr_refcnt > 0);
706 nd6_invalidate_prefix(pr);
707 }
708 }
709 ND6_UNLOCK();
710
711 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
712 }
713
714 static void
715 nd6_timer(void *ignored_arg)
716 {
717
718 workqueue_enqueue(nd6_timer_wq, &nd6_timer_wk, NULL);
719 }
720
721 /* ia6: deprecated/invalidated temporary address */
722 static int
723 regen_tmpaddr(const struct in6_ifaddr *ia6)
724 {
725 struct ifaddr *ifa;
726 struct ifnet *ifp;
727 struct in6_ifaddr *public_ifa6 = NULL;
728 int s;
729
730 ifp = ia6->ia_ifa.ifa_ifp;
731 s = pserialize_read_enter();
732 IFADDR_READER_FOREACH(ifa, ifp) {
733 struct in6_ifaddr *it6;
734
735 if (ifa->ifa_addr->sa_family != AF_INET6)
736 continue;
737
738 it6 = (struct in6_ifaddr *)ifa;
739
740 /* ignore no autoconf addresses. */
741 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
742 continue;
743
744 /* ignore autoconf addresses with different prefixes. */
745 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
746 continue;
747
748 /*
749 * Now we are looking at an autoconf address with the same
750 * prefix as ours. If the address is temporary and is still
751 * preferred, do not create another one. It would be rare, but
752 * could happen, for example, when we resume a laptop PC after
753 * a long period.
754 */
755 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
756 !IFA6_IS_DEPRECATED(it6)) {
757 public_ifa6 = NULL;
758 break;
759 }
760
761 /*
762 * This is a public autoconf address that has the same prefix
763 * as ours. If it is preferred, keep it. We can't break the
764 * loop here, because there may be a still-preferred temporary
765 * address with the prefix.
766 */
767 if (!IFA6_IS_DEPRECATED(it6))
768 public_ifa6 = it6;
769 }
770
771 if (public_ifa6 != NULL) {
772 int e;
773 struct psref psref;
774
775 ia6_acquire(public_ifa6, &psref);
776 pserialize_read_exit(s);
777 /*
778 * Random factor is introduced in the preferred lifetime, so
779 * we do not need additional delay (3rd arg to in6_tmpifadd).
780 */
781 ND6_WLOCK();
782 e = in6_tmpifadd(public_ifa6, 0, 0);
783 ND6_UNLOCK();
784 if (e != 0) {
785 ia6_release(public_ifa6, &psref);
786 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
787 " tmp addr, errno=%d\n", e);
788 return -1;
789 }
790 ia6_release(public_ifa6, &psref);
791 return 0;
792 }
793 pserialize_read_exit(s);
794
795 return -1;
796 }
797
798 bool
799 nd6_accepts_rtadv(const struct nd_ifinfo *ndi)
800 {
801 switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) {
802 case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV:
803 return true;
804 case ND6_IFF_ACCEPT_RTADV:
805 return ip6_accept_rtadv != 0;
806 case ND6_IFF_OVERRIDE_RTADV:
807 case 0:
808 default:
809 return false;
810 }
811 }
812
813 /*
814 * Nuke neighbor cache/prefix/default router management table, right before
815 * ifp goes away.
816 */
817 void
818 nd6_purge(struct ifnet *ifp, struct in6_ifextra *ext)
819 {
820 struct nd_defrouter *dr, *ndr;
821 struct nd_prefix *pr, *npr;
822
823 /*
824 * During detach, the ND info might be already removed, but
825 * then is explitly passed as argument.
826 * Otherwise get it from ifp->if_afdata.
827 */
828 if (ext == NULL)
829 ext = ifp->if_afdata[AF_INET6];
830 if (ext == NULL)
831 return;
832
833 ND6_WLOCK();
834 /*
835 * Nuke default router list entries toward ifp.
836 * We defer removal of default router list entries that is installed
837 * in the routing table, in order to keep additional side effects as
838 * small as possible.
839 */
840 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, ndr) {
841 if (dr->installed)
842 continue;
843
844 if (dr->ifp == ifp) {
845 KASSERT(ext != NULL);
846 nd6_defrtrlist_del(dr, ext);
847 }
848 }
849
850 ND_DEFROUTER_LIST_FOREACH_SAFE(dr, ndr) {
851 if (!dr->installed)
852 continue;
853
854 if (dr->ifp == ifp) {
855 KASSERT(ext != NULL);
856 nd6_defrtrlist_del(dr, ext);
857 }
858 }
859
860 /* Nuke prefix list entries toward ifp */
861 ND_PREFIX_LIST_FOREACH_SAFE(pr, npr) {
862 if (pr->ndpr_ifp == ifp) {
863 /*
864 * All addresses referencing pr should be already freed.
865 */
866 KASSERT(pr->ndpr_refcnt == 0);
867 nd6_prelist_remove(pr);
868 }
869 }
870
871 /* cancel default outgoing interface setting */
872 if (nd6_defifindex == ifp->if_index)
873 nd6_setdefaultiface(0);
874
875 /* XXX: too restrictive? */
876 if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) {
877 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
878 if (ndi && nd6_accepts_rtadv(ndi)) {
879 /* refresh default router list */
880 nd6_defrouter_select();
881 }
882 }
883 ND6_UNLOCK();
884
885 /*
886 * We may not need to nuke the neighbor cache entries here
887 * because the neighbor cache is kept in if_afdata[AF_INET6].
888 * nd6_purge() is invoked by in6_ifdetach() which is called
889 * from if_detach() where everything gets purged. However
890 * in6_ifdetach is directly called from vlan(4), so we still
891 * need to purge entries here.
892 */
893 if (ext->lltable != NULL)
894 lltable_purge_entries(ext->lltable);
895 }
896
897 void
898 nd6_assert_purged(struct ifnet *ifp)
899 {
900 struct nd_defrouter *dr;
901 struct nd_prefix *pr;
902 char ip6buf[INET6_ADDRSTRLEN] __diagused;
903
904 ND6_RLOCK();
905 ND_DEFROUTER_LIST_FOREACH(dr) {
906 KASSERTMSG(dr->ifp != ifp,
907 "defrouter %s remains on %s",
908 IN6_PRINT(ip6buf, &dr->rtaddr), ifp->if_xname);
909 }
910
911 ND_PREFIX_LIST_FOREACH(pr) {
912 KASSERTMSG(pr->ndpr_ifp != ifp,
913 "prefix %s/%d remains on %s",
914 IN6_PRINT(ip6buf, &pr->ndpr_prefix.sin6_addr),
915 pr->ndpr_plen, ifp->if_xname);
916 }
917 ND6_UNLOCK();
918 }
919
920 struct llentry *
921 nd6_lookup(const struct in6_addr *addr6, const struct ifnet *ifp, bool wlock)
922 {
923 struct sockaddr_in6 sin6;
924 struct llentry *ln;
925
926 sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
927
928 IF_AFDATA_RLOCK(ifp);
929 ln = lla_lookup(LLTABLE6(ifp), wlock ? LLE_EXCLUSIVE : 0,
930 sin6tosa(&sin6));
931 IF_AFDATA_RUNLOCK(ifp);
932
933 return ln;
934 }
935
936 struct llentry *
937 nd6_create(const struct in6_addr *addr6, const struct ifnet *ifp)
938 {
939 struct sockaddr_in6 sin6;
940 struct llentry *ln;
941 struct rtentry *rt;
942
943 sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
944 rt = rtalloc1(sin6tosa(&sin6), 0);
945
946 IF_AFDATA_WLOCK(ifp);
947 ln = lla_create(LLTABLE6(ifp), LLE_EXCLUSIVE, sin6tosa(&sin6), rt);
948 IF_AFDATA_WUNLOCK(ifp);
949
950 if (rt != NULL)
951 rt_unref(rt);
952 if (ln != NULL)
953 ln->ln_state = ND6_LLINFO_NOSTATE;
954
955 return ln;
956 }
957
958 /*
959 * Test whether a given IPv6 address is a neighbor or not, ignoring
960 * the actual neighbor cache. The neighbor cache is ignored in order
961 * to not reenter the routing code from within itself.
962 */
963 static int
964 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
965 {
966 struct nd_prefix *pr;
967 struct ifaddr *dstaddr;
968 int s;
969
970 /*
971 * A link-local address is always a neighbor.
972 * XXX: a link does not necessarily specify a single interface.
