nd6.c revision 1.80 1 /* $NetBSD: nd6.c,v 1.80 2003/02/25 22:17:47 he Exp $ */
2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.80 2003/02/25 22:17:47 he Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/callout.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 #include <sys/time.h>
44 #include <sys/kernel.h>
45 #include <sys/protosw.h>
46 #include <sys/errno.h>
47 #include <sys/ioctl.h>
48 #include <sys/syslog.h>
49 #include <sys/queue.h>
50
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_types.h>
54 #include <net/route.h>
55 #include <net/if_ether.h>
56 #include <net/if_fddi.h>
57 #include <net/if_arc.h>
58
59 #include <netinet/in.h>
60 #include <netinet6/in6_var.h>
61 #include <netinet/ip6.h>
62 #include <netinet6/ip6_var.h>
63 #include <netinet6/nd6.h>
64 #include <netinet/icmp6.h>
65
66 #include "loop.h"
67 extern struct ifnet loif[NLOOP];
68
69 #include <net/net_osdep.h>
70
71 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
72 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
73
74 #define SIN6(s) ((struct sockaddr_in6 *)s)
75 #define SDL(s) ((struct sockaddr_dl *)s)
76
77 /* timer values */
78 int nd6_prune = 1; /* walk list every 1 seconds */
79 int nd6_delay = 5; /* delay first probe time 5 second */
80 int nd6_umaxtries = 3; /* maximum unicast query */
81 int nd6_mmaxtries = 3; /* maximum multicast query */
82 int nd6_useloopback = 1; /* use loopback interface for local traffic */
83 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
84
85 /* preventing too many loops in ND option parsing */
86 int nd6_maxndopt = 10; /* max # of ND options allowed */
87
88 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
89
90 #ifdef ND6_DEBUG
91 int nd6_debug = 1;
92 #else
93 int nd6_debug = 0;
94 #endif
95
96 /* for debugging? */
97 static int nd6_inuse, nd6_allocated;
98
99 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
100 struct nd_drhead nd_defrouter;
101 struct nd_prhead nd_prefix = { 0 };
102
103 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
104 static struct sockaddr_in6 all1_sa;
105
106 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
107 static void nd6_slowtimo __P((void *));
108 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
109
110 struct callout nd6_slowtimo_ch = CALLOUT_INITIALIZER;
111 struct callout nd6_timer_ch = CALLOUT_INITIALIZER;
112
113 static int fill_drlist __P((void *, size_t *, size_t));
114 static int fill_prlist __P((void *, size_t *, size_t));
115
116 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
117
118 void
119 nd6_init()
120 {
121 static int nd6_init_done = 0;
122 int i;
123
124 if (nd6_init_done) {
125 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
126 return;
127 }
128
129 all1_sa.sin6_family = AF_INET6;
130 all1_sa.sin6_len = sizeof(struct sockaddr_in6);
131 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
132 all1_sa.sin6_addr.s6_addr[i] = 0xff;
133
134 /* initialization of the default router list */
135 TAILQ_INIT(&nd_defrouter);
136
137 nd6_init_done = 1;
138
139 /* start timer */
140 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
141 nd6_slowtimo, NULL);
142 }
143
144 struct nd_ifinfo *
145 nd6_ifattach(ifp)
146 struct ifnet *ifp;
147 {
148 struct nd_ifinfo *nd;
149
150 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
151 bzero(nd, sizeof(*nd));
152
153 nd->initialized = 1;
154
155 nd->chlim = IPV6_DEFHLIM;
156 nd->basereachable = REACHABLE_TIME;
157 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
158 nd->retrans = RETRANS_TIMER;
159 /*
160 * Note that the default value of ip6_accept_rtadv is 0, which means
161 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
162 * here.
163 */
164 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
165
166 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
167 nd6_setmtu0(ifp, nd);
168
169 return nd;
170 }
171
172 void
173 nd6_ifdetach(nd)
174 struct nd_ifinfo *nd;
175 {
176
177 free(nd, M_IP6NDP);
178 }
179
180 void
181 nd6_setmtu(ifp)
182 struct ifnet *ifp;
183 {
184 nd6_setmtu0(ifp, ND_IFINFO(ifp));
185 }
186
187 void
188 nd6_setmtu0(ifp, ndi)
189 struct ifnet *ifp;
190 struct nd_ifinfo *ndi;
191 {
192 u_int32_t omaxmtu;
193
194 omaxmtu = ndi->maxmtu;
195
196 switch (ifp->if_type) {
197 case IFT_ARCNET:
198 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
199 break;
200 case IFT_FDDI:
201 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
202 break;
203 default:
204 ndi->maxmtu = ifp->if_mtu;
205 break;
206 }
207
208 /*
209 * Decreasing the interface MTU under IPV6 minimum MTU may cause
210 * undesirable situation. We thus notify the operator of the change
211 * explicitly. The check for omaxmtu is necessary to restrict the
212 * log to the case of changing the MTU, not initializing it.
