nd6.c revision 1.64 1 /* $NetBSD: nd6.c,v 1.64 2002/06/07 17:15:12 itojun Exp $ */
2 /* $KAME: nd6.c,v 1.151 2001/06/19 14:24:41 sumikawa Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.64 2002/06/07 17:15:12 itojun Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/callout.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 #include <sys/time.h>
44 #include <sys/kernel.h>
45 #include <sys/protosw.h>
46 #include <sys/errno.h>
47 #include <sys/ioctl.h>
48 #include <sys/syslog.h>
49 #include <sys/queue.h>
50
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_types.h>
54 #include <net/route.h>
55 #include <net/if_ether.h>
56 #include <net/if_fddi.h>
57 #include <net/if_arc.h>
58
59 #include <netinet/in.h>
60 #include <netinet6/in6_var.h>
61 #include <netinet/ip6.h>
62 #include <netinet6/ip6_var.h>
63 #include <netinet6/nd6.h>
64 #include <netinet6/in6_prefix.h>
65 #include <netinet/icmp6.h>
66
67 #include "loop.h"
68 extern struct ifnet loif[NLOOP];
69
70 #include <net/net_osdep.h>
71
72 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
73 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
74
75 #define SIN6(s) ((struct sockaddr_in6 *)s)
76 #define SDL(s) ((struct sockaddr_dl *)s)
77
78 /* timer values */
79 int nd6_prune = 1; /* walk list every 1 seconds */
80 int nd6_delay = 5; /* delay first probe time 5 second */
81 int nd6_umaxtries = 3; /* maximum unicast query */
82 int nd6_mmaxtries = 3; /* maximum multicast query */
83 int nd6_useloopback = 1; /* use loopback interface for local traffic */
84 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
85
86 /* preventing too many loops in ND option parsing */
87 int nd6_maxndopt = 10; /* max # of ND options allowed */
88
89 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
90
91 #ifdef ND6_DEBUG
92 int nd6_debug = 1;
93 #else
94 int nd6_debug = 0;
95 #endif
96
97 /* for debugging? */
98 static int nd6_inuse, nd6_allocated;
99
100 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
101 struct nd_drhead nd_defrouter;
102 struct nd_prhead nd_prefix = { 0 };
103
104 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
105 static struct sockaddr_in6 all1_sa;
106
107 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
108 static void nd6_slowtimo __P((void *));
109 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
110
111 struct callout nd6_slowtimo_ch;
112 struct callout nd6_timer_ch;
113
114 void
115 nd6_init()
116 {
117 static int nd6_init_done = 0;
118 int i;
119
120 if (nd6_init_done) {
121 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
122 return;
123 }
124
125 all1_sa.sin6_family = AF_INET6;
126 all1_sa.sin6_len = sizeof(struct sockaddr_in6);
127 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
128 all1_sa.sin6_addr.s6_addr[i] = 0xff;
129
130 /* initialization of the default router list */
131 TAILQ_INIT(&nd_defrouter);
132
133 nd6_init_done = 1;
134
135 /* start timer */
136 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
137 nd6_slowtimo, NULL);
138 }
139
140 struct nd_ifinfo *
141 nd6_ifattach(ifp)
142 struct ifnet *ifp;
143 {
144 struct nd_ifinfo *nd;
145
146 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
147 bzero(nd, sizeof(*nd));
148
149 nd->initialized = 1;
150
151 nd->chlim = IPV6_DEFHLIM;
152 nd->basereachable = REACHABLE_TIME;
153 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
154 nd->retrans = RETRANS_TIMER;
155 nd->flags = ND6_IFF_PERFORMNUD;
156
157 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
158 nd6_setmtu0(ifp, nd);
159
160 return nd;
161 }
162
163 void
164 nd6_ifdetach(nd)
165 struct nd_ifinfo *nd;
166 {
167
168 free(nd, M_IP6NDP);
169 }
170
171 void
172 nd6_setmtu(ifp)
173 struct ifnet *ifp;
174 {
175 nd6_setmtu0(ifp, ND_IFINFO(ifp));
176 }
177
178 void
179 nd6_setmtu0(ifp, ndi)
180 struct ifnet *ifp;
181 struct nd_ifinfo *ndi;
182 {
183 u_int32_t omaxmtu;
184
185 omaxmtu = ndi->maxmtu;
186
187 switch (ifp->if_type) {
188 case IFT_ARCNET:
189 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
190 break;
191 case IFT_FDDI:
192 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
193 break;
194 default:
195 ndi->maxmtu = ifp->if_mtu;
196 break;
197 }
198
199 /*
200 * Decreasing the interface MTU under IPV6 minimum MTU may cause
201 * undesirable situation. We thus notify the operator of the change
202 * explicitly. The check for omaxmtu is necessary to restrict the
203 * log to the case of changing the MTU, not initializing it.
204 */
205 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
206 log(LOG_NOTICE, "nd6_setmtu0: "
207 "new link MTU on %s (%lu) is too small for IPv6\n",
208 if_name(ifp), (unsigned long)ndi->maxmtu);
209 }
210
211 if (ndi->maxmtu > in6_maxmtu)
212 in6_setmaxmtu(); /* check all interfaces just in case */
213 }
214
215 void
216 nd6_option_init(opt, icmp6len, ndopts)
217 void *opt;
218 int icmp6len;
219 union nd_opts *ndopts;
220 {
221
222 bzero(ndopts, sizeof(*ndopts));
223 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
224 ndopts->nd_opts_last
225 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
226
227 if (icmp6len == 0) {
228 ndopts->nd_opts_done = 1;
229 ndopts->nd_opts_search = NULL;
230 }
231 }
232
233 /*
234 * Take one ND option.
235 */
236 struct nd_opt_hdr *
237 nd6_option(ndopts)
238 union nd_opts *ndopts;
239 {
240 struct nd_opt_hdr *nd_opt;
241 int olen;
242
243 if (!ndopts)
244 panic("ndopts == NULL in nd6_option\n");
245 if (!ndopts->nd_opts_last)
246 panic("uninitialized ndopts in nd6_option\n");
247 if (!ndopts->nd_opts_search)
248 return NULL;
249 if (ndopts->nd_opts_done)
250 return NULL;
251
252 nd_opt = ndopts->nd_opts_search;
253
254 /* make sure nd_opt_len is inside the buffer */
255 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
256 bzero(ndopts, sizeof(*ndopts));
257 return NULL;
258 }
259
260 olen = nd_opt->nd_opt_len << 3;
261 if (olen == 0) {
262 /*
263 * Message validation requires that all included
264 * options have a length that is greater than zero.
265 */
266 bzero(ndopts, sizeof(*ndopts));
267 return NULL;
268 }
269
270 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
271 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
272 /* option overruns the end of buffer, invalid */
273 bzero(ndopts, sizeof(*ndopts));
274 return NULL;
275 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
276 /* reached the end of options chain */
277 ndopts->nd_opts_done = 1;
278 ndopts->nd_opts_search = NULL;
279 }
280 return nd_opt;
281 }
282
283 /*
284 * Parse multiple ND options.
285 * This function is much easier to use, for ND routines that do not need
286 * multiple options of the same type.
287 */
288 int
289 nd6_options(ndopts)
290 union nd_opts *ndopts;
291 {
292 struct nd_opt_hdr *nd_opt;
293 int i = 0;
294
295 if (!ndopts)
296 panic("ndopts == NULL in nd6_options\n");
297 if (!ndopts->nd_opts_last)
298 panic("uninitialized ndopts in nd6_options\n");
299 if (!ndopts->nd_opts_search)
300 return 0;
301
302 while (1) {
303 nd_opt = nd6_option(ndopts);
304 if (!nd_opt && !ndopts->nd_opts_last) {
305 /*
306 * Message validation requires that all included
307 * options have a length that is greater than zero.