973 */
974 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
975 struct sockaddr_in6 sin6_copy;
976 u_int32_t zone;
977
978 /*
979 * We need sin6_copy since sa6_recoverscope() may modify the
980 * content (XXX).
981 */
982 sin6_copy = *addr;
983 if (sa6_recoverscope(&sin6_copy))
984 return 0; /* XXX: should be impossible */
985 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
986 return 0;
987 if (sin6_copy.sin6_scope_id == zone)
988 return 1;
989 else
990 return 0;
991 }
992
993 /*
994 * If the address matches one of our addresses,
995 * it should be a neighbor.
996 * If the address matches one of our on-link prefixes, it should be a
997 * neighbor.
998 */
999 ND6_RLOCK();
1000 ND_PREFIX_LIST_FOREACH(pr) {
1001 if (pr->ndpr_ifp != ifp)
1002 continue;
1003
1004 if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) {
1005 struct rtentry *rt;
1006
1007 rt = rtalloc1(sin6tosa(&pr->ndpr_prefix), 0);
1008 if (rt == NULL)
1009 continue;
1010 /*
1011 * This is the case where multiple interfaces
1012 * have the same prefix, but only one is installed
1013 * into the routing table and that prefix entry
1014 * is not the one being examined here. In the case
1015 * where RADIX_MPATH is enabled, multiple route
1016 * entries (of the same rt_key value) will be
1017 * installed because the interface addresses all
1018 * differ.
1019 */
1020 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1021 &satocsin6(rt_getkey(rt))->sin6_addr)) {
1022 rt_unref(rt);
1023 continue;
1024 }
1025 rt_unref(rt);
1026 }
1027
1028 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1029 &addr->sin6_addr, &pr->ndpr_mask)) {
1030 ND6_UNLOCK();
1031 return 1;
1032 }
1033 }
1034 ND6_UNLOCK();
1035
1036 /*
1037 * If the address is assigned on the node of the other side of
1038 * a p2p interface, the address should be a neighbor.
1039 */
1040 s = pserialize_read_enter();
1041 dstaddr = ifa_ifwithdstaddr(sin6tocsa(addr));
1042 if (dstaddr != NULL) {
1043 if (dstaddr->ifa_ifp == ifp) {
1044 pserialize_read_exit(s);
1045 return 1;
1046 }
1047 }
1048 pserialize_read_exit(s);
1049
1050 /*
1051 * If the default router list is empty, all addresses are regarded
1052 * as on-link, and thus, as a neighbor.
1053 */
1054 ND6_RLOCK();
1055 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
1056 ND_DEFROUTER_LIST_EMPTY() && nd6_defifindex == ifp->if_index) {
1057 ND6_UNLOCK();
1058 return 1;
1059 }
1060 ND6_UNLOCK();
1061
1062 return 0;
1063 }
1064
1065 /*
1066 * Detect if a given IPv6 address identifies a neighbor on a given link.
1067 * XXX: should take care of the destination of a p2p link?
1068 */
1069 int
1070 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
1071 {
1072 struct nd_prefix *pr;
1073 struct llentry *ln;
1074 struct rtentry *rt;
1075
1076 /*
1077 * A link-local address is always a neighbor.
1078 * XXX: a link does not necessarily specify a single interface.
1079 */
1080 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
1081 struct sockaddr_in6 sin6_copy;
1082 u_int32_t zone;
1083
1084 /*
1085 * We need sin6_copy since sa6_recoverscope() may modify the
1086 * content (XXX).
1087 */
1088 sin6_copy = *addr;
1089 if (sa6_recoverscope(&sin6_copy))
1090 return 0; /* XXX: should be impossible */
1091 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
1092 return 0;
1093 if (sin6_copy.sin6_scope_id == zone)
1094 return 1;
1095 else
1096 return 0;
1097 }
1098
1099 /*
1100 * If the address matches one of our on-link prefixes, it should be a
1101 * neighbor.
1102 */
1103 ND6_RLOCK();
1104 ND_PREFIX_LIST_FOREACH(pr) {
1105 if (pr->ndpr_ifp != ifp)
1106 continue;
1107
1108 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
1109 continue;
1110
1111 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
1112 &addr->sin6_addr, &pr->ndpr_mask)) {
1113 ND6_UNLOCK();
1114 return 1;
1115 }
1116 }
1117
1118 /*
1119 * If the default router list is empty, all addresses are regarded
1120 * as on-link, and thus, as a neighbor.
1121 * XXX: we restrict the condition to hosts, because routers usually do
1122 * not have the "default router list".
1123 */
1124 if (!ip6_forwarding && ND_DEFROUTER_LIST_EMPTY() &&
1125 nd6_defifindex == ifp->if_index) {
1126 ND6_UNLOCK();
1127 return 1;
1128 }
1129 ND6_UNLOCK();
1130
1131 if (nd6_is_new_addr_neighbor(addr, ifp))
1132 return 1;
1133
1134 /*
1135 * Even if the address matches none of our addresses, it might be
1136 * in the neighbor cache or a connected route.
1137 */
1138 ln = nd6_lookup(&addr->sin6_addr, ifp, false);
1139 if (ln != NULL) {
1140 LLE_RUNLOCK(ln);
1141 return 1;
1142 }
1143
1144 rt = rtalloc1(sin6tocsa(addr), 0);
1145 if (rt == NULL)
1146 return 0;
1147
1148 if ((rt->rt_flags & RTF_CONNECTED) && (rt->rt_ifp == ifp
1149 #if NBRIDGE > 0
1150 || rt->rt_ifp->if_bridge == ifp->if_bridge
1151 #endif
1152 #if NCARP > 0
1153 || (ifp->if_type == IFT_CARP && rt->rt_ifp == ifp->if_carpdev) ||
1154 (rt->rt_ifp->if_type == IFT_CARP && rt->rt_ifp->if_carpdev == ifp)||
1155 (ifp->if_type == IFT_CARP && rt->rt_ifp->if_type == IFT_CARP &&
1156 rt->rt_ifp->if_carpdev == ifp->if_carpdev)
1157 #endif
1158 )) {
1159 rt_unref(rt);
1160 return 1;
1161 }
1162 rt_unref(rt);
1163
1164 return 0;
1165 }
1166
1167 /*
1168 * Free an nd6 llinfo entry.
1169 * Since the function would cause significant changes in the kernel, DO NOT
1170 * make it global, unless you have a strong reason for the change, and are sure
1171 * that the change is safe.
1172 */
1173 static void
1174 nd6_free(struct llentry *ln, int gc)
1175 {
1176 struct nd_defrouter *dr;
1177 struct ifnet *ifp;
1178 struct in6_addr *in6;
1179
1180 KASSERT(ln != NULL);
1181 LLE_WLOCK_ASSERT(ln);
1182
1183 ifp = ln->lle_tbl->llt_ifp;
1184 in6 = &ln->r_l3addr.addr6;
1185 /*
1186 * we used to have pfctlinput(PRC_HOSTDEAD) here.
1187 * even though it is not harmful, it was not really necessary.
1188 */
1189
1190 if (!ip6_forwarding) {
1191 ND6_WLOCK();
1192 dr = nd6_defrouter_lookup(in6, ifp);
1193
1194 if (dr != NULL && dr->expire &&
1195 ln->ln_state == ND6_LLINFO_STALE && gc) {
1196 /*
1197 * If the reason for the deletion is just garbage
1198 * collection, and the neighbor is an active default
1199 * router, do not delete it. Instead, reset the GC
1200 * timer using the router's lifetime.
1201 * Simply deleting the entry would affect default
1202 * router selection, which is not necessarily a good
1203 * thing, especially when we're using router preference
1204 * values.
1205 * XXX: the check for ln_state would be redundant,
1206 * but we intentionally keep it just in case.
1207 */
1208 if (dr->expire > time_uptime)
1209 nd6_llinfo_settimer(ln,
1210 (dr->expire - time_uptime) * hz);
1211 else
1212 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
1213 ND6_UNLOCK();
1214 LLE_WUNLOCK(ln);
1215 return;
1216 }
1217
1218 if (ln->ln_router || dr) {
1219 /*
1220 * We need to unlock to avoid a LOR with nd6_rt_flush()
1221 * with the rnh and for the calls to
1222 * nd6_pfxlist_onlink_check() and nd6_defrouter_select() in the
1223 * block further down for calls into nd6_lookup().