213 */
214 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
215 log(LOG_NOTICE, "nd6_setmtu0: "
216 "new link MTU on %s (%lu) is too small for IPv6\n",
217 if_name(ifp), (unsigned long)ndi->maxmtu);
218 }
219
220 if (ndi->maxmtu > in6_maxmtu)
221 in6_setmaxmtu(); /* check all interfaces just in case */
222 }
223
224 void
225 nd6_option_init(opt, icmp6len, ndopts)
226 void *opt;
227 int icmp6len;
228 union nd_opts *ndopts;
229 {
230
231 bzero(ndopts, sizeof(*ndopts));
232 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
233 ndopts->nd_opts_last
234 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
235
236 if (icmp6len == 0) {
237 ndopts->nd_opts_done = 1;
238 ndopts->nd_opts_search = NULL;
239 }
240 }
241
242 /*
243 * Take one ND option.
244 */
245 struct nd_opt_hdr *
246 nd6_option(ndopts)
247 union nd_opts *ndopts;
248 {
249 struct nd_opt_hdr *nd_opt;
250 int olen;
251
252 if (!ndopts)
253 panic("ndopts == NULL in nd6_option");
254 if (!ndopts->nd_opts_last)
255 panic("uninitialized ndopts in nd6_option");
256 if (!ndopts->nd_opts_search)
257 return NULL;
258 if (ndopts->nd_opts_done)
259 return NULL;
260
261 nd_opt = ndopts->nd_opts_search;
262
263 /* make sure nd_opt_len is inside the buffer */
264 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
265 bzero(ndopts, sizeof(*ndopts));
266 return NULL;
267 }
268
269 olen = nd_opt->nd_opt_len << 3;
270 if (olen == 0) {
271 /*
272 * Message validation requires that all included
273 * options have a length that is greater than zero.
274 */
275 bzero(ndopts, sizeof(*ndopts));
276 return NULL;
277 }
278
279 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
280 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
281 /* option overruns the end of buffer, invalid */
282 bzero(ndopts, sizeof(*ndopts));
283 return NULL;
284 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
285 /* reached the end of options chain */
286 ndopts->nd_opts_done = 1;
287 ndopts->nd_opts_search = NULL;
288 }
289 return nd_opt;
290 }
291
292 /*
293 * Parse multiple ND options.
294 * This function is much easier to use, for ND routines that do not need
295 * multiple options of the same type.
296 */
297 int
298 nd6_options(ndopts)
299 union nd_opts *ndopts;
300 {
301 struct nd_opt_hdr *nd_opt;
302 int i = 0;
303
304 if (!ndopts)
305 panic("ndopts == NULL in nd6_options");
306 if (!ndopts->nd_opts_last)
307 panic("uninitialized ndopts in nd6_options");
308 if (!ndopts->nd_opts_search)
309 return 0;
310
311 while (1) {
312 nd_opt = nd6_option(ndopts);
313 if (!nd_opt && !ndopts->nd_opts_last) {
314 /*
315 * Message validation requires that all included
316 * options have a length that is greater than zero.
317 */
318 icmp6stat.icp6s_nd_badopt++;
319 bzero(ndopts, sizeof(*ndopts));
320 return -1;
321 }
322
323 if (!nd_opt)
324 goto skip1;
325
326 switch (nd_opt->nd_opt_type) {
327 case ND_OPT_SOURCE_LINKADDR:
328 case ND_OPT_TARGET_LINKADDR:
329 case ND_OPT_MTU:
330 case ND_OPT_REDIRECTED_HEADER:
331 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
332 nd6log((LOG_INFO,
333 "duplicated ND6 option found (type=%d)\n",
334 nd_opt->nd_opt_type));
335 /* XXX bark? */
336 } else {
337 ndopts->nd_opt_array[nd_opt->nd_opt_type]
338 = nd_opt;
339 }
340 break;
341 case ND_OPT_PREFIX_INFORMATION:
342 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
343 ndopts->nd_opt_array[nd_opt->nd_opt_type]
344 = nd_opt;
345 }
346 ndopts->nd_opts_pi_end =
347 (struct nd_opt_prefix_info *)nd_opt;
348 break;
349 default:
350 /*
351 * Unknown options must be silently ignored,
352 * to accomodate future extension to the protocol.
