nd6.c revision 1.56 1 /* $NetBSD: nd6.c,v 1.56 2001/12/18 03:04:04 itojun Exp $ */
2 /* $KAME: nd6.c,v 1.151 2001/06/19 14:24:41 sumikawa Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 /*
34 * XXX
35 * KAME 970409 note:
36 * BSD/OS version heavily modifies this code, related to llinfo.
37 * Since we don't have BSD/OS version of net/route.c in our hand,
38 * I left the code mostly as it was in 970310. -- itojun
39 */
40
41 #include <sys/cdefs.h>
42 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.56 2001/12/18 03:04:04 itojun Exp $");
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/callout.h>
47 #include <sys/malloc.h>
48 #include <sys/mbuf.h>
49 #include <sys/socket.h>
50 #include <sys/sockio.h>
51 #include <sys/time.h>
52 #include <sys/kernel.h>
53 #include <sys/protosw.h>
54 #include <sys/errno.h>
55 #include <sys/ioctl.h>
56 #include <sys/syslog.h>
57 #include <sys/queue.h>
58
59 #include <net/if.h>
60 #include <net/if_dl.h>
61 #include <net/if_types.h>
62 #include <net/if_atm.h>
63 #include <net/if_ieee1394.h>
64 #include <net/route.h>
65
66 #include <netinet/in.h>
67 #include <net/if_ether.h>
68 #include <netinet/if_inarp.h>
69 #include <net/if_fddi.h>
70 #include <netinet6/in6_var.h>
71 #include <netinet/ip6.h>
72 #include <netinet6/ip6_var.h>
73 #include <netinet6/nd6.h>
74 #include <netinet6/in6_prefix.h>
75 #include <netinet/icmp6.h>
76
77 #include "loop.h"
78 extern struct ifnet loif[NLOOP];
79
80 #include <net/net_osdep.h>
81
82 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
83 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
84
85 #define SIN6(s) ((struct sockaddr_in6 *)s)
86 #define SDL(s) ((struct sockaddr_dl *)s)
87
88 /* timer values */
89 int nd6_prune = 1; /* walk list every 1 seconds */
90 int nd6_delay = 5; /* delay first probe time 5 second */
91 int nd6_umaxtries = 3; /* maximum unicast query */
92 int nd6_mmaxtries = 3; /* maximum multicast query */
93 int nd6_useloopback = 1; /* use loopback interface for local traffic */
94 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
95
96 /* preventing too many loops in ND option parsing */
97 int nd6_maxndopt = 10; /* max # of ND options allowed */
98
99 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
100
101 #ifdef ND6_DEBUG
102 int nd6_debug = 1;
103 #else
104 int nd6_debug = 0;
105 #endif
106
107 /* for debugging? */
108 static int nd6_inuse, nd6_allocated;
109
110 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
111 static size_t nd_ifinfo_indexlim = 8;
112 struct nd_ifinfo *nd_ifinfo = NULL;
113 struct nd_drhead nd_defrouter;
114 struct nd_prhead nd_prefix = { 0 };
115
116 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
117 static struct sockaddr_in6 all1_sa;
118
119 static void nd6_slowtimo __P((void *));
120 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
121
122 struct callout nd6_slowtimo_ch;
123 struct callout nd6_timer_ch;
124
125 void
126 nd6_init()
127 {
128 static int nd6_init_done = 0;
129 int i;
130
131 if (nd6_init_done) {
132 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
133 return;
134 }
135
136 all1_sa.sin6_family = AF_INET6;
137 all1_sa.sin6_len = sizeof(struct sockaddr_in6);
138 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
139 all1_sa.sin6_addr.s6_addr[i] = 0xff;
140
141 /* initialization of the default router list */
142 TAILQ_INIT(&nd_defrouter);
143
144 nd6_init_done = 1;
145
146 /* start timer */
147 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
148 nd6_slowtimo, NULL);
149 }
150
151 void
152 nd6_ifattach(ifp)
153 struct ifnet *ifp;
154 {
155
156 /*
157 * We have some arrays that should be indexed by if_index.
158 * since if_index will grow dynamically, they should grow too.
159 */
160 if (nd_ifinfo == NULL || if_index >= nd_ifinfo_indexlim) {
161 size_t n;
162 caddr_t q;
163
164 while (if_index >= nd_ifinfo_indexlim)
165 nd_ifinfo_indexlim <<= 1;
166
167 /* grow nd_ifinfo */
168 n = nd_ifinfo_indexlim * sizeof(struct nd_ifinfo);
169 q = (caddr_t)malloc(n, M_IP6NDP, M_WAITOK);
170 bzero(q, n);
171 if (nd_ifinfo) {
172 bcopy((caddr_t)nd_ifinfo, q, n/2);
173 free((caddr_t)nd_ifinfo, M_IP6NDP);
174 }
175 nd_ifinfo = (struct nd_ifinfo *)q;
176 }
177
178 #define ND nd_ifinfo[ifp->if_index]
179
180 /*
181 * Don't initialize if called twice.
182 * XXX: to detect this, we should choose a member that is never set
183 * before initialization of the ND structure itself. We formaly used
184 * the linkmtu member, which was not suitable because it could be
185 * initialized via "ifconfig mtu".
186 */
187 if (ND.basereachable)
188 return;
189
190 #ifdef DIAGNOSTIC
191 if (!ifindex2ifnet[ifp->if_index])
192 panic("nd6_ifattach: ifindex2ifnet is NULL");
193 #endif
194 ND.linkmtu = ifindex2ifnet[ifp->if_index]->if_mtu;
195 ND.chlim = IPV6_DEFHLIM;
196 ND.basereachable = REACHABLE_TIME;
197 ND.reachable = ND_COMPUTE_RTIME(ND.basereachable);
198 ND.retrans = RETRANS_TIMER;
199 ND.receivedra = 0;
200 ND.flags = ND6_IFF_PERFORMNUD;
201 nd6_setmtu(ifp);
202 #undef ND
203 }
204
205 /*
206 * Reset ND level link MTU. This function is called when the physical MTU
207 * changes, which means we might have to adjust the ND level MTU.
208 */
209 void
210 nd6_setmtu(ifp)
211 struct ifnet *ifp;
212 {
213 struct nd_ifinfo *ndi = &nd_ifinfo[ifp->if_index];
214 u_long oldmaxmtu = ndi->maxmtu;
215 u_long oldlinkmtu = ndi->linkmtu;
216
217 switch (ifp->if_type) {
218 case IFT_ARCNET: /* XXX MTU handling needs more work */
219 ndi->maxmtu = MIN(60480, ifp->if_mtu);
220 break;
221 case IFT_ETHER:
222 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
223 break;
224 case IFT_ATM:
225 ndi->maxmtu = MIN(ATMMTU, ifp->if_mtu);
226 break;
227 case IFT_IEEE1394:
228 ndi->maxmtu = MIN(IEEE1394MTU, ifp->if_mtu);
229 break;
230 default:
231 ndi->maxmtu = ifp->if_mtu;
232 break;
233 }
234
235 if (oldmaxmtu != ndi->maxmtu) {
236 /*
237 * If the ND level MTU is not set yet, or if the maxmtu
238 * is reset to a smaller value than the ND level MTU,
239 * also reset the ND level MTU.
240 */
241 if (ndi->linkmtu == 0 ||
242 ndi->maxmtu < ndi->linkmtu) {
243 ndi->linkmtu = ndi->maxmtu;
244 /* also adjust in6_maxmtu if necessary. */
245 if (oldlinkmtu == 0) {
246 /*
247 * XXX: the case analysis is grotty, but
248 * it is not efficient to call in6_setmaxmtu()
249 * here when we are during the initialization
250 * procedure.
251 */
252 if (in6_maxmtu < ndi->linkmtu)
253 in6_maxmtu = ndi->linkmtu;
254 } else
255 in6_setmaxmtu();
256 }
257 }
258 #undef MIN
259 }
260
261 void
262 nd6_option_init(opt, icmp6len, ndopts)
263 void *opt;
264 int icmp6len;
265 union nd_opts *ndopts;
266 {
267 bzero(ndopts, sizeof(*ndopts));
268 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
269 ndopts->nd_opts_last
270 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
271
272 if (icmp6len == 0) {
273 ndopts->nd_opts_done = 1;
274 ndopts->nd_opts_search = NULL;
275 }
276 }
277
278 /*
279 * Take one ND option.