1224 * We still hold a ref.
1225 */
1226 LLE_WUNLOCK(ln);
1227
1228 /*
1229 * nd6_rt_flush must be called whether or not the neighbor
1230 * is in the Default Router List.
1231 * See a corresponding comment in nd6_na_input().
1232 */
1233 nd6_rt_flush(in6, ifp);
1234 }
1235
1236 if (dr) {
1237 /*
1238 * Unreachablity of a router might affect the default
1239 * router selection and on-link detection of advertised
1240 * prefixes.
1241 */
1242
1243 /*
1244 * Temporarily fake the state to choose a new default
1245 * router and to perform on-link determination of
1246 * prefixes correctly.
1247 * Below the state will be set correctly,
1248 * or the entry itself will be deleted.
1249 */
1250 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1251
1252 /*
1253 * Since nd6_defrouter_select() does not affect the
1254 * on-link determination and MIP6 needs the check
1255 * before the default router selection, we perform
1256 * the check now.
1257 */
1258 nd6_pfxlist_onlink_check();
1259
1260 /*
1261 * refresh default router list
1262 */
1263 nd6_defrouter_select();
1264 }
1265
1266 #ifdef __FreeBSD__
1267 /*
1268 * If this entry was added by an on-link redirect, remove the
1269 * corresponding host route.
1270 */
1271 if (ln->la_flags & LLE_REDIRECT)
1272 nd6_free_redirect(ln);
1273 #endif
1274 ND6_UNLOCK();
1275
1276 if (ln->ln_router || dr)
1277 LLE_WLOCK(ln);
1278 }
1279
1280 /*
1281 * Save to unlock. We still hold an extra reference and will not
1282 * free(9) in llentry_free() if someone else holds one as well.
1283 */
1284 LLE_WUNLOCK(ln);
1285 IF_AFDATA_LOCK(ifp);
1286 LLE_WLOCK(ln);
1287
1288 lltable_free_entry(LLTABLE6(ifp), ln);
1289
1290 IF_AFDATA_UNLOCK(ifp);
1291 }
1292
1293 /*
1294 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1295 *
1296 * XXX cost-effective methods?
1297 */
1298 void
1299 nd6_nud_hint(struct rtentry *rt)
1300 {
1301 struct llentry *ln;
1302 struct ifnet *ifp;
1303
1304 if (rt == NULL)
1305 return;
1306
1307 ifp = rt->rt_ifp;
1308 ln = nd6_lookup(&(satocsin6(rt_getkey(rt)))->sin6_addr, ifp, true);
1309 if (ln == NULL)
1310 return;
1311
1312 if (ln->ln_state < ND6_LLINFO_REACHABLE)
1313 goto done;
1314
1315 /*
1316 * if we get upper-layer reachability confirmation many times,
1317 * it is possible we have false information.
1318 */
1319 ln->ln_byhint++;
1320 if (ln->ln_byhint > nd6_maxnudhint)
1321 goto done;
1322
1323 ln->ln_state = ND6_LLINFO_REACHABLE;
1324 if (!ND6_LLINFO_PERMANENT(ln))
1325 nd6_llinfo_settimer(ln, ND_IFINFO(rt->rt_ifp)->reachable * hz);
1326
1327 done:
1328 LLE_WUNLOCK(ln);
1329
1330 return;
1331 }
1332
1333 struct gc_args {
1334 int gc_entries;
1335 const struct in6_addr *skip_in6;
1336 };
1337
1338 static int
1339 nd6_purge_entry(struct lltable *llt, struct llentry *ln, void *farg)
1340 {
1341 struct gc_args *args = farg;
1342 int *n = &args->gc_entries;
1343 const struct in6_addr *skip_in6 = args->skip_in6;
1344
1345 if (*n <= 0)
1346 return 0;
1347
1348 if (ND6_LLINFO_PERMANENT(ln))
1349 return 0;
1350
1351 if (IN6_ARE_ADDR_EQUAL(&ln->r_l3addr.addr6, skip_in6))
1352 return 0;
1353
1354 LLE_WLOCK(ln);
1355 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1356 ln->ln_state = ND6_LLINFO_STALE;
1357 else
1358 ln->ln_state = ND6_LLINFO_PURGE;
1359 nd6_llinfo_settimer(ln, 0);
1360 LLE_WUNLOCK(ln);
1361
1362 (*n)--;
1363 return 0;
1364 }
1365
1366 static void
1367 nd6_gc_neighbors(struct lltable *llt, const struct in6_addr *in6)
1368 {
1369
1370 if (ip6_neighborgcthresh >= 0 &&
1371 lltable_get_entry_count(llt) >= ip6_neighborgcthresh) {
1372 struct gc_args gc_args = {10, in6};
1373 /*
1374 * XXX entries that are "less recently used" should be
1375 * freed first.
1376 */
1377 lltable_foreach_lle(llt, nd6_purge_entry, &gc_args);
1378 }
1379 }
1380
1381 void
1382 nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
1383 {
1384 struct sockaddr *gate = rt->rt_gateway;
1385 struct ifnet *ifp = rt->rt_ifp;
1386 uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen;
1387 struct ifaddr *ifa;
1388
1389 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1390
1391 if (req == RTM_LLINFO_UPD) {
1392 int rc;
1393 struct in6_addr *in6;
1394 struct in6_addr in6_all;
1395 int anycast;
1396
1397 if ((ifa = info->rti_ifa) == NULL)
1398 return;
1399
1400 in6 = &ifatoia6(ifa)->ia_addr.sin6_addr;
1401 anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST;
1402
1403 in6_all = in6addr_linklocal_allnodes;
1404 if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) {
1405 log(LOG_ERR, "%s: failed to set scope %s "
1406 "(errno=%d)\n", __func__, if_name(ifp), rc);
1407 return;
1408 }
1409
1410 /* XXX don't set Override for proxy addresses */
1411 nd6_na_output(ifa->ifa_ifp, &in6_all, in6,
1412 (anycast ? 0 : ND_NA_FLAG_OVERRIDE)
1413 #if 0
1414 | (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0)
1415 #endif
1416 , 1, NULL);
1417 return;
1418 }
1419
1420 if ((rt->rt_flags & RTF_GATEWAY) != 0)
1421 return;
1422
1423 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1424 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1425 /*
1426 * This is probably an interface direct route for a link
1427 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1428 * We do not need special treatment below for such a route.
1429 * Moreover, the RTF_LLINFO flag which would be set below
1430 * would annoy the ndp(8) command.
1431 */
1432 return;
1433 }
1434
1435 switch (req) {
1436 case RTM_ADD: {
1437 struct psref psref;
1438
1439 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1440 /*
1441 * There is no backward compatibility :)
1442 *
1443 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1444 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1445 * rt->rt_flags |= RTF_CLONING;
1446 */
1447 /* XXX should move to route.c? */
1448 if (rt->rt_flags & (RTF_CONNECTED | RTF_LOCAL)) {
1449 union {
1450 struct sockaddr sa;
1451 struct sockaddr_dl sdl;
1452 struct sockaddr_storage ss;
1453 } u;
1454 /*
1455 * Case 1: This route should come from a route to
1456 * interface (RTF_CLONING case) or the route should be
1457 * treated as on-link but is currently not
1458 * (RTF_LLINFO && ln == NULL case).
1459 */
1460 if (sockaddr_dl_init(&u.sdl, sizeof(u.ss),
1461 ifp->if_index, ifp->if_type,
1462 NULL, namelen, NULL, addrlen) == NULL) {
1463 printf("%s.%d: sockaddr_dl_init(, %zu, ) "
1464 "failed on %s\n", __func__, __LINE__,
1465 sizeof(u.ss), if_name(ifp));
1466 }
1467 rt_setgate(rt, &u.sa);
1468 gate = rt->rt_gateway;
1469 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1470 if (gate == NULL) {
1471 log(LOG_ERR,
1472 "%s: rt_setgate failed on %s\n", __func__,
1473 if_name(ifp));
1474 break;
1475 }
1476
1477 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1478 if ((rt->rt_flags & RTF_CONNECTED) != 0)
1479 break;
1480 }
1481 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1482 /*
1483 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1484 * We don't do that here since llinfo is not ready yet.