353 */
354 nd6log((LOG_DEBUG,
355 "nd6_options: unsupported option %d - "
356 "option ignored\n", nd_opt->nd_opt_type));
357 }
358
359 skip1:
360 i++;
361 if (i > nd6_maxndopt) {
362 icmp6stat.icp6s_nd_toomanyopt++;
363 nd6log((LOG_INFO, "too many loop in nd opt\n"));
364 break;
365 }
366
367 if (ndopts->nd_opts_done)
368 break;
369 }
370
371 return 0;
372 }
373
374 /*
375 * ND6 timer routine to expire default route list and prefix list
376 */
377 void
378 nd6_timer(ignored_arg)
379 void *ignored_arg;
380 {
381 int s;
382 struct llinfo_nd6 *ln;
383 struct nd_defrouter *dr;
384 struct nd_prefix *pr;
385 long time_second = time.tv_sec;
386 struct ifnet *ifp;
387 struct in6_ifaddr *ia6, *nia6;
388 struct in6_addrlifetime *lt6;
389
390 s = splsoftnet();
391 callout_reset(&nd6_timer_ch, nd6_prune * hz,
392 nd6_timer, NULL);
393
394 ln = llinfo_nd6.ln_next;
395 while (ln && ln != &llinfo_nd6) {
396 struct rtentry *rt;
397 struct sockaddr_in6 *dst;
398 struct llinfo_nd6 *next = ln->ln_next;
399 /* XXX: used for the DELAY case only: */
400 struct nd_ifinfo *ndi = NULL;
401
402 if ((rt = ln->ln_rt) == NULL) {
403 ln = next;
404 continue;
405 }
406 if ((ifp = rt->rt_ifp) == NULL) {
407 ln = next;
408 continue;
409 }
410 ndi = ND_IFINFO(ifp);
411 dst = (struct sockaddr_in6 *)rt_key(rt);
412
413 if (ln->ln_expire > time_second) {
414 ln = next;
415 continue;
416 }
417
418 /* sanity check */
419 if (!rt)
420 panic("rt=0 in nd6_timer(ln=%p)", ln);
421 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
422 panic("rt_llinfo(%p) is not equal to ln(%p)",
423 rt->rt_llinfo, ln);
424 if (!dst)
425 panic("dst=0 in nd6_timer(ln=%p)", ln);
426
427 switch (ln->ln_state) {
428 case ND6_LLINFO_INCOMPLETE:
429 if (ln->ln_asked < nd6_mmaxtries) {
430 ln->ln_asked++;
431 ln->ln_expire = time_second +
432 ND6_RETRANS_SEC(ND_IFINFO(ifp)->retrans);
433 nd6_ns_output(ifp, NULL, &dst->sin6_addr,
434 ln, 0);
435 } else {
436 struct mbuf *m = ln->ln_hold;
437 if (m) {
438 /*
439 * Fake rcvif to make the ICMP error
440 * more helpful in diagnosing for the
441 * receiver.
442 * XXX: should we consider
443 * older rcvif?
444 */
445 m->m_pkthdr.rcvif = rt->rt_ifp;
446
447 icmp6_error(m, ICMP6_DST_UNREACH,
448 ICMP6_DST_UNREACH_ADDR, 0);
449 ln->ln_hold = NULL;
450 }
451 next = nd6_free(rt, 0);
452 }
453 break;
454 case ND6_LLINFO_REACHABLE:
455 if (ln->ln_expire) {
456 ln->ln_state = ND6_LLINFO_STALE;
457 ln->ln_expire = time_second + nd6_gctimer;
458 }
459 break;
460
461 case ND6_LLINFO_STALE:
462 /* Garbage Collection(RFC 2461 5.3) */
463 if (ln->ln_expire)
464 next = nd6_free(rt, 1);
465 break;
466
467 case ND6_LLINFO_DELAY:
468 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
469 /* We need NUD */
470 ln->ln_asked = 1;
471 ln->ln_state = ND6_LLINFO_PROBE;
472 ln->ln_expire = time_second +
473 ND6_RETRANS_SEC(ndi->retrans);
474 nd6_ns_output(ifp, &dst->sin6_addr,
475 &dst->sin6_addr, ln, 0);
476 } else {
477 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
478 ln->ln_expire = time_second + nd6_gctimer;
479 }
480 break;
481 case ND6_LLINFO_PROBE:
482 if (ln->ln_asked < nd6_umaxtries) {
483 ln->ln_asked++;
484 ln->ln_expire = time_second +
485 ND6_RETRANS_SEC(ND_IFINFO(ifp)->retrans);
486 nd6_ns_output(ifp, &dst->sin6_addr,
487 &dst->sin6_addr, ln, 0);
488 } else {
489 next = nd6_free(rt, 0);
490 }
491 break;
492 }
493 ln = next;
494 }
495
496 /* expire default router list */
497 dr = TAILQ_FIRST(&nd_defrouter);
498 while (dr) {
499 if (dr->expire && dr->expire < time_second) {
500 struct nd_defrouter *t;
501 t = TAILQ_NEXT(dr, dr_entry);
502 defrtrlist_del(dr);
503 dr = t;
504 } else {
505 dr = TAILQ_NEXT(dr, dr_entry);
506 }
507 }
508
509 /*
510 * expire interface addresses.
511 * in the past the loop was inside prefix expiry processing.
512 * However, from a stricter speci-confrmance standpoint, we should
513 * rather separate address lifetimes and prefix lifetimes.
514 */
515 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
516 nia6 = ia6->ia_next;
517 /* check address lifetime */
518 lt6 = &ia6->ia6_lifetime;
519 if (IFA6_IS_INVALID(ia6)) {
520 in6_purgeaddr(&ia6->ia_ifa);
521 }
522 if (IFA6_IS_DEPRECATED(ia6)) {
523 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
524 } else {
525 /*
526 * A new RA might have made a deprecated address
527 * preferred.
528 */
529 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
530 }
531 }
532
533 /* expire prefix list */
534 pr = nd_prefix.lh_first;
535 while (pr) {
536 /*
537 * check prefix lifetime.
538 * since pltime is just for autoconf, pltime processing for
539 * prefix is not necessary.
540 */
541 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
542 time_second - pr->ndpr_lastupdate > pr->ndpr_vltime) {
543 struct nd_prefix *t;
544 t = pr->ndpr_next;
545
546 /*
547 * address expiration and prefix expiration are
548 * separate. NEVER perform in6_purgeaddr here.
