nd6.c revision 1.55 1 /* $NetBSD: nd6.c,v 1.55 2001/11/13 00:57:04 lukem Exp $ */
2 /* $KAME: nd6.c,v 1.151 2001/06/19 14:24:41 sumikawa Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * XXX
35 * KAME 970409 note:
36 * BSD/OS version heavily modifies this code, related to llinfo.
37 * Since we don't have BSD/OS version of net/route.c in our hand,
38 * I left the code mostly as it was in 970310. -- itojun
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.55 2001/11/13 00:57:04 lukem Exp $");
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/socket.h>
50 #include <sys/sockio.h>
51 #include <sys/time.h>
52 #include <sys/kernel.h>
53 #include <sys/protosw.h>
54 #include <sys/errno.h>
55 #include <sys/ioctl.h>
56 #include <sys/syslog.h>
57 #include <sys/queue.h>
58
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_types.h>
62 #include <net/if_atm.h>
63 #include <net/if_ieee1394.h>
64 #include <net/route.h>
65
66 #include <netinet/in.h>
67 #include <net/if_ether.h>
68 #include <netinet/if_inarp.h>
69 #include <net/if_fddi.h>
70 #include <netinet6/in6_var.h>
71 #include <netinet/ip6.h>
72 #include <netinet6/ip6_var.h>
73 #include <netinet6/nd6.h>
74 #include <netinet6/in6_prefix.h>
75 #include <netinet/icmp6.h>
76
77 #include "loop.h"
78 extern struct ifnet loif[NLOOP];
79
80 #include <net/net_osdep.h>
81
82 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
83 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
84
85 #define SIN6(s) ((struct sockaddr_in6 *)s)
86 #define SDL(s) ((struct sockaddr_dl *)s)
87
88 /* timer values */
89 int nd6_prune = 1; /* walk list every 1 seconds */
90 int nd6_delay = 5; /* delay first probe time 5 second */
91 int nd6_umaxtries = 3; /* maximum unicast query */
92 int nd6_mmaxtries = 3; /* maximum multicast query */
93 int nd6_useloopback = 1; /* use loopback interface for local traffic */
94 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
95
96 /* preventing too many loops in ND option parsing */
97 int nd6_maxndopt = 10; /* max # of ND options allowed */
98
99 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
100
101 #ifdef ND6_DEBUG
102 int nd6_debug = 1;
103 #else
104 int nd6_debug = 0;
105 #endif
106
107 /* for debugging? */
108 static int nd6_inuse, nd6_allocated;
109
110 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
111 static size_t nd_ifinfo_indexlim = 8;
112 struct nd_ifinfo *nd_ifinfo = NULL;
113 struct nd_drhead nd_defrouter;
114 struct nd_prhead nd_prefix = { 0 };
115
116 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
117 static struct sockaddr_in6 all1_sa;
118
119 static void nd6_slowtimo __P((void *));
120 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
121
122 struct callout nd6_slowtimo_ch;
123 struct callout nd6_timer_ch;
124
125 void
126 nd6_init()
127 {
128 static int nd6_init_done = 0;
129 int i;
130
131 if (nd6_init_done) {
132 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
133 return;
134 }
135
136 all1_sa.sin6_family = AF_INET6;
137 all1_sa.sin6_len = sizeof(struct sockaddr_in6);
138 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
139 all1_sa.sin6_addr.s6_addr[i] = 0xff;
140
141 /* initialization of the default router list */
142 TAILQ_INIT(&nd_defrouter);
143
144 nd6_init_done = 1;
145
146 /* start timer */
147 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
148 nd6_slowtimo, NULL);
149 }
150
151 void
152 nd6_ifattach(ifp)
153 struct ifnet *ifp;
154 {
155
156 /*
157 * We have some arrays that should be indexed by if_index.
158 * since if_index will grow dynamically, they should grow too.
159 */
160 if (nd_ifinfo == NULL || if_index >= nd_ifinfo_indexlim) {
161 size_t n;
162 caddr_t q;
163
164 while (if_index >= nd_ifinfo_indexlim)
165 nd_ifinfo_indexlim <<= 1;
166
167 /* grow nd_ifinfo */
168 n = nd_ifinfo_indexlim * sizeof(struct nd_ifinfo);
169 q = (caddr_t)malloc(n, M_IP6NDP, M_WAITOK);
170 bzero(q, n);
171 if (nd_ifinfo) {
172 bcopy((caddr_t)nd_ifinfo, q, n/2);
173 free((caddr_t)nd_ifinfo, M_IP6NDP);
174 }
175 nd_ifinfo = (struct nd_ifinfo *)q;
176 }
177
178 #define ND nd_ifinfo[ifp->if_index]
179
180 /*
181 * Don't initialize if called twice.
182 * XXX: to detect this, we should choose a member that is never set
183 * before initialization of the ND structure itself. We formaly used
184 * the linkmtu member, which was not suitable because it could be
185 * initialized via "ifconfig mtu".
186 */
187 if (ND.basereachable)
188 return;
189
190 #ifdef DIAGNOSTIC
191 if (!ifindex2ifnet[ifp->if_index])
192 panic("nd6_ifattach: ifindex2ifnet is NULL");
193 #endif
194 ND.linkmtu = ifindex2ifnet[ifp->if_index]->if_mtu;
195 ND.chlim = IPV6_DEFHLIM;
196 ND.basereachable = REACHABLE_TIME;
197 ND.reachable = ND_COMPUTE_RTIME(ND.basereachable);
198 ND.retrans = RETRANS_TIMER;
199 ND.receivedra = 0;
200 ND.flags = ND6_IFF_PERFORMNUD;
201 nd6_setmtu(ifp);
202 #undef ND
203 }
204
205 /*
206 * Reset ND level link MTU. This function is called when the physical MTU
207 * changes, which means we might have to adjust the ND level MTU.
208 */
209 void
210 nd6_setmtu(ifp)
211 struct ifnet *ifp;
212 {
213 struct nd_ifinfo *ndi = &nd_ifinfo[ifp->if_index];
214 u_long oldmaxmtu = ndi->maxmtu;
215 u_long oldlinkmtu = ndi->linkmtu;
216
217 switch (ifp->if_type) {
218 case IFT_ARCNET: /* XXX MTU handling needs more work */
219 ndi->maxmtu = MIN(60480, ifp->if_mtu);
220 break;
221 case IFT_ETHER:
222 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
223 break;
224 case IFT_ATM:
225 ndi->maxmtu = MIN(ATMMTU, ifp->if_mtu);
226 break;
227 case IFT_IEEE1394:
228 ndi->maxmtu = MIN(IEEE1394MTU, ifp->if_mtu);
229 break;
230 default:
231 ndi->maxmtu = ifp->if_mtu;
232 break;
233 }
234
235 if (oldmaxmtu != ndi->maxmtu) {
236 /*
237 * If the ND level MTU is not set yet, or if the maxmtu
238 * is reset to a smaller value than the ND level MTU,
239 * also reset the ND level MTU.
240 */
241 if (ndi->linkmtu == 0 ||
242 ndi->maxmtu < ndi->linkmtu) {
243 ndi->linkmtu = ndi->maxmtu;
244 /* also adjust in6_maxmtu if necessary. */
245 if (oldlinkmtu == 0) {
246 /*
247 * XXX: the case analysis is grotty, but
248 * it is not efficient to call in6_setmaxmtu()
249 * here when we are during the initialization
250 * procedure.
251 */
252 if (in6_maxmtu < ndi->linkmtu)
253 in6_maxmtu = ndi->linkmtu;
254 } else
255 in6_setmaxmtu();
256 }
257 }
258 #undef MIN
259 }
260
261 void
262 nd6_option_init(opt, icmp6len, ndopts)
263 void *opt;
264 int icmp6len;
265 union nd_opts *ndopts;
266 {
267 bzero(ndopts, sizeof(*ndopts));
268 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
269 ndopts->nd_opts_last
270 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
271
272 if (icmp6len == 0) {
273 ndopts->nd_opts_done = 1;
274 ndopts->nd_opts_search = NULL;
275 }
276 }
277
278 /*
279 * Take one ND option.