1485 *
1486 * There are also couple of other things to be discussed:
1487 * - unsolicited NA code needs improvement beforehand
1488 * - RFC2461 says we MAY send multicast unsolicited NA
1489 * (7.2.6 paragraph 4), however, it also says that we
1490 * SHOULD provide a mechanism to prevent multicast NA storm.
1491 * we don't have anything like it right now.
1492 * note that the mechanism needs a mutual agreement
1493 * between proxies, which means that we need to implement
1494 * a new protocol, or a new kludge.
1495 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1496 * we need to check ip6forwarding before sending it.
1497 * (or should we allow proxy ND configuration only for
1498 * routers? there's no mention about proxy ND from hosts)
1499 */
1500 #if 0
1501 /* XXX it does not work */
1502 if (rt->rt_flags & RTF_ANNOUNCE)
1503 nd6_na_output(ifp,
1504 &satocsin6(rt_getkey(rt))->sin6_addr,
1505 &satocsin6(rt_getkey(rt))->sin6_addr,
1506 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1507 1, NULL);
1508 #endif
1509
1510 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1511 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1512 /*
1513 * Address resolution isn't necessary for a point to
1514 * point link, so we can skip this test for a p2p link.
1515 */
1516 if (gate->sa_family != AF_LINK ||
1517 gate->sa_len <
1518 sockaddr_dl_measure(namelen, addrlen)) {
1519 log(LOG_DEBUG,
1520 "nd6_rtrequest: bad gateway value: %s\n",
1521 if_name(ifp));
1522 break;
1523 }
1524 satosdl(gate)->sdl_type = ifp->if_type;
1525 satosdl(gate)->sdl_index = ifp->if_index;
1526 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1527 }
1528 RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
1529
1530 /*
1531 * When called from rt_ifa_addlocal, we cannot depend on that
1532 * the address (rt_getkey(rt)) exits in the address list of the
1533 * interface. So check RTF_LOCAL instead.
1534 */
1535 if (rt->rt_flags & RTF_LOCAL) {
1536 if (nd6_useloopback)
1537 rt->rt_ifp = lo0ifp; /* XXX */
1538 break;
1539 }
1540
1541 /*
1542 * check if rt_getkey(rt) is an address assigned
1543 * to the interface.
1544 */
1545 ifa = (struct ifaddr *)in6ifa_ifpwithaddr_psref(ifp,
1546 &satocsin6(rt_getkey(rt))->sin6_addr, &psref);
1547 if (ifa != NULL) {
1548 if (nd6_useloopback) {
1549 rt->rt_ifp = lo0ifp; /* XXX */
1550 /*
1551 * Make sure rt_ifa be equal to the ifaddr
1552 * corresponding to the address.
1553 * We need this because when we refer
1554 * rt_ifa->ia6_flags in ip6_input, we assume
1555 * that the rt_ifa points to the address instead
1556 * of the loopback address.
1557 */
1558 if (ifa != rt->rt_ifa)
1559 rt_replace_ifa(rt, ifa);
1560 }
1561 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1562 /* join solicited node multicast for proxy ND */
1563 if (ifp->if_flags & IFF_MULTICAST) {
1564 struct in6_addr llsol;
1565 int error;
1566
1567 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1568 llsol.s6_addr32[0] = htonl(0xff020000);
1569 llsol.s6_addr32[1] = 0;
1570 llsol.s6_addr32[2] = htonl(1);
1571 llsol.s6_addr8[12] = 0xff;
1572 if (in6_setscope(&llsol, ifp, NULL))
1573 goto out;
1574 if (!in6_addmulti(&llsol, ifp, &error, 0)) {
1575 char ip6buf[INET6_ADDRSTRLEN];
1576 nd6log(LOG_ERR, "%s: failed to join "
1577 "%s (errno=%d)\n", if_name(ifp),
1578 IN6_PRINT(ip6buf, &llsol), error);
1579 }
1580 }
1581 }
1582 out:
1583 ifa_release(ifa, &psref);
1584 /*
1585 * If we have too many cache entries, initiate immediate
1586 * purging for some entries.
1587 */
1588 if (rt->rt_ifp != NULL)
1589 nd6_gc_neighbors(LLTABLE6(rt->rt_ifp), NULL);
1590 break;
1591 }
1592
1593 case RTM_DELETE:
1594 /* leave from solicited node multicast for proxy ND */
1595 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1596 (ifp->if_flags & IFF_MULTICAST) != 0) {
1597 struct in6_addr llsol;
1598 struct in6_multi *in6m;
1599
1600 llsol = satocsin6(rt_getkey(rt))->sin6_addr;
1601 llsol.s6_addr32[0] = htonl(0xff020000);
1602 llsol.s6_addr32[1] = 0;
1603 llsol.s6_addr32[2] = htonl(1);
1604 llsol.s6_addr8[12] = 0xff;
1605 if (in6_setscope(&llsol, ifp, NULL) == 0) {
1606 in6m = in6_lookup_multi(&llsol, ifp);
1607 if (in6m)
1608 in6_delmulti(in6m);
1609 }
1610 }
1611 break;
1612 }
1613 }
1614
1615 int
1616 nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp)
1617 {
1618 struct in6_drlist *drl = (struct in6_drlist *)data;
1619 struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1620 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1621 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1622 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1623 struct nd_defrouter *dr;
1624 struct nd_prefix *pr;
1625 int i = 0, error = 0;
1626
1627 switch (cmd) {
1628 case SIOCGDRLST_IN6:
1629 /*
1630 * obsolete API, use sysctl under net.inet6.icmp6
1631 */
1632 memset(drl, 0, sizeof(*drl));
1633 ND6_RLOCK();
1634 ND_DEFROUTER_LIST_FOREACH(dr) {
1635 if (i >= DRLSTSIZ)
1636 break;
1637 drl->defrouter[i].rtaddr = dr->rtaddr;
1638 in6_clearscope(&drl->defrouter[i].rtaddr);
1639
1640 drl->defrouter[i].flags = dr->flags;
1641 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1642 drl->defrouter[i].expire = dr->expire ?
1643 time_mono_to_wall(dr->expire) : 0;
1644 drl->defrouter[i].if_index = dr->ifp->if_index;
1645 i++;
1646 }
1647 ND6_UNLOCK();
1648 break;
1649 case SIOCGPRLST_IN6:
1650 /*
1651 * obsolete API, use sysctl under net.inet6.icmp6
1652 *
1653 * XXX the structure in6_prlist was changed in backward-
1654 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1655 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1656 */
1657 /*
1658 * XXX meaning of fields, especialy "raflags", is very
1659 * differnet between RA prefix list and RR/static prefix list.
1660 * how about separating ioctls into two?
1661 */
1662 memset(oprl, 0, sizeof(*oprl));
1663 ND6_RLOCK();
1664 ND_PREFIX_LIST_FOREACH(pr) {
1665 struct nd_pfxrouter *pfr;
1666 int j;
1667
1668 if (i >= PRLSTSIZ)
1669 break;
1670 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1671 oprl->prefix[i].raflags = pr->ndpr_raf;
1672 oprl->prefix[i].prefixlen = pr->ndpr_plen;
1673 oprl->prefix[i].vltime = pr->ndpr_vltime;
1674 oprl->prefix[i].pltime = pr->ndpr_pltime;
1675 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1676 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1677 oprl->prefix[i].expire = 0;
1678 else {
1679 time_t maxexpire;
1680
1681 /* XXX: we assume time_t is signed. */
1682 maxexpire = (-1) &
1683 ~((time_t)1 <<
1684 ((sizeof(maxexpire) * 8) - 1));
1685 if (pr->ndpr_vltime <
1686 maxexpire - pr->ndpr_lastupdate) {
1687 time_t expire;
1688 expire = pr->ndpr_lastupdate +
1689 pr->ndpr_vltime;
1690 oprl->prefix[i].expire = expire ?