549 */
550
551 prelist_remove(pr);
552 pr = t;
553 } else
554 pr = pr->ndpr_next;
555 }
556 splx(s);
557 }
558
559 /*
560 * Nuke neighbor cache/prefix/default router management table, right before
561 * ifp goes away.
562 */
563 void
564 nd6_purge(ifp)
565 struct ifnet *ifp;
566 {
567 struct llinfo_nd6 *ln, *nln;
568 struct nd_defrouter *dr, *ndr;
569 struct nd_prefix *pr, *npr;
570
571 /*
572 * Nuke default router list entries toward ifp.
573 * We defer removal of default router list entries that is installed
574 * in the routing table, in order to keep additional side effects as
575 * small as possible.
576 */
577 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
578 ndr = TAILQ_NEXT(dr, dr_entry);
579 if (dr->installed)
580 continue;
581
582 if (dr->ifp == ifp)
583 defrtrlist_del(dr);
584 }
585 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
586 ndr = TAILQ_NEXT(dr, dr_entry);
587 if (!dr->installed)
588 continue;
589
590 if (dr->ifp == ifp)
591 defrtrlist_del(dr);
592 }
593
594 /* Nuke prefix list entries toward ifp */
595 for (pr = nd_prefix.lh_first; pr; pr = npr) {
596 npr = pr->ndpr_next;
597 if (pr->ndpr_ifp == ifp) {
598 /*
599 * Previously, pr->ndpr_addr is removed as well,
600 * but I strongly believe we don't have to do it.
601 * nd6_purge() is only called from in6_ifdetach(),
602 * which removes all the associated interface addresses
603 * by itself.
604 * (jinmei (at) kame.net 20010129)
605 */
606 prelist_remove(pr);
607 }
608 }
609
610 /* cancel default outgoing interface setting */
611 if (nd6_defifindex == ifp->if_index)
612 nd6_setdefaultiface(0);
613
614 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
615 /* refresh default router list */
616 defrouter_select();
617 }
618
619 /*
620 * Nuke neighbor cache entries for the ifp.
621 * Note that rt->rt_ifp may not be the same as ifp,
622 * due to KAME goto ours hack. See RTM_RESOLVE case in
623 * nd6_rtrequest(), and ip6_input().
624 */
625 ln = llinfo_nd6.ln_next;
626 while (ln && ln != &llinfo_nd6) {
627 struct rtentry *rt;
628 struct sockaddr_dl *sdl;
629
630 nln = ln->ln_next;
631 rt = ln->ln_rt;
632 if (rt && rt->rt_gateway &&
633 rt->rt_gateway->sa_family == AF_LINK) {
634 sdl = (struct sockaddr_dl *)rt->rt_gateway;
635 if (sdl->sdl_index == ifp->if_index)
636 nln = nd6_free(rt, 0);
637 }
638 ln = nln;
639 }
640 }
641
642 struct rtentry *
643 nd6_lookup(addr6, create, ifp)
644 struct in6_addr *addr6;
645 int create;
646 struct ifnet *ifp;
647 {
648 struct rtentry *rt;
649 struct sockaddr_in6 sin6;
650
651 bzero(&sin6, sizeof(sin6));
652 sin6.sin6_len = sizeof(struct sockaddr_in6);
653 sin6.sin6_family = AF_INET6;
654 sin6.sin6_addr = *addr6;
655 rt = rtalloc1((struct sockaddr *)&sin6, create);
656 if (rt && (rt->rt_flags & RTF_LLINFO) == 0) {
657 /*
658 * This is the case for the default route.
659 * If we want to create a neighbor cache for the address, we
660 * should free the route for the destination and allocate an
661 * interface route.
662 */
663 if (create) {
664 RTFREE(rt);
665 rt = 0;
666 }
667 }
668 if (!rt) {
669 if (create && ifp) {
670 int e;
671
672 /*
673 * If no route is available and create is set,
674 * we allocate a host route for the destination
675 * and treat it like an interface route.
676 * This hack is necessary for a neighbor which can't
677 * be covered by our own prefix.
678 */
679 struct ifaddr *ifa =
680 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
681 if (ifa == NULL)
682 return (NULL);
683
684 /*
685 * Create a new route. RTF_LLINFO is necessary
686 * to create a Neighbor Cache entry for the
687 * destination in nd6_rtrequest which will be
688 * called in rtrequest via ifa->ifa_rtrequest.
689 */
690 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
691 ifa->ifa_addr, (struct sockaddr *)&all1_sa,
692 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
693 ~RTF_CLONING, &rt)) != 0) {
694 #if 0
695 log(LOG_ERR,
696 "nd6_lookup: failed to add route for a "
697 "neighbor(%s), errno=%d\n",
698 ip6_sprintf(addr6), e);
699 #endif
700 return (NULL);
701 }
702 if (rt == NULL)
703 return (NULL);
704 if (rt->rt_llinfo) {
705 struct llinfo_nd6 *ln =
706 (struct llinfo_nd6 *)rt->rt_llinfo;
707 ln->ln_state = ND6_LLINFO_NOSTATE;
708 }
709 } else
710 return (NULL);
711 }
712 rt->rt_refcnt--;
713 /*
714 * Validation for the entry.