280 */
281 struct nd_opt_hdr *
282 nd6_option(ndopts)
283 union nd_opts *ndopts;
284 {
285 struct nd_opt_hdr *nd_opt;
286 int olen;
287
288 if (!ndopts)
289 panic("ndopts == NULL in nd6_option\n");
290 if (!ndopts->nd_opts_last)
291 panic("uninitialized ndopts in nd6_option\n");
292 if (!ndopts->nd_opts_search)
293 return NULL;
294 if (ndopts->nd_opts_done)
295 return NULL;
296
297 nd_opt = ndopts->nd_opts_search;
298
299 /* make sure nd_opt_len is inside the buffer */
300 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
301 bzero(ndopts, sizeof(*ndopts));
302 return NULL;
303 }
304
305 olen = nd_opt->nd_opt_len << 3;
306 if (olen == 0) {
307 /*
308 * Message validation requires that all included
309 * options have a length that is greater than zero.
310 */
311 bzero(ndopts, sizeof(*ndopts));
312 return NULL;
313 }
314
315 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
316 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
317 /* option overruns the end of buffer, invalid */
318 bzero(ndopts, sizeof(*ndopts));
319 return NULL;
320 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
321 /* reached the end of options chain */
322 ndopts->nd_opts_done = 1;
323 ndopts->nd_opts_search = NULL;
324 }
325 return nd_opt;
326 }
327
328 /*
329 * Parse multiple ND options.
330 * This function is much easier to use, for ND routines that do not need
331 * multiple options of the same type.
332 */
333 int
334 nd6_options(ndopts)
335 union nd_opts *ndopts;
336 {
337 struct nd_opt_hdr *nd_opt;
338 int i = 0;
339
340 if (!ndopts)
341 panic("ndopts == NULL in nd6_options\n");
342 if (!ndopts->nd_opts_last)
343 panic("uninitialized ndopts in nd6_options\n");
344 if (!ndopts->nd_opts_search)
345 return 0;
346
347 while (1) {
348 nd_opt = nd6_option(ndopts);
349 if (!nd_opt && !ndopts->nd_opts_last) {
350 /*
351 * Message validation requires that all included
352 * options have a length that is greater than zero.
353 */
354 icmp6stat.icp6s_nd_badopt++;
355 bzero(ndopts, sizeof(*ndopts));
356 return -1;
357 }
358
359 if (!nd_opt)
360 goto skip1;
361
362 switch (nd_opt->nd_opt_type) {
363 case ND_OPT_SOURCE_LINKADDR:
364 case ND_OPT_TARGET_LINKADDR:
365 case ND_OPT_MTU:
366 case ND_OPT_REDIRECTED_HEADER:
367 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
368 nd6log((LOG_INFO,
369 "duplicated ND6 option found (type=%d)\n",
370 nd_opt->nd_opt_type));
371 /* XXX bark? */
372 } else {
373 ndopts->nd_opt_array[nd_opt->nd_opt_type]
374 = nd_opt;
375 }
376 break;
377 case ND_OPT_PREFIX_INFORMATION:
378 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
379 ndopts->nd_opt_array[nd_opt->nd_opt_type]
380 = nd_opt;
381 }
382 ndopts->nd_opts_pi_end =
383 (struct nd_opt_prefix_info *)nd_opt;
384 break;
385 default:
386 /*
387 * Unknown options must be silently ignored,
388 * to accomodate future extension to the protocol.
389 */
390 nd6log((LOG_DEBUG,
391 "nd6_options: unsupported option %d - "
392 "option ignored\n", nd_opt->nd_opt_type));
393 }
394
395 skip1:
396 i++;
397 if (i > nd6_maxndopt) {
398 icmp6stat.icp6s_nd_toomanyopt++;
399 nd6log((LOG_INFO, "too many loop in nd opt\n"));
400 break;
401 }
402
403 if (ndopts->nd_opts_done)
404 break;
405 }
406
407 return 0;
408 }
409
410 /*
411 * ND6 timer routine to expire default route list and prefix list
412 */
413 void
414 nd6_timer(ignored_arg)
415 void *ignored_arg;
416 {
417 int s;
418 struct llinfo_nd6 *ln;
419 struct nd_defrouter *dr;
420 struct nd_prefix *pr;
421 long time_second = time.tv_sec;
422
423 s = splsoftnet();
424 callout_reset(&nd6_timer_ch, nd6_prune * hz,
425 nd6_timer, NULL);
426
427 ln = llinfo_nd6.ln_next;
428 /* XXX BSD/OS separates this code -- itojun */
429 while (ln && ln != &llinfo_nd6) {
430 struct rtentry *rt;
431 struct ifnet *ifp;
432 struct sockaddr_in6 *dst;
433 struct llinfo_nd6 *next = ln->ln_next;
434 /* XXX: used for the DELAY case only: */
435 struct nd_ifinfo *ndi = NULL;
436
437 if ((rt = ln->ln_rt) == NULL) {
438 ln = next;
439 continue;
440 }
441 if ((ifp = rt->rt_ifp) == NULL) {
442 ln = next;
443 continue;
444 }
445 ndi = &nd_ifinfo[ifp->if_index];
446 dst = (struct sockaddr_in6 *)rt_key(rt);
447
448 if (ln->ln_expire > time_second) {
449 ln = next;
450 continue;
451 }
452
453 /* sanity check */
454 if (!rt)
455 panic("rt=0 in nd6_timer(ln=%p)\n", ln);
456 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
457 panic("rt_llinfo(%p) is not equal to ln(%p)\n",
458 rt->rt_llinfo, ln);
459 if (!dst)
460 panic("dst=0 in nd6_timer(ln=%p)\n", ln);
461
462 switch (ln->ln_state) {
463 case ND6_LLINFO_INCOMPLETE:
464 if (ln->ln_asked < nd6_mmaxtries) {
465 ln->ln_asked++;
466 ln->ln_expire = time_second +
467 nd_ifinfo[ifp->if_index].retrans / 1000;
468 nd6_ns_output(ifp, NULL, &dst->sin6_addr,
469 ln, 0);
470 } else {
471 struct mbuf *m = ln->ln_hold;
472 if (m) {
473 if (rt->rt_ifp) {
474 /*
475 * Fake rcvif to make ICMP error
476 * more helpful in diagnosing
477 * for the receiver.
478 * XXX: should we consider
479 * older rcvif?
480 */
481 m->m_pkthdr.rcvif = rt->rt_ifp;
482 }
483 icmp6_error(m, ICMP6_DST_UNREACH,
484 ICMP6_DST_UNREACH_ADDR, 0);
485 ln->ln_hold = NULL;
486 }
487 next = nd6_free(rt, 0);
488 }
489 break;
490 case ND6_LLINFO_REACHABLE:
491 if (ln->ln_expire) {
492 ln->ln_state = ND6_LLINFO_STALE;
493 ln->ln_expire = time_second + nd6_gctimer;
494 }
495 break;
496
497 case ND6_LLINFO_STALE:
498 /* Garbage Collection(RFC 2461 5.3) */
499 if (ln->ln_expire)
500 next = nd6_free(rt, 1);
501 break;
502
503 case ND6_LLINFO_DELAY:
504 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
505 /* We need NUD */
506 ln->ln_asked = 1;
507 ln->ln_state = ND6_LLINFO_PROBE;
508 ln->ln_expire = time_second +
509 ndi->retrans / 1000;
510 nd6_ns_output(ifp, &dst->sin6_addr,
511 &dst->sin6_addr,
512 ln, 0);
513 } else {
514 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
515 ln->ln_expire = time_second + nd6_gctimer;
516 }
517 break;
518 case ND6_LLINFO_PROBE:
519 if (ln->ln_asked < nd6_umaxtries) {
520 ln->ln_asked++;
521 ln->ln_expire = time_second +
522 nd_ifinfo[ifp->if_index].retrans / 1000;
523 nd6_ns_output(ifp, &dst->sin6_addr,
524 &dst->sin6_addr, ln, 0);
525 } else {
526 next = nd6_free(rt, 0);
527 }
528 break;
529 }
530 ln = next;
531 }
532
533 /* expire default router list */
534 dr = TAILQ_FIRST(&nd_defrouter);
535 while (dr) {
536 if (dr->expire && dr->expire < time_second) {
537 struct nd_defrouter *t;
538 t = TAILQ_NEXT(dr, dr_entry);
539 defrtrlist_del(dr);
540 dr = t;
541 } else {
542 dr = TAILQ_NEXT(dr, dr_entry);
543 }
544 }
545 pr = nd_prefix.lh_first;
546 while (pr) {
547 struct in6_ifaddr *ia6;
548 struct in6_addrlifetime *lt6;
549
550 if (IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr))
551 ia6 = NULL;
552 else
553 ia6 = in6ifa_ifpwithaddr(pr->ndpr_ifp, &pr->ndpr_addr);
554
555 if (ia6) {
556 /* check address lifetime */
557 lt6 = &ia6->ia6_lifetime;
558 if (lt6->ia6t_preferred && lt6->ia6t_preferred < time_second)
559 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
560 if (lt6->ia6t_expire && lt6->ia6t_expire < time_second) {
561 if (!IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr))
562 in6_ifdel(pr->ndpr_ifp, &pr->ndpr_addr);
563 /* xxx ND_OPT_PI_FLAG_ONLINK processing */
564 }
565 }
566
567 /*
568 * check prefix lifetime.