280 */
281 struct nd_opt_hdr *
282 nd6_option(ndopts)
283 union nd_opts *ndopts;
284 {
285 struct nd_opt_hdr *nd_opt;
286 int olen;
287
288 if (!ndopts)
289 panic("ndopts == NULL in nd6_option\n");
290 if (!ndopts->nd_opts_last)
291 panic("uninitialized ndopts in nd6_option\n");
292 if (!ndopts->nd_opts_search)
293 return NULL;
294 if (ndopts->nd_opts_done)
295 return NULL;
296
297 nd_opt = ndopts->nd_opts_search;
298
299 /* make sure nd_opt_len is inside the buffer */
300 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
301 bzero(ndopts, sizeof(*ndopts));
302 return NULL;
303 }
304
305 olen = nd_opt->nd_opt_len << 3;
306 if (olen == 0) {
307 /*
308 * Message validation requires that all included
309 * options have a length that is greater than zero.
310 */
311 bzero(ndopts, sizeof(*ndopts));
312 return NULL;
313 }
314
315 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
316 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
317 /* option overruns the end of buffer, invalid */
318 bzero(ndopts, sizeof(*ndopts));
319 return NULL;
320 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
321 /* reached the end of options chain */
322 ndopts->nd_opts_done = 1;
323 ndopts->nd_opts_search = NULL;
324 }
325 return nd_opt;
326 }
327
328 /*
329 * Parse multiple ND options.
330 * This function is much easier to use, for ND routines that do not need
331 * multiple options of the same type.
332 */
333 int
334 nd6_options(ndopts)
335 union nd_opts *ndopts;
336 {
337 struct nd_opt_hdr *nd_opt;
338 int i = 0;
339
340 if (!ndopts)
341 panic("ndopts == NULL in nd6_options\n");
342 if (!ndopts->nd_opts_last)
343 panic("uninitialized ndopts in nd6_options\n");
344 if (!ndopts->nd_opts_search)
345 return 0;
346
347 while (1) {
348 nd_opt = nd6_option(ndopts);
349 if (!nd_opt && !ndopts->nd_opts_last) {
350 /*
351 * Message validation requires that all included
352 * options have a length that is greater than zero.
353 */
354 icmp6stat.icp6s_nd_badopt++;
355 bzero(ndopts, sizeof(*ndopts));
356 return -1;
357 }
358
359 if (!nd_opt)
360 goto skip1;
361
362 switch (nd_opt->nd_opt_type) {
363 case ND_OPT_SOURCE_LINKADDR:
364 case ND_OPT_TARGET_LINKADDR:
365 case ND_OPT_MTU:
366 case ND_OPT_REDIRECTED_HEADER:
367 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
368 nd6log((LOG_INFO,
369 "duplicated ND6 option found (type=%d)\n",
370 nd_opt->nd_opt_type));
371 /* XXX bark? */
372 } else {
373 ndopts->nd_opt_array[nd_opt->nd_opt_type]
374 = nd_opt;
375 }
376 break;
377 case ND_OPT_PREFIX_INFORMATION:
378 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
379 ndopts->nd_opt_array[nd_opt->nd_opt_type]
380 = nd_opt;
381 }
382 ndopts->nd_opts_pi_end =
383 (struct nd_opt_prefix_info *)nd_opt;
384 break;
385 default:
386 /*
387 * Unknown options must be silently ignored,
388 * to accomodate future extension to the protocol.
389 */
390 nd6log((LOG_DEBUG,
391 "nd6_options: unsupported option %d - "
392 "option ignored\n", nd_opt->nd_opt_type));
393 }
394
395 skip1:
396 i++;
397 if (i > nd6_maxndopt) {
398 icmp6stat.icp6s_nd_toomanyopt++;
399 nd6log((LOG_INFO, "too many loop in nd opt\n"));
400 break;
401 }
402
403 if (ndopts->nd_opts_done)
404 break;
405 }
406
407 return 0;
408 }
409
410 /*
411 * ND6 timer routine to expire default route list and prefix list
412 */
413 void
414 nd6_timer(ignored_arg)
415 void *ignored_arg;
416 {
417 int s;
418 struct llinfo_nd6 *ln;
419 struct nd_defrouter *dr;
420 struct nd_prefix *pr;
421 long time_second = time.tv_sec;
422
423 s = splsoftnet();
424 callout_reset(&nd6_timer_ch, nd6_prune * hz,
425 nd6_timer, NULL);
426
427 ln = llinfo_nd6.ln_next;
428 while (ln && ln != &llinfo_nd6) {
429 struct rtentry *rt;
430 struct ifnet *ifp;
431 struct sockaddr_in6 *dst;
432 struct llinfo_nd6 *next = ln->ln_next;
433 /* XXX: used for the DELAY case only: */
434 struct nd_ifinfo *ndi = NULL;
435
436 if ((rt = ln->ln_rt) == NULL) {
437 ln = next;
438 continue;
439 }
440 if ((ifp = rt->rt_ifp) == NULL) {
441 ln = next;
442 continue;
443 }
444 ndi = &nd_ifinfo[ifp->if_index];
445 dst = (struct sockaddr_in6 *)rt_key(rt);
446
447 if (ln->ln_expire > time_second) {
448 ln = next;
449 continue;
450 }
451
452 /* sanity check */
453 if (!rt)
454 panic("rt=0 in nd6_timer(ln=%p)\n", ln);
455 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
456 panic("rt_llinfo(%p) is not equal to ln(%p)\n",
457 rt->rt_llinfo, ln);
458 if (!dst)
459 panic("dst=0 in nd6_timer(ln=%p)\n", ln);
460
461 switch (ln->ln_state) {
462 case ND6_LLINFO_INCOMPLETE:
463 if (ln->ln_asked < nd6_mmaxtries) {
464 ln->ln_asked++;
465 ln->ln_expire = time_second +
466 nd_ifinfo[ifp->if_index].retrans / 1000;
467 nd6_ns_output(ifp, NULL, &dst->sin6_addr,
468 ln, 0);
469 } else {
470 struct mbuf *m = ln->ln_hold;
471 if (m) {
472 if (rt->rt_ifp) {
473 /*
474 * Fake rcvif to make ICMP error
475 * more helpful in diagnosing
476 * for the receiver.
477 * XXX: should we consider
478 * older rcvif?
479 */
480 m->m_pkthdr.rcvif = rt->rt_ifp;
481 }
482 icmp6_error(m, ICMP6_DST_UNREACH,
483 ICMP6_DST_UNREACH_ADDR, 0);
484 ln->ln_hold = NULL;
485 }
486 next = nd6_free(rt, 0);
487 }
488 break;
489 case ND6_LLINFO_REACHABLE:
490 if (ln->ln_expire) {
491 ln->ln_state = ND6_LLINFO_STALE;
492 ln->ln_expire = time_second + nd6_gctimer;
493 }
494 break;
495
496 case ND6_LLINFO_STALE:
497 /* Garbage Collection(RFC 2461 5.3) */
498 if (ln->ln_expire)
499 next = nd6_free(rt, 1);
500 break;
501
502 case ND6_LLINFO_DELAY:
503 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
504 /* We need NUD */
505 ln->ln_asked = 1;
506 ln->ln_state = ND6_LLINFO_PROBE;
507 ln->ln_expire = time_second +
508 ndi->retrans / 1000;
509 nd6_ns_output(ifp, &dst->sin6_addr,
510 &dst->sin6_addr,
511 ln, 0);
512 } else {
513 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
514 ln->ln_expire = time_second + nd6_gctimer;
515 }
516 break;
517 case ND6_LLINFO_PROBE:
518 if (ln->ln_asked < nd6_umaxtries) {
519 ln->ln_asked++;
520 ln->ln_expire = time_second +
521 nd_ifinfo[ifp->if_index].retrans / 1000;
522 nd6_ns_output(ifp, &dst->sin6_addr,
523 &dst->sin6_addr, ln, 0);
524 } else {
525 next = nd6_free(rt, 0);
526 }
527 break;
528 }
529 ln = next;
530 }
531
532 /* expire default router list */
533 dr = TAILQ_FIRST(&nd_defrouter);
534 while (dr) {
535 if (dr->expire && dr->expire < time_second) {
536 struct nd_defrouter *t;
537 t = TAILQ_NEXT(dr, dr_entry);
538 defrtrlist_del(dr);
539 dr = t;
540 } else {
541 dr = TAILQ_NEXT(dr, dr_entry);
542 }
543 }
544 pr = nd_prefix.lh_first;
545 while (pr) {
546 struct in6_ifaddr *ia6;
547 struct in6_addrlifetime *lt6;
548
549 if (IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr))
550 ia6 = NULL;
551 else
552 ia6 = in6ifa_ifpwithaddr(pr->ndpr_ifp, &pr->ndpr_addr);
553
554 if (ia6) {
555 /* check address lifetime */
556 lt6 = &ia6->ia6_lifetime;
557 if (lt6->ia6t_preferred && lt6->ia6t_preferred < time_second)
558 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
559 if (lt6->ia6t_expire && lt6->ia6t_expire < time_second) {
560 if (!IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr))
561 in6_ifdel(pr->ndpr_ifp, &pr->ndpr_addr);
562 /* xxx ND_OPT_PI_FLAG_ONLINK processing */
563 }
564 }
565
566 /*
567 * check prefix lifetime.
