nd6.c revision 1.60 1 /* $NetBSD: nd6.c,v 1.60 2002/05/29 13:56:14 itojun Exp $ */
2 /* $KAME: nd6.c,v 1.151 2001/06/19 14:24:41 sumikawa Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.60 2002/05/29 13:56:14 itojun Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/callout.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 #include <sys/time.h>
44 #include <sys/kernel.h>
45 #include <sys/protosw.h>
46 #include <sys/errno.h>
47 #include <sys/ioctl.h>
48 #include <sys/syslog.h>
49 #include <sys/queue.h>
50
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_types.h>
54 #include <net/if_atm.h>
55 #include <net/if_ieee1394.h>
56 #include <net/route.h>
57
58 #include <netinet/in.h>
59 #include <net/if_ether.h>
60 #include <netinet/if_inarp.h>
61 #include <net/if_fddi.h>
62 #include <net/if_ieee80211.h>
63 #include <netinet6/in6_var.h>
64 #include <netinet/ip6.h>
65 #include <netinet6/ip6_var.h>
66 #include <netinet6/nd6.h>
67 #include <netinet6/in6_prefix.h>
68 #include <netinet/icmp6.h>
69
70 #include "loop.h"
71 extern struct ifnet loif[NLOOP];
72
73 #include <net/net_osdep.h>
74
75 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
76 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
77
78 #define SIN6(s) ((struct sockaddr_in6 *)s)
79 #define SDL(s) ((struct sockaddr_dl *)s)
80
81 /* timer values */
82 int nd6_prune = 1; /* walk list every 1 seconds */
83 int nd6_delay = 5; /* delay first probe time 5 second */
84 int nd6_umaxtries = 3; /* maximum unicast query */
85 int nd6_mmaxtries = 3; /* maximum multicast query */
86 int nd6_useloopback = 1; /* use loopback interface for local traffic */
87 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
88
89 /* preventing too many loops in ND option parsing */
90 int nd6_maxndopt = 10; /* max # of ND options allowed */
91
92 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
93
94 #ifdef ND6_DEBUG
95 int nd6_debug = 1;
96 #else
97 int nd6_debug = 0;
98 #endif
99
100 /* for debugging? */
101 static int nd6_inuse, nd6_allocated;
102
103 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
104 struct nd_drhead nd_defrouter;
105 struct nd_prhead nd_prefix = { 0 };
106
107 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
108 static struct sockaddr_in6 all1_sa;
109
110 static void nd6_slowtimo __P((void *));
111 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
112
113 struct callout nd6_slowtimo_ch;
114 struct callout nd6_timer_ch;
115
116 void
117 nd6_init()
118 {
119 static int nd6_init_done = 0;
120 int i;
121
122 if (nd6_init_done) {
123 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
124 return;
125 }
126
127 all1_sa.sin6_family = AF_INET6;
128 all1_sa.sin6_len = sizeof(struct sockaddr_in6);
129 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
130 all1_sa.sin6_addr.s6_addr[i] = 0xff;
131
132 /* initialization of the default router list */
133 TAILQ_INIT(&nd_defrouter);
134
135 nd6_init_done = 1;
136
137 /* start timer */
138 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
139 nd6_slowtimo, NULL);
140 }
141
142 struct nd_ifinfo *
143 nd6_ifattach(ifp)
144 struct ifnet *ifp;
145 {
146 struct nd_ifinfo *nd;
147
148 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
149 bzero(nd, sizeof(*nd));
150
151 nd->initialized = 1;
152
153 nd->chlim = IPV6_DEFHLIM;
154 nd->basereachable = REACHABLE_TIME;
155 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
156 nd->retrans = RETRANS_TIMER;
157 nd->flags = ND6_IFF_PERFORMNUD;
158 nd6_setmtu(ifp, nd);
159
160 return nd;
161 }
162
163 void
164 nd6_ifdetach(nd)
165 struct nd_ifinfo *nd;
166 {
167
168 free(nd, M_IP6NDP);
169 }
170
171 void
172 nd6_setmtu(ifp, ndi)
173 struct ifnet *ifp;
174 struct nd_ifinfo *ndi;
175 {
176
177 switch (ifp->if_type) {
178 case IFT_ARCNET: /* XXX MTU handling needs more work */
179 ndi->maxmtu = MIN(60480, ifp->if_mtu);
180 break;
181 case IFT_ETHER:
182 ndi->maxmtu = MIN(ETHERMTU, ifp->if_mtu);
183 break;
184 case IFT_FDDI:
185 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
186 break;
187 case IFT_ATM:
188 ndi->maxmtu = MIN(ATMMTU, ifp->if_mtu);
189 break;
190 case IFT_IEEE1394:
191 ndi->maxmtu = MIN(IEEE1394MTU, ifp->if_mtu);
192 break;
193 case IFT_IEEE80211:
194 ndi->maxmtu = MIN(IEEE80211_MTU, ifp->if_mtu);
195 break;
196 default:
197 ndi->maxmtu = ifp->if_mtu;
198 break;
199 }
200
201 if (ndi->maxmtu < IPV6_MMTU) {
202 nd6log((LOG_INFO, "nd6_setmtu: "
203 "link MTU on %s (%lu) is too small for IPv6\n",
204 if_name(ifp), (unsigned long)ndi->maxmtu));
205 }
206
207 if (ndi->maxmtu > in6_maxmtu)
208 in6_setmaxmtu(); /* check all interfaces just in case */
209 }
210
211 void
212 nd6_option_init(opt, icmp6len, ndopts)
213 void *opt;
214 int icmp6len;
215 union nd_opts *ndopts;
216 {
217
218 bzero(ndopts, sizeof(*ndopts));
219 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
220 ndopts->nd_opts_last
221 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
222
223 if (icmp6len == 0) {
224 ndopts->nd_opts_done = 1;
225 ndopts->nd_opts_search = NULL;
226 }
227 }
228
229 /*
230 * Take one ND option.
231 */
232 struct nd_opt_hdr *
233 nd6_option(ndopts)
234 union nd_opts *ndopts;
235 {
236 struct nd_opt_hdr *nd_opt;
237 int olen;
238
239 if (!ndopts)
240 panic("ndopts == NULL in nd6_option\n");
241 if (!ndopts->nd_opts_last)
242 panic("uninitialized ndopts in nd6_option\n");
243 if (!ndopts->nd_opts_search)
244 return NULL;
245 if (ndopts->nd_opts_done)
246 return NULL;
247
248 nd_opt = ndopts->nd_opts_search;
249
250 /* make sure nd_opt_len is inside the buffer */
251 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
252 bzero(ndopts, sizeof(*ndopts));
253 return NULL;
254 }
255
256 olen = nd_opt->nd_opt_len << 3;
257 if (olen == 0) {
258 /*
259 * Message validation requires that all included
260 * options have a length that is greater than zero.
261 */
262 bzero(ndopts, sizeof(*ndopts));
263 return NULL;
264 }
265
266 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
267 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
268 /* option overruns the end of buffer, invalid */
269 bzero(ndopts, sizeof(*ndopts));
270 return NULL;
271 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
272 /* reached the end of options chain */
273 ndopts->nd_opts_done = 1;
274 ndopts->nd_opts_search = NULL;
275 }
276 return nd_opt;
277 }
278
279 /*
280 * Parse multiple ND options.
281 * This function is much easier to use, for ND routines that do not need
282 * multiple options of the same type.
283 */
284 int
285 nd6_options(ndopts)
286 union nd_opts *ndopts;
287 {
288 struct nd_opt_hdr *nd_opt;
289 int i = 0;
290
291 if (!ndopts)
292 panic("ndopts == NULL in nd6_options\n");
293 if (!ndopts->nd_opts_last)
294 panic("uninitialized ndopts in nd6_options\n");
295 if (!ndopts->nd_opts_search)
296 return 0;
297
298 while (1) {
299 nd_opt = nd6_option(ndopts);
300 if (!nd_opt && !ndopts->nd_opts_last) {
301 /*
302 * Message validation requires that all included
303 * options have a length that is greater than zero.