1691 time_mono_to_wall(expire) : 0;
1692 } else
1693 oprl->prefix[i].expire = maxexpire;
1694 }
1695
1696 j = 0;
1697 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
1698 if (j < DRLSTSIZ) {
1699 #define RTRADDR oprl->prefix[i].advrtr[j]
1700 RTRADDR = pfr->router->rtaddr;
1701 in6_clearscope(&RTRADDR);
1702 #undef RTRADDR
1703 }
1704 j++;
1705 }
1706 oprl->prefix[i].advrtrs = j;
1707 oprl->prefix[i].origin = PR_ORIG_RA;
1708
1709 i++;
1710 }
1711 ND6_UNLOCK();
1712
1713 break;
1714 case OSIOCGIFINFO_IN6:
1715 #define ND ndi->ndi
1716 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1717 memset(&ND, 0, sizeof(ND));
1718 ND.linkmtu = IN6_LINKMTU(ifp);
1719 ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1720 ND.basereachable = ND_IFINFO(ifp)->basereachable;
1721 ND.reachable = ND_IFINFO(ifp)->reachable;
1722 ND.retrans = ND_IFINFO(ifp)->retrans;
1723 ND.flags = ND_IFINFO(ifp)->flags;
1724 ND.recalctm = ND_IFINFO(ifp)->recalctm;
1725 ND.chlim = ND_IFINFO(ifp)->chlim;
1726 break;
1727 case SIOCGIFINFO_IN6:
1728 ND = *ND_IFINFO(ifp);
1729 break;
1730 case SIOCSIFINFO_IN6:
1731 /*
1732 * used to change host variables from userland.
1733 * intented for a use on router to reflect RA configurations.
1734 */
1735 /* 0 means 'unspecified' */
1736 if (ND.linkmtu != 0) {
1737 if (ND.linkmtu < IPV6_MMTU ||
1738 ND.linkmtu > IN6_LINKMTU(ifp)) {
1739 error = EINVAL;
1740 break;
1741 }
1742 ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1743 }
1744
1745 if (ND.basereachable != 0) {
1746 int obasereachable = ND_IFINFO(ifp)->basereachable;
1747
1748 ND_IFINFO(ifp)->basereachable = ND.basereachable;
1749 if (ND.basereachable != obasereachable)
1750 ND_IFINFO(ifp)->reachable =
1751 ND_COMPUTE_RTIME(ND.basereachable);
1752 }
1753 if (ND.retrans != 0)
1754 ND_IFINFO(ifp)->retrans = ND.retrans;
1755 if (ND.chlim != 0)
1756 ND_IFINFO(ifp)->chlim = ND.chlim;
1757 /* FALLTHROUGH */
1758 case SIOCSIFINFO_FLAGS:
1759 {
1760 struct ifaddr *ifa;
1761 struct in6_ifaddr *ia;
1762 int s;
1763
1764 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1765 !(ND.flags & ND6_IFF_IFDISABLED))
1766 {
1767 /*
1768 * If the interface is marked as ND6_IFF_IFDISABLED and
1769 * has a link-local address with IN6_IFF_DUPLICATED,
1770 * do not clear ND6_IFF_IFDISABLED.
1771 * See RFC 4862, section 5.4.5.
1772 */
1773 int duplicated_linklocal = 0;
1774
1775 s = pserialize_read_enter();
1776 IFADDR_READER_FOREACH(ifa, ifp) {
1777 if (ifa->ifa_addr->sa_family != AF_INET6)
1778 continue;
1779 ia = (struct in6_ifaddr *)ifa;
1780 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
1781 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
1782 {
1783 duplicated_linklocal = 1;
1784 break;
1785 }
1786 }
1787 pserialize_read_exit(s);
1788
1789 if (duplicated_linklocal) {
1790 ND.flags |= ND6_IFF_IFDISABLED;
1791 log(LOG_ERR, "Cannot enable an interface"
1792 " with a link-local address marked"
1793 " duplicate.\n");
1794 } else {
1795 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
1796 if (ifp->if_flags & IFF_UP)
1797 in6_if_up(ifp);
1798 }
1799 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
1800 (ND.flags & ND6_IFF_IFDISABLED)) {
1801 int bound = curlwp_bind();
1802 /* Mark all IPv6 addresses as tentative. */
1803
1804 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
1805 s = pserialize_read_enter();
1806 IFADDR_READER_FOREACH(ifa, ifp) {
1807 struct psref psref;
1808 if (ifa->ifa_addr->sa_family != AF_INET6)
1809 continue;
1810 ifa_acquire(ifa, &psref);
1811 pserialize_read_exit(s);
1812
1813 nd6_dad_stop(ifa);
1814
1815 ia = (struct in6_ifaddr *)ifa;
1816 ia->ia6_flags |= IN6_IFF_TENTATIVE;
1817
1818 s = pserialize_read_enter();
1819 ifa_release(ifa, &psref);
1820 }
1821 pserialize_read_exit(s);
1822 curlwp_bindx(bound);
1823 }
1824
1825 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
1826 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
1827 /* auto_linklocal 0->1 transition */
1828
1829 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
1830 in6_ifattach(ifp, NULL);
1831 } else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
1832 ifp->if_flags & IFF_UP)
1833 {
1834 /*
1835 * When the IF already has
1836 * ND6_IFF_AUTO_LINKLOCAL, no link-local
1837 * address is assigned, and IFF_UP, try to
1838 * assign one.
1839 */
1840 int haslinklocal = 0;
1841
1842 s = pserialize_read_enter();
1843 IFADDR_READER_FOREACH(ifa, ifp) {
1844 if (ifa->ifa_addr->sa_family !=AF_INET6)
1845 continue;
1846 ia = (struct in6_ifaddr *)ifa;
1847 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))){
1848 haslinklocal = 1;
1849 break;
1850 }
1851 }
1852 pserialize_read_exit(s);
1853 if (!haslinklocal)
1854 in6_ifattach(ifp, NULL);
1855 }
1856 }
1857 }
1858 ND_IFINFO(ifp)->flags = ND.flags;
1859 break;
1860 #undef ND
1861 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1862 /* sync kernel routing table with the default router list */
1863 ND6_WLOCK();
1864 nd6_defrouter_reset();
1865 nd6_defrouter_select();
1866 ND6_UNLOCK();
1867 break;
1868 case SIOCSPFXFLUSH_IN6:
1869 {
1870 /* flush all the prefix advertised by routers */
1871 struct nd_prefix *pfx, *next;
1872
1873 restart:
1874 ND6_WLOCK();
1875 ND_PREFIX_LIST_FOREACH_SAFE(pfx, next) {
1876 struct in6_ifaddr *ia, *ia_next;
1877 int _s;
1878
1879 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
1880 continue; /* XXX */
1881
1882 /* do we really have to remove addresses as well? */
1883 _s = pserialize_read_enter();
1884 for (ia = IN6_ADDRLIST_READER_FIRST(); ia;
1885 ia = ia_next) {
1886 /* ia might be removed. keep the next ptr. */
1887 ia_next = IN6_ADDRLIST_READER_NEXT(ia);
1888
1889 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1890 continue;
1891
1892 if (ia->ia6_ndpr == pfx) {
1893 pserialize_read_exit(_s);
1894 ND6_UNLOCK();
1895 /* XXX NOMPSAFE? */
1896 /* in6_purgeaddr may destroy pfx. */
1897 in6_purgeaddr(&ia->ia_ifa);
1898 goto restart;
1899 }
1900 }
1901 pserialize_read_exit(_s);
1902
1903 KASSERT(pfx->ndpr_refcnt == 0);
1904 nd6_prelist_remove(pfx);
1905 }
1906 ND6_UNLOCK();
1907 break;
1908 }
1909 case SIOCSRTRFLUSH_IN6:
1910 {
1911 /* flush all the default routers */
1912 struct nd_defrouter *drtr, *next;
1913
1914 ND6_WLOCK();
1915 nd6_defrouter_reset();
1916 ND_DEFROUTER_LIST_FOREACH_SAFE(drtr, next) {
1917 nd6_defrtrlist_del(drtr, NULL);
1918 }
1919 nd6_defrouter_select();
1920 ND6_UNLOCK();
1921 break;
1922 }
1923 case SIOCGNBRINFO_IN6:
1924 {
1925 struct llentry *ln;
1926 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1927
1928 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1929 return error;
1930
1931 ln = nd6_lookup(&nb_addr, ifp, false);
1932 if (ln == NULL) {
1933 error = EINVAL;
1934 break;
1935 }
1936 nbi->state = ln->ln_state;
1937 nbi->asked = ln->ln_asked;
1938 nbi->isrouter = ln->ln_router;
1939 nbi->expire = ln->ln_expire ?