715 * Note that the check for rt_llinfo is necessary because a cloned
716 * route from a parent route that has the L flag (e.g. the default
717 * route to a p2p interface) may have the flag, too, while the
718 * destination is not actually a neighbor.
719 * XXX: we can't use rt->rt_ifp to check for the interface, since
720 * it might be the loopback interface if the entry is for our
721 * own address on a non-loopback interface. Instead, we should
722 * use rt->rt_ifa->ifa_ifp, which would specify the REAL
723 * interface.
724 */
725 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
726 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
727 (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
728 if (create) {
729 nd6log((LOG_DEBUG,
730 "nd6_lookup: failed to lookup %s (if = %s)\n",
731 ip6_sprintf(addr6),
732 ifp ? if_name(ifp) : "unspec"));
733 }
734 return (NULL);
735 }
736 return (rt);
737 }
738
739 /*
740 * Detect if a given IPv6 address identifies a neighbor on a given link.
741 * XXX: should take care of the destination of a p2p link?
742 */
743 int
744 nd6_is_addr_neighbor(addr, ifp)
745 struct sockaddr_in6 *addr;
746 struct ifnet *ifp;
747 {
748 struct nd_prefix *pr;
749 struct rtentry *rt;
750
751 /*
752 * A link-local address is always a neighbor.
753 * XXX: we should use the sin6_scope_id field rather than the embedded
754 * interface index.
755 * XXX: a link does not necessarily specify a single interface.
756 */
757 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) &&
758 ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index)
759 return (1);
760
761 /*
762 * If the address matches one of our on-link prefixes, it should be a
763 * neighbor.
764 */
765 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
766 if (pr->ndpr_ifp != ifp)
767 continue;
768
769 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
770 continue;
771
772 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
773 &addr->sin6_addr, &pr->ndpr_mask))
774 return (1);
775 }
776
777 /*
778 * If the default router list is empty, all addresses are regarded
779 * as on-link, and thus, as a neighbor.
780 * XXX: we restrict the condition to hosts, because routers usually do
781 * not have the "default router list".
782 */
783 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
784 nd6_defifindex == ifp->if_index) {
785 return (1);
786 }
787
788 /*
789 * Even if the address matches none of our addresses, it might be
790 * in the neighbor cache.
791 */
792 if ((rt = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL)
793 return (1);
794
795 return (0);
796 }
797
798 /*
799 * Free an nd6 llinfo entry.
800 * Since the function would cause significant changes in the kernel, DO NOT
801 * make it global, unless you have a strong reason for the change, and are sure
802 * that the change is safe.
803 */
804 static struct llinfo_nd6 *
805 nd6_free(rt, gc)
806 struct rtentry *rt;
807 int gc;
808 {
809 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
810 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
811 struct nd_defrouter *dr;
812
813 /*
814 * we used to have pfctlinput(PRC_HOSTDEAD) here.
815 * even though it is not harmful, it was not really necessary.
816 */
817
818 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
819 int s;
820 s = splsoftnet();
821 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
822 rt->rt_ifp);
823
824 if (dr != NULL && dr->expire &&
825 ln->ln_state == ND6_LLINFO_STALE && gc) {
826 /*
827 * If the reason for the deletion is just garbage
828 * collection, and the neighbor is an active default
829 * router, do not delete it. Instead, reset the GC
830 * timer using the router's lifetime.
831 * Simply deleting the entry would affect default
832 * router selection, which is not necessarily a good
833 * thing, especially when we're using router preference
834 * values.
835 * XXX: the check for ln_state would be redundant,
836 * but we intentionally keep it just in case.
837 */
838 ln->ln_expire = dr->expire;
839 splx(s);
840 return (ln->ln_next);
841 }
842
843 if (ln->ln_router || dr) {
844 /*
845 * rt6_flush must be called whether or not the neighbor
846 * is in the Default Router List.
847 * See a corresponding comment in nd6_na_input().
848 */
849 rt6_flush(&in6, rt->rt_ifp);
850 }
851
852 if (dr) {
853 /*
854 * Unreachablity of a router might affect the default
855 * router selection and on-link detection of advertised
856 * prefixes.
857 */
858
859 /*
860 * Temporarily fake the state to choose a new default
861 * router and to perform on-link determination of
862 * prefixes correctly.
863 * Below the state will be set correctly,
864 * or the entry itself will be deleted.
865 */
866 ln->ln_state = ND6_LLINFO_INCOMPLETE;
867
868 /*
869 * Since defrouter_select() does not affect the
870 * on-link determination and MIP6 needs the check
871 * before the default router selection, we perform
872 * the check now.
873 */
874 pfxlist_onlink_check();
875
876 /*
877 * refresh default router list
878 */
879 defrouter_select();
880 }
881 splx(s);
882 }
883
884 /*
885 * Before deleting the entry, remember the next entry as the
886 * return value. We need this because pfxlist_onlink_check() above
887 * might have freed other entries (particularly the old next entry) as
888 * a side effect (XXX).
889 */
890 next = ln->ln_next;
891
892 /*
893 * Detach the route from the routing tree and the list of neighbor
894 * caches, and disable the route entry not to be used in already
895 * cached routes.