304 */
305 icmp6stat.icp6s_nd_badopt++;
306 bzero(ndopts, sizeof(*ndopts));
307 return -1;
308 }
309
310 if (!nd_opt)
311 goto skip1;
312
313 switch (nd_opt->nd_opt_type) {
314 case ND_OPT_SOURCE_LINKADDR:
315 case ND_OPT_TARGET_LINKADDR:
316 case ND_OPT_MTU:
317 case ND_OPT_REDIRECTED_HEADER:
318 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
319 nd6log((LOG_INFO,
320 "duplicated ND6 option found (type=%d)\n",
321 nd_opt->nd_opt_type));
322 /* XXX bark? */
323 } else {
324 ndopts->nd_opt_array[nd_opt->nd_opt_type]
325 = nd_opt;
326 }
327 break;
328 case ND_OPT_PREFIX_INFORMATION:
329 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
330 ndopts->nd_opt_array[nd_opt->nd_opt_type]
331 = nd_opt;
332 }
333 ndopts->nd_opts_pi_end =
334 (struct nd_opt_prefix_info *)nd_opt;
335 break;
336 default:
337 /*
338 * Unknown options must be silently ignored,
339 * to accomodate future extension to the protocol.
340 */
341 nd6log((LOG_DEBUG,
342 "nd6_options: unsupported option %d - "
343 "option ignored\n", nd_opt->nd_opt_type));
344 }
345
346 skip1:
347 i++;
348 if (i > nd6_maxndopt) {
349 icmp6stat.icp6s_nd_toomanyopt++;
350 nd6log((LOG_INFO, "too many loop in nd opt\n"));
351 break;
352 }
353
354 if (ndopts->nd_opts_done)
355 break;
356 }
357
358 return 0;
359 }
360
361 /*
362 * ND6 timer routine to expire default route list and prefix list
363 */
364 void
365 nd6_timer(ignored_arg)
366 void *ignored_arg;
367 {
368 int s;
369 struct llinfo_nd6 *ln;
370 struct nd_defrouter *dr;
371 struct nd_prefix *pr;
372 long time_second = time.tv_sec;
373
374 s = splsoftnet();
375 callout_reset(&nd6_timer_ch, nd6_prune * hz,
376 nd6_timer, NULL);
377
378 ln = llinfo_nd6.ln_next;
379 while (ln && ln != &llinfo_nd6) {
380 struct rtentry *rt;
381 struct ifnet *ifp;
382 struct sockaddr_in6 *dst;
383 struct llinfo_nd6 *next = ln->ln_next;
384 /* XXX: used for the DELAY case only: */
385 struct nd_ifinfo *ndi = NULL;
386
387 if ((rt = ln->ln_rt) == NULL) {
388 ln = next;
389 continue;
390 }
391 if ((ifp = rt->rt_ifp) == NULL) {
392 ln = next;
393 continue;
394 }
395 ndi = ND_IFINFO(ifp);
396 dst = (struct sockaddr_in6 *)rt_key(rt);
397
398 if (ln->ln_expire > time_second) {
399 ln = next;
400 continue;
401 }
402
403 /* sanity check */
404 if (!rt)
405 panic("rt=0 in nd6_timer(ln=%p)\n", ln);
406 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
407 panic("rt_llinfo(%p) is not equal to ln(%p)\n",
408 rt->rt_llinfo, ln);
409 if (!dst)
410 panic("dst=0 in nd6_timer(ln=%p)\n", ln);
411
412 switch (ln->ln_state) {
413 case ND6_LLINFO_INCOMPLETE:
414 if (ln->ln_asked < nd6_mmaxtries) {
415 ln->ln_asked++;
416 ln->ln_expire = time_second +
417 ND6_RETRANS_SEC(ND_IFINFO(ifp)->retrans);
418 nd6_ns_output(ifp, NULL, &dst->sin6_addr,
419 ln, 0);
420 } else {
421 struct mbuf *m = ln->ln_hold;
422 if (m) {
423 if (rt->rt_ifp) {
424 /*
425 * Fake rcvif to make ICMP error
426 * more helpful in diagnosing
427 * for the receiver.
428 * XXX: should we consider
429 * older rcvif?
430 */
431 m->m_pkthdr.rcvif = rt->rt_ifp;
432 }
433 icmp6_error(m, ICMP6_DST_UNREACH,
434 ICMP6_DST_UNREACH_ADDR, 0);
435 ln->ln_hold = NULL;
436 }
437 next = nd6_free(rt, 0);
438 }
439 break;
440 case ND6_LLINFO_REACHABLE:
441 if (ln->ln_expire) {
442 ln->ln_state = ND6_LLINFO_STALE;
443 ln->ln_expire = time_second + nd6_gctimer;
444 }
445 break;
446
447 case ND6_LLINFO_STALE:
448 /* Garbage Collection(RFC 2461 5.3) */
449 if (ln->ln_expire)
450 next = nd6_free(rt, 1);
451 break;
452
453 case ND6_LLINFO_DELAY:
454 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
455 /* We need NUD */
456 ln->ln_asked = 1;
457 ln->ln_state = ND6_LLINFO_PROBE;
458 ln->ln_expire = time_second +
459 ndi->retrans / 1000;
460 nd6_ns_output(ifp, &dst->sin6_addr,
461 &dst->sin6_addr,
462 ln, 0);
463 } else {
464 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
465 ln->ln_expire = time_second + nd6_gctimer;
466 }
467 break;
468 case ND6_LLINFO_PROBE:
469 if (ln->ln_asked < nd6_umaxtries) {
470 ln->ln_asked++;
471 ln->ln_expire = time_second +
472 ND6_RETRANS_SEC(ND_IFINFO(ifp)->retrans);
473 nd6_ns_output(ifp, &dst->sin6_addr,
474 &dst->sin6_addr, ln, 0);
475 } else {
476 next = nd6_free(rt, 0);
477 }
478 break;
479 }
480 ln = next;
481 }
482
483 /* expire default router list */
484 dr = TAILQ_FIRST(&nd_defrouter);
485 while (dr) {
486 if (dr->expire && dr->expire < time_second) {
487 struct nd_defrouter *t;
488 t = TAILQ_NEXT(dr, dr_entry);
489 defrtrlist_del(dr);
490 dr = t;
491 } else {
492 dr = TAILQ_NEXT(dr, dr_entry);
493 }
494 }
495 pr = nd_prefix.lh_first;
496 while (pr) {
497 struct in6_ifaddr *ia6;
498 struct in6_addrlifetime *lt6;
499
500 if (IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr))
501 ia6 = NULL;
502 else
503 ia6 = in6ifa_ifpwithaddr(pr->ndpr_ifp, &pr->ndpr_addr);
504
505 if (ia6) {
506 /* check address lifetime */
507 lt6 = &ia6->ia6_lifetime;
508 if (lt6->ia6t_preferred && lt6->ia6t_preferred < time_second)
509 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
510 if (lt6->ia6t_expire && lt6->ia6t_expire < time_second) {
511 if (!IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr))
512 in6_ifdel(pr->ndpr_ifp, &pr->ndpr_addr);
513 /* xxx ND_OPT_PI_FLAG_ONLINK processing */
514 }
515 }
516
517 /*
518 * check prefix lifetime.
519 * since pltime is just for autoconf, pltime processing for
520 * prefix is not necessary.
521 *
522 * we offset expire time by NDPR_KEEP_EXPIRE, so that we
523 * can use the old prefix information to validate the
524 * next prefix information to come. See prelist_update()
525 * for actual validation.
526 */
527 if (pr->ndpr_expire
528 && pr->ndpr_expire + NDPR_KEEP_EXPIRED < time_second) {
529 struct nd_prefix *t;
530 t = pr->ndpr_next;
531
532 /*
533 * address expiration and prefix expiration are
534 * separate. NEVER perform in6_ifdel here.