569 * since pltime is just for autoconf, pltime processing for
570 * prefix is not necessary.
571 *
572 * we offset expire time by NDPR_KEEP_EXPIRE, so that we
573 * can use the old prefix information to validate the
574 * next prefix information to come. See prelist_update()
575 * for actual validation.
576 */
577 if (pr->ndpr_expire
578 && pr->ndpr_expire + NDPR_KEEP_EXPIRED < time_second) {
579 struct nd_prefix *t;
580 t = pr->ndpr_next;
581
582 /*
583 * address expiration and prefix expiration are
584 * separate. NEVER perform in6_ifdel here.
585 */
586
587 prelist_remove(pr);
588 pr = t;
589 } else
590 pr = pr->ndpr_next;
591 }
592 splx(s);
593 }
594
595 /*
596 * Nuke neighbor cache/prefix/default router management table, right before
597 * ifp goes away.
598 */
599 void
600 nd6_purge(ifp)
601 struct ifnet *ifp;
602 {
603 struct llinfo_nd6 *ln, *nln;
604 struct nd_defrouter *dr, *ndr, drany;
605 struct nd_prefix *pr, *npr;
606
607 /* Nuke default router list entries toward ifp */
608 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
609 /*
610 * The first entry of the list may be stored in
611 * the routing table, so we'll delete it later.
612 */
613 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) {
614 ndr = TAILQ_NEXT(dr, dr_entry);
615 if (dr->ifp == ifp)
616 defrtrlist_del(dr);
617 }
618 dr = TAILQ_FIRST(&nd_defrouter);
619 if (dr->ifp == ifp)
620 defrtrlist_del(dr);
621 }
622
623 /* Nuke prefix list entries toward ifp */
624 for (pr = nd_prefix.lh_first; pr; pr = npr) {
625 npr = pr->ndpr_next;
626 if (pr->ndpr_ifp == ifp) {
627 if (!IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr))
628 in6_ifdel(pr->ndpr_ifp, &pr->ndpr_addr);
629 prelist_remove(pr);
630 }
631 }
632
633 /* cancel default outgoing interface setting */
634 if (nd6_defifindex == ifp->if_index)
635 nd6_setdefaultiface(0);
636
637 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
638 /* refresh default router list */
639 bzero(&drany, sizeof(drany));
640 defrouter_delreq(&drany, 0);
641 defrouter_select();
642 }
643
644 /*
645 * Nuke neighbor cache entries for the ifp.
646 * Note that rt->rt_ifp may not be the same as ifp,
647 * due to KAME goto ours hack. See RTM_RESOLVE case in
648 * nd6_rtrequest(), and ip6_input().
649 */
650 ln = llinfo_nd6.ln_next;
651 while (ln && ln != &llinfo_nd6) {
652 struct rtentry *rt;
653 struct sockaddr_dl *sdl;
654
655 nln = ln->ln_next;
656 rt = ln->ln_rt;
657 if (rt && rt->rt_gateway &&
658 rt->rt_gateway->sa_family == AF_LINK) {
659 sdl = (struct sockaddr_dl *)rt->rt_gateway;
660 if (sdl->sdl_index == ifp->if_index)
661 nln = nd6_free(rt, 0);
662 }
663 ln = nln;
664 }
665 }
666
667 struct rtentry *
668 nd6_lookup(addr6, create, ifp)
669 struct in6_addr *addr6;
670 int create;
671 struct ifnet *ifp;
672 {
673 struct rtentry *rt;
674 struct sockaddr_in6 sin6;
675
676 bzero(&sin6, sizeof(sin6));
677 sin6.sin6_len = sizeof(struct sockaddr_in6);
678 sin6.sin6_family = AF_INET6;
679 sin6.sin6_addr = *addr6;
680 rt = rtalloc1((struct sockaddr *)&sin6, create);
681 if (rt && (rt->rt_flags & RTF_LLINFO) == 0) {
682 /*
683 * This is the case for the default route.
684 * If we want to create a neighbor cache for the address, we
685 * should free the route for the destination and allocate an
686 * interface route.
687 */
688 if (create) {
689 RTFREE(rt);
690 rt = 0;
691 }
692 }
693 if (!rt) {
694 if (create && ifp) {
695 int e;
696
697 /*
698 * If no route is available and create is set,
699 * we allocate a host route for the destination
700 * and treat it like an interface route.
701 * This hack is necessary for a neighbor which can't
702 * be covered by our own prefix.
703 */
704 struct ifaddr *ifa =
705 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
706 if (ifa == NULL)
707 return(NULL);
708
709 /*
710 * Create a new route. RTF_LLINFO is necessary
711 * to create a Neighbor Cache entry for the
712 * destination in nd6_rtrequest which will be
713 * called in rtrequest via ifa->ifa_rtrequest.
714 */
715 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
716 ifa->ifa_addr,
717 (struct sockaddr *)&all1_sa,
718 (ifa->ifa_flags |
719 RTF_HOST | RTF_LLINFO) &
720 ~RTF_CLONING,
721 &rt)) != 0) {
722 #if 0
723 log(LOG_ERR,
724 "nd6_lookup: failed to add route for a "
725 "neighbor(%s), errno=%d\n",
726 ip6_sprintf(addr6), e);
727 #endif
728 return(NULL);
729 }
730 if (rt == NULL)
731 return(NULL);
732 if (rt->rt_llinfo) {
733 struct llinfo_nd6 *ln =
734 (struct llinfo_nd6 *)rt->rt_llinfo;
735 ln->ln_state = ND6_LLINFO_NOSTATE;
736 }
737 } else
738 return(NULL);
739 }
740 rt->rt_refcnt--;
741 /*
742 * Validation for the entry.
743 * XXX: we can't use rt->rt_ifp to check for the interface, since
744 * it might be the loopback interface if the entry is for our
745 * own address on a non-loopback interface. Instead, we should
746 * use rt->rt_ifa->ifa_ifp, which would specify the REAL interface.
747 */
748 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
749 rt->rt_gateway->sa_family != AF_LINK ||
750 (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
751 if (create) {
752 log(LOG_DEBUG, "nd6_lookup: failed to lookup %s (if = %s)\n",
753 ip6_sprintf(addr6), ifp ? if_name(ifp) : "unspec");
754 }
755 return(0);
756 }
757 return(rt);
758 }
759
760 /*
761 * Detect if a given IPv6 address identifies a neighbor on a given link.
762 * XXX: should take care of the destination of a p2p link?
763 */
764 int
765 nd6_is_addr_neighbor(addr, ifp)
766 struct sockaddr_in6 *addr;
767 struct ifnet *ifp;
768 {
769 struct ifaddr *ifa;
770 int i;
771
772 #define IFADDR6(a) ((((struct in6_ifaddr *)(a))->ia_addr).sin6_addr)
773 #define IFMASK6(a) ((((struct in6_ifaddr *)(a))->ia_prefixmask).sin6_addr)
774
775 /*
776 * A link-local address is always a neighbor.
777 * XXX: we should use the sin6_scope_id field rather than the embedded
778 * interface index.
779 * XXX: a link does not necessarily specify a single interface.