568 * since pltime is just for autoconf, pltime processing for
569 * prefix is not necessary.
570 *
571 * we offset expire time by NDPR_KEEP_EXPIRE, so that we
572 * can use the old prefix information to validate the
573 * next prefix information to come. See prelist_update()
574 * for actual validation.
575 */
576 if (pr->ndpr_expire
577 && pr->ndpr_expire + NDPR_KEEP_EXPIRED < time_second) {
578 struct nd_prefix *t;
579 t = pr->ndpr_next;
580
581 /*
582 * address expiration and prefix expiration are
583 * separate. NEVER perform in6_ifdel here.
584 */
585
586 prelist_remove(pr);
587 pr = t;
588 } else
589 pr = pr->ndpr_next;
590 }
591 splx(s);
592 }
593
594 /*
595 * Nuke neighbor cache/prefix/default router management table, right before
596 * ifp goes away.
597 */
598 void
599 nd6_purge(ifp)
600 struct ifnet *ifp;
601 {
602 struct llinfo_nd6 *ln, *nln;
603 struct nd_defrouter *dr, *ndr, drany;
604 struct nd_prefix *pr, *npr;
605
606 /* Nuke default router list entries toward ifp */
607 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
608 /*
609 * The first entry of the list may be stored in
610 * the routing table, so we'll delete it later.
611 */
612 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) {
613 ndr = TAILQ_NEXT(dr, dr_entry);
614 if (dr->ifp == ifp)
615 defrtrlist_del(dr);
616 }
617 dr = TAILQ_FIRST(&nd_defrouter);
618 if (dr->ifp == ifp)
619 defrtrlist_del(dr);
620 }
621
622 /* Nuke prefix list entries toward ifp */
623 for (pr = nd_prefix.lh_first; pr; pr = npr) {
624 npr = pr->ndpr_next;
625 if (pr->ndpr_ifp == ifp) {
626 if (!IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr))
627 in6_ifdel(pr->ndpr_ifp, &pr->ndpr_addr);
628 prelist_remove(pr);
629 }
630 }
631
632 /* cancel default outgoing interface setting */
633 if (nd6_defifindex == ifp->if_index)
634 nd6_setdefaultiface(0);
635
636 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
637 /* refresh default router list */
638 bzero(&drany, sizeof(drany));
639 defrouter_delreq(&drany, 0);
640 defrouter_select();
641 }
642
643 /*
644 * Nuke neighbor cache entries for the ifp.
645 * Note that rt->rt_ifp may not be the same as ifp,
646 * due to KAME goto ours hack. See RTM_RESOLVE case in
647 * nd6_rtrequest(), and ip6_input().
648 */
649 ln = llinfo_nd6.ln_next;
650 while (ln && ln != &llinfo_nd6) {
651 struct rtentry *rt;
652 struct sockaddr_dl *sdl;
653
654 nln = ln->ln_next;
655 rt = ln->ln_rt;
656 if (rt && rt->rt_gateway &&
657 rt->rt_gateway->sa_family == AF_LINK) {
658 sdl = (struct sockaddr_dl *)rt->rt_gateway;
659 if (sdl->sdl_index == ifp->if_index)
660 nln = nd6_free(rt, 0);
661 }
662 ln = nln;
663 }
664 }
665
666 struct rtentry *
667 nd6_lookup(addr6, create, ifp)
668 struct in6_addr *addr6;
669 int create;
670 struct ifnet *ifp;
671 {
672 struct rtentry *rt;
673 struct sockaddr_in6 sin6;
674
675 bzero(&sin6, sizeof(sin6));
676 sin6.sin6_len = sizeof(struct sockaddr_in6);
677 sin6.sin6_family = AF_INET6;
678 sin6.sin6_addr = *addr6;
679 rt = rtalloc1((struct sockaddr *)&sin6, create);
680 if (rt && (rt->rt_flags & RTF_LLINFO) == 0) {
681 /*
682 * This is the case for the default route.
683 * If we want to create a neighbor cache for the address, we
684 * should free the route for the destination and allocate an
685 * interface route.
686 */
687 if (create) {
688 RTFREE(rt);
689 rt = 0;
690 }
691 }
692 if (!rt) {
693 if (create && ifp) {
694 int e;
695
696 /*
697 * If no route is available and create is set,
698 * we allocate a host route for the destination
699 * and treat it like an interface route.
700 * This hack is necessary for a neighbor which can't
701 * be covered by our own prefix.
702 */
703 struct ifaddr *ifa =
704 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
705 if (ifa == NULL)
706 return(NULL);
707
708 /*
709 * Create a new route. RTF_LLINFO is necessary
710 * to create a Neighbor Cache entry for the
711 * destination in nd6_rtrequest which will be
712 * called in rtrequest via ifa->ifa_rtrequest.
713 */
714 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
715 ifa->ifa_addr,
716 (struct sockaddr *)&all1_sa,
717 (ifa->ifa_flags |
718 RTF_HOST | RTF_LLINFO) &
719 ~RTF_CLONING,
720 &rt)) != 0) {
721 #if 0
722 log(LOG_ERR,
723 "nd6_lookup: failed to add route for a "
724 "neighbor(%s), errno=%d\n",
725 ip6_sprintf(addr6), e);
726 #endif
727 return(NULL);
728 }
729 if (rt == NULL)
730 return(NULL);
731 if (rt->rt_llinfo) {
732 struct llinfo_nd6 *ln =
733 (struct llinfo_nd6 *)rt->rt_llinfo;
734 ln->ln_state = ND6_LLINFO_NOSTATE;
735 }
736 } else
737 return(NULL);
738 }
739 rt->rt_refcnt--;
740 /*
741 * Validation for the entry.
742 * XXX: we can't use rt->rt_ifp to check for the interface, since
743 * it might be the loopback interface if the entry is for our
744 * own address on a non-loopback interface. Instead, we should
745 * use rt->rt_ifa->ifa_ifp, which would specify the REAL interface.
746 */
747 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
748 rt->rt_gateway->sa_family != AF_LINK ||
749 (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
750 if (create) {
751 log(LOG_DEBUG, "nd6_lookup: failed to lookup %s (if = %s)\n",
752 ip6_sprintf(addr6), ifp ? if_name(ifp) : "unspec");
753 }
754 return(0);
755 }
756 return(rt);
757 }
758
759 /*
760 * Detect if a given IPv6 address identifies a neighbor on a given link.
761 * XXX: should take care of the destination of a p2p link?
762 */
763 int
764 nd6_is_addr_neighbor(addr, ifp)
765 struct sockaddr_in6 *addr;
766 struct ifnet *ifp;
767 {
768 struct ifaddr *ifa;
769 int i;
770
771 #define IFADDR6(a) ((((struct in6_ifaddr *)(a))->ia_addr).sin6_addr)
772 #define IFMASK6(a) ((((struct in6_ifaddr *)(a))->ia_prefixmask).sin6_addr)
773
774 /*
775 * A link-local address is always a neighbor.
776 * XXX: we should use the sin6_scope_id field rather than the embedded
777 * interface index.