535 */
536
537 prelist_remove(pr);
538 pr = t;
539 } else
540 pr = pr->ndpr_next;
541 }
542 splx(s);
543 }
544
545 /*
546 * Nuke neighbor cache/prefix/default router management table, right before
547 * ifp goes away.
548 */
549 void
550 nd6_purge(ifp)
551 struct ifnet *ifp;
552 {
553 struct llinfo_nd6 *ln, *nln;
554 struct nd_defrouter *dr, *ndr, drany;
555 struct nd_prefix *pr, *npr;
556
557 /* Nuke default router list entries toward ifp */
558 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
559 /*
560 * The first entry of the list may be stored in
561 * the routing table, so we'll delete it later.
562 */
563 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) {
564 ndr = TAILQ_NEXT(dr, dr_entry);
565 if (dr->ifp == ifp)
566 defrtrlist_del(dr);
567 }
568 dr = TAILQ_FIRST(&nd_defrouter);
569 if (dr->ifp == ifp)
570 defrtrlist_del(dr);
571 }
572
573 /* Nuke prefix list entries toward ifp */
574 for (pr = nd_prefix.lh_first; pr; pr = npr) {
575 npr = pr->ndpr_next;
576 if (pr->ndpr_ifp == ifp) {
577 if (!IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr))
578 in6_ifdel(pr->ndpr_ifp, &pr->ndpr_addr);
579 prelist_remove(pr);
580 }
581 }
582
583 /* cancel default outgoing interface setting */
584 if (nd6_defifindex == ifp->if_index)
585 nd6_setdefaultiface(0);
586
587 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
588 /* refresh default router list */
589 bzero(&drany, sizeof(drany));
590 defrouter_delreq(&drany, 0);
591 defrouter_select();
592 }
593
594 /*
595 * Nuke neighbor cache entries for the ifp.
596 * Note that rt->rt_ifp may not be the same as ifp,
597 * due to KAME goto ours hack. See RTM_RESOLVE case in
598 * nd6_rtrequest(), and ip6_input().
599 */
600 ln = llinfo_nd6.ln_next;
601 while (ln && ln != &llinfo_nd6) {
602 struct rtentry *rt;
603 struct sockaddr_dl *sdl;
604
605 nln = ln->ln_next;
606 rt = ln->ln_rt;
607 if (rt && rt->rt_gateway &&
608 rt->rt_gateway->sa_family == AF_LINK) {
609 sdl = (struct sockaddr_dl *)rt->rt_gateway;
610 if (sdl->sdl_index == ifp->if_index)
611 nln = nd6_free(rt, 0);
612 }
613 ln = nln;
614 }
615 }
616
617 struct rtentry *
618 nd6_lookup(addr6, create, ifp)
619 struct in6_addr *addr6;
620 int create;
621 struct ifnet *ifp;
622 {
623 struct rtentry *rt;
624 struct sockaddr_in6 sin6;
625
626 bzero(&sin6, sizeof(sin6));
627 sin6.sin6_len = sizeof(struct sockaddr_in6);
628 sin6.sin6_family = AF_INET6;
629 sin6.sin6_addr = *addr6;
630 rt = rtalloc1((struct sockaddr *)&sin6, create);
631 if (rt && (rt->rt_flags & RTF_LLINFO) == 0) {
632 /*
633 * This is the case for the default route.
634 * If we want to create a neighbor cache for the address, we
635 * should free the route for the destination and allocate an
636 * interface route.
637 */
638 if (create) {
639 RTFREE(rt);
640 rt = 0;
641 }
642 }
643 if (!rt) {
644 if (create && ifp) {
645 int e;
646
647 /*
648 * If no route is available and create is set,
649 * we allocate a host route for the destination
650 * and treat it like an interface route.
651 * This hack is necessary for a neighbor which can't
652 * be covered by our own prefix.
653 */
654 struct ifaddr *ifa =
655 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
656 if (ifa == NULL)
657 return(NULL);
658
659 /*
660 * Create a new route. RTF_LLINFO is necessary
661 * to create a Neighbor Cache entry for the
662 * destination in nd6_rtrequest which will be
663 * called in rtrequest via ifa->ifa_rtrequest.
664 */
665 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
666 ifa->ifa_addr,
667 (struct sockaddr *)&all1_sa,
668 (ifa->ifa_flags |
669 RTF_HOST | RTF_LLINFO) &
670 ~RTF_CLONING,
671 &rt)) != 0) {
672 #if 0
673 log(LOG_ERR,
674 "nd6_lookup: failed to add route for a "
675 "neighbor(%s), errno=%d\n",
676 ip6_sprintf(addr6), e);
677 #endif
678 return(NULL);
679 }
680 if (rt == NULL)
681 return(NULL);
682 if (rt->rt_llinfo) {
683 struct llinfo_nd6 *ln =
684 (struct llinfo_nd6 *)rt->rt_llinfo;
685 ln->ln_state = ND6_LLINFO_NOSTATE;
686 }
687 } else
688 return(NULL);
689 }
690 rt->rt_refcnt--;
691 /*
692 * Validation for the entry.
693 * XXX: we can't use rt->rt_ifp to check for the interface, since
694 * it might be the loopback interface if the entry is for our
695 * own address on a non-loopback interface. Instead, we should
696 * use rt->rt_ifa->ifa_ifp, which would specify the REAL interface.
697 */
698 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
699 rt->rt_gateway->sa_family != AF_LINK ||
700 (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
701 if (create) {
702 log(LOG_DEBUG, "nd6_lookup: failed to lookup %s (if = %s)\n",
703 ip6_sprintf(addr6), ifp ? if_name(ifp) : "unspec");
704 }
705 return(0);
706 }
707 return(rt);
708 }
709
710 /*
711 * Detect if a given IPv6 address identifies a neighbor on a given link.
712 * XXX: should take care of the destination of a p2p link?
713 */
714 int
715 nd6_is_addr_neighbor(addr, ifp)
716 struct sockaddr_in6 *addr;
717 struct ifnet *ifp;
718 {
719 struct ifaddr *ifa;
720 int i;
721
722 #define IFADDR6(a) ((((struct in6_ifaddr *)(a))->ia_addr).sin6_addr)
723 #define IFMASK6(a) ((((struct in6_ifaddr *)(a))->ia_prefixmask).sin6_addr)
724
725 /*
726 * A link-local address is always a neighbor.
727 * XXX: we should use the sin6_scope_id field rather than the embedded
728 * interface index.
729 * XXX: a link does not necessarily specify a single interface.
730 */
731 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) &&
732 ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index)
733 return(1);
734
735 /*
736 * If the address matches one of our addresses,
737 * it should be a neighbor.
738 */
739 for (ifa = ifp->if_addrlist.tqh_first;
740 ifa;
741 ifa = ifa->ifa_list.tqe_next)
742 {
743 if (ifa->ifa_addr->sa_family != AF_INET6)
744 next: continue;
745
746 for (i = 0; i < 4; i++) {
747 if ((IFADDR6(ifa).s6_addr32[i] ^
748 addr->sin6_addr.s6_addr32[i]) &
749 IFMASK6(ifa).s6_addr32[i])
750 goto next;
751 }
752 return(1);
753 }
754
755 /*
756 * Even if the address matches none of our addresses, it might be
757 * in the neighbor cache.
758 */
759 if (nd6_lookup(&addr->sin6_addr, 0, ifp))
760 return(1);
761
762 return(0);
763 #undef IFADDR6
764 #undef IFMASK6
765 }
766
767 /*
768 * Free an nd6 llinfo entry.
769 * Since the function would cause significant changes in the kernel, DO NOT
770 * make it global, unless you have a strong reason for the change, and are sure
771 * that the change is safe.
772 */
773 static struct llinfo_nd6 *
774 nd6_free(rt, gc)
775 struct rtentry *rt;
776 int gc;
777 {
778 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
779 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
780 struct nd_defrouter *dr;
781
782 /*
783 * we used to have pfctlinput(PRC_HOSTDEAD) here.