896 */
897 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
898 rt_mask(rt), 0, (struct rtentry **)0);
899
900 return (next);
901 }
902
903 /*
904 * Upper-layer reachability hint for Neighbor Unreachability Detection.
905 *
906 * XXX cost-effective metods?
907 */
908 void
909 nd6_nud_hint(rt, dst6, force)
910 struct rtentry *rt;
911 struct in6_addr *dst6;
912 int force;
913 {
914 struct llinfo_nd6 *ln;
915 long time_second = time.tv_sec;
916
917 /*
918 * If the caller specified "rt", use that. Otherwise, resolve the
919 * routing table by supplied "dst6".
920 */
921 if (!rt) {
922 if (!dst6)
923 return;
924 if (!(rt = nd6_lookup(dst6, 0, NULL)))
925 return;
926 }
927
928 if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
929 (rt->rt_flags & RTF_LLINFO) == 0 ||
930 !rt->rt_llinfo || !rt->rt_gateway ||
931 rt->rt_gateway->sa_family != AF_LINK) {
932 /* This is not a host route. */
933 return;
934 }
935
936 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
937 if (ln->ln_state < ND6_LLINFO_REACHABLE)
938 return;
939
940 /*
941 * if we get upper-layer reachability confirmation many times,
942 * it is possible we have false information.
943 */
944 if (!force) {
945 ln->ln_byhint++;
946 if (ln->ln_byhint > nd6_maxnudhint)
947 return;
948 }
949
950 ln->ln_state = ND6_LLINFO_REACHABLE;
951 if (ln->ln_expire)
952 ln->ln_expire = time_second + ND_IFINFO(rt->rt_ifp)->reachable;
953 }
954
955 void
956 nd6_rtrequest(req, rt, info)
957 int req;
958 struct rtentry *rt;
959 struct rt_addrinfo *info; /* xxx unused */
960 {
961 struct sockaddr *gate = rt->rt_gateway;
962 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
963 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
964 struct ifnet *ifp = rt->rt_ifp;
965 struct ifaddr *ifa;
966 long time_second = time.tv_sec;
967 int mine = 0;
968
969 if ((rt->rt_flags & RTF_GATEWAY) != 0)
970 return;
971
972 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
973 /*
974 * This is probably an interface direct route for a link
975 * which does not need neighbor caches (e.g. fe80::%lo0/64).
976 * We do not need special treatment below for such a route.
977 * Moreover, the RTF_LLINFO flag which would be set below
978 * would annoy the ndp(8) command.
979 */
980 return;
981 }
982
983 if (req == RTM_RESOLVE &&
984 (nd6_need_cache(ifp) == 0 || /* stf case */
985 !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) {
986 /*
987 * FreeBSD and BSD/OS often make a cloned host route based
988 * on a less-specific route (e.g. the default route).
989 * If the less specific route does not have a "gateway"
990 * (this is the case when the route just goes to a p2p or an
991 * stf interface), we'll mistakenly make a neighbor cache for
992 * the host route, and will see strange neighbor solicitation
993 * for the corresponding destination. In order to avoid the
994 * confusion, we check if the destination of the route is
995 * a neighbor in terms of neighbor discovery, and stop the
996 * process if not. Additionally, we remove the LLINFO flag
997 * so that ndp(8) will not try to get the neighbor information
998 * of the destination.
999 */
1000 rt->rt_flags &= ~RTF_LLINFO;
1001 return;
1002 }
1003
1004 switch (req) {
1005 case RTM_ADD:
1006 /*
1007 * There is no backward compatibility :)
1008 *
1009 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1010 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1011 * rt->rt_flags |= RTF_CLONING;
1012 */
1013 if (rt->rt_flags & (RTF_CLONING | RTF_LLINFO)) {
1014 /*
1015 * Case 1: This route should come from
1016 * a route to interface. RTF_LLINFO flag is set
1017 * for a host route whose destination should be
1018 * treated as on-link.
1019 */
1020 rt_setgate(rt, rt_key(rt),
1021 (struct sockaddr *)&null_sdl);
1022 gate = rt->rt_gateway;
1023 SDL(gate)->sdl_type = ifp->if_type;
1024 SDL(gate)->sdl_index = ifp->if_index;
1025 if (ln)
1026 ln->ln_expire = time_second;
1027 #if 1
1028 if (ln && ln->ln_expire == 0) {
1029 /* kludge for desktops */
1030 #if 0
1031 printf("nd6_rtrequest: time.tv_sec is zero; "
1032 "treat it as 1\n");
1033 #endif
1034 ln->ln_expire = 1;
1035 }
1036 #endif
1037 if ((rt->rt_flags & RTF_CLONING) != 0)
1038 break;
1039 }
1040 /*
1041 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1042 * We don't do that here since llinfo is not ready yet.
1043 *
1044 * There are also couple of other things to be discussed:
1045 * - unsolicited NA code needs improvement beforehand
1046 * - RFC2461 says we MAY send multicast unsolicited NA
1047 * (7.2.6 paragraph 4), however, it also says that we
1048 * SHOULD provide a mechanism to prevent multicast NA storm.
1049 * we don't have anything like it right now.
1050 * note that the mechanism needs a mutual agreement
1051 * between proxies, which means that we need to implement
1052 * a new protocol, or a new kludge.
1053 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1054 * we need to check ip6forwarding before sending it.