778 * XXX: a link does not necessarily specify a single interface.
779 */
780 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) &&
781 ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index)
782 return(1);
783
784 /*
785 * If the address matches one of our addresses,
786 * it should be a neighbor.
787 */
788 for (ifa = ifp->if_addrlist.tqh_first;
789 ifa;
790 ifa = ifa->ifa_list.tqe_next)
791 {
792 if (ifa->ifa_addr->sa_family != AF_INET6)
793 next: continue;
794
795 for (i = 0; i < 4; i++) {
796 if ((IFADDR6(ifa).s6_addr32[i] ^
797 addr->sin6_addr.s6_addr32[i]) &
798 IFMASK6(ifa).s6_addr32[i])
799 goto next;
800 }
801 return(1);
802 }
803
804 /*
805 * Even if the address matches none of our addresses, it might be
806 * in the neighbor cache.
807 */
808 if (nd6_lookup(&addr->sin6_addr, 0, ifp))
809 return(1);
810
811 return(0);
812 #undef IFADDR6
813 #undef IFMASK6
814 }
815
816 /*
817 * Free an nd6 llinfo entry.
818 * Since the function would cause significant changes in the kernel, DO NOT
819 * make it global, unless you have a strong reason for the change, and are sure
820 * that the change is safe.
821 */
822 static struct llinfo_nd6 *
823 nd6_free(rt, gc)
824 struct rtentry *rt;
825 int gc;
826 {
827 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
828 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
829 struct nd_defrouter *dr;
830
831 /*
832 * we used to have pfctlinput(PRC_HOSTDEAD) here.
833 * even though it is not harmful, it was not really necessary.
834 */
835
836 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
837 int s;
838 s = splsoftnet();
839 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
840 rt->rt_ifp);
841
842 if (dr != NULL && dr->expire &&
843 ln->ln_state == ND6_LLINFO_STALE && gc) {
844 /*
845 * If the reason for the deletion is just garbage
846 * collection, and the neighbor is an active default
847 * router, do not delete it. Instead, reset the GC
848 * timer using the router's lifetime.
849 * Simply deleting the entry would affect default
850 * router selection, which is not necessarily a good
851 * thing, especially when we're using router preference
852 * values.
853 * XXX: the check for ln_state would be redundant,
854 * but we intentionally keep it just in case.
855 */
856 ln->ln_expire = dr->expire;
857 splx(s);
858 return(ln->ln_next);
859 }
860
861 if (ln->ln_router || dr) {
862 /*
863 * rt6_flush must be called whether or not the neighbor
864 * is in the Default Router List.
865 * See a corresponding comment in nd6_na_input().
866 */
867 rt6_flush(&in6, rt->rt_ifp);
868 }
869
870 if (dr) {
871 /*
872 * Unreachablity of a router might affect the default
873 * router selection and on-link detection of advertised
874 * prefixes.
875 */
876
877 /*
878 * Temporarily fake the state to choose a new default
879 * router and to perform on-link determination of
880 * prefixes correctly.
881 * Below the state will be set correctly,
882 * or the entry itself will be deleted.
883 */
884 ln->ln_state = ND6_LLINFO_INCOMPLETE;
885
886 /*
887 * Since defrouter_select() does not affect the
888 * on-link determination and MIP6 needs the check
889 * before the default router selection, we perform
890 * the check now.
891 */
892 pfxlist_onlink_check();
893
894 if (dr == TAILQ_FIRST(&nd_defrouter)) {
895 /*
896 * It is used as the current default router,
897 * so we have to move it to the end of the
898 * list and choose a new one.
899 * XXX: it is not very efficient if this is
900 * the only router.
901 */
902 TAILQ_REMOVE(&nd_defrouter, dr, dr_entry);
903 TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry);
904
905 defrouter_select();
906 }
907 }
908 splx(s);
909 }
910
911 /*
912 * Before deleting the entry, remember the next entry as the
913 * return value. We need this because pfxlist_onlink_check() above
914 * might have freed other entries (particularly the old next entry) as
915 * a side effect (XXX).
916 */
917 next = ln->ln_next;
918
919 /*
920 * Detach the route from the routing tree and the list of neighbor
921 * caches, and disable the route entry not to be used in already
922 * cached routes.
923 */
924 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
925 rt_mask(rt), 0, (struct rtentry **)0);
926
927 return(next);
928 }
929
930 /*
931 * Upper-layer reachability hint for Neighbor Unreachability Detection.
932 *
933 * XXX cost-effective metods?
934 */
935 void
936 nd6_nud_hint(rt, dst6, force)
937 struct rtentry *rt;
938 struct in6_addr *dst6;
939 int force;
940 {
941 struct llinfo_nd6 *ln;
942 long time_second = time.tv_sec;
943
944 /*
945 * If the caller specified "rt", use that. Otherwise, resolve the
946 * routing table by supplied "dst6".
947 */
948 if (!rt) {
949 if (!dst6)
950 return;
951 if (!(rt = nd6_lookup(dst6, 0, NULL)))
952 return;
953 }
954
955 if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
956 (rt->rt_flags & RTF_LLINFO) == 0 ||
957 !rt->rt_llinfo || !rt->rt_gateway ||
958 rt->rt_gateway->sa_family != AF_LINK) {
959 /* This is not a host route. */
960 return;
961 }
962
963 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
964 if (ln->ln_state < ND6_LLINFO_REACHABLE)
965 return;
966
967 /*
968 * if we get upper-layer reachability confirmation many times,
969 * it is possible we have false information.
970 */
971 if (!force) {
972 ln->ln_byhint++;
973 if (ln->ln_byhint > nd6_maxnudhint)
974 return;
975 }
976
977 ln->ln_state = ND6_LLINFO_REACHABLE;
978 if (ln->ln_expire)
979 ln->ln_expire = time_second +
980 nd_ifinfo[rt->rt_ifp->if_index].reachable;
981 }
982
983 void
984 nd6_rtrequest(req, rt, info)
985 int req;
986 struct rtentry *rt;
987 struct rt_addrinfo *info; /* xxx unused */
988 {
989 struct sockaddr *gate = rt->rt_gateway;
990 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
991 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
992 struct ifnet *ifp = rt->rt_ifp;
993 struct ifaddr *ifa;
994 long time_second = time.tv_sec;
995
996 if ((rt->rt_flags & RTF_GATEWAY))
997 return;
998
999 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1000 /*
1001 * This is probably an interface direct route for a link
1002 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1003 * We do not need special treatment below for such a route.
1004 * Moreover, the RTF_LLINFO flag which would be set below
1005 * would annoy the ndp(8) command.
1006 */
1007 return;
1008 }
1009
1010 switch (req) {
1011 case RTM_ADD:
1012 /*
1013 * There is no backward compatibility :)
1014 *
1015 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1016 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1017 * rt->rt_flags |= RTF_CLONING;
1018 */
1019 if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) {
1020 /*
1021 * Case 1: This route should come from
1022 * a route to interface. RTF_LLINFO flag is set
1023 * for a host route whose destination should be
1024 * treated as on-link.
1025 */
1026 rt_setgate(rt, rt_key(rt),
1027 (struct sockaddr *)&null_sdl);
1028 gate = rt->rt_gateway;
1029 SDL(gate)->sdl_type = ifp->if_type;
1030 SDL(gate)->sdl_index = ifp->if_index;
1031 if (ln)
1032 ln->ln_expire = time_second;
1033 #if 1
1034 if (ln && ln->ln_expire == 0) {
1035 /* kludge for desktops */
1036 #if 0
1037 printf("nd6_rtequest: time.tv_sec is zero; "
1038 "treat it as 1\n");
1039 #endif
1040 ln->ln_expire = 1;
1041 }
1042 #endif
1043 if ((rt->rt_flags & RTF_CLONING))
1044 break;
1045 }
1046 /*
1047 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1048 * We don't do that here since llinfo is not ready yet.
1049 *
1050 * There are also couple of other things to be discussed:
1051 * - unsolicited NA code needs improvement beforehand
1052 * - RFC2461 says we MAY send multicast unsolicited NA
1053 * (7.2.6 paragraph 4), however, it also says that we
1054 * SHOULD provide a mechanism to prevent multicast NA storm.
1055 * we don't have anything like it right now.