308 */
309 icmp6stat.icp6s_nd_badopt++;
310 bzero(ndopts, sizeof(*ndopts));
311 return -1;
312 }
313
314 if (!nd_opt)
315 goto skip1;
316
317 switch (nd_opt->nd_opt_type) {
318 case ND_OPT_SOURCE_LINKADDR:
319 case ND_OPT_TARGET_LINKADDR:
320 case ND_OPT_MTU:
321 case ND_OPT_REDIRECTED_HEADER:
322 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
323 nd6log((LOG_INFO,
324 "duplicated ND6 option found (type=%d)\n",
325 nd_opt->nd_opt_type));
326 /* XXX bark? */
327 } else {
328 ndopts->nd_opt_array[nd_opt->nd_opt_type]
329 = nd_opt;
330 }
331 break;
332 case ND_OPT_PREFIX_INFORMATION:
333 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
334 ndopts->nd_opt_array[nd_opt->nd_opt_type]
335 = nd_opt;
336 }
337 ndopts->nd_opts_pi_end =
338 (struct nd_opt_prefix_info *)nd_opt;
339 break;
340 default:
341 /*
342 * Unknown options must be silently ignored,
343 * to accomodate future extension to the protocol.
344 */
345 nd6log((LOG_DEBUG,
346 "nd6_options: unsupported option %d - "
347 "option ignored\n", nd_opt->nd_opt_type));
348 }
349
350 skip1:
351 i++;
352 if (i > nd6_maxndopt) {
353 icmp6stat.icp6s_nd_toomanyopt++;
354 nd6log((LOG_INFO, "too many loop in nd opt\n"));
355 break;
356 }
357
358 if (ndopts->nd_opts_done)
359 break;
360 }
361
362 return 0;
363 }
364
365 /*
366 * ND6 timer routine to expire default route list and prefix list
367 */
368 void
369 nd6_timer(ignored_arg)
370 void *ignored_arg;
371 {
372 int s;
373 struct llinfo_nd6 *ln;
374 struct nd_defrouter *dr;
375 struct nd_prefix *pr;
376 long time_second = time.tv_sec;
377
378 s = splsoftnet();
379 callout_reset(&nd6_timer_ch, nd6_prune * hz,
380 nd6_timer, NULL);
381
382 ln = llinfo_nd6.ln_next;
383 while (ln && ln != &llinfo_nd6) {
384 struct rtentry *rt;
385 struct ifnet *ifp;
386 struct sockaddr_in6 *dst;
387 struct llinfo_nd6 *next = ln->ln_next;
388 /* XXX: used for the DELAY case only: */
389 struct nd_ifinfo *ndi = NULL;
390
391 if ((rt = ln->ln_rt) == NULL) {
392 ln = next;
393 continue;
394 }
395 if ((ifp = rt->rt_ifp) == NULL) {
396 ln = next;
397 continue;
398 }
399 ndi = ND_IFINFO(ifp);
400 dst = (struct sockaddr_in6 *)rt_key(rt);
401
402 if (ln->ln_expire > time_second) {
403 ln = next;
404 continue;
405 }
406
407 /* sanity check */
408 if (!rt)
409 panic("rt=0 in nd6_timer(ln=%p)\n", ln);
410 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
411 panic("rt_llinfo(%p) is not equal to ln(%p)\n",
412 rt->rt_llinfo, ln);
413 if (!dst)
414 panic("dst=0 in nd6_timer(ln=%p)\n", ln);
415
416 switch (ln->ln_state) {
417 case ND6_LLINFO_INCOMPLETE:
418 if (ln->ln_asked < nd6_mmaxtries) {
419 ln->ln_asked++;
420 ln->ln_expire = time_second +
421 ND6_RETRANS_SEC(ND_IFINFO(ifp)->retrans);
422 nd6_ns_output(ifp, NULL, &dst->sin6_addr,
423 ln, 0);
424 } else {
425 struct mbuf *m = ln->ln_hold;
426 if (m) {
427 if (rt->rt_ifp) {
428 /*
429 * Fake rcvif to make ICMP error
430 * more helpful in diagnosing
431 * for the receiver.
432 * XXX: should we consider
433 * older rcvif?
434 */
435 m->m_pkthdr.rcvif = rt->rt_ifp;
436 }
437 icmp6_error(m, ICMP6_DST_UNREACH,
438 ICMP6_DST_UNREACH_ADDR, 0);
439 ln->ln_hold = NULL;
440 }
441 next = nd6_free(rt, 0);
442 }
443 break;
444 case ND6_LLINFO_REACHABLE:
445 if (ln->ln_expire) {
446 ln->ln_state = ND6_LLINFO_STALE;
447 ln->ln_expire = time_second + nd6_gctimer;
448 }
449 break;
450
451 case ND6_LLINFO_STALE:
452 /* Garbage Collection(RFC 2461 5.3) */
453 if (ln->ln_expire)
454 next = nd6_free(rt, 1);
455 break;
456
457 case ND6_LLINFO_DELAY:
458 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
459 /* We need NUD */
460 ln->ln_asked = 1;
461 ln->ln_state = ND6_LLINFO_PROBE;
462 ln->ln_expire = time_second +
463 ND6_RETRANS_SEC(ndi->retrans);
464 nd6_ns_output(ifp, &dst->sin6_addr,
465 &dst->sin6_addr,
466 ln, 0);
467 } else {
468 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
469 ln->ln_expire = time_second + nd6_gctimer;
470 }
471 break;
472 case ND6_LLINFO_PROBE:
473 if (ln->ln_asked < nd6_umaxtries) {
474 ln->ln_asked++;
475 ln->ln_expire = time_second +
476 ND6_RETRANS_SEC(ND_IFINFO(ifp)->retrans);
477 nd6_ns_output(ifp, &dst->sin6_addr,
478 &dst->sin6_addr, ln, 0);
479 } else {
480 next = nd6_free(rt, 0);
481 }
482 break;
483 }
484 ln = next;
485 }
486
487 /* expire default router list */
488 dr = TAILQ_FIRST(&nd_defrouter);
489 while (dr) {
490 if (dr->expire && dr->expire < time_second) {
491 struct nd_defrouter *t;
492 t = TAILQ_NEXT(dr, dr_entry);
493 defrtrlist_del(dr);
494 dr = t;
495 } else {
496 dr = TAILQ_NEXT(dr, dr_entry);
497 }
498 }
499 pr = nd_prefix.lh_first;
500 while (pr) {
501 struct in6_ifaddr *ia6;
502 struct in6_addrlifetime *lt6;
503
504 if (IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr))
505 ia6 = NULL;
506 else
507 ia6 = in6ifa_ifpwithaddr(pr->ndpr_ifp, &pr->ndpr_addr);
508
509 if (ia6) {
510 /* check address lifetime */
511 lt6 = &ia6->ia6_lifetime;
512 if (lt6->ia6t_preferred && lt6->ia6t_preferred < time_second)
513 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
514 if (lt6->ia6t_expire && lt6->ia6t_expire < time_second) {
515 if (!IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr))
516 in6_ifdel(pr->ndpr_ifp, &pr->ndpr_addr);
517 /* xxx ND_OPT_PI_FLAG_ONLINK processing */
518 }
519 }
520
521 /*
522 * check prefix lifetime.
523 * since pltime is just for autoconf, pltime processing for
524 * prefix is not necessary.
525 *
526 * we offset expire time by NDPR_KEEP_EXPIRE, so that we
527 * can use the old prefix information to validate the
528 * next prefix information to come. See prelist_update()
529 * for actual validation.
530 */
531 if (pr->ndpr_expire
532 && pr->ndpr_expire + NDPR_KEEP_EXPIRED < time_second) {
533 struct nd_prefix *t;
534 t = pr->ndpr_next;
535
536 /*
537 * address expiration and prefix expiration are
538 * separate. NEVER perform in6_ifdel here.
539 */
540
541 prelist_remove(pr);
542 pr = t;
543 } else
544 pr = pr->ndpr_next;
545 }
546 splx(s);
547 }
548
549 /*
550 * Nuke neighbor cache/prefix/default router management table, right before
551 * ifp goes away.