784 * even though it is not harmful, it was not really necessary.
785 */
786
787 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
788 int s;
789 s = splsoftnet();
790 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
791 rt->rt_ifp);
792
793 if (dr != NULL && dr->expire &&
794 ln->ln_state == ND6_LLINFO_STALE && gc) {
795 /*
796 * If the reason for the deletion is just garbage
797 * collection, and the neighbor is an active default
798 * router, do not delete it. Instead, reset the GC
799 * timer using the router's lifetime.
800 * Simply deleting the entry would affect default
801 * router selection, which is not necessarily a good
802 * thing, especially when we're using router preference
803 * values.
804 * XXX: the check for ln_state would be redundant,
805 * but we intentionally keep it just in case.
806 */
807 ln->ln_expire = dr->expire;
808 splx(s);
809 return(ln->ln_next);
810 }
811
812 if (ln->ln_router || dr) {
813 /*
814 * rt6_flush must be called whether or not the neighbor
815 * is in the Default Router List.
816 * See a corresponding comment in nd6_na_input().
817 */
818 rt6_flush(&in6, rt->rt_ifp);
819 }
820
821 if (dr) {
822 /*
823 * Unreachablity of a router might affect the default
824 * router selection and on-link detection of advertised
825 * prefixes.
826 */
827
828 /*
829 * Temporarily fake the state to choose a new default
830 * router and to perform on-link determination of
831 * prefixes correctly.
832 * Below the state will be set correctly,
833 * or the entry itself will be deleted.
834 */
835 ln->ln_state = ND6_LLINFO_INCOMPLETE;
836
837 /*
838 * Since defrouter_select() does not affect the
839 * on-link determination and MIP6 needs the check
840 * before the default router selection, we perform
841 * the check now.
842 */
843 pfxlist_onlink_check();
844
845 if (dr == TAILQ_FIRST(&nd_defrouter)) {
846 /*
847 * It is used as the current default router,
848 * so we have to move it to the end of the
849 * list and choose a new one.
850 * XXX: it is not very efficient if this is
851 * the only router.
852 */
853 TAILQ_REMOVE(&nd_defrouter, dr, dr_entry);
854 TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry);
855
856 defrouter_select();
857 }
858 }
859 splx(s);
860 }
861
862 /*
863 * Before deleting the entry, remember the next entry as the
864 * return value. We need this because pfxlist_onlink_check() above
865 * might have freed other entries (particularly the old next entry) as
866 * a side effect (XXX).
867 */
868 next = ln->ln_next;
869
870 /*
871 * Detach the route from the routing tree and the list of neighbor
872 * caches, and disable the route entry not to be used in already
873 * cached routes.
874 */
875 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
876 rt_mask(rt), 0, (struct rtentry **)0);
877
878 return(next);
879 }
880
881 /*
882 * Upper-layer reachability hint for Neighbor Unreachability Detection.
883 *
884 * XXX cost-effective metods?
885 */
886 void
887 nd6_nud_hint(rt, dst6, force)
888 struct rtentry *rt;
889 struct in6_addr *dst6;
890 int force;
891 {
892 struct llinfo_nd6 *ln;
893 long time_second = time.tv_sec;
894
895 /*
896 * If the caller specified "rt", use that. Otherwise, resolve the
897 * routing table by supplied "dst6".
898 */
899 if (!rt) {
900 if (!dst6)
901 return;
902 if (!(rt = nd6_lookup(dst6, 0, NULL)))
903 return;
904 }
905
906 if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
907 (rt->rt_flags & RTF_LLINFO) == 0 ||
908 !rt->rt_llinfo || !rt->rt_gateway ||
909 rt->rt_gateway->sa_family != AF_LINK) {
910 /* This is not a host route. */
911 return;
912 }
913
914 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
915 if (ln->ln_state < ND6_LLINFO_REACHABLE)
916 return;
917
918 /*
919 * if we get upper-layer reachability confirmation many times,
920 * it is possible we have false information.
921 */
922 if (!force) {
923 ln->ln_byhint++;
924 if (ln->ln_byhint > nd6_maxnudhint)
925 return;
926 }
927
928 ln->ln_state = ND6_LLINFO_REACHABLE;
929 if (ln->ln_expire)
930 ln->ln_expire = time_second + ND_IFINFO(rt->rt_ifp)->reachable;
931 }
932
933 void
934 nd6_rtrequest(req, rt, info)
935 int req;
936 struct rtentry *rt;
937 struct rt_addrinfo *info; /* xxx unused */
938 {
939 struct sockaddr *gate = rt->rt_gateway;
940 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
941 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
942 struct ifnet *ifp = rt->rt_ifp;
943 struct ifaddr *ifa;
944 long time_second = time.tv_sec;
945
946 if ((rt->rt_flags & RTF_GATEWAY))
947 return;
948
949 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
950 /*
951 * This is probably an interface direct route for a link
952 * which does not need neighbor caches (e.g. fe80::%lo0/64).
953 * We do not need special treatment below for such a route.
954 * Moreover, the RTF_LLINFO flag which would be set below
955 * would annoy the ndp(8) command.
956 */
957 return;
958 }
959
960 switch (req) {
961 case RTM_ADD:
962 /*
963 * There is no backward compatibility :)
964 *
965 * if ((rt->rt_flags & RTF_HOST) == 0 &&
966 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
967 * rt->rt_flags |= RTF_CLONING;
968 */
969 if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) {
970 /*
971 * Case 1: This route should come from
972 * a route to interface. RTF_LLINFO flag is set
973 * for a host route whose destination should be
974 * treated as on-link.
975 */
976 rt_setgate(rt, rt_key(rt),
977 (struct sockaddr *)&null_sdl);
978 gate = rt->rt_gateway;
979 SDL(gate)->sdl_type = ifp->if_type;
980 SDL(gate)->sdl_index = ifp->if_index;
981 if (ln)
982 ln->ln_expire = time_second;
983 #if 1
984 if (ln && ln->ln_expire == 0) {
985 /* kludge for desktops */
986 #if 0
987 printf("nd6_rtequest: time.tv_sec is zero; "
988 "treat it as 1\n");
989 #endif
990 ln->ln_expire = 1;
991 }
992 #endif
993 if ((rt->rt_flags & RTF_CLONING))
994 break;
995 }
996 /*
997 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
998 * We don't do that here since llinfo is not ready yet.
999 *
1000 * There are also couple of other things to be discussed:
1001 * - unsolicited NA code needs improvement beforehand
1002 * - RFC2461 says we MAY send multicast unsolicited NA
1003 * (7.2.6 paragraph 4), however, it also says that we
1004 * SHOULD provide a mechanism to prevent multicast NA storm.
1005 * we don't have anything like it right now.
1006 * note that the mechanism needs a mutual agreement
1007 * between proxies, which means that we need to implement
1008 * a new protocol, or a new kludge.
1009 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1010 * we need to check ip6forwarding before sending it.
1011 * (or should we allow proxy ND configuration only for
1012 * routers? there's no mention about proxy ND from hosts)
1013 */
1014 #if 0
1015 /* XXX it does not work */
1016 if (rt->rt_flags & RTF_ANNOUNCE)
1017 nd6_na_output(ifp,
1018 &SIN6(rt_key(rt))->sin6_addr,
1019 &SIN6(rt_key(rt))->sin6_addr,
1020 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1021 1, NULL);
1022 #endif
1023 /* FALLTHROUGH */
1024 case RTM_RESOLVE:
1025 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) {
1026 /*
1027 * Address resolution isn't necessary for a point to
1028 * point link, so we can skip this test for a p2p link.
1029 */
1030 if (gate->sa_family != AF_LINK ||
1031 gate->sa_len < sizeof(null_sdl)) {
1032 log(LOG_DEBUG,
1033 "nd6_rtrequest: bad gateway value: %s\n",
1034 if_name(ifp));
1035 break;
1036 }
1037 SDL(gate)->sdl_type = ifp->if_type;
1038 SDL(gate)->sdl_index = ifp->if_index;
1039 }
1040 if (ln != NULL)
1041 break; /* This happens on a route change */
1042 /*
1043 * Case 2: This route may come from cloning, or a manual route
1044 * add with a LL address.