780 */
781 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) &&
782 ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index)
783 return(1);
784
785 /*
786 * If the address matches one of our addresses,
787 * it should be a neighbor.
788 */
789 for (ifa = ifp->if_addrlist.tqh_first;
790 ifa;
791 ifa = ifa->ifa_list.tqe_next)
792 {
793 if (ifa->ifa_addr->sa_family != AF_INET6)
794 next: continue;
795
796 for (i = 0; i < 4; i++) {
797 if ((IFADDR6(ifa).s6_addr32[i] ^
798 addr->sin6_addr.s6_addr32[i]) &
799 IFMASK6(ifa).s6_addr32[i])
800 goto next;
801 }
802 return(1);
803 }
804
805 /*
806 * Even if the address matches none of our addresses, it might be
807 * in the neighbor cache.
808 */
809 if (nd6_lookup(&addr->sin6_addr, 0, ifp))
810 return(1);
811
812 return(0);
813 #undef IFADDR6
814 #undef IFMASK6
815 }
816
817 /*
818 * Free an nd6 llinfo entry.
819 * Since the function would cause significant changes in the kernel, DO NOT
820 * make it global, unless you have a strong reason for the change, and are sure
821 * that the change is safe.
822 */
823 static struct llinfo_nd6 *
824 nd6_free(rt, gc)
825 struct rtentry *rt;
826 int gc;
827 {
828 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
829 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
830 struct nd_defrouter *dr;
831
832 /*
833 * we used to have pfctlinput(PRC_HOSTDEAD) here.
834 * even though it is not harmful, it was not really necessary.
835 */
836
837 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
838 int s;
839 s = splsoftnet();
840 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
841 rt->rt_ifp);
842
843 if (dr != NULL && dr->expire &&
844 ln->ln_state == ND6_LLINFO_STALE && gc) {
845 /*
846 * If the reason for the deletion is just garbage
847 * collection, and the neighbor is an active default
848 * router, do not delete it. Instead, reset the GC
849 * timer using the router's lifetime.
850 * Simply deleting the entry would affect default
851 * router selection, which is not necessarily a good
852 * thing, especially when we're using router preference
853 * values.
854 * XXX: the check for ln_state would be redundant,
855 * but we intentionally keep it just in case.
856 */
857 ln->ln_expire = dr->expire;
858 splx(s);
859 return(ln->ln_next);
860 }
861
862 if (ln->ln_router || dr) {
863 /*
864 * rt6_flush must be called whether or not the neighbor
865 * is in the Default Router List.
866 * See a corresponding comment in nd6_na_input().
867 */
868 rt6_flush(&in6, rt->rt_ifp);
869 }
870
871 if (dr) {
872 /*
873 * Unreachablity of a router might affect the default
874 * router selection and on-link detection of advertised
875 * prefixes.
876 */
877
878 /*
879 * Temporarily fake the state to choose a new default
880 * router and to perform on-link determination of
881 * prefixes correctly.
882 * Below the state will be set correctly,
883 * or the entry itself will be deleted.
884 */
885 ln->ln_state = ND6_LLINFO_INCOMPLETE;
886
887 /*
888 * Since defrouter_select() does not affect the
889 * on-link determination and MIP6 needs the check
890 * before the default router selection, we perform
891 * the check now.
892 */
893 pfxlist_onlink_check();
894
895 if (dr == TAILQ_FIRST(&nd_defrouter)) {
896 /*
897 * It is used as the current default router,
898 * so we have to move it to the end of the
899 * list and choose a new one.
900 * XXX: it is not very efficient if this is
901 * the only router.
902 */
903 TAILQ_REMOVE(&nd_defrouter, dr, dr_entry);
904 TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry);
905
906 defrouter_select();
907 }
908 }
909 splx(s);
910 }
911
912 /*
913 * Before deleting the entry, remember the next entry as the
914 * return value. We need this because pfxlist_onlink_check() above
915 * might have freed other entries (particularly the old next entry) as
916 * a side effect (XXX).
917 */
918 next = ln->ln_next;
919
920 /*
921 * Detach the route from the routing tree and the list of neighbor
922 * caches, and disable the route entry not to be used in already
923 * cached routes.
924 */
925 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
926 rt_mask(rt), 0, (struct rtentry **)0);
927
928 return(next);
929 }
930
931 /*
932 * Upper-layer reachability hint for Neighbor Unreachability Detection.
933 *
934 * XXX cost-effective metods?
935 */
936 void
937 nd6_nud_hint(rt, dst6, force)
938 struct rtentry *rt;
939 struct in6_addr *dst6;
940 int force;
941 {
942 struct llinfo_nd6 *ln;
943 long time_second = time.tv_sec;
944
945 /*
946 * If the caller specified "rt", use that. Otherwise, resolve the
947 * routing table by supplied "dst6".
948 */
949 if (!rt) {
950 if (!dst6)
951 return;
952 if (!(rt = nd6_lookup(dst6, 0, NULL)))
953 return;
954 }
955
956 if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
957 (rt->rt_flags & RTF_LLINFO) == 0 ||
958 !rt->rt_llinfo || !rt->rt_gateway ||
959 rt->rt_gateway->sa_family != AF_LINK) {
960 /* This is not a host route. */
961 return;
962 }
963
964 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
965 if (ln->ln_state < ND6_LLINFO_REACHABLE)
966 return;
967
968 /*
969 * if we get upper-layer reachability confirmation many times,
970 * it is possible we have false information.
971 */
972 if (!force) {
973 ln->ln_byhint++;
974 if (ln->ln_byhint > nd6_maxnudhint)
975 return;
976 }
977
978 ln->ln_state = ND6_LLINFO_REACHABLE;
979 if (ln->ln_expire)
980 ln->ln_expire = time_second +
981 nd_ifinfo[rt->rt_ifp->if_index].reachable;
982 }
983
984 void
985 nd6_rtrequest(req, rt, info)
986 int req;
987 struct rtentry *rt;
988 struct rt_addrinfo *info; /* xxx unused */
989 {
990 struct sockaddr *gate = rt->rt_gateway;
991 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
992 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
993 struct ifnet *ifp = rt->rt_ifp;
994 struct ifaddr *ifa;
995 long time_second = time.tv_sec;
996
997 if (rt->rt_flags & RTF_GATEWAY)
998 return;
999
1000 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1001 /*
1002 * This is probably an interface direct route for a link
1003 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1004 * We do not need special treatment below for such a route.
1005 * Moreover, the RTF_LLINFO flag which would be set below
1006 * would annoy the ndp(8) command.
1007 */
1008 return;
1009 }
1010
1011 switch (req) {
1012 case RTM_ADD:
1013 /*
1014 * There is no backward compatibility :)
1015 *
1016 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1017 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1018 * rt->rt_flags |= RTF_CLONING;
1019 */
1020 if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) {
1021 /*
1022 * Case 1: This route should come from
1023 * a route to interface. RTF_LLINFO flag is set
1024 * for a host route whose destination should be
1025 * treated as on-link.
1026 */
1027 rt_setgate(rt, rt_key(rt),
1028 (struct sockaddr *)&null_sdl);
1029 gate = rt->rt_gateway;
1030 SDL(gate)->sdl_type = ifp->if_type;
1031 SDL(gate)->sdl_index = ifp->if_index;
1032 if (ln)
1033 ln->ln_expire = time_second;
1034 #if 1
1035 if (ln && ln->ln_expire == 0) {
1036 /* kludge for desktops */
1037 #if 0
1038 printf("nd6_rtequest: time.tv_sec is zero; "
1039 "treat it as 1\n");
1040 #endif
1041 ln->ln_expire = 1;
1042 }
1043 #endif
1044 if (rt->rt_flags & RTF_CLONING)
1045 break;
1046 }
1047 /*
1048 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1049 * We don't do that here since llinfo is not ready yet.
1050 *
1051 * There are also couple of other things to be discussed:
1052 * - unsolicited NA code needs improvement beforehand
1053 * - RFC2461 says we MAY send multicast unsolicited NA
1054 * (7.2.6 paragraph 4), however, it also says that we
1055 * SHOULD provide a mechanism to prevent multicast NA storm.
1056 * we don't have anything like it right now.
1057 * note that the mechanism needs a mutual agreement
1058 * between proxies, which means that we need to implement
1059 * a new protocol, or a new kludge.