1056 * note that the mechanism needs a mutual agreement
1057 * between proxies, which means that we need to implement
1058 * a new protocol, or a new kludge.
1059 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1060 * we need to check ip6forwarding before sending it.
1061 * (or should we allow proxy ND configuration only for
1062 * routers? there's no mention about proxy ND from hosts)
1063 */
1064 #if 0
1065 /* XXX it does not work */
1066 if (rt->rt_flags & RTF_ANNOUNCE)
1067 nd6_na_output(ifp,
1068 &SIN6(rt_key(rt))->sin6_addr,
1069 &SIN6(rt_key(rt))->sin6_addr,
1070 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1071 1, NULL);
1072 #endif
1073 /* FALLTHROUGH */
1074 case RTM_RESOLVE:
1075 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) {
1076 /*
1077 * Address resolution isn't necessary for a point to
1078 * point link, so we can skip this test for a p2p link.
1079 */
1080 if (gate->sa_family != AF_LINK ||
1081 gate->sa_len < sizeof(null_sdl)) {
1082 log(LOG_DEBUG,
1083 "nd6_rtrequest: bad gateway value: %s\n",
1084 if_name(ifp));
1085 break;
1086 }
1087 SDL(gate)->sdl_type = ifp->if_type;
1088 SDL(gate)->sdl_index = ifp->if_index;
1089 }
1090 if (ln != NULL)
1091 break; /* This happens on a route change */
1092 /*
1093 * Case 2: This route may come from cloning, or a manual route
1094 * add with a LL address.
1095 */
1096 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1097 rt->rt_llinfo = (caddr_t)ln;
1098 if (!ln) {
1099 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1100 break;
1101 }
1102 nd6_inuse++;
1103 nd6_allocated++;
1104 Bzero(ln, sizeof(*ln));
1105 ln->ln_rt = rt;
1106 /* this is required for "ndp" command. - shin */
1107 if (req == RTM_ADD) {
1108 /*
1109 * gate should have some valid AF_LINK entry,
1110 * and ln->ln_expire should have some lifetime
1111 * which is specified by ndp command.
1112 */
1113 ln->ln_state = ND6_LLINFO_REACHABLE;
1114 ln->ln_byhint = 0;
1115 } else {
1116 /*
1117 * When req == RTM_RESOLVE, rt is created and
1118 * initialized in rtrequest(), so rt_expire is 0.
1119 */
1120 ln->ln_state = ND6_LLINFO_NOSTATE;
1121 ln->ln_expire = time_second;
1122 }
1123 rt->rt_flags |= RTF_LLINFO;
1124 ln->ln_next = llinfo_nd6.ln_next;
1125 llinfo_nd6.ln_next = ln;
1126 ln->ln_prev = &llinfo_nd6;
1127 ln->ln_next->ln_prev = ln;
1128
1129 /*
1130 * check if rt_key(rt) is one of my address assigned
1131 * to the interface.
1132 */
1133 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1134 &SIN6(rt_key(rt))->sin6_addr);
1135 if (ifa) {
1136 caddr_t macp = nd6_ifptomac(ifp);
1137 ln->ln_expire = 0;
1138 ln->ln_state = ND6_LLINFO_REACHABLE;
1139 ln->ln_byhint = 0;
1140 if (macp) {
1141 Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1142 SDL(gate)->sdl_alen = ifp->if_addrlen;
1143 }
1144 if (nd6_useloopback) {
1145 rt->rt_ifp = &loif[0]; /* XXX */
1146 /*
1147 * Make sure rt_ifa be equal to the ifaddr
1148 * corresponding to the address.
1149 * We need this because when we refer
1150 * rt_ifa->ia6_flags in ip6_input, we assume
1151 * that the rt_ifa points to the address instead
1152 * of the loopback address.
1153 */
1154 if (ifa != rt->rt_ifa) {
1155 IFAFREE(rt->rt_ifa);
1156 IFAREF(ifa);
1157 rt->rt_ifa = ifa;
1158 }
1159 }
1160 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1161 ln->ln_expire = 0;
1162 ln->ln_state = ND6_LLINFO_REACHABLE;
1163 ln->ln_byhint = 0;
1164
1165 /* join solicited node multicast for proxy ND */
1166 if (ifp->if_flags & IFF_MULTICAST) {
1167 struct in6_addr llsol;
1168 int error;
1169
1170 llsol = SIN6(rt_key(rt))->sin6_addr;
1171 llsol.s6_addr16[0] = htons(0xff02);
1172 llsol.s6_addr16[1] = htons(ifp->if_index);
1173 llsol.s6_addr32[1] = 0;
1174 llsol.s6_addr32[2] = htonl(1);
1175 llsol.s6_addr8[12] = 0xff;
1176
1177 if (!in6_addmulti(&llsol, ifp, &error)) {
1178 nd6log((LOG_ERR, "%s: failed to join "
1179 "%s (errno=%d)\n", if_name(ifp),
1180 ip6_sprintf(&llsol), error));
1181 }
1182 }
1183 }
1184 break;
1185
1186 case RTM_DELETE:
1187 if (!ln)
1188 break;
1189 /* leave from solicited node multicast for proxy ND */
1190 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1191 (ifp->if_flags & IFF_MULTICAST) != 0) {
1192 struct in6_addr llsol;
1193 struct in6_multi *in6m;
1194
1195 llsol = SIN6(rt_key(rt))->sin6_addr;
1196 llsol.s6_addr16[0] = htons(0xff02);
1197 llsol.s6_addr16[1] = htons(ifp->if_index);
1198 llsol.s6_addr32[1] = 0;
1199 llsol.s6_addr32[2] = htonl(1);
1200 llsol.s6_addr8[12] = 0xff;
1201
1202 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1203 if (in6m)
1204 in6_delmulti(in6m);
1205 }
1206 nd6_inuse--;
1207 ln->ln_next->ln_prev = ln->ln_prev;
1208 ln->ln_prev->ln_next = ln->ln_next;
1209 ln->ln_prev = NULL;
1210 rt->rt_llinfo = 0;
1211 rt->rt_flags &= ~RTF_LLINFO;
1212 if (ln->ln_hold)
1213 m_freem(ln->ln_hold);
1214 Free((caddr_t)ln);
1215 }
1216 }
1217
1218 void
1219 nd6_p2p_rtrequest(req, rt, info)
1220 int req;
1221 struct rtentry *rt;
1222 struct rt_addrinfo *info; /* xxx unused */
1223 {
1224 struct sockaddr *gate = rt->rt_gateway;
1225 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1226 struct ifnet *ifp = rt->rt_ifp;
1227 struct ifaddr *ifa;
1228
1229 if (rt->rt_flags & RTF_GATEWAY)
1230 return;
1231
1232 switch (req) {
1233 case RTM_ADD:
1234 /*
1235 * There is no backward compatibility :)
1236 *
1237 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1238 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1239 * rt->rt_flags |= RTF_CLONING;
1240 */
1241 if (rt->rt_flags & RTF_CLONING) {
1242 /*
1243 * Case 1: This route should come from
1244 * a route to interface.
1245 */
1246 rt_setgate(rt, rt_key(rt),
1247 (struct sockaddr *)&null_sdl);
1248 gate = rt->rt_gateway;
1249 SDL(gate)->sdl_type = ifp->if_type;
1250 SDL(gate)->sdl_index = ifp->if_index;
1251 break;
1252 }
1253 /* Announce a new entry if requested. */
1254 if (rt->rt_flags & RTF_ANNOUNCE)
1255 nd6_na_output(ifp,
1256 &SIN6(rt_key(rt))->sin6_addr,
1257 &SIN6(rt_key(rt))->sin6_addr,
1258 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1259 1, NULL);
1260 /* FALLTHROUGH */
1261 case RTM_RESOLVE:
1262 /*
1263 * check if rt_key(rt) is one of my address assigned
1264 * to the interface.