1045 */
1046 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1047 rt->rt_llinfo = (caddr_t)ln;
1048 if (!ln) {
1049 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1050 break;
1051 }
1052 nd6_inuse++;
1053 nd6_allocated++;
1054 Bzero(ln, sizeof(*ln));
1055 ln->ln_rt = rt;
1056 /* this is required for "ndp" command. - shin */
1057 if (req == RTM_ADD) {
1058 /*
1059 * gate should have some valid AF_LINK entry,
1060 * and ln->ln_expire should have some lifetime
1061 * which is specified by ndp command.
1062 */
1063 ln->ln_state = ND6_LLINFO_REACHABLE;
1064 ln->ln_byhint = 0;
1065 } else {
1066 /*
1067 * When req == RTM_RESOLVE, rt is created and
1068 * initialized in rtrequest(), so rt_expire is 0.
1069 */
1070 ln->ln_state = ND6_LLINFO_NOSTATE;
1071 ln->ln_expire = time_second;
1072 }
1073 rt->rt_flags |= RTF_LLINFO;
1074 ln->ln_next = llinfo_nd6.ln_next;
1075 llinfo_nd6.ln_next = ln;
1076 ln->ln_prev = &llinfo_nd6;
1077 ln->ln_next->ln_prev = ln;
1078
1079 /*
1080 * check if rt_key(rt) is one of my address assigned
1081 * to the interface.
1082 */
1083 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1084 &SIN6(rt_key(rt))->sin6_addr);
1085 if (ifa) {
1086 caddr_t macp = nd6_ifptomac(ifp);
1087 ln->ln_expire = 0;
1088 ln->ln_state = ND6_LLINFO_REACHABLE;
1089 ln->ln_byhint = 0;
1090 if (macp) {
1091 Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1092 SDL(gate)->sdl_alen = ifp->if_addrlen;
1093 }
1094 if (nd6_useloopback) {
1095 rt->rt_ifp = &loif[0]; /* XXX */
1096 /*
1097 * Make sure rt_ifa be equal to the ifaddr
1098 * corresponding to the address.
1099 * We need this because when we refer
1100 * rt_ifa->ia6_flags in ip6_input, we assume
1101 * that the rt_ifa points to the address instead
1102 * of the loopback address.
1103 */
1104 if (ifa != rt->rt_ifa) {
1105 IFAFREE(rt->rt_ifa);
1106 IFAREF(ifa);
1107 rt->rt_ifa = ifa;
1108 }
1109 }
1110 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1111 ln->ln_expire = 0;
1112 ln->ln_state = ND6_LLINFO_REACHABLE;
1113 ln->ln_byhint = 0;
1114
1115 /* join solicited node multicast for proxy ND */
1116 if (ifp->if_flags & IFF_MULTICAST) {
1117 struct in6_addr llsol;
1118 int error;
1119
1120 llsol = SIN6(rt_key(rt))->sin6_addr;
1121 llsol.s6_addr16[0] = htons(0xff02);
1122 llsol.s6_addr16[1] = htons(ifp->if_index);
1123 llsol.s6_addr32[1] = 0;
1124 llsol.s6_addr32[2] = htonl(1);
1125 llsol.s6_addr8[12] = 0xff;
1126
1127 if (!in6_addmulti(&llsol, ifp, &error)) {
1128 nd6log((LOG_ERR, "%s: failed to join "
1129 "%s (errno=%d)\n", if_name(ifp),
1130 ip6_sprintf(&llsol), error));
1131 }
1132 }
1133 }
1134 break;
1135
1136 case RTM_DELETE:
1137 if (!ln)
1138 break;
1139 /* leave from solicited node multicast for proxy ND */
1140 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1141 (ifp->if_flags & IFF_MULTICAST) != 0) {
1142 struct in6_addr llsol;
1143 struct in6_multi *in6m;
1144
1145 llsol = SIN6(rt_key(rt))->sin6_addr;
1146 llsol.s6_addr16[0] = htons(0xff02);
1147 llsol.s6_addr16[1] = htons(ifp->if_index);
1148 llsol.s6_addr32[1] = 0;
1149 llsol.s6_addr32[2] = htonl(1);
1150 llsol.s6_addr8[12] = 0xff;
1151
1152 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1153 if (in6m)
1154 in6_delmulti(in6m);
1155 }
1156 nd6_inuse--;
1157 ln->ln_next->ln_prev = ln->ln_prev;
1158 ln->ln_prev->ln_next = ln->ln_next;
1159 ln->ln_prev = NULL;
1160 rt->rt_llinfo = 0;
1161 rt->rt_flags &= ~RTF_LLINFO;
1162 if (ln->ln_hold)
1163 m_freem(ln->ln_hold);
1164 Free((caddr_t)ln);
1165 }
1166 }
1167
1168 void
1169 nd6_p2p_rtrequest(req, rt, info)
1170 int req;
1171 struct rtentry *rt;
1172 struct rt_addrinfo *info; /* xxx unused */
1173 {
1174 struct sockaddr *gate = rt->rt_gateway;
1175 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1176 struct ifnet *ifp = rt->rt_ifp;
1177 struct ifaddr *ifa;
1178
1179 if (rt->rt_flags & RTF_GATEWAY)
1180 return;
1181
1182 switch (req) {
1183 case RTM_ADD:
1184 /*
1185 * There is no backward compatibility :)
1186 *
1187 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1188 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1189 * rt->rt_flags |= RTF_CLONING;
1190 */
1191 if (rt->rt_flags & RTF_CLONING) {
1192 /*
1193 * Case 1: This route should come from
1194 * a route to interface.
1195 */
1196 rt_setgate(rt, rt_key(rt),
1197 (struct sockaddr *)&null_sdl);
1198 gate = rt->rt_gateway;
1199 SDL(gate)->sdl_type = ifp->if_type;
1200 SDL(gate)->sdl_index = ifp->if_index;
1201 break;
1202 }
1203 /* Announce a new entry if requested. */
1204 if (rt->rt_flags & RTF_ANNOUNCE)
1205 nd6_na_output(ifp,
1206 &SIN6(rt_key(rt))->sin6_addr,
1207 &SIN6(rt_key(rt))->sin6_addr,
1208 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1209 1, NULL);
1210 /* FALLTHROUGH */
1211 case RTM_RESOLVE:
1212 /*
1213 * check if rt_key(rt) is one of my address assigned
1214 * to the interface.
1215 */
1216 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1217 &SIN6(rt_key(rt))->sin6_addr);
1218 if (ifa) {
1219 if (nd6_useloopback) {
1220 rt->rt_ifp = &loif[0]; /*XXX*/
1221 }
1222 }
1223 break;
1224 }
1225 }
1226
1227 int
1228 nd6_ioctl(cmd, data, ifp)
1229 u_long cmd;
1230 caddr_t data;
1231 struct ifnet *ifp;
1232 {
1233 struct in6_drlist *drl = (struct in6_drlist *)data;
1234 struct in6_prlist *prl = (struct in6_prlist *)data;
1235 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1236 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1237 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1238 struct nd_defrouter *dr, any;
1239 struct nd_prefix *pr;
1240 struct rtentry *rt;
1241 int i = 0, error = 0;
1242 int s;
1243
1244 switch (cmd) {
1245 case SIOCGDRLST_IN6:
1246 bzero(drl, sizeof(*drl));
1247 s = splsoftnet();
1248 dr = TAILQ_FIRST(&nd_defrouter);
1249 while (dr && i < DRLSTSIZ) {
1250 drl->defrouter[i].rtaddr = dr->rtaddr;
1251 if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) {
1252 /* XXX: need to this hack for KAME stack */
1253 drl->defrouter[i].rtaddr.s6_addr16[1] = 0;
1254 } else
1255 log(LOG_ERR,
1256 "default router list contains a "
1257 "non-linklocal address(%s)\n",
1258 ip6_sprintf(&drl->defrouter[i].rtaddr));
1259
1260 drl->defrouter[i].flags = dr->flags;
1261 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1262 drl->defrouter[i].expire = dr->expire;
1263 drl->defrouter[i].if_index = dr->ifp->if_index;
1264 i++;
1265 dr = TAILQ_NEXT(dr, dr_entry);
1266 }
1267 splx(s);
1268 break;
1269 case SIOCGPRLST_IN6:
1270 /*
1271 * XXX meaning of fields, especialy "raflags", is very
1272 * differnet between RA prefix list and RR/static prefix list.