552 */
553 void
554 nd6_purge(ifp)
555 struct ifnet *ifp;
556 {
557 struct llinfo_nd6 *ln, *nln;
558 struct nd_defrouter *dr, *ndr, drany;
559 struct nd_prefix *pr, *npr;
560
561 /* Nuke default router list entries toward ifp */
562 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
563 /*
564 * The first entry of the list may be stored in
565 * the routing table, so we'll delete it later.
566 */
567 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = ndr) {
568 ndr = TAILQ_NEXT(dr, dr_entry);
569 if (dr->ifp == ifp)
570 defrtrlist_del(dr);
571 }
572 dr = TAILQ_FIRST(&nd_defrouter);
573 if (dr->ifp == ifp)
574 defrtrlist_del(dr);
575 }
576
577 /* Nuke prefix list entries toward ifp */
578 for (pr = nd_prefix.lh_first; pr; pr = npr) {
579 npr = pr->ndpr_next;
580 if (pr->ndpr_ifp == ifp) {
581 if (!IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr))
582 in6_ifdel(pr->ndpr_ifp, &pr->ndpr_addr);
583 prelist_remove(pr);
584 }
585 }
586
587 /* cancel default outgoing interface setting */
588 if (nd6_defifindex == ifp->if_index)
589 nd6_setdefaultiface(0);
590
591 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
592 /* refresh default router list */
593 bzero(&drany, sizeof(drany));
594 defrouter_delreq(&drany, 0);
595 defrouter_select();
596 }
597
598 /*
599 * Nuke neighbor cache entries for the ifp.
600 * Note that rt->rt_ifp may not be the same as ifp,
601 * due to KAME goto ours hack. See RTM_RESOLVE case in
602 * nd6_rtrequest(), and ip6_input().
603 */
604 ln = llinfo_nd6.ln_next;
605 while (ln && ln != &llinfo_nd6) {
606 struct rtentry *rt;
607 struct sockaddr_dl *sdl;
608
609 nln = ln->ln_next;
610 rt = ln->ln_rt;
611 if (rt && rt->rt_gateway &&
612 rt->rt_gateway->sa_family == AF_LINK) {
613 sdl = (struct sockaddr_dl *)rt->rt_gateway;
614 if (sdl->sdl_index == ifp->if_index)
615 nln = nd6_free(rt, 0);
616 }
617 ln = nln;
618 }
619 }
620
621 struct rtentry *
622 nd6_lookup(addr6, create, ifp)
623 struct in6_addr *addr6;
624 int create;
625 struct ifnet *ifp;
626 {
627 struct rtentry *rt;
628 struct sockaddr_in6 sin6;
629
630 bzero(&sin6, sizeof(sin6));
631 sin6.sin6_len = sizeof(struct sockaddr_in6);
632 sin6.sin6_family = AF_INET6;
633 sin6.sin6_addr = *addr6;
634 rt = rtalloc1((struct sockaddr *)&sin6, create);
635 if (rt && (rt->rt_flags & RTF_LLINFO) == 0) {
636 /*
637 * This is the case for the default route.
638 * If we want to create a neighbor cache for the address, we
639 * should free the route for the destination and allocate an
640 * interface route.
641 */
642 if (create) {
643 RTFREE(rt);
644 rt = 0;
645 }
646 }
647 if (!rt) {
648 if (create && ifp) {
649 int e;
650
651 /*
652 * If no route is available and create is set,
653 * we allocate a host route for the destination
654 * and treat it like an interface route.
655 * This hack is necessary for a neighbor which can't
656 * be covered by our own prefix.
657 */
658 struct ifaddr *ifa =
659 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
660 if (ifa == NULL)
661 return(NULL);
662
663 /*
664 * Create a new route. RTF_LLINFO is necessary
665 * to create a Neighbor Cache entry for the
666 * destination in nd6_rtrequest which will be
667 * called in rtrequest via ifa->ifa_rtrequest.
668 */
669 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
670 ifa->ifa_addr,
671 (struct sockaddr *)&all1_sa,
672 (ifa->ifa_flags |
673 RTF_HOST | RTF_LLINFO) &
674 ~RTF_CLONING,
675 &rt)) != 0) {
676 #if 0
677 log(LOG_ERR,
678 "nd6_lookup: failed to add route for a "
679 "neighbor(%s), errno=%d\n",
680 ip6_sprintf(addr6), e);
681 #endif
682 return(NULL);
683 }
684 if (rt == NULL)
685 return(NULL);
686 if (rt->rt_llinfo) {
687 struct llinfo_nd6 *ln =
688 (struct llinfo_nd6 *)rt->rt_llinfo;
689 ln->ln_state = ND6_LLINFO_NOSTATE;
690 }
691 } else
692 return(NULL);
693 }
694 rt->rt_refcnt--;
695 /*
696 * Validation for the entry.
697 * XXX: we can't use rt->rt_ifp to check for the interface, since
698 * it might be the loopback interface if the entry is for our
699 * own address on a non-loopback interface. Instead, we should
700 * use rt->rt_ifa->ifa_ifp, which would specify the REAL interface.
701 */
702 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
703 rt->rt_gateway->sa_family != AF_LINK ||
704 (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
705 if (create) {
706 log(LOG_DEBUG, "nd6_lookup: failed to lookup %s (if = %s)\n",
707 ip6_sprintf(addr6), ifp ? if_name(ifp) : "unspec");
708 }
709 return(0);
710 }
711 return(rt);
712 }
713
714 /*
715 * Detect if a given IPv6 address identifies a neighbor on a given link.
716 * XXX: should take care of the destination of a p2p link?
717 */
718 int
719 nd6_is_addr_neighbor(addr, ifp)
720 struct sockaddr_in6 *addr;
721 struct ifnet *ifp;
722 {
723 struct ifaddr *ifa;
724 int i;
725
726 #define IFADDR6(a) ((((struct in6_ifaddr *)(a))->ia_addr).sin6_addr)
727 #define IFMASK6(a) ((((struct in6_ifaddr *)(a))->ia_prefixmask).sin6_addr)
728
729 /*
730 * A link-local address is always a neighbor.
731 * XXX: we should use the sin6_scope_id field rather than the embedded
732 * interface index.
733 * XXX: a link does not necessarily specify a single interface.
734 */
735 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) &&
736 ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index)
737 return(1);
738
739 /*
740 * If the address matches one of our addresses,
741 * it should be a neighbor.
742 */
743 for (ifa = ifp->if_addrlist.tqh_first;
744 ifa;
745 ifa = ifa->ifa_list.tqe_next)
746 {
747 if (ifa->ifa_addr->sa_family != AF_INET6)
748 next: continue;
749
750 for (i = 0; i < 4; i++) {
751 if ((IFADDR6(ifa).s6_addr32[i] ^
752 addr->sin6_addr.s6_addr32[i]) &
753 IFMASK6(ifa).s6_addr32[i])
754 goto next;
755 }
756 return(1);
757 }
758
759 /*
760 * Even if the address matches none of our addresses, it might be
761 * in the neighbor cache.
762 */
763 if (nd6_lookup(&addr->sin6_addr, 0, ifp))
764 return(1);
765
766 return(0);
767 #undef IFADDR6
768 #undef IFMASK6
769 }
770
771 /*
772 * Free an nd6 llinfo entry.
773 * Since the function would cause significant changes in the kernel, DO NOT
774 * make it global, unless you have a strong reason for the change, and are sure
775 * that the change is safe.
776 */
777 static struct llinfo_nd6 *
778 nd6_free(rt, gc)
779 struct rtentry *rt;
780 int gc;
781 {
782 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
783 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
784 struct nd_defrouter *dr;
785
786 /*
787 * we used to have pfctlinput(PRC_HOSTDEAD) here.
788 * even though it is not harmful, it was not really necessary.
789 */
790
791 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
792 int s;
793 s = splsoftnet();
794 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
795 rt->rt_ifp);
796
797 if (dr != NULL && dr->expire &&
798 ln->ln_state == ND6_LLINFO_STALE && gc) {
799 /*
800 * If the reason for the deletion is just garbage
801 * collection, and the neighbor is an active default
802 * router, do not delete it. Instead, reset the GC
803 * timer using the router's lifetime.