1940 time_mono_to_wall(ln->ln_expire) : 0;
1941 LLE_RUNLOCK(ln);
1942
1943 break;
1944 }
1945 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1946 ndif->ifindex = nd6_defifindex;
1947 break;
1948 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1949 return nd6_setdefaultiface(ndif->ifindex);
1950 }
1951 return error;
1952 }
1953
1954 void
1955 nd6_llinfo_release_pkts(struct llentry *ln, struct ifnet *ifp)
1956 {
1957 struct mbuf *m_hold, *m_hold_next;
1958 struct sockaddr_in6 sin6;
1959
1960 LLE_WLOCK_ASSERT(ln);
1961
1962 sockaddr_in6_init(&sin6, &ln->r_l3addr.addr6, 0, 0, 0);
1963
1964 m_hold = ln->la_hold, ln->la_hold = NULL, ln->la_numheld = 0;
1965
1966 LLE_WUNLOCK(ln);
1967 for (; m_hold != NULL; m_hold = m_hold_next) {
1968 m_hold_next = m_hold->m_nextpkt;
1969 m_hold->m_nextpkt = NULL;
1970
1971 /*
1972 * we assume ifp is not a p2p here, so
1973 * just set the 2nd argument as the
1974 * 1st one.
1975 */
1976 ip6_if_output(ifp, ifp, m_hold, &sin6, NULL);
1977 }
1978 LLE_WLOCK(ln);
1979 }
1980
1981 /*
1982 * Create neighbor cache entry and cache link-layer address,
1983 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1984 */
1985 void
1986 nd6_cache_lladdr(
1987 struct ifnet *ifp,
1988 struct in6_addr *from,
1989 char *lladdr,
1990 int lladdrlen,
1991 int type, /* ICMP6 type */
1992 int code /* type dependent information */
1993 )
1994 {
1995 struct nd_ifinfo *ndi = ND_IFINFO(ifp);
1996 struct llentry *ln = NULL;
1997 int is_newentry;
1998 int do_update;
1999 int olladdr;
2000 int llchange;
2001 int newstate = 0;
2002 uint16_t router = 0;
2003
2004 KASSERT(ifp != NULL);
2005 KASSERT(from != NULL);
2006
2007 /* nothing must be updated for unspecified address */
2008 if (IN6_IS_ADDR_UNSPECIFIED(from))
2009 return;
2010
2011 /*
2012 * Validation about ifp->if_addrlen and lladdrlen must be done in
2013 * the caller.
2014 *
2015 * XXX If the link does not have link-layer adderss, what should
2016 * we do? (ifp->if_addrlen == 0)
2017 * Spec says nothing in sections for RA, RS and NA. There's small
2018 * description on it in NS section (RFC 2461 7.2.3).
2019 */
2020
2021 ln = nd6_lookup(from, ifp, true);
2022 if (ln == NULL) {
2023 #if 0
2024 /* nothing must be done if there's no lladdr */
2025 if (!lladdr || !lladdrlen)
2026 return NULL;
2027 #endif
2028
2029 ln = nd6_create(from, ifp);
2030 is_newentry = 1;
2031 } else {
2032 /* do nothing if static ndp is set */
2033 if (ln->la_flags & LLE_STATIC) {
2034 LLE_WUNLOCK(ln);
2035 return;
2036 }
2037 is_newentry = 0;
2038 }
2039
2040 if (ln == NULL)
2041 return;
2042
2043 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
2044 if (olladdr && lladdr) {
2045 llchange = memcmp(lladdr, &ln->ll_addr, ifp->if_addrlen);
2046 } else
2047 llchange = 0;
2048
2049 /*
2050 * newentry olladdr lladdr llchange (*=record)
2051 * 0 n n -- (1)
2052 * 0 y n -- (2)
2053 * 0 n y -- (3) * STALE
2054 * 0 y y n (4) *
2055 * 0 y y y (5) * STALE
2056 * 1 -- n -- (6) NOSTATE(= PASSIVE)
2057 * 1 -- y -- (7) * STALE
2058 */
2059
2060 if (lladdr) { /* (3-5) and (7) */
2061 /*
2062 * Record source link-layer address
2063 * XXX is it dependent to ifp->if_type?
2064 */
2065 memcpy(&ln->ll_addr, lladdr, ifp->if_addrlen);
2066 ln->la_flags |= LLE_VALID;
2067 }
2068
2069 if (!is_newentry) {
2070 if ((!olladdr && lladdr) || /* (3) */
2071 (olladdr && lladdr && llchange)) { /* (5) */
2072 do_update = 1;
2073 newstate = ND6_LLINFO_STALE;
2074 } else /* (1-2,4) */
2075 do_update = 0;
2076 } else {
2077 do_update = 1;
2078 if (lladdr == NULL) /* (6) */
2079 newstate = ND6_LLINFO_NOSTATE;
2080 else /* (7) */
2081 newstate = ND6_LLINFO_STALE;
2082 }
2083
2084 if (do_update) {
2085 /*
2086 * Update the state of the neighbor cache.
2087 */
2088 ln->ln_state = newstate;
2089
2090 if (ln->ln_state == ND6_LLINFO_STALE) {
2091 /*
2092 * XXX: since nd6_output() below will cause
2093 * state tansition to DELAY and reset the timer,
2094 * we must set the timer now, although it is actually
2095 * meaningless.
2096 */
2097 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
2098
2099 nd6_llinfo_release_pkts(ln, ifp);
2100 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
2101 /* probe right away */
2102 nd6_llinfo_settimer((void *)ln, 0);
2103 }
2104 }
2105
2106 /*
2107 * ICMP6 type dependent behavior.
2108 *
2109 * NS: clear IsRouter if new entry
2110 * RS: clear IsRouter
2111 * RA: set IsRouter if there's lladdr
2112 * redir: clear IsRouter if new entry
2113 *
2114 * RA case, (1):
2115 * The spec says that we must set IsRouter in the following cases:
2116 * - If lladdr exist, set IsRouter. This means (1-5).
2117 * - If it is old entry (!newentry), set IsRouter. This means (7).
2118 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
2119 * A quetion arises for (1) case. (1) case has no lladdr in the
2120 * neighbor cache, this is similar to (6).
2121 * This case is rare but we figured that we MUST NOT set IsRouter.
2122 *
2123 * newentry olladdr lladdr llchange NS RS RA redir
2124 * D R
2125 * 0 n n -- (1) c ? s
2126 * 0 y n -- (2) c s s
2127 * 0 n y -- (3) c s s
2128 * 0 y y n (4) c s s
2129 * 0 y y y (5) c s s
2130 * 1 -- n -- (6) c c c s
2131 * 1 -- y -- (7) c c s c s
2132 *
2133 * (c=clear s=set)
2134 */
2135 switch (type & 0xff) {
2136 case ND_NEIGHBOR_SOLICIT:
2137 /*
2138 * New entry must have is_router flag cleared.
2139 */
2140 if (is_newentry) /* (6-7) */
2141 ln->ln_router = 0;
2142 break;
2143 case ND_REDIRECT:
2144 /*
2145 * If the icmp is a redirect to a better router, always set the
2146 * is_router flag. Otherwise, if the entry is newly created,
2147 * clear the flag. [RFC 2461, sec 8.3]
2148 */
2149 if (code == ND_REDIRECT_ROUTER)
2150 ln->ln_router = 1;
2151 else if (is_newentry) /* (6-7) */
2152 ln->ln_router = 0;
2153 break;
2154 case ND_ROUTER_SOLICIT:
2155 /*
2156 * is_router flag must always be cleared.
2157 */
2158 ln->ln_router = 0;
2159 break;
2160 case ND_ROUTER_ADVERT:
2161 /*
2162 * Mark an entry with lladdr as a router.
2163 */
2164 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
2165 (is_newentry && lladdr)) { /* (7) */
2166 ln->ln_router = 1;
2167 }
2168 break;
2169 }
2170
2171 #if 0
2172 /* XXX should we send rtmsg as it used to be? */
2173 if (do_update)
2174 rt_newmsg(RTM_CHANGE, rt); /* tell user process */
2175 #endif
2176
2177 if (ln != NULL) {
2178 router = ln->ln_router;
2179 LLE_WUNLOCK(ln);
2180 }
2181
2182 /*
2183 * If we have too many cache entries, initiate immediate
2184 * purging for some entries.
2185 */
2186 if (is_newentry)
2187 nd6_gc_neighbors(LLTABLE6(ifp), &ln->r_l3addr.addr6);
2188
2189 /*
2190 * When the link-layer address of a router changes, select the
2191 * best router again. In particular, when the neighbor entry is newly
2192 * created, it might affect the selection policy.