1055 * (or should we allow proxy ND configuration only for
1056 * routers? there's no mention about proxy ND from hosts)
1057 */
1058 #if 0
1059 /* XXX it does not work */
1060 if (rt->rt_flags & RTF_ANNOUNCE)
1061 nd6_na_output(ifp,
1062 &SIN6(rt_key(rt))->sin6_addr,
1063 &SIN6(rt_key(rt))->sin6_addr,
1064 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1065 1, NULL);
1066 #endif
1067 /* FALLTHROUGH */
1068 case RTM_RESOLVE:
1069 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1070 /*
1071 * Address resolution isn't necessary for a point to
1072 * point link, so we can skip this test for a p2p link.
1073 */
1074 if (gate->sa_family != AF_LINK ||
1075 gate->sa_len < sizeof(null_sdl)) {
1076 log(LOG_DEBUG,
1077 "nd6_rtrequest: bad gateway value: %s\n",
1078 if_name(ifp));
1079 break;
1080 }
1081 SDL(gate)->sdl_type = ifp->if_type;
1082 SDL(gate)->sdl_index = ifp->if_index;
1083 }
1084 if (ln != NULL)
1085 break; /* This happens on a route change */
1086 /*
1087 * Case 2: This route may come from cloning, or a manual route
1088 * add with a LL address.
1089 */
1090 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1091 rt->rt_llinfo = (caddr_t)ln;
1092 if (!ln) {
1093 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1094 break;
1095 }
1096 nd6_inuse++;
1097 nd6_allocated++;
1098 Bzero(ln, sizeof(*ln));
1099 ln->ln_rt = rt;
1100 /* this is required for "ndp" command. - shin */
1101 if (req == RTM_ADD) {
1102 /*
1103 * gate should have some valid AF_LINK entry,
1104 * and ln->ln_expire should have some lifetime
1105 * which is specified by ndp command.
1106 */
1107 ln->ln_state = ND6_LLINFO_REACHABLE;
1108 ln->ln_byhint = 0;
1109 } else {
1110 /*
1111 * When req == RTM_RESOLVE, rt is created and
1112 * initialized in rtrequest(), so rt_expire is 0.
1113 */
1114 ln->ln_state = ND6_LLINFO_NOSTATE;
1115 ln->ln_expire = time_second;
1116 }
1117 rt->rt_flags |= RTF_LLINFO;
1118 ln->ln_next = llinfo_nd6.ln_next;
1119 llinfo_nd6.ln_next = ln;
1120 ln->ln_prev = &llinfo_nd6;
1121 ln->ln_next->ln_prev = ln;
1122
1123 /*
1124 * check if rt_key(rt) is one of my address assigned
1125 * to the interface.
1126 */
1127 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1128 &SIN6(rt_key(rt))->sin6_addr);
1129 if (ifa) {
1130 caddr_t macp = nd6_ifptomac(ifp);
1131 ln->ln_expire = 0;
1132 ln->ln_state = ND6_LLINFO_REACHABLE;
1133 ln->ln_byhint = 0;
1134 mine = 1;
1135 if (macp) {
1136 Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1137 SDL(gate)->sdl_alen = ifp->if_addrlen;
1138 }
1139 if (nd6_useloopback) {
1140 rt->rt_ifp = &loif[0]; /* XXX */
1141 /*
1142 * Make sure rt_ifa be equal to the ifaddr
1143 * corresponding to the address.
1144 * We need this because when we refer
1145 * rt_ifa->ia6_flags in ip6_input, we assume
1146 * that the rt_ifa points to the address instead
1147 * of the loopback address.
1148 */
1149 if (ifa != rt->rt_ifa) {
1150 IFAFREE(rt->rt_ifa);
1151 IFAREF(ifa);
1152 rt->rt_ifa = ifa;
1153 }
1154 }
1155 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1156 ln->ln_expire = 0;
1157 ln->ln_state = ND6_LLINFO_REACHABLE;
1158 ln->ln_byhint = 0;
1159
1160 /* join solicited node multicast for proxy ND */
1161 if (ifp->if_flags & IFF_MULTICAST) {
1162 struct in6_addr llsol;
1163 int error;
1164
1165 llsol = SIN6(rt_key(rt))->sin6_addr;
1166 llsol.s6_addr16[0] = htons(0xff02);
1167 llsol.s6_addr16[1] = htons(ifp->if_index);
1168 llsol.s6_addr32[1] = 0;
1169 llsol.s6_addr32[2] = htonl(1);
1170 llsol.s6_addr8[12] = 0xff;
1171
1172 if (!in6_addmulti(&llsol, ifp, &error)) {
1173 nd6log((LOG_ERR, "%s: failed to join "
1174 "%s (errno=%d)\n", if_name(ifp),
1175 ip6_sprintf(&llsol), error));
1176 }
1177 }
1178 }
1179 break;
1180
1181 case RTM_DELETE:
1182 if (!ln)
1183 break;
1184 /* leave from solicited node multicast for proxy ND */
1185 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1186 (ifp->if_flags & IFF_MULTICAST) != 0) {
1187 struct in6_addr llsol;
1188 struct in6_multi *in6m;
1189
1190 llsol = SIN6(rt_key(rt))->sin6_addr;
1191 llsol.s6_addr16[0] = htons(0xff02);
1192 llsol.s6_addr16[1] = htons(ifp->if_index);