804 * Simply deleting the entry would affect default
805 * router selection, which is not necessarily a good
806 * thing, especially when we're using router preference
807 * values.
808 * XXX: the check for ln_state would be redundant,
809 * but we intentionally keep it just in case.
810 */
811 ln->ln_expire = dr->expire;
812 splx(s);
813 return(ln->ln_next);
814 }
815
816 if (ln->ln_router || dr) {
817 /*
818 * rt6_flush must be called whether or not the neighbor
819 * is in the Default Router List.
820 * See a corresponding comment in nd6_na_input().
821 */
822 rt6_flush(&in6, rt->rt_ifp);
823 }
824
825 if (dr) {
826 /*
827 * Unreachablity of a router might affect the default
828 * router selection and on-link detection of advertised
829 * prefixes.
830 */
831
832 /*
833 * Temporarily fake the state to choose a new default
834 * router and to perform on-link determination of
835 * prefixes correctly.
836 * Below the state will be set correctly,
837 * or the entry itself will be deleted.
838 */
839 ln->ln_state = ND6_LLINFO_INCOMPLETE;
840
841 /*
842 * Since defrouter_select() does not affect the
843 * on-link determination and MIP6 needs the check
844 * before the default router selection, we perform
845 * the check now.
846 */
847 pfxlist_onlink_check();
848
849 if (dr == TAILQ_FIRST(&nd_defrouter)) {
850 /*
851 * It is used as the current default router,
852 * so we have to move it to the end of the
853 * list and choose a new one.
854 * XXX: it is not very efficient if this is
855 * the only router.
856 */
857 TAILQ_REMOVE(&nd_defrouter, dr, dr_entry);
858 TAILQ_INSERT_TAIL(&nd_defrouter, dr, dr_entry);
859
860 defrouter_select();
861 }
862 }
863 splx(s);
864 }
865
866 /*
867 * Before deleting the entry, remember the next entry as the
868 * return value. We need this because pfxlist_onlink_check() above
869 * might have freed other entries (particularly the old next entry) as
870 * a side effect (XXX).
871 */
872 next = ln->ln_next;
873
874 /*
875 * Detach the route from the routing tree and the list of neighbor
876 * caches, and disable the route entry not to be used in already
877 * cached routes.
878 */
879 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
880 rt_mask(rt), 0, (struct rtentry **)0);
881
882 return(next);
883 }
884
885 /*
886 * Upper-layer reachability hint for Neighbor Unreachability Detection.
887 *
888 * XXX cost-effective metods?
889 */
890 void
891 nd6_nud_hint(rt, dst6, force)
892 struct rtentry *rt;
893 struct in6_addr *dst6;
894 int force;
895 {
896 struct llinfo_nd6 *ln;
897 long time_second = time.tv_sec;
898
899 /*
900 * If the caller specified "rt", use that. Otherwise, resolve the
901 * routing table by supplied "dst6".
902 */
903 if (!rt) {
904 if (!dst6)
905 return;
906 if (!(rt = nd6_lookup(dst6, 0, NULL)))
907 return;
908 }
909
910 if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
911 (rt->rt_flags & RTF_LLINFO) == 0 ||
912 !rt->rt_llinfo || !rt->rt_gateway ||
913 rt->rt_gateway->sa_family != AF_LINK) {
914 /* This is not a host route. */
915 return;
916 }
917
918 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
919 if (ln->ln_state < ND6_LLINFO_REACHABLE)
920 return;
921
922 /*
923 * if we get upper-layer reachability confirmation many times,
924 * it is possible we have false information.
925 */
926 if (!force) {
927 ln->ln_byhint++;
928 if (ln->ln_byhint > nd6_maxnudhint)
929 return;
930 }
931
932 ln->ln_state = ND6_LLINFO_REACHABLE;
933 if (ln->ln_expire)
934 ln->ln_expire = time_second + ND_IFINFO(rt->rt_ifp)->reachable;
935 }
936
937 void
938 nd6_rtrequest(req, rt, info)
939 int req;
940 struct rtentry *rt;
941 struct rt_addrinfo *info; /* xxx unused */
942 {
943 struct sockaddr *gate = rt->rt_gateway;
944 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
945 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
946 struct ifnet *ifp = rt->rt_ifp;
947 struct ifaddr *ifa;
948 long time_second = time.tv_sec;
949
950 if ((rt->rt_flags & RTF_GATEWAY))
951 return;
952
953 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
954 /*
955 * This is probably an interface direct route for a link
956 * which does not need neighbor caches (e.g. fe80::%lo0/64).
957 * We do not need special treatment below for such a route.
958 * Moreover, the RTF_LLINFO flag which would be set below
959 * would annoy the ndp(8) command.
960 */
961 return;
962 }
963
964 switch (req) {
965 case RTM_ADD:
966 /*
967 * There is no backward compatibility :)
968 *
969 * if ((rt->rt_flags & RTF_HOST) == 0 &&
970 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
971 * rt->rt_flags |= RTF_CLONING;
972 */
973 if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) {
974 /*
975 * Case 1: This route should come from
976 * a route to interface. RTF_LLINFO flag is set
977 * for a host route whose destination should be
978 * treated as on-link.
979 */
980 rt_setgate(rt, rt_key(rt),
981 (struct sockaddr *)&null_sdl);
982 gate = rt->rt_gateway;
983 SDL(gate)->sdl_type = ifp->if_type;
984 SDL(gate)->sdl_index = ifp->if_index;
985 if (ln)
986 ln->ln_expire = time_second;
987 #if 1
988 if (ln && ln->ln_expire == 0) {
989 /* kludge for desktops */
990 #if 0
991 printf("nd6_rtequest: time.tv_sec is zero; "
992 "treat it as 1\n");
993 #endif
994 ln->ln_expire = 1;
995 }
996 #endif
997 if ((rt->rt_flags & RTF_CLONING))
998 break;
999 }
1000 /*
1001 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1002 * We don't do that here since llinfo is not ready yet.
1003 *
1004 * There are also couple of other things to be discussed:
1005 * - unsolicited NA code needs improvement beforehand
1006 * - RFC2461 says we MAY send multicast unsolicited NA
1007 * (7.2.6 paragraph 4), however, it also says that we
1008 * SHOULD provide a mechanism to prevent multicast NA storm.
1009 * we don't have anything like it right now.
1010 * note that the mechanism needs a mutual agreement
1011 * between proxies, which means that we need to implement
1012 * a new protocol, or a new kludge.
1013 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1014 * we need to check ip6forwarding before sending it.
1015 * (or should we allow proxy ND configuration only for
1016 * routers? there's no mention about proxy ND from hosts)
1017 */
1018 #if 0
1019 /* XXX it does not work */
1020 if (rt->rt_flags & RTF_ANNOUNCE)
1021 nd6_na_output(ifp,
1022 &SIN6(rt_key(rt))->sin6_addr,
1023 &SIN6(rt_key(rt))->sin6_addr,
1024 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1025 1, NULL);
1026 #endif
1027 /* FALLTHROUGH */
1028 case RTM_RESOLVE:
1029 if ((ifp->if_flags & IFF_POINTOPOINT) == 0) {
1030 /*
1031 * Address resolution isn't necessary for a point to
1032 * point link, so we can skip this test for a p2p link.
1033 */
1034 if (gate->sa_family != AF_LINK ||
1035 gate->sa_len < sizeof(null_sdl)) {
1036 log(LOG_DEBUG,
1037 "nd6_rtrequest: bad gateway value: %s\n",
1038 if_name(ifp));
1039 break;
1040 }
1041 SDL(gate)->sdl_type = ifp->if_type;
1042 SDL(gate)->sdl_index = ifp->if_index;
1043 }
1044 if (ln != NULL)
1045 break; /* This happens on a route change */
1046 /*
1047 * Case 2: This route may come from cloning, or a manual route
1048 * add with a LL address.