2193 * Question: can we restrict the first condition to the "is_newentry"
2194 * case?
2195 * XXX: when we hear an RA from a new router with the link-layer
2196 * address option, nd6_defrouter_select() is called twice, since
2197 * defrtrlist_update called the function as well. However, I believe
2198 * we can compromise the overhead, since it only happens the first
2199 * time.
2200 * XXX: although nd6_defrouter_select() should not have a bad effect
2201 * for those are not autoconfigured hosts, we explicitly avoid such
2202 * cases for safety.
2203 */
2204 if (do_update && router && !ip6_forwarding &&
2205 nd6_accepts_rtadv(ndi)) {
2206 ND6_WLOCK();
2207 nd6_defrouter_select();
2208 ND6_UNLOCK();
2209 }
2210 }
2211
2212 static void
2213 nd6_slowtimo(void *ignored_arg)
2214 {
2215 struct nd_ifinfo *nd6if;
2216 struct ifnet *ifp;
2217 int s;
2218
2219 SOFTNET_KERNEL_LOCK_UNLESS_NET_MPSAFE();
2220 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
2221 nd6_slowtimo, NULL);
2222
2223 s = pserialize_read_enter();
2224 IFNET_READER_FOREACH(ifp) {
2225 nd6if = ND_IFINFO(ifp);
2226 if (nd6if->basereachable && /* already initialized */
2227 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
2228 /*
2229 * Since reachable time rarely changes by router
2230 * advertisements, we SHOULD insure that a new random
2231 * value gets recomputed at least once every few hours.
2232 * (RFC 2461, 6.3.4)
2233 */
2234 nd6if->recalctm = nd6_recalc_reachtm_interval;
2235 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
2236 }
2237 }
2238 pserialize_read_exit(s);
2239
2240 SOFTNET_KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
2241 }
2242
2243 /*
2244 * Return 0 if a neighbor cache is found. Return EWOULDBLOCK if a cache is not
2245 * found and trying to resolve a neighbor; in this case the mbuf is queued in
2246 * the list. Otherwise return errno after freeing the mbuf.
2247 */
2248 int
2249 nd6_resolve(struct ifnet *ifp, const struct rtentry *rt, struct mbuf *m,
2250 const struct sockaddr *_dst, uint8_t *lldst, size_t dstsize)
2251 {
2252 struct llentry *ln = NULL;
2253 bool created = false;
2254 const struct sockaddr_in6 *dst = satocsin6(_dst);
2255
2256 /* discard the packet if IPv6 operation is disabled on the interface */
2257 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2258 m_freem(m);
2259 return ENETDOWN; /* better error? */
2260 }
2261
2262 /*
2263 * Address resolution or Neighbor Unreachability Detection
2264 * for the next hop.
2265 * At this point, the destination of the packet must be a unicast
2266 * or an anycast address(i.e. not a multicast).
2267 */
2268
2269 /* Look up the neighbor cache for the nexthop */
2270 ln = nd6_lookup(&dst->sin6_addr, ifp, false);
2271
2272 if (ln != NULL && (ln->la_flags & LLE_VALID) != 0) {
2273 KASSERT(ln->ln_state > ND6_LLINFO_INCOMPLETE);
2274 /* Fast path */
2275 memcpy(lldst, &ln->ll_addr, MIN(dstsize, ifp->if_addrlen));
2276 LLE_RUNLOCK(ln);
2277 return 0;
2278 }
2279 if (ln != NULL)
2280 LLE_RUNLOCK(ln);
2281
2282 /* Slow path */
2283 ln = nd6_lookup(&dst->sin6_addr, ifp, true);
2284 if (ln == NULL && nd6_is_addr_neighbor(dst, ifp)) {
2285 struct sockaddr_in6 sin6;
2286 /*
2287 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
2288 * the condition below is not very efficient. But we believe
2289 * it is tolerable, because this should be a rare case.
2290 */
2291 ln = nd6_create(&dst->sin6_addr, ifp);
2292 if (ln == NULL) {
2293 char ip6buf[INET6_ADDRSTRLEN];
2294 log(LOG_DEBUG,
2295 "%s: can't allocate llinfo for %s "
2296 "(ln=%p, rt=%p)\n", __func__,
2297 IN6_PRINT(ip6buf, &dst->sin6_addr), ln, rt);
2298 m_freem(m);
2299 return ENOBUFS;
2300 }
2301
2302 sockaddr_in6_init(&sin6, &ln->r_l3addr.addr6, 0, 0, 0);
2303 rt_clonedmsg(sin6tosa(&sin6), ifp, rt);
2304
2305 created = true;
2306 }
2307
2308 if (ln == NULL) {
2309 m_freem(m);
2310 return ENETDOWN; /* better error? */
2311 }
2312
2313 LLE_WLOCK_ASSERT(ln);
2314
2315 /* We don't have to do link-layer address resolution on a p2p link. */
2316 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2317 ln->ln_state < ND6_LLINFO_REACHABLE) {
2318 ln->ln_state = ND6_LLINFO_STALE;
2319 nd6_llinfo_settimer(ln, nd6_gctimer * hz);
2320 }
2321
2322 /*
2323 * The first time we send a packet to a neighbor whose entry is
2324 * STALE, we have to change the state to DELAY and a sets a timer to
2325 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2326 * neighbor unreachability detection on expiration.
2327 * (RFC 2461 7.3.3)
2328 */
2329 if (ln->ln_state == ND6_LLINFO_STALE) {
2330 ln->ln_asked = 0;
2331 ln->ln_state = ND6_LLINFO_DELAY;
2332 nd6_llinfo_settimer(ln, nd6_delay * hz);
2333 }
2334
2335 /*
2336 * There is a neighbor cache entry, but no ethernet address
2337 * response yet. Append this latest packet to the end of the
2338 * packet queue in the mbuf, unless the number of the packet
2339 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen,
2340 * the oldest packet in the queue will be removed.
2341 */
2342 if (ln->ln_state == ND6_LLINFO_NOSTATE)
2343 ln->ln_state = ND6_LLINFO_INCOMPLETE;
2344 if (ln->ln_hold) {
2345 struct mbuf *m_hold;
2346 int i;
2347
2348 i = 0;
2349 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2350 i++;
2351 if (m_hold->m_nextpkt == NULL) {
2352 m_hold->m_nextpkt = m;
2353 break;
2354 }
2355 }
2356 while (i >= nd6_maxqueuelen) {
2357 m_hold = ln->ln_hold;
2358 ln->ln_hold = ln->ln_hold->m_nextpkt;
2359 m_freem(m_hold);
2360 i--;
2361 }
2362 } else {
2363 ln->ln_hold = m;
2364 }
2365
2366 /*
2367 * If there has been no NS for the neighbor after entering the
2368 * INCOMPLETE state, send the first solicitation.
2369 */
2370 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2371 struct in6_addr src, *psrc;
2372
2373 ln->ln_asked++;
2374 nd6_llinfo_settimer(ln, ND_IFINFO(ifp)->retrans * hz / 1000);
2375 psrc = nd6_llinfo_get_holdsrc(ln, &src);
2376 LLE_WUNLOCK(ln);
2377 ln = NULL;
2378 nd6_ns_output(ifp, NULL, &dst->sin6_addr, psrc, 0);
2379 } else {
2380 /* We did the lookup so we need to do the unlock here. */
2381 LLE_WUNLOCK(ln);
2382 }
2383
2384 if (created)
2385 nd6_gc_neighbors(LLTABLE6(ifp), &dst->sin6_addr);
2386
2387 return EWOULDBLOCK;
2388 }
2389
2390 int
2391 nd6_need_cache(struct ifnet *ifp)
2392 {
2393 /*
2394 * XXX: we currently do not make neighbor cache on any interface
2395 * other than ARCnet, Ethernet, FDDI and GIF.