1273 * how about separating ioctls into two?
1274 */
1275 bzero(prl, sizeof(*prl));
1276 s = splsoftnet();
1277 pr = nd_prefix.lh_first;
1278 while (pr && i < PRLSTSIZ) {
1279 struct nd_pfxrouter *pfr;
1280 int j;
1281
1282 prl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1283 prl->prefix[i].raflags = pr->ndpr_raf;
1284 prl->prefix[i].prefixlen = pr->ndpr_plen;
1285 prl->prefix[i].vltime = pr->ndpr_vltime;
1286 prl->prefix[i].pltime = pr->ndpr_pltime;
1287 prl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1288 prl->prefix[i].expire = pr->ndpr_expire;
1289
1290 pfr = pr->ndpr_advrtrs.lh_first;
1291 j = 0;
1292 while (pfr) {
1293 if (j < DRLSTSIZ) {
1294 #define RTRADDR prl->prefix[i].advrtr[j]
1295 RTRADDR = pfr->router->rtaddr;
1296 if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) {
1297 /* XXX: hack for KAME */
1298 RTRADDR.s6_addr16[1] = 0;
1299 } else
1300 log(LOG_ERR,
1301 "a router(%s) advertises "
1302 "a prefix with "
1303 "non-link local address\n",
1304 ip6_sprintf(&RTRADDR));
1305 #undef RTRADDR
1306 }
1307 j++;
1308 pfr = pfr->pfr_next;
1309 }
1310 prl->prefix[i].advrtrs = j;
1311 prl->prefix[i].origin = PR_ORIG_RA;
1312
1313 i++;
1314 pr = pr->ndpr_next;
1315 }
1316 {
1317 struct rr_prefix *rpp;
1318
1319 for (rpp = LIST_FIRST(&rr_prefix); rpp;
1320 rpp = LIST_NEXT(rpp, rp_entry)) {
1321 if (i >= PRLSTSIZ)
1322 break;
1323 prl->prefix[i].prefix = rpp->rp_prefix.sin6_addr;
1324 prl->prefix[i].raflags = rpp->rp_raf;
1325 prl->prefix[i].prefixlen = rpp->rp_plen;
1326 prl->prefix[i].vltime = rpp->rp_vltime;
1327 prl->prefix[i].pltime = rpp->rp_pltime;
1328 prl->prefix[i].if_index = rpp->rp_ifp->if_index;
1329 prl->prefix[i].expire = rpp->rp_expire;
1330 prl->prefix[i].advrtrs = 0;
1331 prl->prefix[i].origin = rpp->rp_origin;
1332 i++;
1333 }
1334 }
1335 splx(s);
1336
1337 break;
1338 case OSIOCGIFINFO_IN6:
1339 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1340 bzero(&ndi->ndi, sizeof(ndi->ndi));
1341 ndi->ndi.linkmtu = IN6_LINKMTU(ifp);
1342 ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu;
1343 ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable;
1344 ndi->ndi.reachable = ND_IFINFO(ifp)->reachable;
1345 ndi->ndi.retrans = ND_IFINFO(ifp)->retrans;
1346 ndi->ndi.flags = ND_IFINFO(ifp)->flags;
1347 ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm;
1348 ndi->ndi.chlim = ND_IFINFO(ifp)->chlim;
1349 break;
1350 case SIOCGIFINFO_IN6:
1351 ndi->ndi = *ND_IFINFO(ifp);
1352 break;
1353 case SIOCSIFINFO_FLAGS:
1354 ND_IFINFO(ifp)->flags = ndi->ndi.flags;
1355 break;
1356 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1357 /* flush default router list */
1358 /*
1359 * xxx sumikawa: should not delete route if default
1360 * route equals to the top of default router list
1361 */
1362 bzero(&any, sizeof(any));
1363 defrouter_delreq(&any, 0);
1364 defrouter_select();
1365 /* xxx sumikawa: flush prefix list */
1366 break;
1367 case SIOCSPFXFLUSH_IN6:
1368 {
1369 /* flush all the prefix advertised by routers */
1370 struct nd_prefix *pr, *next;
1371
1372 s = splsoftnet();
1373 for (pr = nd_prefix.lh_first; pr; pr = next) {
1374 next = pr->ndpr_next;
1375 if (!IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr))
1376 in6_ifdel(pr->ndpr_ifp, &pr->ndpr_addr);
1377 prelist_remove(pr);
1378 }
1379 splx(s);
1380 break;
1381 }
1382 case SIOCSRTRFLUSH_IN6:
1383 {
1384 /* flush all the default routers */
1385 struct nd_defrouter *dr, *next;
1386
1387 s = splsoftnet();
1388 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
1389 /*
1390 * The first entry of the list may be stored in
1391 * the routing table, so we'll delete it later.
1392 */
1393 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) {
1394 next = TAILQ_NEXT(dr, dr_entry);
1395 defrtrlist_del(dr);
1396 }
1397 defrtrlist_del(TAILQ_FIRST(&nd_defrouter));
1398 }
1399 splx(s);
1400 break;
1401 }
1402 case SIOCGNBRINFO_IN6:
1403 {
1404 struct llinfo_nd6 *ln;
1405 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1406
1407 /*
1408 * XXX: KAME specific hack for scoped addresses
1409 * XXXX: for other scopes than link-local?
1410 */
1411 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) ||
1412 IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) {
1413 u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2];
1414
1415 if (*idp == 0)
1416 *idp = htons(ifp->if_index);
1417 }
1418
1419 s = splsoftnet();
1420 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1421 error = EINVAL;
1422 splx(s);
1423 break;
1424 }
1425 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1426 nbi->state = ln->ln_state;
1427 nbi->asked = ln->ln_asked;
1428 nbi->isrouter = ln->ln_router;
1429 nbi->expire = ln->ln_expire;
1430 splx(s);
1431
1432 break;
1433 }
1434 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1435 ndif->ifindex = nd6_defifindex;
1436 break;
1437 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1438 return(nd6_setdefaultiface(ndif->ifindex));
1439 break;
1440 }
1441 return(error);
1442 }
1443
1444 /*
1445 * Create neighbor cache entry and cache link-layer address,
1446 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1447 */
1448 struct rtentry *
1449 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
1450 struct ifnet *ifp;
1451 struct in6_addr *from;
1452 char *lladdr;
1453 int lladdrlen;
1454 int type; /* ICMP6 type */
1455 int code; /* type dependent information */
1456 {
1457 struct rtentry *rt = NULL;
1458 struct llinfo_nd6 *ln = NULL;
1459 int is_newentry;
1460 struct sockaddr_dl *sdl = NULL;
1461 int do_update;
1462 int olladdr;
1463 int llchange;
1464 int newstate = 0;
1465 long time_second = time.tv_sec;
1466
1467 if (!ifp)
1468 panic("ifp == NULL in nd6_cache_lladdr");
1469 if (!from)
1470 panic("from == NULL in nd6_cache_lladdr");
1471
1472 /* nothing must be updated for unspecified address */
1473 if (IN6_IS_ADDR_UNSPECIFIED(from))
1474 return NULL;
1475
1476 /*
1477 * Validation about ifp->if_addrlen and lladdrlen must be done in
1478 * the caller.