1049 */
1050 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1051 rt->rt_llinfo = (caddr_t)ln;
1052 if (!ln) {
1053 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1054 break;
1055 }
1056 nd6_inuse++;
1057 nd6_allocated++;
1058 Bzero(ln, sizeof(*ln));
1059 ln->ln_rt = rt;
1060 /* this is required for "ndp" command. - shin */
1061 if (req == RTM_ADD) {
1062 /*
1063 * gate should have some valid AF_LINK entry,
1064 * and ln->ln_expire should have some lifetime
1065 * which is specified by ndp command.
1066 */
1067 ln->ln_state = ND6_LLINFO_REACHABLE;
1068 ln->ln_byhint = 0;
1069 } else {
1070 /*
1071 * When req == RTM_RESOLVE, rt is created and
1072 * initialized in rtrequest(), so rt_expire is 0.
1073 */
1074 ln->ln_state = ND6_LLINFO_NOSTATE;
1075 ln->ln_expire = time_second;
1076 }
1077 rt->rt_flags |= RTF_LLINFO;
1078 ln->ln_next = llinfo_nd6.ln_next;
1079 llinfo_nd6.ln_next = ln;
1080 ln->ln_prev = &llinfo_nd6;
1081 ln->ln_next->ln_prev = ln;
1082
1083 /*
1084 * check if rt_key(rt) is one of my address assigned
1085 * to the interface.
1086 */
1087 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1088 &SIN6(rt_key(rt))->sin6_addr);
1089 if (ifa) {
1090 caddr_t macp = nd6_ifptomac(ifp);
1091 ln->ln_expire = 0;
1092 ln->ln_state = ND6_LLINFO_REACHABLE;
1093 ln->ln_byhint = 0;
1094 if (macp) {
1095 Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1096 SDL(gate)->sdl_alen = ifp->if_addrlen;
1097 }
1098 if (nd6_useloopback) {
1099 rt->rt_ifp = &loif[0]; /* XXX */
1100 /*
1101 * Make sure rt_ifa be equal to the ifaddr
1102 * corresponding to the address.
1103 * We need this because when we refer
1104 * rt_ifa->ia6_flags in ip6_input, we assume
1105 * that the rt_ifa points to the address instead
1106 * of the loopback address.
1107 */
1108 if (ifa != rt->rt_ifa) {
1109 IFAFREE(rt->rt_ifa);
1110 IFAREF(ifa);
1111 rt->rt_ifa = ifa;
1112 }
1113 }
1114 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1115 ln->ln_expire = 0;
1116 ln->ln_state = ND6_LLINFO_REACHABLE;
1117 ln->ln_byhint = 0;
1118
1119 /* join solicited node multicast for proxy ND */
1120 if (ifp->if_flags & IFF_MULTICAST) {
1121 struct in6_addr llsol;
1122 int error;
1123
1124 llsol = SIN6(rt_key(rt))->sin6_addr;
1125 llsol.s6_addr16[0] = htons(0xff02);
1126 llsol.s6_addr16[1] = htons(ifp->if_index);
1127 llsol.s6_addr32[1] = 0;
1128 llsol.s6_addr32[2] = htonl(1);
1129 llsol.s6_addr8[12] = 0xff;
1130
1131 if (!in6_addmulti(&llsol, ifp, &error)) {
1132 nd6log((LOG_ERR, "%s: failed to join "
1133 "%s (errno=%d)\n", if_name(ifp),
1134 ip6_sprintf(&llsol), error));
1135 }
1136 }
1137 }
1138 break;
1139
1140 case RTM_DELETE:
1141 if (!ln)
1142 break;
1143 /* leave from solicited node multicast for proxy ND */
1144 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1145 (ifp->if_flags & IFF_MULTICAST) != 0) {
1146 struct in6_addr llsol;
1147 struct in6_multi *in6m;
1148
1149 llsol = SIN6(rt_key(rt))->sin6_addr;
1150 llsol.s6_addr16[0] = htons(0xff02);
1151 llsol.s6_addr16[1] = htons(ifp->if_index);
1152 llsol.s6_addr32[1] = 0;
1153 llsol.s6_addr32[2] = htonl(1);
1154 llsol.s6_addr8[12] = 0xff;
1155
1156 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1157 if (in6m)
1158 in6_delmulti(in6m);
1159 }
1160 nd6_inuse--;
1161 ln->ln_next->ln_prev = ln->ln_prev;
1162 ln->ln_prev->ln_next = ln->ln_next;
1163 ln->ln_prev = NULL;
1164 rt->rt_llinfo = 0;
1165 rt->rt_flags &= ~RTF_LLINFO;
1166 if (ln->ln_hold)
1167 m_freem(ln->ln_hold);
1168 Free((caddr_t)ln);
1169 }
1170 }
1171
1172 void
1173 nd6_p2p_rtrequest(req, rt, info)
1174 int req;
1175 struct rtentry *rt;
1176 struct rt_addrinfo *info; /* xxx unused */
1177 {
1178 struct sockaddr *gate = rt->rt_gateway;
1179 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1180 struct ifnet *ifp = rt->rt_ifp;
1181 struct ifaddr *ifa;
1182
1183 if (rt->rt_flags & RTF_GATEWAY)
1184 return;
1185
1186 switch (req) {
1187 case RTM_ADD:
1188 /*
1189 * There is no backward compatibility :)
1190 *
1191 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1192 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1193 * rt->rt_flags |= RTF_CLONING;
1194 */
1195 if (rt->rt_flags & RTF_CLONING) {
1196 /*
1197 * Case 1: This route should come from
1198 * a route to interface.
1199 */
1200 rt_setgate(rt, rt_key(rt),
1201 (struct sockaddr *)&null_sdl);
1202 gate = rt->rt_gateway;
1203 SDL(gate)->sdl_type = ifp->if_type;
1204 SDL(gate)->sdl_index = ifp->if_index;
1205 break;
1206 }
1207 /* Announce a new entry if requested. */
1208 if (rt->rt_flags & RTF_ANNOUNCE)
1209 nd6_na_output(ifp,
1210 &SIN6(rt_key(rt))->sin6_addr,
1211 &SIN6(rt_key(rt))->sin6_addr,
1212 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1213 1, NULL);
1214 /* FALLTHROUGH */
1215 case RTM_RESOLVE:
1216 /*
1217 * check if rt_key(rt) is one of my address assigned
1218 * to the interface.
1219 */
1220 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1221 &SIN6(rt_key(rt))->sin6_addr);
1222 if (ifa) {
1223 if (nd6_useloopback) {
1224 rt->rt_ifp = &loif[0]; /*XXX*/
1225 }
1226 }
1227 break;
1228 }
1229 }
1230
1231 int
1232 nd6_ioctl(cmd, data, ifp)
1233 u_long cmd;
1234 caddr_t data;
1235 struct ifnet *ifp;
1236 {
1237 struct in6_drlist *drl = (struct in6_drlist *)data;
1238 struct in6_prlist *prl = (struct in6_prlist *)data;
1239 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1240 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1241 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1242 struct nd_defrouter *dr, any;
1243 struct nd_prefix *pr;
1244 struct rtentry *rt;
1245 int i = 0, error = 0;
1246 int s;
1247
1248 switch (cmd) {
1249 case SIOCGDRLST_IN6:
1250 bzero(drl, sizeof(*drl));
1251 s = splsoftnet();
1252 dr = TAILQ_FIRST(&nd_defrouter);
1253 while (dr && i < DRLSTSIZ) {
1254 drl->defrouter[i].rtaddr = dr->rtaddr;
1255 if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) {
1256 /* XXX: need to this hack for KAME stack */
1257 drl->defrouter[i].rtaddr.s6_addr16[1] = 0;
1258 } else
1259 log(LOG_ERR,
1260 "default router list contains a "
1261 "non-linklocal address(%s)\n",
1262 ip6_sprintf(&drl->defrouter[i].rtaddr));
1263
1264 drl->defrouter[i].flags = dr->flags;
1265 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1266 drl->defrouter[i].expire = dr->expire;
1267 drl->defrouter[i].if_index = dr->ifp->if_index;
1268 i++;
1269 dr = TAILQ_NEXT(dr, dr_entry);
1270 }
1271 splx(s);
1272 break;
1273 case SIOCGPRLST_IN6:
1274 /*
1275 * XXX meaning of fields, especialy "raflags", is very
1276 * differnet between RA prefix list and RR/static prefix list.