2396 *
2397 * RFC2893 says:
2398 * - unidirectional tunnels needs no ND
2399 */
2400 switch (ifp->if_type) {
2401 case IFT_ARCNET:
2402 case IFT_ETHER:
2403 case IFT_FDDI:
2404 case IFT_IEEE1394:
2405 case IFT_CARP:
2406 case IFT_GIF: /* XXX need more cases? */
2407 case IFT_PPP:
2408 case IFT_TUNNEL:
2409 return 1;
2410 default:
2411 return 0;
2412 }
2413 }
2414
2415 static void
2416 clear_llinfo_pqueue(struct llentry *ln)
2417 {
2418 struct mbuf *m_hold, *m_hold_next;
2419
2420 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
2421 m_hold_next = m_hold->m_nextpkt;
2422 m_hold->m_nextpkt = NULL;
2423 m_freem(m_hold);
2424 }
2425
2426 ln->ln_hold = NULL;
2427 return;
2428 }
2429
2430 int
2431 nd6_sysctl(
2432 int name,
2433 void *oldp, /* syscall arg, need copyout */
2434 size_t *oldlenp,
2435 void *newp, /* syscall arg, need copyin */
2436 size_t newlen
2437 )
2438 {
2439 void *p;
2440 size_t ol;
2441 int error;
2442 size_t bufsize = 0;
2443
2444 error = 0;
2445
2446 if (newp)
2447 return EPERM;
2448 if (oldp && !oldlenp)
2449 return EINVAL;
2450 ol = oldlenp ? *oldlenp : 0;
2451
2452 if (oldp && *oldlenp > 0) {
2453 p = kmem_alloc(*oldlenp, KM_SLEEP);
2454 bufsize = *oldlenp;
2455 } else
2456 p = NULL;
2457 switch (name) {
2458 case ICMPV6CTL_ND6_DRLIST:
2459 error = fill_drlist(p, oldlenp, ol);
2460 if (!error && p != NULL && oldp != NULL)
2461 error = copyout(p, oldp, *oldlenp);
2462 break;
2463
2464 case ICMPV6CTL_ND6_PRLIST:
2465 error = fill_prlist(p, oldlenp, ol);
2466 if (!error && p != NULL && oldp != NULL)
2467 error = copyout(p, oldp, *oldlenp);
2468 break;
2469
2470 case ICMPV6CTL_ND6_MAXQLEN:
2471 break;
2472
2473 default:
2474 error = ENOPROTOOPT;
2475 break;
2476 }
2477 if (p)
2478 kmem_free(p, bufsize);
2479
2480 return error;
2481 }
2482
2483 static int
2484 fill_drlist(void *oldp, size_t *oldlenp, size_t ol)
2485 {
2486 int error = 0;
2487 struct in6_defrouter *d = NULL, *de = NULL;
2488 struct nd_defrouter *dr;
2489 size_t l;
2490
2491 if (oldp) {
2492 d = (struct in6_defrouter *)oldp;
2493 de = (struct in6_defrouter *)((char *)oldp + *oldlenp);
2494 }
2495 l = 0;
2496
2497 ND6_RLOCK();
2498 ND_DEFROUTER_LIST_FOREACH(dr) {
2499
2500 if (oldp && d + 1 <= de) {
2501 memset(d, 0, sizeof(*d));
2502 sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0);
2503 if (sa6_recoverscope(&d->rtaddr)) {
2504 char ip6buf[INET6_ADDRSTRLEN];
2505 log(LOG_ERR,
2506 "scope error in router list (%s)\n",
2507 IN6_PRINT(ip6buf, &d->rtaddr.sin6_addr));
2508 /* XXX: press on... */
2509 }
2510 d->flags = dr->flags;
2511 d->rtlifetime = dr->rtlifetime;
2512 d->expire = dr->expire ?
2513 time_mono_to_wall(dr->expire) : 0;
2514 d->if_index = dr->ifp->if_index;
2515 }
2516
2517 l += sizeof(*d);
2518 if (d)
2519 d++;
2520 }
2521 ND6_UNLOCK();
2522
2523 if (oldp) {
2524 if (l > ol)
2525 error = ENOMEM;
2526 }
2527 if (oldlenp)
2528 *oldlenp = l; /* (void *)d - (void *)oldp */
2529
2530 return error;
2531 }
2532
2533 static int
2534 fill_prlist(void *oldp, size_t *oldlenp, size_t ol)
2535 {
2536 int error = 0;
2537 struct nd_prefix *pr;
2538 uint8_t *p = NULL, *ps = NULL;
2539 uint8_t *pe = NULL;
2540 size_t l;
2541 char ip6buf[INET6_ADDRSTRLEN];
2542
2543 if (oldp) {
2544 ps = p = (uint8_t*)oldp;
2545 pe = (uint8_t*)oldp + *oldlenp;
2546 }
2547 l = 0;
2548
2549 ND6_RLOCK();
2550 ND_PREFIX_LIST_FOREACH(pr) {
2551 u_short advrtrs;
2552 struct sockaddr_in6 sin6;
2553 struct nd_pfxrouter *pfr;
2554 struct in6_prefix pfx;
2555
2556 if (oldp && p + sizeof(struct in6_prefix) <= pe)
2557 {
2558 memset(&pfx, 0, sizeof(pfx));
2559 ps = p;
2560 pfx.prefix = pr->ndpr_prefix;
2561
2562 if (sa6_recoverscope(&pfx.prefix)) {
2563 log(LOG_ERR,
2564 "scope error in prefix list (%s)\n",
2565 IN6_PRINT(ip6buf, &pfx.prefix.sin6_addr));
2566 /* XXX: press on... */
2567 }
2568 pfx.raflags = pr->ndpr_raf;
2569 pfx.prefixlen = pr->ndpr_plen;
2570 pfx.vltime = pr->ndpr_vltime;
2571 pfx.pltime = pr->ndpr_pltime;
2572 pfx.if_index = pr->ndpr_ifp->if_index;
2573 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2574 pfx.expire = 0;
2575 else {
2576 time_t maxexpire;
2577
2578 /* XXX: we assume time_t is signed. */
2579 maxexpire = (-1) &
2580 ~((time_t)1 <<
2581 ((sizeof(maxexpire) * 8) - 1));
2582 if (pr->ndpr_vltime <
2583 maxexpire - pr->ndpr_lastupdate) {
2584 pfx.expire = pr->ndpr_lastupdate +
2585 pr->ndpr_vltime;
2586 } else
2587 pfx.expire = maxexpire;
2588 }
2589 pfx.refcnt = pr->ndpr_refcnt;
2590 pfx.flags = pr->ndpr_stateflags;
2591 pfx.origin = PR_ORIG_RA;
2592
2593 p += sizeof(pfx); l += sizeof(pfx);
2594
2595 advrtrs = 0;
2596 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2597 if (p + sizeof(sin6) > pe) {
2598 advrtrs++;
2599 continue;
2600 }
2601
2602 sockaddr_in6_init(&sin6, &pfr->router->rtaddr,
2603 0, 0, 0);
2604 if (sa6_recoverscope(&sin6)) {
2605 log(LOG_ERR,
2606 "scope error in "
2607 "prefix list (%s)\n",
2608 IN6_PRINT(ip6buf,
2609 &pfr->router->rtaddr));
2610 }
2611 advrtrs++;
2612 memcpy(p, &sin6, sizeof(sin6));
2613 p += sizeof(sin6);
2614 l += sizeof(sin6);
2615 }
2616 pfx.advrtrs = advrtrs;
2617 memcpy(ps, &pfx, sizeof(pfx));
2618 }
2619 else {
2620 l += sizeof(pfx);
2621 advrtrs = 0;
2622 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
2623 advrtrs++;
2624 l += sizeof(sin6);
2625 }
2626 }
2627 }
2628 ND6_UNLOCK();
2629
2630 if (oldp) {
2631 *oldlenp = l; /* (void *)d - (void *)oldp */
2632 if (l > ol)
2633 error = ENOMEM;
2634 } else
2635 *oldlenp = l;
2636
2637 return error;
2638 }
2639
2640 static int
2641 nd6_setdefaultiface(int ifindex)
2642 {
2643 ifnet_t *ifp;
2644 int error = 0;
2645 int s;
2646
2647 s = pserialize_read_enter();
2648 ifp = if_byindex(ifindex);
2649 if (ifp == NULL) {
2650 pserialize_read_exit(s);
2651 return EINVAL;
2652 }
2653 if (nd6_defifindex != ifindex) {
2654 nd6_defifindex = ifindex;
2655 nd6_defifp = nd6_defifindex > 0 ? ifp : NULL;
2656
2657 /*
2658 * Our current implementation assumes one-to-one maping between
2659 * interfaces and links, so it would be natural to use the
2660 * default interface as the default link.
2661 */
2662 scope6_setdefault(nd6_defifp);
2663 }
2664 pserialize_read_exit(s);
2665
2666 return (error);
2667 }
2668