1265 */
1266 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1267 &SIN6(rt_key(rt))->sin6_addr);
1268 if (ifa) {
1269 if (nd6_useloopback) {
1270 rt->rt_ifp = &loif[0]; /*XXX*/
1271 }
1272 }
1273 break;
1274 }
1275 }
1276
1277 int
1278 nd6_ioctl(cmd, data, ifp)
1279 u_long cmd;
1280 caddr_t data;
1281 struct ifnet *ifp;
1282 {
1283 struct in6_drlist *drl = (struct in6_drlist *)data;
1284 struct in6_prlist *prl = (struct in6_prlist *)data;
1285 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1286 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1287 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1288 struct nd_defrouter *dr, any;
1289 struct nd_prefix *pr;
1290 struct rtentry *rt;
1291 int i = 0, error = 0;
1292 int s;
1293
1294 switch (cmd) {
1295 case SIOCGDRLST_IN6:
1296 bzero(drl, sizeof(*drl));
1297 s = splsoftnet();
1298 dr = TAILQ_FIRST(&nd_defrouter);
1299 while (dr && i < DRLSTSIZ) {
1300 drl->defrouter[i].rtaddr = dr->rtaddr;
1301 if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) {
1302 /* XXX: need to this hack for KAME stack */
1303 drl->defrouter[i].rtaddr.s6_addr16[1] = 0;
1304 } else
1305 log(LOG_ERR,
1306 "default router list contains a "
1307 "non-linklocal address(%s)\n",
1308 ip6_sprintf(&drl->defrouter[i].rtaddr));
1309
1310 drl->defrouter[i].flags = dr->flags;
1311 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1312 drl->defrouter[i].expire = dr->expire;
1313 drl->defrouter[i].if_index = dr->ifp->if_index;
1314 i++;
1315 dr = TAILQ_NEXT(dr, dr_entry);
1316 }
1317 splx(s);
1318 break;
1319 case SIOCGPRLST_IN6:
1320 /*
1321 * XXX meaning of fields, especialy "raflags", is very
1322 * differnet between RA prefix list and RR/static prefix list.
1323 * how about separating ioctls into two?
1324 */
1325 bzero(prl, sizeof(*prl));
1326 s = splsoftnet();
1327 pr = nd_prefix.lh_first;
1328 while (pr && i < PRLSTSIZ) {
1329 struct nd_pfxrouter *pfr;
1330 int j;
1331
1332 prl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1333 prl->prefix[i].raflags = pr->ndpr_raf;
1334 prl->prefix[i].prefixlen = pr->ndpr_plen;
1335 prl->prefix[i].vltime = pr->ndpr_vltime;
1336 prl->prefix[i].pltime = pr->ndpr_pltime;
1337 prl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1338 prl->prefix[i].expire = pr->ndpr_expire;
1339
1340 pfr = pr->ndpr_advrtrs.lh_first;
1341 j = 0;
1342 while (pfr) {
1343 if (j < DRLSTSIZ) {
1344 #define RTRADDR prl->prefix[i].advrtr[j]
1345 RTRADDR = pfr->router->rtaddr;
1346 if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) {
1347 /* XXX: hack for KAME */
1348 RTRADDR.s6_addr16[1] = 0;
1349 } else
1350 log(LOG_ERR,
1351 "a router(%s) advertises "
1352 "a prefix with "
1353 "non-link local address\n",
1354 ip6_sprintf(&RTRADDR));
1355 #undef RTRADDR
1356 }
1357 j++;
1358 pfr = pfr->pfr_next;
1359 }
1360 prl->prefix[i].advrtrs = j;
1361 prl->prefix[i].origin = PR_ORIG_RA;
1362
1363 i++;
1364 pr = pr->ndpr_next;
1365 }
1366 {
1367 struct rr_prefix *rpp;
1368
1369 for (rpp = LIST_FIRST(&rr_prefix); rpp;
1370 rpp = LIST_NEXT(rpp, rp_entry)) {
1371 if (i >= PRLSTSIZ)
1372 break;
1373 prl->prefix[i].prefix = rpp->rp_prefix.sin6_addr;
1374 prl->prefix[i].raflags = rpp->rp_raf;
1375 prl->prefix[i].prefixlen = rpp->rp_plen;
1376 prl->prefix[i].vltime = rpp->rp_vltime;
1377 prl->prefix[i].pltime = rpp->rp_pltime;
1378 prl->prefix[i].if_index = rpp->rp_ifp->if_index;
1379 prl->prefix[i].expire = rpp->rp_expire;
1380 prl->prefix[i].advrtrs = 0;
1381 prl->prefix[i].origin = rpp->rp_origin;
1382 i++;
1383 }
1384 }
1385 splx(s);
1386
1387 break;
1388 case SIOCGIFINFO_IN6:
1389 if (!nd_ifinfo || i >= nd_ifinfo_indexlim) {
1390 error = EINVAL;
1391 break;
1392 }
1393 ndi->ndi = nd_ifinfo[ifp->if_index];
1394 break;
1395 case SIOCSIFINFO_FLAGS:
1396 /* XXX: almost all other fields of ndi->ndi is unused */
1397 if (!nd_ifinfo || i >= nd_ifinfo_indexlim) {
1398 error = EINVAL;
1399 break;
1400 }
1401 nd_ifinfo[ifp->if_index].flags = ndi->ndi.flags;
1402 break;
1403 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1404 /* flush default router list */
1405 /*
1406 * xxx sumikawa: should not delete route if default
1407 * route equals to the top of default router list
1408 */
1409 bzero(&any, sizeof(any));
1410 defrouter_delreq(&any, 0);
1411 defrouter_select();
1412 /* xxx sumikawa: flush prefix list */
1413 break;
1414 case SIOCSPFXFLUSH_IN6:
1415 {
1416 /* flush all the prefix advertised by routers */
1417 struct nd_prefix *pr, *next;
1418
1419 s = splsoftnet();
1420 for (pr = nd_prefix.lh_first; pr; pr = next) {
1421 next = pr->ndpr_next;
1422 if (!IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr))
1423 in6_ifdel(pr->ndpr_ifp, &pr->ndpr_addr);
1424 prelist_remove(pr);
1425 }
1426 splx(s);
1427 break;
1428 }
1429 case SIOCSRTRFLUSH_IN6:
1430 {
1431 /* flush all the default routers */
1432 struct nd_defrouter *dr, *next;
1433
1434 s = splsoftnet();
1435 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
1436 /*
1437 * The first entry of the list may be stored in
1438 * the routing table, so we'll delete it later.
1439 */
1440 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) {
1441 next = TAILQ_NEXT(dr, dr_entry);
1442 defrtrlist_del(dr);
1443 }
1444 defrtrlist_del(TAILQ_FIRST(&nd_defrouter));
1445 }
1446 splx(s);
1447 break;
1448 }
1449 case SIOCGNBRINFO_IN6:
1450 {
1451 struct llinfo_nd6 *ln;
1452 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1453
1454 /*
1455 * XXX: KAME specific hack for scoped addresses
1456 * XXXX: for other scopes than link-local?
1457 */
1458 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) ||
1459 IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) {
1460 u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2];
1461
1462 if (*idp == 0)
1463 *idp = htons(ifp->if_index);
1464 }
1465
1466 s = splsoftnet();
1467 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1468 error = EINVAL;
1469 splx(s);
1470 break;
1471 }
1472 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1473 nbi->state = ln->ln_state;
1474 nbi->asked = ln->ln_asked;
1475 nbi->isrouter = ln->ln_router;
1476 nbi->expire = ln->ln_expire;
1477 splx(s);
1478
1479 break;
1480 }
1481 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1482 ndif->ifindex = nd6_defifindex;
1483 break;
1484 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1485 return(nd6_setdefaultiface(ndif->ifindex));
1486 break;
1487 }
1488 return(error);
1489 }
1490
1491 /*
1492 * Create neighbor cache entry and cache link-layer address,
1493 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1494 */
1495 struct rtentry *
1496 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
1497 struct ifnet *ifp;
1498 struct in6_addr *from;
1499 char *lladdr;
1500 int lladdrlen;
1501 int type; /* ICMP6 type */
1502 int code; /* type dependent information */
1503 {
1504 struct rtentry *rt = NULL;
1505 struct llinfo_nd6 *ln = NULL;
1506 int is_newentry;
1507 struct sockaddr_dl *sdl = NULL;
1508 int do_update;
1509 int olladdr;
1510 int llchange;
1511 int newstate = 0;
1512 long time_second = time.tv_sec;
1513
1514 if (!ifp)
1515 panic("ifp == NULL in nd6_cache_lladdr");
1516 if (!from)
1517 panic("from == NULL in nd6_cache_lladdr");
1518
1519 /* nothing must be updated for unspecified address */
1520 if (IN6_IS_ADDR_UNSPECIFIED(from))
1521 return NULL;
1522
1523 /*
1524 * Validation about ifp->if_addrlen and lladdrlen must be done in
1525 * the caller.