1060 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1061 * we need to check ip6forwarding before sending it.
1062 * (or should we allow proxy ND configuration only for
1063 * routers? there's no mention about proxy ND from hosts)
1064 */
1065 #if 0
1066 /* XXX it does not work */
1067 if (rt->rt_flags & RTF_ANNOUNCE)
1068 nd6_na_output(ifp,
1069 &SIN6(rt_key(rt))->sin6_addr,
1070 &SIN6(rt_key(rt))->sin6_addr,
1071 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1072 1, NULL);
1073 #endif
1074 /* FALLTHROUGH */
1075 case RTM_RESOLVE:
1076 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) {
1077 /*
1078 * Address resolution isn't necessary for a point to
1079 * point link, so we can skip this test for a p2p link.
1080 */
1081 if (gate->sa_family != AF_LINK ||
1082 gate->sa_len < sizeof(null_sdl)) {
1083 log(LOG_DEBUG,
1084 "nd6_rtrequest: bad gateway value: %s\n",
1085 if_name(ifp));
1086 break;
1087 }
1088 SDL(gate)->sdl_type = ifp->if_type;
1089 SDL(gate)->sdl_index = ifp->if_index;
1090 }
1091 if (ln != NULL)
1092 break; /* This happens on a route change */
1093 /*
1094 * Case 2: This route may come from cloning, or a manual route
1095 * add with a LL address.
1096 */
1097 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1098 rt->rt_llinfo = (caddr_t)ln;
1099 if (!ln) {
1100 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1101 break;
1102 }
1103 nd6_inuse++;
1104 nd6_allocated++;
1105 Bzero(ln, sizeof(*ln));
1106 ln->ln_rt = rt;
1107 /* this is required for "ndp" command. - shin */
1108 if (req == RTM_ADD) {
1109 /*
1110 * gate should have some valid AF_LINK entry,
1111 * and ln->ln_expire should have some lifetime
1112 * which is specified by ndp command.
1113 */
1114 ln->ln_state = ND6_LLINFO_REACHABLE;
1115 ln->ln_byhint = 0;
1116 } else {
1117 /*
1118 * When req == RTM_RESOLVE, rt is created and
1119 * initialized in rtrequest(), so rt_expire is 0.
1120 */
1121 ln->ln_state = ND6_LLINFO_NOSTATE;
1122 ln->ln_expire = time_second;
1123 }
1124 rt->rt_flags |= RTF_LLINFO;
1125 ln->ln_next = llinfo_nd6.ln_next;
1126 llinfo_nd6.ln_next = ln;
1127 ln->ln_prev = &llinfo_nd6;
1128 ln->ln_next->ln_prev = ln;
1129
1130 /*
1131 * check if rt_key(rt) is one of my address assigned
1132 * to the interface.
1133 */
1134 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1135 &SIN6(rt_key(rt))->sin6_addr);
1136 if (ifa) {
1137 caddr_t macp = nd6_ifptomac(ifp);
1138 ln->ln_expire = 0;
1139 ln->ln_state = ND6_LLINFO_REACHABLE;
1140 ln->ln_byhint = 0;
1141 if (macp) {
1142 Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1143 SDL(gate)->sdl_alen = ifp->if_addrlen;
1144 }
1145 if (nd6_useloopback) {
1146 rt->rt_ifp = &loif[0]; /* XXX */
1147 /*
1148 * Make sure rt_ifa be equal to the ifaddr
1149 * corresponding to the address.
1150 * We need this because when we refer
1151 * rt_ifa->ia6_flags in ip6_input, we assume
1152 * that the rt_ifa points to the address instead
1153 * of the loopback address.
1154 */
1155 if (ifa != rt->rt_ifa) {
1156 IFAFREE(rt->rt_ifa);
1157 IFAREF(ifa);
1158 rt->rt_ifa = ifa;
1159 }
1160 }
1161 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1162 ln->ln_expire = 0;
1163 ln->ln_state = ND6_LLINFO_REACHABLE;
1164 ln->ln_byhint = 0;
1165
1166 /* join solicited node multicast for proxy ND */
1167 if (ifp->if_flags & IFF_MULTICAST) {
1168 struct in6_addr llsol;
1169 int error;
1170
1171 llsol = SIN6(rt_key(rt))->sin6_addr;
1172 llsol.s6_addr16[0] = htons(0xff02);
1173 llsol.s6_addr16[1] = htons(ifp->if_index);
1174 llsol.s6_addr32[1] = 0;
1175 llsol.s6_addr32[2] = htonl(1);
1176 llsol.s6_addr8[12] = 0xff;
1177
1178 if (!in6_addmulti(&llsol, ifp, &error)) {
1179 nd6log((LOG_ERR, "%s: failed to join "
1180 "%s (errno=%d)\n", if_name(ifp),
1181 ip6_sprintf(&llsol), error));
1182 }
1183 }
1184 }
1185 break;
1186
1187 case RTM_DELETE:
1188 if (!ln)
1189 break;
1190 /* leave from solicited node multicast for proxy ND */
1191 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1192 (ifp->if_flags & IFF_MULTICAST) != 0) {
1193 struct in6_addr llsol;
1194 struct in6_multi *in6m;
1195
1196 llsol = SIN6(rt_key(rt))->sin6_addr;
1197 llsol.s6_addr16[0] = htons(0xff02);
1198 llsol.s6_addr16[1] = htons(ifp->if_index);
1199 llsol.s6_addr32[1] = 0;
1200 llsol.s6_addr32[2] = htonl(1);
1201 llsol.s6_addr8[12] = 0xff;
1202
1203 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1204 if (in6m)
1205 in6_delmulti(in6m);
1206 }
1207 nd6_inuse--;
1208 ln->ln_next->ln_prev = ln->ln_prev;
1209 ln->ln_prev->ln_next = ln->ln_next;
1210 ln->ln_prev = NULL;
1211 rt->rt_llinfo = 0;
1212 rt->rt_flags &= ~RTF_LLINFO;
1213 if (ln->ln_hold)
1214 m_freem(ln->ln_hold);
1215 Free((caddr_t)ln);
1216 }
1217 }
1218
1219 void
1220 nd6_p2p_rtrequest(req, rt, info)
1221 int req;
1222 struct rtentry *rt;
1223 struct rt_addrinfo *info; /* xxx unused */
1224 {
1225 struct sockaddr *gate = rt->rt_gateway;
1226 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1227 struct ifnet *ifp = rt->rt_ifp;
1228 struct ifaddr *ifa;
1229
1230 if (rt->rt_flags & RTF_GATEWAY)
1231 return;
1232
1233 switch (req) {
1234 case RTM_ADD:
1235 /*
1236 * There is no backward compatibility :)
1237 *
1238 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1239 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1240 * rt->rt_flags |= RTF_CLONING;
1241 */
1242 if (rt->rt_flags & RTF_CLONING) {
1243 /*
1244 * Case 1: This route should come from
1245 * a route to interface.
1246 */
1247 rt_setgate(rt, rt_key(rt),
1248 (struct sockaddr *)&null_sdl);
1249 gate = rt->rt_gateway;
1250 SDL(gate)->sdl_type = ifp->if_type;
1251 SDL(gate)->sdl_index = ifp->if_index;
1252 break;
1253 }
1254 /* Announce a new entry if requested. */
1255 if (rt->rt_flags & RTF_ANNOUNCE)
1256 nd6_na_output(ifp,
1257 &SIN6(rt_key(rt))->sin6_addr,
1258 &SIN6(rt_key(rt))->sin6_addr,
1259 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1260 1, NULL);
1261 /* FALLTHROUGH */
1262 case RTM_RESOLVE:
1263 /*
1264 * check if rt_key(rt) is one of my address assigned
1265 * to the interface.