1479 *
1480 * XXX If the link does not have link-layer adderss, what should
1481 * we do? (ifp->if_addrlen == 0)
1482 * Spec says nothing in sections for RA, RS and NA. There's small
1483 * description on it in NS section (RFC 2461 7.2.3).
1484 */
1485
1486 rt = nd6_lookup(from, 0, ifp);
1487 if (!rt) {
1488 #if 0
1489 /* nothing must be done if there's no lladdr */
1490 if (!lladdr || !lladdrlen)
1491 return NULL;
1492 #endif
1493
1494 rt = nd6_lookup(from, 1, ifp);
1495 is_newentry = 1;
1496 } else {
1497 /* do nothing if static ndp is set */
1498 if (rt->rt_flags & RTF_STATIC)
1499 return NULL;
1500 is_newentry = 0;
1501 }
1502
1503 if (!rt)
1504 return NULL;
1505 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1506 fail:
1507 (void)nd6_free(rt, 0);
1508 return NULL;
1509 }
1510 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1511 if (!ln)
1512 goto fail;
1513 if (!rt->rt_gateway)
1514 goto fail;
1515 if (rt->rt_gateway->sa_family != AF_LINK)
1516 goto fail;
1517 sdl = SDL(rt->rt_gateway);
1518
1519 olladdr = (sdl->sdl_alen) ? 1 : 0;
1520 if (olladdr && lladdr) {
1521 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1522 llchange = 1;
1523 else
1524 llchange = 0;
1525 } else
1526 llchange = 0;
1527
1528 /*
1529 * newentry olladdr lladdr llchange (*=record)
1530 * 0 n n -- (1)
1531 * 0 y n -- (2)
1532 * 0 n y -- (3) * STALE
1533 * 0 y y n (4) *
1534 * 0 y y y (5) * STALE
1535 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1536 * 1 -- y -- (7) * STALE
1537 */
1538
1539 if (lladdr) { /* (3-5) and (7) */
1540 /*
1541 * Record source link-layer address
1542 * XXX is it dependent to ifp->if_type?
1543 */
1544 sdl->sdl_alen = ifp->if_addrlen;
1545 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1546 }
1547
1548 if (!is_newentry) {
1549 if ((!olladdr && lladdr) /* (3) */
1550 || (olladdr && lladdr && llchange)) { /* (5) */
1551 do_update = 1;
1552 newstate = ND6_LLINFO_STALE;
1553 } else /* (1-2,4) */
1554 do_update = 0;
1555 } else {
1556 do_update = 1;
1557 if (!lladdr) /* (6) */
1558 newstate = ND6_LLINFO_NOSTATE;
1559 else /* (7) */
1560 newstate = ND6_LLINFO_STALE;
1561 }
1562
1563 if (do_update) {
1564 /*
1565 * Update the state of the neighbor cache.
1566 */
1567 ln->ln_state = newstate;
1568
1569 if (ln->ln_state == ND6_LLINFO_STALE) {
1570 /*
1571 * XXX: since nd6_output() below will cause
1572 * state tansition to DELAY and reset the timer,
1573 * we must set the timer now, although it is actually
1574 * meaningless.
1575 */
1576 ln->ln_expire = time_second + nd6_gctimer;
1577
1578 if (ln->ln_hold) {
1579 /*
1580 * we assume ifp is not a p2p here, so just
1581 * set the 2nd argument as the 1st one.
1582 */
1583 nd6_output(ifp, ifp, ln->ln_hold,
1584 (struct sockaddr_in6 *)rt_key(rt),
1585 rt);
1586 ln->ln_hold = NULL;
1587 }
1588 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1589 /* probe right away */
1590 ln->ln_expire = time_second;
1591 }
1592 }
1593
1594 /*
1595 * ICMP6 type dependent behavior.
1596 *
1597 * NS: clear IsRouter if new entry
1598 * RS: clear IsRouter
1599 * RA: set IsRouter if there's lladdr
1600 * redir: clear IsRouter if new entry
1601 *
1602 * RA case, (1):
1603 * The spec says that we must set IsRouter in the following cases:
1604 * - If lladdr exist, set IsRouter. This means (1-5).
1605 * - If it is old entry (!newentry), set IsRouter. This means (7).
1606 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1607 * A quetion arises for (1) case. (1) case has no lladdr in the
1608 * neighbor cache, this is similar to (6).
1609 * This case is rare but we figured that we MUST NOT set IsRouter.
1610 *
1611 * newentry olladdr lladdr llchange NS RS RA redir
1612 * D R
1613 * 0 n n -- (1) c ? s
1614 * 0 y n -- (2) c s s
1615 * 0 n y -- (3) c s s
1616 * 0 y y n (4) c s s
1617 * 0 y y y (5) c s s
1618 * 1 -- n -- (6) c c c s
1619 * 1 -- y -- (7) c c s c s
1620 *
1621 * (c=clear s=set)
1622 */
1623 switch (type & 0xff) {
1624 case ND_NEIGHBOR_SOLICIT:
1625 /*
1626 * New entry must have is_router flag cleared.
1627 */
1628 if (is_newentry) /* (6-7) */
1629 ln->ln_router = 0;
1630 break;
1631 case ND_REDIRECT:
1632 /*
1633 * If the icmp is a redirect to a better router, always set the
1634 * is_router flag. Otherwise, if the entry is newly created,
1635 * clear the flag. [RFC 2461, sec 8.3]
1636 */
1637 if (code == ND_REDIRECT_ROUTER)
1638 ln->ln_router = 1;
1639 else if (is_newentry) /* (6-7) */
1640 ln->ln_router = 0;
1641 break;
1642 case ND_ROUTER_SOLICIT:
1643 /*
1644 * is_router flag must always be cleared.
1645 */
1646 ln->ln_router = 0;
1647 break;
1648 case ND_ROUTER_ADVERT:
1649 /*
1650 * Mark an entry with lladdr as a router.
1651 */
1652 if ((!is_newentry && (olladdr || lladdr)) /* (2-5) */
1653 || (is_newentry && lladdr)) { /* (7) */
1654 ln->ln_router = 1;
1655 }
1656 break;
1657 }
1658
1659 /*
1660 * When the link-layer address of a router changes, select the
1661 * best router again. In particular, when the neighbor entry is newly
1662 * created, it might affect the selection policy.
1663 * Question: can we restrict the first condition to the "is_newentry"
1664 * case?
1665 * XXX: when we hear an RA from a new router with the link-layer
1666 * address option, defrouter_select() is called twice, since
1667 * defrtrlist_update called the function as well. However, I believe
1668 * we can compromise the overhead, since it only happens the first
1669 * time.
1670 * XXX: although defrouter_select() should not have a bad effect
1671 * for those are not autoconfigured hosts, we explicitly avoid such
1672 * cases for safety.
1673 */
1674 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1675 defrouter_select();
1676
1677 return rt;
1678 }
1679
1680 static void
1681 nd6_slowtimo(ignored_arg)
1682 void *ignored_arg;
1683 {
1684 int s = splsoftnet();
1685 struct nd_ifinfo *nd6if;
1686 struct ifnet *ifp;
1687
1688 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1689 nd6_slowtimo, NULL);
1690 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
1691 {
1692 nd6if = ND_IFINFO(ifp);
1693 if (nd6if->basereachable && /* already initialized */
1694 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1695 /*
1696 * Since reachable time rarely changes by router
1697 * advertisements, we SHOULD insure that a new random
1698 * value gets recomputed at least once every few hours.
1699 * (RFC 2461, 6.3.4)
1700 */
1701 nd6if->recalctm = nd6_recalc_reachtm_interval;
1702 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1703 }
1704 }
1705 splx(s);
1706 }
1707
1708 #define senderr(e) { error = (e); goto bad;}
1709 int
1710 nd6_output(ifp, origifp, m0, dst, rt0)
1711 struct ifnet *ifp;
1712 struct ifnet *origifp;
1713 struct mbuf *m0;
1714 struct sockaddr_in6 *dst;
1715 struct rtentry *rt0;
1716 {
1717 struct mbuf *m = m0;
1718 struct rtentry *rt = rt0;
1719 struct sockaddr_in6 *gw6 = NULL;
1720 struct llinfo_nd6 *ln = NULL;
1721 int error = 0;
1722 long time_second = time.tv_sec;
1723
1724 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1725 goto sendpkt;
1726
1727 if (nd6_need_cache(ifp) == 0)
1728 goto sendpkt;
1729
1730 /*
1731 * next hop determination. This routine is derived from ether_outpout.