1526 *
1527 * XXX If the link does not have link-layer adderss, what should
1528 * we do? (ifp->if_addrlen == 0)
1529 * Spec says nothing in sections for RA, RS and NA. There's small
1530 * description on it in NS section (RFC 2461 7.2.3).
1531 */
1532
1533 rt = nd6_lookup(from, 0, ifp);
1534 if (!rt) {
1535 #if 0
1536 /* nothing must be done if there's no lladdr */
1537 if (!lladdr || !lladdrlen)
1538 return NULL;
1539 #endif
1540
1541 rt = nd6_lookup(from, 1, ifp);
1542 is_newentry = 1;
1543 } else {
1544 /* do nothing if static ndp is set */
1545 if (rt->rt_flags & RTF_STATIC)
1546 return NULL;
1547 is_newentry = 0;
1548 }
1549
1550 if (!rt)
1551 return NULL;
1552 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1553 fail:
1554 (void)nd6_free(rt, 0);
1555 return NULL;
1556 }
1557 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1558 if (!ln)
1559 goto fail;
1560 if (!rt->rt_gateway)
1561 goto fail;
1562 if (rt->rt_gateway->sa_family != AF_LINK)
1563 goto fail;
1564 sdl = SDL(rt->rt_gateway);
1565
1566 olladdr = (sdl->sdl_alen) ? 1 : 0;
1567 if (olladdr && lladdr) {
1568 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1569 llchange = 1;
1570 else
1571 llchange = 0;
1572 } else
1573 llchange = 0;
1574
1575 /*
1576 * newentry olladdr lladdr llchange (*=record)
1577 * 0 n n -- (1)
1578 * 0 y n -- (2)
1579 * 0 n y -- (3) * STALE
1580 * 0 y y n (4) *
1581 * 0 y y y (5) * STALE
1582 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1583 * 1 -- y -- (7) * STALE
1584 */
1585
1586 if (lladdr) { /* (3-5) and (7) */
1587 /*
1588 * Record source link-layer address
1589 * XXX is it dependent to ifp->if_type?
1590 */
1591 sdl->sdl_alen = ifp->if_addrlen;
1592 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1593 }
1594
1595 if (!is_newentry) {
1596 if ((!olladdr && lladdr) /* (3) */
1597 || (olladdr && lladdr && llchange)) { /* (5) */
1598 do_update = 1;
1599 newstate = ND6_LLINFO_STALE;
1600 } else /* (1-2,4) */
1601 do_update = 0;
1602 } else {
1603 do_update = 1;
1604 if (!lladdr) /* (6) */
1605 newstate = ND6_LLINFO_NOSTATE;
1606 else /* (7) */
1607 newstate = ND6_LLINFO_STALE;
1608 }
1609
1610 if (do_update) {
1611 /*
1612 * Update the state of the neighbor cache.
1613 */
1614 ln->ln_state = newstate;
1615
1616 if (ln->ln_state == ND6_LLINFO_STALE) {
1617 /*
1618 * XXX: since nd6_output() below will cause
1619 * state tansition to DELAY and reset the timer,
1620 * we must set the timer now, although it is actually
1621 * meaningless.
1622 */
1623 ln->ln_expire = time_second + nd6_gctimer;
1624
1625 if (ln->ln_hold) {
1626 /*
1627 * we assume ifp is not a p2p here, so just
1628 * set the 2nd argument as the 1st one.
1629 */
1630 nd6_output(ifp, ifp, ln->ln_hold,
1631 (struct sockaddr_in6 *)rt_key(rt),
1632 rt);
1633 ln->ln_hold = NULL;
1634 }
1635 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1636 /* probe right away */
1637 ln->ln_expire = time_second;
1638 }
1639 }
1640
1641 /*
1642 * ICMP6 type dependent behavior.
1643 *
1644 * NS: clear IsRouter if new entry
1645 * RS: clear IsRouter
1646 * RA: set IsRouter if there's lladdr
1647 * redir: clear IsRouter if new entry
1648 *
1649 * RA case, (1):
1650 * The spec says that we must set IsRouter in the following cases:
1651 * - If lladdr exist, set IsRouter. This means (1-5).
1652 * - If it is old entry (!newentry), set IsRouter. This means (7).
1653 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1654 * A quetion arises for (1) case. (1) case has no lladdr in the
1655 * neighbor cache, this is similar to (6).
1656 * This case is rare but we figured that we MUST NOT set IsRouter.
1657 *
1658 * newentry olladdr lladdr llchange NS RS RA redir
1659 * D R
1660 * 0 n n -- (1) c ? s
1661 * 0 y n -- (2) c s s
1662 * 0 n y -- (3) c s s
1663 * 0 y y n (4) c s s
1664 * 0 y y y (5) c s s
1665 * 1 -- n -- (6) c c c s
1666 * 1 -- y -- (7) c c s c s
1667 *
1668 * (c=clear s=set)
1669 */
1670 switch (type & 0xff) {
1671 case ND_NEIGHBOR_SOLICIT:
1672 /*
1673 * New entry must have is_router flag cleared.
1674 */
1675 if (is_newentry) /* (6-7) */
1676 ln->ln_router = 0;
1677 break;
1678 case ND_REDIRECT:
1679 /*
1680 * If the icmp is a redirect to a better router, always set the
1681 * is_router flag. Otherwise, if the entry is newly created,
1682 * clear the flag. [RFC 2461, sec 8.3]
1683 */
1684 if (code == ND_REDIRECT_ROUTER)
1685 ln->ln_router = 1;
1686 else if (is_newentry) /* (6-7) */
1687 ln->ln_router = 0;
1688 break;
1689 case ND_ROUTER_SOLICIT:
1690 /*
1691 * is_router flag must always be cleared.
1692 */
1693 ln->ln_router = 0;
1694 break;
1695 case ND_ROUTER_ADVERT:
1696 /*
1697 * Mark an entry with lladdr as a router.
1698 */
1699 if ((!is_newentry && (olladdr || lladdr)) /* (2-5) */
1700 || (is_newentry && lladdr)) { /* (7) */
1701 ln->ln_router = 1;
1702 }
1703 break;
1704 }
1705
1706 /*
1707 * When the link-layer address of a router changes, select the
1708 * best router again. In particular, when the neighbor entry is newly
1709 * created, it might affect the selection policy.
1710 * Question: can we restrict the first condition to the "is_newentry"
1711 * case?
1712 * XXX: when we hear an RA from a new router with the link-layer
1713 * address option, defrouter_select() is called twice, since
1714 * defrtrlist_update called the function as well. However, I believe
1715 * we can compromise the overhead, since it only happens the first
1716 * time.
1717 * XXX: although defrouter_select() should not have a bad effect
1718 * for those are not autoconfigured hosts, we explicitly avoid such
1719 * cases for safety.
1720 */
1721 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1722 defrouter_select();
1723
1724 return rt;
1725 }
1726
1727 static void
1728 nd6_slowtimo(ignored_arg)
1729 void *ignored_arg;
1730 {
1731 int s = splsoftnet();
1732 int i;
1733 struct nd_ifinfo *nd6if;
1734
1735 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1736 nd6_slowtimo, NULL);
1737 for (i = 1; i < if_index + 1; i++) {
1738 if (!nd_ifinfo || i >= nd_ifinfo_indexlim)
1739 continue;
1740 nd6if = &nd_ifinfo[i];
1741 if (nd6if->basereachable && /* already initialized */
1742 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1743 /*
1744 * Since reachable time rarely changes by router
1745 * advertisements, we SHOULD insure that a new random
1746 * value gets recomputed at least once every few hours.