1266 */
1267 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1268 &SIN6(rt_key(rt))->sin6_addr);
1269 if (ifa) {
1270 if (nd6_useloopback) {
1271 rt->rt_ifp = &loif[0]; /*XXX*/
1272 }
1273 }
1274 break;
1275 }
1276 }
1277
1278 int
1279 nd6_ioctl(cmd, data, ifp)
1280 u_long cmd;
1281 caddr_t data;
1282 struct ifnet *ifp;
1283 {
1284 struct in6_drlist *drl = (struct in6_drlist *)data;
1285 struct in6_prlist *prl = (struct in6_prlist *)data;
1286 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1287 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1288 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1289 struct nd_defrouter *dr, any;
1290 struct nd_prefix *pr;
1291 struct rtentry *rt;
1292 int i = 0, error = 0;
1293 int s;
1294
1295 switch (cmd) {
1296 case SIOCGDRLST_IN6:
1297 bzero(drl, sizeof(*drl));
1298 s = splsoftnet();
1299 dr = TAILQ_FIRST(&nd_defrouter);
1300 while (dr && i < DRLSTSIZ) {
1301 drl->defrouter[i].rtaddr = dr->rtaddr;
1302 if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) {
1303 /* XXX: need to this hack for KAME stack */
1304 drl->defrouter[i].rtaddr.s6_addr16[1] = 0;
1305 } else
1306 log(LOG_ERR,
1307 "default router list contains a "
1308 "non-linklocal address(%s)\n",
1309 ip6_sprintf(&drl->defrouter[i].rtaddr));
1310
1311 drl->defrouter[i].flags = dr->flags;
1312 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1313 drl->defrouter[i].expire = dr->expire;
1314 drl->defrouter[i].if_index = dr->ifp->if_index;
1315 i++;
1316 dr = TAILQ_NEXT(dr, dr_entry);
1317 }
1318 splx(s);
1319 break;
1320 case SIOCGPRLST_IN6:
1321 /*
1322 * XXX meaning of fields, especialy "raflags", is very
1323 * differnet between RA prefix list and RR/static prefix list.
1324 * how about separating ioctls into two?
1325 */
1326 bzero(prl, sizeof(*prl));
1327 s = splsoftnet();
1328 pr = nd_prefix.lh_first;
1329 while (pr && i < PRLSTSIZ) {
1330 struct nd_pfxrouter *pfr;
1331 int j;
1332
1333 prl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1334 prl->prefix[i].raflags = pr->ndpr_raf;
1335 prl->prefix[i].prefixlen = pr->ndpr_plen;
1336 prl->prefix[i].vltime = pr->ndpr_vltime;
1337 prl->prefix[i].pltime = pr->ndpr_pltime;
1338 prl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1339 prl->prefix[i].expire = pr->ndpr_expire;
1340
1341 pfr = pr->ndpr_advrtrs.lh_first;
1342 j = 0;
1343 while (pfr) {
1344 if (j < DRLSTSIZ) {
1345 #define RTRADDR prl->prefix[i].advrtr[j]
1346 RTRADDR = pfr->router->rtaddr;
1347 if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) {
1348 /* XXX: hack for KAME */
1349 RTRADDR.s6_addr16[1] = 0;
1350 } else
1351 log(LOG_ERR,
1352 "a router(%s) advertises "
1353 "a prefix with "
1354 "non-link local address\n",
1355 ip6_sprintf(&RTRADDR));
1356 #undef RTRADDR
1357 }
1358 j++;
1359 pfr = pfr->pfr_next;
1360 }
1361 prl->prefix[i].advrtrs = j;
1362 prl->prefix[i].origin = PR_ORIG_RA;
1363
1364 i++;
1365 pr = pr->ndpr_next;
1366 }
1367 {
1368 struct rr_prefix *rpp;
1369
1370 for (rpp = LIST_FIRST(&rr_prefix); rpp;
1371 rpp = LIST_NEXT(rpp, rp_entry)) {
1372 if (i >= PRLSTSIZ)
1373 break;
1374 prl->prefix[i].prefix = rpp->rp_prefix.sin6_addr;
1375 prl->prefix[i].raflags = rpp->rp_raf;
1376 prl->prefix[i].prefixlen = rpp->rp_plen;
1377 prl->prefix[i].vltime = rpp->rp_vltime;
1378 prl->prefix[i].pltime = rpp->rp_pltime;
1379 prl->prefix[i].if_index = rpp->rp_ifp->if_index;
1380 prl->prefix[i].expire = rpp->rp_expire;
1381 prl->prefix[i].advrtrs = 0;
1382 prl->prefix[i].origin = rpp->rp_origin;
1383 i++;
1384 }
1385 }
1386 splx(s);
1387
1388 break;
1389 case SIOCGIFINFO_IN6:
1390 if (!nd_ifinfo || i >= nd_ifinfo_indexlim) {
1391 error = EINVAL;
1392 break;
1393 }
1394 ndi->ndi = nd_ifinfo[ifp->if_index];
1395 break;
1396 case SIOCSIFINFO_FLAGS:
1397 /* XXX: almost all other fields of ndi->ndi is unused */
1398 if (!nd_ifinfo || i >= nd_ifinfo_indexlim) {
1399 error = EINVAL;
1400 break;
1401 }
1402 nd_ifinfo[ifp->if_index].flags = ndi->ndi.flags;
1403 break;
1404 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1405 /* flush default router list */
1406 /*
1407 * xxx sumikawa: should not delete route if default
1408 * route equals to the top of default router list
1409 */
1410 bzero(&any, sizeof(any));
1411 defrouter_delreq(&any, 0);
1412 defrouter_select();
1413 /* xxx sumikawa: flush prefix list */
1414 break;
1415 case SIOCSPFXFLUSH_IN6:
1416 {
1417 /* flush all the prefix advertised by routers */
1418 struct nd_prefix *pr, *next;
1419
1420 s = splsoftnet();
1421 for (pr = nd_prefix.lh_first; pr; pr = next) {
1422 next = pr->ndpr_next;
1423 if (!IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr))
1424 in6_ifdel(pr->ndpr_ifp, &pr->ndpr_addr);
1425 prelist_remove(pr);
1426 }
1427 splx(s);
1428 break;
1429 }
1430 case SIOCSRTRFLUSH_IN6:
1431 {
1432 /* flush all the default routers */
1433 struct nd_defrouter *dr, *next;
1434
1435 s = splsoftnet();
1436 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
1437 /*
1438 * The first entry of the list may be stored in
1439 * the routing table, so we'll delete it later.
1440 */
1441 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) {
1442 next = TAILQ_NEXT(dr, dr_entry);
1443 defrtrlist_del(dr);
1444 }
1445 defrtrlist_del(TAILQ_FIRST(&nd_defrouter));
1446 }
1447 splx(s);
1448 break;
1449 }
1450 case SIOCGNBRINFO_IN6:
1451 {
1452 struct llinfo_nd6 *ln;
1453 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1454
1455 /*
1456 * XXX: KAME specific hack for scoped addresses
1457 * XXXX: for other scopes than link-local?
1458 */
1459 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) ||
1460 IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) {
1461 u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2];
1462
1463 if (*idp == 0)
1464 *idp = htons(ifp->if_index);
1465 }
1466
1467 s = splsoftnet();
1468 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1469 error = EINVAL;
1470 splx(s);
1471 break;
1472 }
1473 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1474 nbi->state = ln->ln_state;
1475 nbi->asked = ln->ln_asked;
1476 nbi->isrouter = ln->ln_router;
1477 nbi->expire = ln->ln_expire;
1478 splx(s);
1479
1480 break;
1481 }
1482 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1483 ndif->ifindex = nd6_defifindex;
1484 break;
1485 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1486 return(nd6_setdefaultiface(ndif->ifindex));
1487 break;
1488 }
1489 return(error);
1490 }
1491
1492 /*
1493 * Create neighbor cache entry and cache link-layer address,
1494 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1495 */
1496 struct rtentry *
1497 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
1498 struct ifnet *ifp;
1499 struct in6_addr *from;
1500 char *lladdr;
1501 int lladdrlen;
1502 int type; /* ICMP6 type */
1503 int code; /* type dependent information */
1504 {
1505 struct rtentry *rt = NULL;
1506 struct llinfo_nd6 *ln = NULL;
1507 int is_newentry;
1508 struct sockaddr_dl *sdl = NULL;
1509 int do_update;
1510 int olladdr;
1511 int llchange;
1512 int newstate = 0;
1513 long time_second = time.tv_sec;
1514
1515 if (!ifp)
1516 panic("ifp == NULL in nd6_cache_lladdr");
1517 if (!from)
1518 panic("from == NULL in nd6_cache_lladdr");
1519
1520 /* nothing must be updated for unspecified address */
1521 if (IN6_IS_ADDR_UNSPECIFIED(from))
1522 return NULL;
1523
1524 /*
1525 * Validation about ifp->if_addrlen and lladdrlen must be done in
1526 * the caller.