1277 * how about separating ioctls into two?
1278 */
1279 bzero(prl, sizeof(*prl));
1280 s = splsoftnet();
1281 pr = nd_prefix.lh_first;
1282 while (pr && i < PRLSTSIZ) {
1283 struct nd_pfxrouter *pfr;
1284 int j;
1285
1286 prl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1287 prl->prefix[i].raflags = pr->ndpr_raf;
1288 prl->prefix[i].prefixlen = pr->ndpr_plen;
1289 prl->prefix[i].vltime = pr->ndpr_vltime;
1290 prl->prefix[i].pltime = pr->ndpr_pltime;
1291 prl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1292 prl->prefix[i].expire = pr->ndpr_expire;
1293
1294 pfr = pr->ndpr_advrtrs.lh_first;
1295 j = 0;
1296 while (pfr) {
1297 if (j < DRLSTSIZ) {
1298 #define RTRADDR prl->prefix[i].advrtr[j]
1299 RTRADDR = pfr->router->rtaddr;
1300 if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) {
1301 /* XXX: hack for KAME */
1302 RTRADDR.s6_addr16[1] = 0;
1303 } else
1304 log(LOG_ERR,
1305 "a router(%s) advertises "
1306 "a prefix with "
1307 "non-link local address\n",
1308 ip6_sprintf(&RTRADDR));
1309 #undef RTRADDR
1310 }
1311 j++;
1312 pfr = pfr->pfr_next;
1313 }
1314 prl->prefix[i].advrtrs = j;
1315 prl->prefix[i].origin = PR_ORIG_RA;
1316
1317 i++;
1318 pr = pr->ndpr_next;
1319 }
1320 {
1321 struct rr_prefix *rpp;
1322
1323 for (rpp = LIST_FIRST(&rr_prefix); rpp;
1324 rpp = LIST_NEXT(rpp, rp_entry)) {
1325 if (i >= PRLSTSIZ)
1326 break;
1327 prl->prefix[i].prefix = rpp->rp_prefix.sin6_addr;
1328 prl->prefix[i].raflags = rpp->rp_raf;
1329 prl->prefix[i].prefixlen = rpp->rp_plen;
1330 prl->prefix[i].vltime = rpp->rp_vltime;
1331 prl->prefix[i].pltime = rpp->rp_pltime;
1332 prl->prefix[i].if_index = rpp->rp_ifp->if_index;
1333 prl->prefix[i].expire = rpp->rp_expire;
1334 prl->prefix[i].advrtrs = 0;
1335 prl->prefix[i].origin = rpp->rp_origin;
1336 i++;
1337 }
1338 }
1339 splx(s);
1340
1341 break;
1342 case OSIOCGIFINFO_IN6:
1343 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1344 bzero(&ndi->ndi, sizeof(ndi->ndi));
1345 ndi->ndi.linkmtu = IN6_LINKMTU(ifp);
1346 ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu;
1347 ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable;
1348 ndi->ndi.reachable = ND_IFINFO(ifp)->reachable;
1349 ndi->ndi.retrans = ND_IFINFO(ifp)->retrans;
1350 ndi->ndi.flags = ND_IFINFO(ifp)->flags;
1351 ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm;
1352 ndi->ndi.chlim = ND_IFINFO(ifp)->chlim;
1353 break;
1354 case SIOCGIFINFO_IN6:
1355 ndi->ndi = *ND_IFINFO(ifp);
1356 break;
1357 case SIOCSIFINFO_FLAGS:
1358 ND_IFINFO(ifp)->flags = ndi->ndi.flags;
1359 break;
1360 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1361 /* flush default router list */
1362 /*
1363 * xxx sumikawa: should not delete route if default
1364 * route equals to the top of default router list
1365 */
1366 bzero(&any, sizeof(any));
1367 defrouter_delreq(&any, 0);
1368 defrouter_select();
1369 /* xxx sumikawa: flush prefix list */
1370 break;
1371 case SIOCSPFXFLUSH_IN6:
1372 {
1373 /* flush all the prefix advertised by routers */
1374 struct nd_prefix *pr, *next;
1375
1376 s = splsoftnet();
1377 for (pr = nd_prefix.lh_first; pr; pr = next) {
1378 next = pr->ndpr_next;
1379 if (!IN6_IS_ADDR_UNSPECIFIED(&pr->ndpr_addr))
1380 in6_ifdel(pr->ndpr_ifp, &pr->ndpr_addr);
1381 prelist_remove(pr);
1382 }
1383 splx(s);
1384 break;
1385 }
1386 case SIOCSRTRFLUSH_IN6:
1387 {
1388 /* flush all the default routers */
1389 struct nd_defrouter *dr, *next;
1390
1391 s = splsoftnet();
1392 if ((dr = TAILQ_FIRST(&nd_defrouter)) != NULL) {
1393 /*
1394 * The first entry of the list may be stored in
1395 * the routing table, so we'll delete it later.
1396 */
1397 for (dr = TAILQ_NEXT(dr, dr_entry); dr; dr = next) {
1398 next = TAILQ_NEXT(dr, dr_entry);
1399 defrtrlist_del(dr);
1400 }
1401 defrtrlist_del(TAILQ_FIRST(&nd_defrouter));
1402 }
1403 splx(s);
1404 break;
1405 }
1406 case SIOCGNBRINFO_IN6:
1407 {
1408 struct llinfo_nd6 *ln;
1409 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1410
1411 /*
1412 * XXX: KAME specific hack for scoped addresses
1413 * XXXX: for other scopes than link-local?
1414 */
1415 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) ||
1416 IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) {
1417 u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2];
1418
1419 if (*idp == 0)
1420 *idp = htons(ifp->if_index);
1421 }
1422
1423 s = splsoftnet();
1424 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL) {
1425 error = EINVAL;
1426 splx(s);
1427 break;
1428 }
1429 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1430 nbi->state = ln->ln_state;
1431 nbi->asked = ln->ln_asked;
1432 nbi->isrouter = ln->ln_router;
1433 nbi->expire = ln->ln_expire;
1434 splx(s);
1435
1436 break;
1437 }
1438 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1439 ndif->ifindex = nd6_defifindex;
1440 break;
1441 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1442 return(nd6_setdefaultiface(ndif->ifindex));
1443 break;
1444 }
1445 return(error);
1446 }
1447
1448 /*
1449 * Create neighbor cache entry and cache link-layer address,
1450 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1451 */
1452 struct rtentry *
1453 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
1454 struct ifnet *ifp;
1455 struct in6_addr *from;
1456 char *lladdr;
1457 int lladdrlen;
1458 int type; /* ICMP6 type */
1459 int code; /* type dependent information */
1460 {
1461 struct rtentry *rt = NULL;
1462 struct llinfo_nd6 *ln = NULL;
1463 int is_newentry;
1464 struct sockaddr_dl *sdl = NULL;
1465 int do_update;
1466 int olladdr;
1467 int llchange;
1468 int newstate = 0;
1469 long time_second = time.tv_sec;
1470
1471 if (!ifp)
1472 panic("ifp == NULL in nd6_cache_lladdr");
1473 if (!from)
1474 panic("from == NULL in nd6_cache_lladdr");
1475
1476 /* nothing must be updated for unspecified address */
1477 if (IN6_IS_ADDR_UNSPECIFIED(from))
1478 return NULL;
1479
1480 /*
1481 * Validation about ifp->if_addrlen and lladdrlen must be done in
1482 * the caller.
1483 *
1484 * XXX If the link does not have link-layer adderss, what should
1485 * we do? (ifp->if_addrlen == 0)
1486 * Spec says nothing in sections for RA, RS and NA. There's small
1487 * description on it in NS section (RFC 2461 7.2.3).