1747 * (RFC 2461, 6.3.4)
1748 */
1749 nd6if->recalctm = nd6_recalc_reachtm_interval;
1750 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1751 }
1752 }
1753 splx(s);
1754 }
1755
1756 #define senderr(e) { error = (e); goto bad;}
1757 int
1758 nd6_output(ifp, origifp, m0, dst, rt0)
1759 struct ifnet *ifp;
1760 struct ifnet *origifp;
1761 struct mbuf *m0;
1762 struct sockaddr_in6 *dst;
1763 struct rtentry *rt0;
1764 {
1765 struct mbuf *m = m0;
1766 struct rtentry *rt = rt0;
1767 struct sockaddr_in6 *gw6 = NULL;
1768 struct llinfo_nd6 *ln = NULL;
1769 int error = 0;
1770 long time_second = time.tv_sec;
1771
1772 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1773 goto sendpkt;
1774
1775 if (nd6_need_cache(ifp) == 0)
1776 goto sendpkt;
1777
1778 /*
1779 * next hop determination. This routine is derived from ether_outpout.
1780 */
1781 if (rt) {
1782 if ((rt->rt_flags & RTF_UP) == 0) {
1783 if ((rt0 = rt = rtalloc1((struct sockaddr *)dst, 1)) !=
1784 NULL)
1785 {
1786 rt->rt_refcnt--;
1787 if (rt->rt_ifp != ifp) {
1788 /* XXX: loop care? */
1789 return nd6_output(ifp, origifp, m0,
1790 dst, rt);
1791 }
1792 } else
1793 senderr(EHOSTUNREACH);
1794 }
1795
1796 if (rt->rt_flags & RTF_GATEWAY) {
1797 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1798
1799 /*
1800 * We skip link-layer address resolution and NUD
1801 * if the gateway is not a neighbor from ND point
1802 * of view, regardless the value of nd_ifinfo.flags.
1803 * The second condition is a bit tricky; we skip
1804 * if the gateway is our own address, which is
1805 * sometimes used to install a route to a p2p link.
1806 */
1807 if (!nd6_is_addr_neighbor(gw6, ifp) ||
1808 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1809 /*
1810 * We allow this kind of tricky route only
1811 * when the outgoing interface is p2p.
1812 * XXX: we may need a more generic rule here.
1813 */
1814 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1815 senderr(EHOSTUNREACH);
1816
1817 goto sendpkt;
1818 }
1819
1820 if (rt->rt_gwroute == 0)
1821 goto lookup;
1822 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
1823 rtfree(rt); rt = rt0;
1824 lookup:
1825 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
1826 if ((rt = rt->rt_gwroute) == 0)
1827 senderr(EHOSTUNREACH);
1828 /* the "G" test below also prevents rt == rt0 */
1829 if ((rt->rt_flags & RTF_GATEWAY) ||
1830 (rt->rt_ifp != ifp)) {
1831 rt->rt_refcnt--;
1832 rt0->rt_gwroute = 0;
1833 senderr(EHOSTUNREACH);
1834 }
1835 }
1836 }
1837 }
1838
1839 /*
1840 * Address resolution or Neighbor Unreachability Detection
1841 * for the next hop.
1842 * At this point, the destination of the packet must be a unicast
1843 * or an anycast address(i.e. not a multicast).
1844 */
1845
1846 /* Look up the neighbor cache for the nexthop */
1847 if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
1848 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1849 else {
1850 /*
1851 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1852 * the condition below is not very efficient. But we believe
1853 * it is tolerable, because this should be a rare case.
1854 */
1855 if (nd6_is_addr_neighbor(dst, ifp) &&
1856 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
1857 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1858 }
1859 if (!ln || !rt) {
1860 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
1861 !(nd_ifinfo[ifp->if_index].flags & ND6_IFF_PERFORMNUD)) {
1862 log(LOG_DEBUG,
1863 "nd6_output: can't allocate llinfo for %s "
1864 "(ln=%p, rt=%p)\n",
1865 ip6_sprintf(&dst->sin6_addr), ln, rt);
1866 senderr(EIO); /* XXX: good error? */
1867 }
1868
1869 goto sendpkt; /* send anyway */
1870 }
1871
1872 /* We don't have to do link-layer address resolution on a p2p link. */
1873 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
1874 ln->ln_state < ND6_LLINFO_REACHABLE) {
1875 ln->ln_state = ND6_LLINFO_STALE;
1876 ln->ln_expire = time_second + nd6_gctimer;
1877 }
1878
1879 /*
1880 * The first time we send a packet to a neighbor whose entry is
1881 * STALE, we have to change the state to DELAY and a sets a timer to
1882 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
1883 * neighbor unreachability detection on expiration.
1884 * (RFC 2461 7.3.3)
1885 */
1886 if (ln->ln_state == ND6_LLINFO_STALE) {
1887 ln->ln_asked = 0;
1888 ln->ln_state = ND6_LLINFO_DELAY;
1889 ln->ln_expire = time_second + nd6_delay;
1890 }
1891
1892 /*
1893 * If the neighbor cache entry has a state other than INCOMPLETE
1894 * (i.e. its link-layer address is already resolved), just
1895 * send the packet.
1896 */
1897 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1898 goto sendpkt;
1899
1900 /*
1901 * There is a neighbor cache entry, but no ethernet address
1902 * response yet. Replace the held mbuf (if any) with this
1903 * latest one.
1904 * This code conforms to the rate-limiting rule described in Section
1905 * 7.2.2 of RFC 2461, because the timer is set correctly after sending
1906 * an NS below.
1907 */
1908 if (ln->ln_state == ND6_LLINFO_NOSTATE)
1909 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1910 if (ln->ln_hold)
1911 m_freem(ln->ln_hold);
1912 ln->ln_hold = m;
1913 if (ln->ln_expire) {
1914 if (ln->ln_asked < nd6_mmaxtries &&
1915 ln->ln_expire < time_second) {
1916 ln->ln_asked++;
1917 ln->ln_expire = time_second +
1918 nd_ifinfo[ifp->if_index].retrans / 1000;
1919 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
1920 }
1921 }
1922 return(0);
1923
1924 sendpkt:
1925
1926 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
1927 return((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
1928 rt));
1929 }
1930 return((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
1931
1932 bad:
1933 if (m)
1934 m_freem(m);
1935 return (error);
1936 }
1937 #undef senderr
1938
1939 int
1940 nd6_need_cache(ifp)
1941 struct ifnet *ifp;
1942 {
1943 /*
1944 * XXX: we currently do not make neighbor cache on any interface
1945 * other than ARCnet, Ethernet, FDDI and GIF.
1946 *
1947 * RFC2893 says:
1948 * - unidirectional tunnels needs no ND
1949 */
1950 switch (ifp->if_type) {
1951 case IFT_ARCNET:
1952 case IFT_ETHER:
1953 case IFT_FDDI:
1954 case IFT_IEEE1394:
1955 case IFT_GIF: /* XXX need more cases? */
1956 return(1);
1957 default:
1958 return(0);
1959 }
1960 }
1961
1962 int
1963 nd6_storelladdr(ifp, rt, m, dst, desten)
1964 struct ifnet *ifp;
1965 struct rtentry *rt;
1966 struct mbuf *m;
1967 struct sockaddr *dst;
1968 u_char *desten;
1969 {
1970 struct sockaddr_dl *sdl;
1971
1972 if (m->m_flags & M_MCAST) {
1973 switch (ifp->if_type) {
1974 case IFT_ETHER:
1975 case IFT_FDDI:
1976 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
1977 desten);
1978 return(1);
1979 case IFT_IEEE1394:
1980 bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen);
1981 return(1);
1982 case IFT_ARCNET:
1983 *desten = 0;
1984 return(1);
1985 default:
1986 m_freem(m);
1987 return(0);
1988 }
1989 }
1990
1991 if (rt == NULL) {
1992 /* this could happen, if we could not allocate memory */
1993 m_freem(m);
1994 return(0);
1995 }
1996 if (rt->rt_gateway->sa_family != AF_LINK) {
1997 printf("nd6_storelladdr: something odd happens\n");
1998 m_freem(m);
1999 return(0);
2000 }
2001 sdl = SDL(rt->rt_gateway);
2002 if (sdl->sdl_alen == 0) {
2003 /* this should be impossible, but we bark here for debugging */
2004 printf("nd6_storelladdr: sdl_alen == 0, dst=%s, if=%s\n",
2005 ip6_sprintf(&SIN6(dst)->sin6_addr), if_name(ifp));
2006 m_freem(m);
2007 return(0);
2008 }
2009
2010 bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2011 return(1);
2012 }
2013