1732 */
1733 if (rt) {
1734 if ((rt->rt_flags & RTF_UP) == 0) {
1735 if ((rt0 = rt = rtalloc1((struct sockaddr *)dst, 1)) !=
1736 NULL)
1737 {
1738 rt->rt_refcnt--;
1739 if (rt->rt_ifp != ifp) {
1740 /* XXX: loop care? */
1741 return nd6_output(ifp, origifp, m0,
1742 dst, rt);
1743 }
1744 } else
1745 senderr(EHOSTUNREACH);
1746 }
1747
1748 if (rt->rt_flags & RTF_GATEWAY) {
1749 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1750
1751 /*
1752 * We skip link-layer address resolution and NUD
1753 * if the gateway is not a neighbor from ND point
1754 * of view, regardless the value of nd_ifinfo.flags.
1755 * The second condition is a bit tricky; we skip
1756 * if the gateway is our own address, which is
1757 * sometimes used to install a route to a p2p link.
1758 */
1759 if (!nd6_is_addr_neighbor(gw6, ifp) ||
1760 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1761 /*
1762 * We allow this kind of tricky route only
1763 * when the outgoing interface is p2p.
1764 * XXX: we may need a more generic rule here.
1765 */
1766 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1767 senderr(EHOSTUNREACH);
1768
1769 goto sendpkt;
1770 }
1771
1772 if (rt->rt_gwroute == 0)
1773 goto lookup;
1774 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
1775 rtfree(rt); rt = rt0;
1776 lookup:
1777 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
1778 if ((rt = rt->rt_gwroute) == 0)
1779 senderr(EHOSTUNREACH);
1780 /* the "G" test below also prevents rt == rt0 */
1781 if ((rt->rt_flags & RTF_GATEWAY) ||
1782 (rt->rt_ifp != ifp)) {
1783 rt->rt_refcnt--;
1784 rt0->rt_gwroute = 0;
1785 senderr(EHOSTUNREACH);
1786 }
1787 }
1788 }
1789 }
1790
1791 /*
1792 * Address resolution or Neighbor Unreachability Detection
1793 * for the next hop.
1794 * At this point, the destination of the packet must be a unicast
1795 * or an anycast address(i.e. not a multicast).
1796 */
1797
1798 /* Look up the neighbor cache for the nexthop */
1799 if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
1800 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1801 else {
1802 /*
1803 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1804 * the condition below is not very efficient. But we believe
1805 * it is tolerable, because this should be a rare case.
1806 */
1807 if (nd6_is_addr_neighbor(dst, ifp) &&
1808 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
1809 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1810 }
1811 if (!ln || !rt) {
1812 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
1813 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
1814 log(LOG_DEBUG,
1815 "nd6_output: can't allocate llinfo for %s "
1816 "(ln=%p, rt=%p)\n",
1817 ip6_sprintf(&dst->sin6_addr), ln, rt);
1818 senderr(EIO); /* XXX: good error? */
1819 }
1820
1821 goto sendpkt; /* send anyway */
1822 }
1823
1824 /* We don't have to do link-layer address resolution on a p2p link. */
1825 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
1826 ln->ln_state < ND6_LLINFO_REACHABLE) {
1827 ln->ln_state = ND6_LLINFO_STALE;
1828 ln->ln_expire = time_second + nd6_gctimer;
1829 }
1830
1831 /*
1832 * The first time we send a packet to a neighbor whose entry is
1833 * STALE, we have to change the state to DELAY and a sets a timer to
1834 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
1835 * neighbor unreachability detection on expiration.
1836 * (RFC 2461 7.3.3)
1837 */
1838 if (ln->ln_state == ND6_LLINFO_STALE) {
1839 ln->ln_asked = 0;
1840 ln->ln_state = ND6_LLINFO_DELAY;
1841 ln->ln_expire = time_second + nd6_delay;
1842 }
1843
1844 /*
1845 * If the neighbor cache entry has a state other than INCOMPLETE
1846 * (i.e. its link-layer address is already resolved), just
1847 * send the packet.
1848 */
1849 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1850 goto sendpkt;
1851
1852 /*
1853 * There is a neighbor cache entry, but no ethernet address
1854 * response yet. Replace the held mbuf (if any) with this
1855 * latest one.
1856 * This code conforms to the rate-limiting rule described in Section
1857 * 7.2.2 of RFC 2461, because the timer is set correctly after sending
1858 * an NS below.
1859 */
1860 if (ln->ln_state == ND6_LLINFO_NOSTATE)
1861 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1862 if (ln->ln_hold)
1863 m_freem(ln->ln_hold);
1864 ln->ln_hold = m;
1865 if (ln->ln_expire) {
1866 if (ln->ln_asked < nd6_mmaxtries &&
1867 ln->ln_expire < time_second) {
1868 ln->ln_asked++;
1869 ln->ln_expire = time_second +
1870 ND6_RETRANS_SEC(ND_IFINFO(ifp)->retrans);
1871 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
1872 }
1873 }
1874 return(0);
1875
1876 sendpkt:
1877
1878 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
1879 return((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
1880 rt));
1881 }
1882 return((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
1883
1884 bad:
1885 if (m)
1886 m_freem(m);
1887 return (error);
1888 }
1889 #undef senderr
1890
1891 int
1892 nd6_need_cache(ifp)
1893 struct ifnet *ifp;
1894 {
1895 /*
1896 * XXX: we currently do not make neighbor cache on any interface
1897 * other than ARCnet, Ethernet, FDDI and GIF.
1898 *
1899 * RFC2893 says:
1900 * - unidirectional tunnels needs no ND
1901 */
1902 switch (ifp->if_type) {
1903 case IFT_ARCNET:
1904 case IFT_ETHER:
1905 case IFT_FDDI:
1906 case IFT_IEEE1394:
1907 case IFT_GIF: /* XXX need more cases? */
1908 return(1);
1909 default:
1910 return(0);
1911 }
1912 }
1913
1914 int
1915 nd6_storelladdr(ifp, rt, m, dst, desten)
1916 struct ifnet *ifp;
1917 struct rtentry *rt;
1918 struct mbuf *m;
1919 struct sockaddr *dst;
1920 u_char *desten;
1921 {
1922 struct sockaddr_dl *sdl;
1923
1924 if (m->m_flags & M_MCAST) {
1925 switch (ifp->if_type) {
1926 case IFT_ETHER:
1927 case IFT_FDDI:
1928 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
1929 desten);
1930 return(1);
1931 case IFT_IEEE1394:
1932 bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen);
1933 return(1);
1934 case IFT_ARCNET:
1935 *desten = 0;
1936 return(1);
1937 default:
1938 m_freem(m);
1939 return(0);
1940 }
1941 }
1942
1943 if (rt == NULL) {
1944 /* this could happen, if we could not allocate memory */
1945 m_freem(m);
1946 return(0);
1947 }
1948 if (rt->rt_gateway->sa_family != AF_LINK) {
1949 printf("nd6_storelladdr: something odd happens\n");
1950 m_freem(m);
1951 return(0);
1952 }
1953 sdl = SDL(rt->rt_gateway);
1954 if (sdl->sdl_alen == 0) {
1955 /* this should be impossible, but we bark here for debugging */
1956 printf("nd6_storelladdr: sdl_alen == 0, dst=%s, if=%s\n",
1957 ip6_sprintf(&SIN6(dst)->sin6_addr), if_name(ifp));
1958 m_freem(m);
1959 return(0);
1960 }
1961
1962 bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
1963 return(1);
1964 }
1965