1527 *
1528 * XXX If the link does not have link-layer adderss, what should
1529 * we do? (ifp->if_addrlen == 0)
1530 * Spec says nothing in sections for RA, RS and NA. There's small
1531 * description on it in NS section (RFC 2461 7.2.3).
1532 */
1533
1534 rt = nd6_lookup(from, 0, ifp);
1535 if (!rt) {
1536 #if 0
1537 /* nothing must be done if there's no lladdr */
1538 if (!lladdr || !lladdrlen)
1539 return NULL;
1540 #endif
1541
1542 rt = nd6_lookup(from, 1, ifp);
1543 is_newentry = 1;
1544 } else {
1545 /* do nothing if static ndp is set */
1546 if (rt->rt_flags & RTF_STATIC)
1547 return NULL;
1548 is_newentry = 0;
1549 }
1550
1551 if (!rt)
1552 return NULL;
1553 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1554 fail:
1555 (void)nd6_free(rt, 0);
1556 return NULL;
1557 }
1558 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1559 if (!ln)
1560 goto fail;
1561 if (!rt->rt_gateway)
1562 goto fail;
1563 if (rt->rt_gateway->sa_family != AF_LINK)
1564 goto fail;
1565 sdl = SDL(rt->rt_gateway);
1566
1567 olladdr = (sdl->sdl_alen) ? 1 : 0;
1568 if (olladdr && lladdr) {
1569 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1570 llchange = 1;
1571 else
1572 llchange = 0;
1573 } else
1574 llchange = 0;
1575
1576 /*
1577 * newentry olladdr lladdr llchange (*=record)
1578 * 0 n n -- (1)
1579 * 0 y n -- (2)
1580 * 0 n y -- (3) * STALE
1581 * 0 y y n (4) *
1582 * 0 y y y (5) * STALE
1583 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1584 * 1 -- y -- (7) * STALE
1585 */
1586
1587 if (lladdr) { /* (3-5) and (7) */
1588 /*
1589 * Record source link-layer address
1590 * XXX is it dependent to ifp->if_type?
1591 */
1592 sdl->sdl_alen = ifp->if_addrlen;
1593 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1594 }
1595
1596 if (!is_newentry) {
1597 if ((!olladdr && lladdr) /* (3) */
1598 || (olladdr && lladdr && llchange)) { /* (5) */
1599 do_update = 1;
1600 newstate = ND6_LLINFO_STALE;
1601 } else /* (1-2,4) */
1602 do_update = 0;
1603 } else {
1604 do_update = 1;
1605 if (!lladdr) /* (6) */
1606 newstate = ND6_LLINFO_NOSTATE;
1607 else /* (7) */
1608 newstate = ND6_LLINFO_STALE;
1609 }
1610
1611 if (do_update) {
1612 /*
1613 * Update the state of the neighbor cache.
1614 */
1615 ln->ln_state = newstate;
1616
1617 if (ln->ln_state == ND6_LLINFO_STALE) {
1618 /*
1619 * XXX: since nd6_output() below will cause
1620 * state tansition to DELAY and reset the timer,
1621 * we must set the timer now, although it is actually
1622 * meaningless.
1623 */
1624 ln->ln_expire = time_second + nd6_gctimer;
1625
1626 if (ln->ln_hold) {
1627 /*
1628 * we assume ifp is not a p2p here, so just
1629 * set the 2nd argument as the 1st one.
1630 */
1631 nd6_output(ifp, ifp, ln->ln_hold,
1632 (struct sockaddr_in6 *)rt_key(rt),
1633 rt);
1634 ln->ln_hold = NULL;
1635 }
1636 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1637 /* probe right away */
1638 ln->ln_expire = time_second;
1639 }
1640 }
1641
1642 /*
1643 * ICMP6 type dependent behavior.
1644 *
1645 * NS: clear IsRouter if new entry
1646 * RS: clear IsRouter
1647 * RA: set IsRouter if there's lladdr
1648 * redir: clear IsRouter if new entry
1649 *
1650 * RA case, (1):
1651 * The spec says that we must set IsRouter in the following cases:
1652 * - If lladdr exist, set IsRouter. This means (1-5).
1653 * - If it is old entry (!newentry), set IsRouter. This means (7).
1654 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1655 * A quetion arises for (1) case. (1) case has no lladdr in the
1656 * neighbor cache, this is similar to (6).
1657 * This case is rare but we figured that we MUST NOT set IsRouter.
1658 *
1659 * newentry olladdr lladdr llchange NS RS RA redir
1660 * D R
1661 * 0 n n -- (1) c ? s
1662 * 0 y n -- (2) c s s
1663 * 0 n y -- (3) c s s
1664 * 0 y y n (4) c s s
1665 * 0 y y y (5) c s s
1666 * 1 -- n -- (6) c c c s
1667 * 1 -- y -- (7) c c s c s
1668 *
1669 * (c=clear s=set)
1670 */
1671 switch (type & 0xff) {
1672 case ND_NEIGHBOR_SOLICIT:
1673 /*
1674 * New entry must have is_router flag cleared.
1675 */
1676 if (is_newentry) /* (6-7) */
1677 ln->ln_router = 0;
1678 break;
1679 case ND_REDIRECT:
1680 /*
1681 * If the icmp is a redirect to a better router, always set the
1682 * is_router flag. Otherwise, if the entry is newly created,
1683 * clear the flag. [RFC 2461, sec 8.3]
1684 */
1685 if (code == ND_REDIRECT_ROUTER)
1686 ln->ln_router = 1;
1687 else if (is_newentry) /* (6-7) */
1688 ln->ln_router = 0;
1689 break;
1690 case ND_ROUTER_SOLICIT:
1691 /*
1692 * is_router flag must always be cleared.
1693 */
1694 ln->ln_router = 0;
1695 break;
1696 case ND_ROUTER_ADVERT:
1697 /*
1698 * Mark an entry with lladdr as a router.
1699 */
1700 if ((!is_newentry && (olladdr || lladdr)) /* (2-5) */
1701 || (is_newentry && lladdr)) { /* (7) */
1702 ln->ln_router = 1;
1703 }
1704 break;
1705 }
1706
1707 /*
1708 * When the link-layer address of a router changes, select the
1709 * best router again. In particular, when the neighbor entry is newly
1710 * created, it might affect the selection policy.
1711 * Question: can we restrict the first condition to the "is_newentry"
1712 * case?
1713 * XXX: when we hear an RA from a new router with the link-layer
1714 * address option, defrouter_select() is called twice, since
1715 * defrtrlist_update called the function as well. However, I believe
1716 * we can compromise the overhead, since it only happens the first
1717 * time.
1718 * XXX: although defrouter_select() should not have a bad effect
1719 * for those are not autoconfigured hosts, we explicitly avoid such
1720 * cases for safety.
1721 */
1722 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1723 defrouter_select();
1724
1725 return rt;
1726 }
1727
1728 static void
1729 nd6_slowtimo(ignored_arg)
1730 void *ignored_arg;
1731 {
1732 int s = splsoftnet();
1733 int i;
1734 struct nd_ifinfo *nd6if;
1735
1736 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1737 nd6_slowtimo, NULL);
1738 for (i = 1; i < if_index + 1; i++) {
1739 if (!nd_ifinfo || i >= nd_ifinfo_indexlim)
1740 continue;
1741 nd6if = &nd_ifinfo[i];
1742 if (nd6if->basereachable && /* already initialized */
1743 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1744 /*
1745 * Since reachable time rarely changes by router
1746 * advertisements, we SHOULD insure that a new random
1747 * value gets recomputed at least once every few hours.