1488 */
1489
1490 rt = nd6_lookup(from, 0, ifp);
1491 if (!rt) {
1492 #if 0
1493 /* nothing must be done if there's no lladdr */
1494 if (!lladdr || !lladdrlen)
1495 return NULL;
1496 #endif
1497
1498 rt = nd6_lookup(from, 1, ifp);
1499 is_newentry = 1;
1500 } else {
1501 /* do nothing if static ndp is set */
1502 if (rt->rt_flags & RTF_STATIC)
1503 return NULL;
1504 is_newentry = 0;
1505 }
1506
1507 if (!rt)
1508 return NULL;
1509 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1510 fail:
1511 (void)nd6_free(rt, 0);
1512 return NULL;
1513 }
1514 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1515 if (!ln)
1516 goto fail;
1517 if (!rt->rt_gateway)
1518 goto fail;
1519 if (rt->rt_gateway->sa_family != AF_LINK)
1520 goto fail;
1521 sdl = SDL(rt->rt_gateway);
1522
1523 olladdr = (sdl->sdl_alen) ? 1 : 0;
1524 if (olladdr && lladdr) {
1525 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1526 llchange = 1;
1527 else
1528 llchange = 0;
1529 } else
1530 llchange = 0;
1531
1532 /*
1533 * newentry olladdr lladdr llchange (*=record)
1534 * 0 n n -- (1)
1535 * 0 y n -- (2)
1536 * 0 n y -- (3) * STALE
1537 * 0 y y n (4) *
1538 * 0 y y y (5) * STALE
1539 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1540 * 1 -- y -- (7) * STALE
1541 */
1542
1543 if (lladdr) { /* (3-5) and (7) */
1544 /*
1545 * Record source link-layer address
1546 * XXX is it dependent to ifp->if_type?
1547 */
1548 sdl->sdl_alen = ifp->if_addrlen;
1549 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1550 }
1551
1552 if (!is_newentry) {
1553 if ((!olladdr && lladdr) /* (3) */
1554 || (olladdr && lladdr && llchange)) { /* (5) */
1555 do_update = 1;
1556 newstate = ND6_LLINFO_STALE;
1557 } else /* (1-2,4) */
1558 do_update = 0;
1559 } else {
1560 do_update = 1;
1561 if (!lladdr) /* (6) */
1562 newstate = ND6_LLINFO_NOSTATE;
1563 else /* (7) */
1564 newstate = ND6_LLINFO_STALE;
1565 }
1566
1567 if (do_update) {
1568 /*
1569 * Update the state of the neighbor cache.
1570 */
1571 ln->ln_state = newstate;
1572
1573 if (ln->ln_state == ND6_LLINFO_STALE) {
1574 /*
1575 * XXX: since nd6_output() below will cause
1576 * state tansition to DELAY and reset the timer,
1577 * we must set the timer now, although it is actually
1578 * meaningless.
1579 */
1580 ln->ln_expire = time_second + nd6_gctimer;
1581
1582 if (ln->ln_hold) {
1583 /*
1584 * we assume ifp is not a p2p here, so just
1585 * set the 2nd argument as the 1st one.
1586 */
1587 nd6_output(ifp, ifp, ln->ln_hold,
1588 (struct sockaddr_in6 *)rt_key(rt),
1589 rt);
1590 ln->ln_hold = NULL;
1591 }
1592 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1593 /* probe right away */
1594 ln->ln_expire = time_second;
1595 }
1596 }
1597
1598 /*
1599 * ICMP6 type dependent behavior.
1600 *
1601 * NS: clear IsRouter if new entry
1602 * RS: clear IsRouter
1603 * RA: set IsRouter if there's lladdr
1604 * redir: clear IsRouter if new entry
1605 *
1606 * RA case, (1):
1607 * The spec says that we must set IsRouter in the following cases:
1608 * - If lladdr exist, set IsRouter. This means (1-5).
1609 * - If it is old entry (!newentry), set IsRouter. This means (7).
1610 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1611 * A quetion arises for (1) case. (1) case has no lladdr in the
1612 * neighbor cache, this is similar to (6).
1613 * This case is rare but we figured that we MUST NOT set IsRouter.
1614 *
1615 * newentry olladdr lladdr llchange NS RS RA redir
1616 * D R
1617 * 0 n n -- (1) c ? s
1618 * 0 y n -- (2) c s s
1619 * 0 n y -- (3) c s s
1620 * 0 y y n (4) c s s
1621 * 0 y y y (5) c s s
1622 * 1 -- n -- (6) c c c s
1623 * 1 -- y -- (7) c c s c s
1624 *
1625 * (c=clear s=set)
1626 */
1627 switch (type & 0xff) {
1628 case ND_NEIGHBOR_SOLICIT:
1629 /*
1630 * New entry must have is_router flag cleared.
1631 */
1632 if (is_newentry) /* (6-7) */
1633 ln->ln_router = 0;
1634 break;
1635 case ND_REDIRECT:
1636 /*
1637 * If the icmp is a redirect to a better router, always set the
1638 * is_router flag. Otherwise, if the entry is newly created,
1639 * clear the flag. [RFC 2461, sec 8.3]
1640 */
1641 if (code == ND_REDIRECT_ROUTER)
1642 ln->ln_router = 1;
1643 else if (is_newentry) /* (6-7) */
1644 ln->ln_router = 0;
1645 break;
1646 case ND_ROUTER_SOLICIT:
1647 /*
1648 * is_router flag must always be cleared.
1649 */
1650 ln->ln_router = 0;
1651 break;
1652 case ND_ROUTER_ADVERT:
1653 /*
1654 * Mark an entry with lladdr as a router.
1655 */
1656 if ((!is_newentry && (olladdr || lladdr)) /* (2-5) */
1657 || (is_newentry && lladdr)) { /* (7) */
1658 ln->ln_router = 1;
1659 }
1660 break;
1661 }
1662
1663 /*
1664 * When the link-layer address of a router changes, select the
1665 * best router again. In particular, when the neighbor entry is newly
1666 * created, it might affect the selection policy.
1667 * Question: can we restrict the first condition to the "is_newentry"
1668 * case?
1669 * XXX: when we hear an RA from a new router with the link-layer
1670 * address option, defrouter_select() is called twice, since
1671 * defrtrlist_update called the function as well. However, I believe
1672 * we can compromise the overhead, since it only happens the first
1673 * time.
1674 * XXX: although defrouter_select() should not have a bad effect
1675 * for those are not autoconfigured hosts, we explicitly avoid such
1676 * cases for safety.
1677 */
1678 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1679 defrouter_select();
1680
1681 return rt;
1682 }
1683
1684 static void
1685 nd6_slowtimo(ignored_arg)
1686 void *ignored_arg;
1687 {
1688 int s = splsoftnet();
1689 struct nd_ifinfo *nd6if;
1690 struct ifnet *ifp;
1691
1692 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1693 nd6_slowtimo, NULL);
1694 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
1695 {
1696 nd6if = ND_IFINFO(ifp);
1697 if (nd6if->basereachable && /* already initialized */
1698 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1699 /*
1700 * Since reachable time rarely changes by router
1701 * advertisements, we SHOULD insure that a new random
1702 * value gets recomputed at least once every few hours.
1703 * (RFC 2461, 6.3.4)
1704 */
1705 nd6if->recalctm = nd6_recalc_reachtm_interval;
1706 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1707 }
1708 }
1709 splx(s);
1710 }
1711
1712 #define senderr(e) { error = (e); goto bad;}
1713 int
1714 nd6_output(ifp, origifp, m0, dst, rt0)
1715 struct ifnet *ifp;
1716 struct ifnet *origifp;
1717 struct mbuf *m0;
1718 struct sockaddr_in6 *dst;
1719 struct rtentry *rt0;
1720 {
1721 struct mbuf *m = m0;
1722 struct rtentry *rt = rt0;
1723 struct sockaddr_in6 *gw6 = NULL;
1724 struct llinfo_nd6 *ln = NULL;
1725 int error = 0;
1726 long time_second = time.tv_sec;
1727
1728 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1729 goto sendpkt;
1730
1731 if (nd6_need_cache(ifp) == 0)
1732 goto sendpkt;
1733
1734 /*
1735 * next hop determination. This routine is derived from ether_outpout.