1748 * (RFC 2461, 6.3.4)
1749 */
1750 nd6if->recalctm = nd6_recalc_reachtm_interval;
1751 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1752 }
1753 }
1754 splx(s);
1755 }
1756
1757 #define senderr(e) { error = (e); goto bad;}
1758 int
1759 nd6_output(ifp, origifp, m0, dst, rt0)
1760 struct ifnet *ifp;
1761 struct ifnet *origifp;
1762 struct mbuf *m0;
1763 struct sockaddr_in6 *dst;
1764 struct rtentry *rt0;
1765 {
1766 struct mbuf *m = m0;
1767 struct rtentry *rt = rt0;
1768 struct sockaddr_in6 *gw6 = NULL;
1769 struct llinfo_nd6 *ln = NULL;
1770 int error = 0;
1771 long time_second = time.tv_sec;
1772
1773 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1774 goto sendpkt;
1775
1776 if (nd6_need_cache(ifp) == 0)
1777 goto sendpkt;
1778
1779 /*
1780 * next hop determination. This routine is derived from ether_outpout.
1781 */
1782 if (rt) {
1783 if ((rt->rt_flags & RTF_UP) == 0) {
1784 if ((rt0 = rt = rtalloc1((struct sockaddr *)dst, 1)) !=
1785 NULL)
1786 {
1787 rt->rt_refcnt--;
1788 if (rt->rt_ifp != ifp) {
1789 /* XXX: loop care? */
1790 return nd6_output(ifp, origifp, m0,
1791 dst, rt);
1792 }
1793 } else
1794 senderr(EHOSTUNREACH);
1795 }
1796
1797 if (rt->rt_flags & RTF_GATEWAY) {
1798 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1799
1800 /*
1801 * We skip link-layer address resolution and NUD
1802 * if the gateway is not a neighbor from ND point
1803 * of view, regardless the value of the
1804 * nd_ifinfo.flags.
1805 * The second condition is a bit tricky: we skip
1806 * if the gateway is our own address, which is
1807 * sometimes used to install a route to a p2p link.
1808 */
1809 if (!nd6_is_addr_neighbor(gw6, ifp) ||
1810 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1811 /*
1812 * We allow this kind of tricky route only
1813 * when the outgoing interface is p2p.
1814 * XXX: we may need a more generic rule here.
1815 */
1816 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1817 senderr(EHOSTUNREACH);
1818
1819 goto sendpkt;
1820 }
1821
1822 if (rt->rt_gwroute == 0)
1823 goto lookup;
1824 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
1825 rtfree(rt); rt = rt0;
1826 lookup:
1827 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
1828 if ((rt = rt->rt_gwroute) == 0)
1829 senderr(EHOSTUNREACH);
1830 /* the "G" test below also prevents rt == rt0 */
1831 if ((rt->rt_flags & RTF_GATEWAY) ||
1832 (rt->rt_ifp != ifp)) {
1833 rt->rt_refcnt--;
1834 rt0->rt_gwroute = 0;
1835 senderr(EHOSTUNREACH);
1836 }
1837 }
1838 }
1839 }
1840
1841 /*
1842 * Address resolution or Neighbor Unreachability Detection
1843 * for the next hop.
1844 * At this point, the destination of the packet must be a unicast
1845 * or an anycast address(i.e. not a multicast).
1846 */
1847
1848 /* Look up the neighbor cache for the nexthop */
1849 if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
1850 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1851 else {
1852 /*
1853 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1854 * the condition below is not very efficient. But we believe
1855 * it is tolerable, because this should be a rare case.
1856 */
1857 if (nd6_is_addr_neighbor(dst, ifp) &&
1858 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
1859 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1860 }
1861 if (!ln || !rt) {
1862 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
1863 !(nd_ifinfo[ifp->if_index].flags & ND6_IFF_PERFORMNUD)) {
1864 log(LOG_DEBUG,
1865 "nd6_output: can't allocate llinfo for %s "
1866 "(ln=%p, rt=%p)\n",
1867 ip6_sprintf(&dst->sin6_addr), ln, rt);
1868 senderr(EIO); /* XXX: good error? */
1869 }
1870
1871 goto sendpkt; /* send anyway */
1872 }
1873
1874 /* We don't have to do link-layer address resolution on a p2p link. */
1875 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
1876 ln->ln_state < ND6_LLINFO_REACHABLE) {
1877 ln->ln_state = ND6_LLINFO_STALE;
1878 ln->ln_expire = time_second + nd6_gctimer;
1879 }
1880
1881 /*
1882 * The first time we send a packet to a neighbor whose entry is
1883 * STALE, we have to change the state to DELAY and a sets a timer to
1884 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
1885 * neighbor unreachability detection on expiration.
1886 * (RFC 2461 7.3.3)
1887 */
1888 if (ln->ln_state == ND6_LLINFO_STALE) {
1889 ln->ln_asked = 0;
1890 ln->ln_state = ND6_LLINFO_DELAY;
1891 ln->ln_expire = time_second + nd6_delay;
1892 }
1893
1894 /*
1895 * If the neighbor cache entry has a state other than INCOMPLETE
1896 * (i.e. its link-layer address is already resolved), just
1897 * send the packet.
1898 */
1899 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1900 goto sendpkt;
1901
1902 /*
1903 * There is a neighbor cache entry, but no ethernet address
1904 * response yet. Replace the held mbuf (if any) with this
1905 * latest one.
1906 * This code conforms to the rate-limiting rule described in Section
1907 * 7.2.2 of RFC 2461, because the timer is set correctly after sending
1908 * an NS below.
1909 */
1910 if (ln->ln_state == ND6_LLINFO_NOSTATE)
1911 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1912 if (ln->ln_hold)
1913 m_freem(ln->ln_hold);
1914 ln->ln_hold = m;
1915 if (ln->ln_expire) {
1916 if (ln->ln_asked < nd6_mmaxtries &&
1917 ln->ln_expire < time_second) {
1918 ln->ln_asked++;
1919 ln->ln_expire = time_second +
1920 nd_ifinfo[ifp->if_index].retrans / 1000;
1921 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
1922 }
1923 }
1924 return(0);
1925
1926 sendpkt:
1927
1928 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
1929 return((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
1930 rt));
1931 }
1932 return((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
1933
1934 bad:
1935 if (m)
1936 m_freem(m);
1937 return (error);
1938 }
1939 #undef senderr
1940
1941 int
1942 nd6_need_cache(ifp)
1943 struct ifnet *ifp;
1944 {
1945 /*
1946 * XXX: we currently do not make neighbor cache on any interface
1947 * other than ARCnet, Ethernet, FDDI and GIF.
1948 *
1949 * RFC2893 says:
1950 * - unidirectional tunnels needs no ND
1951 */
1952 switch (ifp->if_type) {
1953 case IFT_ARCNET:
1954 case IFT_ETHER:
1955 case IFT_FDDI:
1956 case IFT_IEEE1394:
1957 case IFT_GIF: /* XXX need more cases? */
1958 return(1);
1959 default:
1960 return(0);
1961 }
1962 }
1963
1964 int
1965 nd6_storelladdr(ifp, rt, m, dst, desten)
1966 struct ifnet *ifp;
1967 struct rtentry *rt;
1968 struct mbuf *m;
1969 struct sockaddr *dst;
1970 u_char *desten;
1971 {
1972 struct sockaddr_dl *sdl;
1973
1974 if (m->m_flags & M_MCAST) {
1975 switch (ifp->if_type) {
1976 case IFT_ETHER:
1977 case IFT_FDDI:
1978 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
1979 desten);
1980 return(1);
1981 case IFT_IEEE1394:
1982 bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen);
1983 return(1);
1984 case IFT_ARCNET:
1985 *desten = 0;
1986 return(1);
1987 default:
1988 m_freem(m);
1989 return(0);
1990 }
1991 }
1992
1993 if (rt == NULL) {
1994 /* this could happen, if we could not allocate memory */
1995 m_freem(m);
1996 return(0);
1997 }
1998 if (rt->rt_gateway->sa_family != AF_LINK) {
1999 printf("nd6_storelladdr: something odd happens\n");
2000 m_freem(m);
2001 return(0);
2002 }
2003 sdl = SDL(rt->rt_gateway);
2004 if (sdl->sdl_alen == 0) {
2005 /* this should be impossible, but we bark here for debugging */
2006 printf("nd6_storelladdr: sdl_alen == 0\n");
2007 m_freem(m);
2008 return(0);
2009 }
2010
2011 bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2012 return(1);
2013 }
2014