1736 */
1737 if (rt) {
1738 if ((rt->rt_flags & RTF_UP) == 0) {
1739 if ((rt0 = rt = rtalloc1((struct sockaddr *)dst, 1)) !=
1740 NULL)
1741 {
1742 rt->rt_refcnt--;
1743 if (rt->rt_ifp != ifp) {
1744 /* XXX: loop care? */
1745 return nd6_output(ifp, origifp, m0,
1746 dst, rt);
1747 }
1748 } else
1749 senderr(EHOSTUNREACH);
1750 }
1751
1752 if (rt->rt_flags & RTF_GATEWAY) {
1753 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1754
1755 /*
1756 * We skip link-layer address resolution and NUD
1757 * if the gateway is not a neighbor from ND point
1758 * of view, regardless the value of nd_ifinfo.flags.
1759 * The second condition is a bit tricky; we skip
1760 * if the gateway is our own address, which is
1761 * sometimes used to install a route to a p2p link.
1762 */
1763 if (!nd6_is_addr_neighbor(gw6, ifp) ||
1764 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1765 /*
1766 * We allow this kind of tricky route only
1767 * when the outgoing interface is p2p.
1768 * XXX: we may need a more generic rule here.
1769 */
1770 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1771 senderr(EHOSTUNREACH);
1772
1773 goto sendpkt;
1774 }
1775
1776 if (rt->rt_gwroute == 0)
1777 goto lookup;
1778 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
1779 rtfree(rt); rt = rt0;
1780 lookup:
1781 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
1782 if ((rt = rt->rt_gwroute) == 0)
1783 senderr(EHOSTUNREACH);
1784 /* the "G" test below also prevents rt == rt0 */
1785 if ((rt->rt_flags & RTF_GATEWAY) ||
1786 (rt->rt_ifp != ifp)) {
1787 rt->rt_refcnt--;
1788 rt0->rt_gwroute = 0;
1789 senderr(EHOSTUNREACH);
1790 }
1791 }
1792 }
1793 }
1794
1795 /*
1796 * Address resolution or Neighbor Unreachability Detection
1797 * for the next hop.
1798 * At this point, the destination of the packet must be a unicast
1799 * or an anycast address(i.e. not a multicast).
1800 */
1801
1802 /* Look up the neighbor cache for the nexthop */
1803 if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
1804 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1805 else {
1806 /*
1807 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1808 * the condition below is not very efficient. But we believe
1809 * it is tolerable, because this should be a rare case.
1810 */
1811 if (nd6_is_addr_neighbor(dst, ifp) &&
1812 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
1813 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1814 }
1815 if (!ln || !rt) {
1816 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
1817 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
1818 log(LOG_DEBUG,
1819 "nd6_output: can't allocate llinfo for %s "
1820 "(ln=%p, rt=%p)\n",
1821 ip6_sprintf(&dst->sin6_addr), ln, rt);
1822 senderr(EIO); /* XXX: good error? */
1823 }
1824
1825 goto sendpkt; /* send anyway */
1826 }
1827
1828 /* We don't have to do link-layer address resolution on a p2p link. */
1829 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
1830 ln->ln_state < ND6_LLINFO_REACHABLE) {
1831 ln->ln_state = ND6_LLINFO_STALE;
1832 ln->ln_expire = time_second + nd6_gctimer;
1833 }
1834
1835 /*
1836 * The first time we send a packet to a neighbor whose entry is
1837 * STALE, we have to change the state to DELAY and a sets a timer to
1838 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
1839 * neighbor unreachability detection on expiration.
1840 * (RFC 2461 7.3.3)
1841 */
1842 if (ln->ln_state == ND6_LLINFO_STALE) {
1843 ln->ln_asked = 0;
1844 ln->ln_state = ND6_LLINFO_DELAY;
1845 ln->ln_expire = time_second + nd6_delay;
1846 }
1847
1848 /*
1849 * If the neighbor cache entry has a state other than INCOMPLETE
1850 * (i.e. its link-layer address is already resolved), just
1851 * send the packet.
1852 */
1853 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1854 goto sendpkt;
1855
1856 /*
1857 * There is a neighbor cache entry, but no ethernet address
1858 * response yet. Replace the held mbuf (if any) with this
1859 * latest one.
1860 */
1861 if (ln->ln_state == ND6_LLINFO_NOSTATE)
1862 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1863 if (ln->ln_hold)
1864 m_freem(ln->ln_hold);
1865 ln->ln_hold = m;
1866 /*
1867 * If there has been no NS for the neighbor after entering the
1868 * INCOMPLETE state, send the first solicitation.
1869 * Technically this can be against the rate-limiting rule described in
1870 * Section 7.2.2 of RFC 2461 because the interval to the next scheduled
1871 * solicitation issued in nd6_timer() may be less than the specified
1872 * retransmission time. This should not be a problem from a practical
1873 * point of view, because we'll typically see an immediate response
1874 * from the neighbor, which suppresses the succeeding solicitations.
1875 */
1876 if (ln->ln_expire && ln->ln_asked == 0) {
1877 ln->ln_asked++;
1878 ln->ln_expire = time_second +
1879 ND6_RETRANS_SEC(ND_IFINFO(ifp)->retrans);
1880 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
1881 }
1882 return(0);
1883
1884 sendpkt:
1885
1886 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
1887 return((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
1888 rt));
1889 }
1890 return((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
1891
1892 bad:
1893 if (m)
1894 m_freem(m);
1895 return (error);
1896 }
1897 #undef senderr
1898
1899 int
1900 nd6_need_cache(ifp)
1901 struct ifnet *ifp;
1902 {
1903 /*
1904 * XXX: we currently do not make neighbor cache on any interface
1905 * other than ARCnet, Ethernet, FDDI and GIF.
1906 *
1907 * RFC2893 says:
1908 * - unidirectional tunnels needs no ND
1909 */
1910 switch (ifp->if_type) {
1911 case IFT_ARCNET:
1912 case IFT_ETHER:
1913 case IFT_FDDI:
1914 case IFT_IEEE1394:
1915 case IFT_GIF: /* XXX need more cases? */
1916 return(1);
1917 default:
1918 return(0);
1919 }
1920 }
1921
1922 int
1923 nd6_storelladdr(ifp, rt, m, dst, desten)
1924 struct ifnet *ifp;
1925 struct rtentry *rt;
1926 struct mbuf *m;
1927 struct sockaddr *dst;
1928 u_char *desten;
1929 {
1930 struct sockaddr_dl *sdl;
1931
1932 if (m->m_flags & M_MCAST) {
1933 switch (ifp->if_type) {
1934 case IFT_ETHER:
1935 case IFT_FDDI:
1936 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
1937 desten);
1938 return(1);
1939 case IFT_IEEE1394:
1940 bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen);
1941 return(1);
1942 case IFT_ARCNET:
1943 *desten = 0;
1944 return(1);
1945 default:
1946 m_freem(m);
1947 return(0);
1948 }
1949 }
1950
1951 if (rt == NULL) {
1952 /* this could happen, if we could not allocate memory */
1953 m_freem(m);
1954 return(0);
1955 }
1956 if (rt->rt_gateway->sa_family != AF_LINK) {
1957 printf("nd6_storelladdr: something odd happens\n");
1958 m_freem(m);
1959 return(0);
1960 }
1961 sdl = SDL(rt->rt_gateway);
1962 if (sdl->sdl_alen == 0) {
1963 /* this should be impossible, but we bark here for debugging */
1964 printf("nd6_storelladdr: sdl_alen == 0, dst=%s, if=%s\n",
1965 ip6_sprintf(&SIN6(dst)->sin6_addr), if_name(ifp));
1966 m_freem(m);
1967 return(0);
1968 }
1969
1970 bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
1971 return(1);
1972 }
1973