1193 llsol.s6_addr32[1] = 0;
1194 llsol.s6_addr32[2] = htonl(1);
1195 llsol.s6_addr8[12] = 0xff;
1196
1197 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1198 if (in6m)
1199 in6_delmulti(in6m);
1200 }
1201 nd6_inuse--;
1202 ln->ln_next->ln_prev = ln->ln_prev;
1203 ln->ln_prev->ln_next = ln->ln_next;
1204 ln->ln_prev = NULL;
1205 rt->rt_llinfo = 0;
1206 rt->rt_flags &= ~RTF_LLINFO;
1207 if (ln->ln_hold)
1208 m_freem(ln->ln_hold);
1209 Free((caddr_t)ln);
1210 }
1211 }
1212
1213 int
1214 nd6_ioctl(cmd, data, ifp)
1215 u_long cmd;
1216 caddr_t data;
1217 struct ifnet *ifp;
1218 {
1219 struct in6_drlist *drl = (struct in6_drlist *)data;
1220 struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1221 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1222 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1223 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1224 struct nd_defrouter *dr;
1225 struct nd_prefix *pr;
1226 struct rtentry *rt;
1227 int i = 0, error = 0;
1228 int s;
1229
1230 switch (cmd) {
1231 case SIOCGDRLST_IN6:
1232 /*
1233 * obsolete API, use sysctl under net.inet6.icmp6
1234 */
1235 bzero(drl, sizeof(*drl));
1236 s = splsoftnet();
1237 dr = TAILQ_FIRST(&nd_defrouter);
1238 while (dr && i < DRLSTSIZ) {
1239 drl->defrouter[i].rtaddr = dr->rtaddr;
1240 if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) {
1241 /* XXX: need to this hack for KAME stack */
1242 drl->defrouter[i].rtaddr.s6_addr16[1] = 0;
1243 } else
1244 log(LOG_ERR,
1245 "default router list contains a "
1246 "non-linklocal address(%s)\n",
1247 ip6_sprintf(&drl->defrouter[i].rtaddr));
1248
1249 drl->defrouter[i].flags = dr->flags;
1250 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1251 drl->defrouter[i].expire = dr->expire;
1252 drl->defrouter[i].if_index = dr->ifp->if_index;
1253 i++;
1254 dr = TAILQ_NEXT(dr, dr_entry);
1255 }
1256 splx(s);
1257 break;
1258 case SIOCGPRLST_IN6:
1259 /*
1260 * obsolete API, use sysctl under net.inet6.icmp6
1261 *
1262 * XXX the structure in6_prlist was changed in backward-
1263 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1264 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1265 */
1266 /*
1267 * XXX meaning of fields, especialy "raflags", is very
1268 * differnet between RA prefix list and RR/static prefix list.
1269 * how about separating ioctls into two?
1270 */
1271 bzero(oprl, sizeof(*oprl));
1272 s = splsoftnet();
1273 pr = nd_prefix.lh_first;
1274 while (pr && i < PRLSTSIZ) {
1275 struct nd_pfxrouter *pfr;
1276 int j;
1277
1278 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1279 oprl->prefix[i].raflags = pr->ndpr_raf;
1280 oprl->prefix[i].prefixlen = pr->ndpr_plen;
1281 oprl->prefix[i].vltime = pr->ndpr_vltime;
1282 oprl->prefix[i].pltime = pr->ndpr_pltime;
1283 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1284 oprl->prefix[i].expire = pr->ndpr_expire;
1285
1286 pfr = pr->ndpr_advrtrs.lh_first;
1287 j = 0;
1288 while (pfr) {
1289 if (j < DRLSTSIZ) {
1290 #define RTRADDR oprl->prefix[i].advrtr[j]
1291 RTRADDR = pfr->router->rtaddr;
1292 if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) {
1293 /* XXX: hack for KAME */
1294 RTRADDR.s6_addr16[1] = 0;
1295 } else
1296 log(LOG_ERR,
1297 "a router(%s) advertises "
1298 "a prefix with "
1299 "non-link local address\n",
1300 ip6_sprintf(&RTRADDR));
1301 #undef RTRADDR
1302 }
1303 j++;
1304 pfr = pfr->pfr_next;
1305 }
1306 oprl->prefix[i].advrtrs = j;
1307 oprl->prefix[i].origin = PR_ORIG_RA;
1308
1309 i++;
1310 pr = pr->ndpr_next;
1311 }
1312 splx(s);
1313
1314 break;
1315 case OSIOCGIFINFO_IN6:
1316 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1317 bzero(&ndi->ndi, sizeof(ndi->ndi));
1318 ndi->ndi.linkmtu = IN6_LINKMTU(ifp);
1319 ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu;
1320 ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable;
1321 ndi->ndi.reachable = ND_IFINFO(ifp)->reachable;
1322 ndi->ndi.retrans = ND_IFINFO(ifp)->retrans;
1323 ndi->ndi.flags = ND_IFINFO(ifp)->flags;
1324 ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm;
1325 ndi->ndi.chlim = ND_IFINFO(ifp)->chlim;
1326 break;
1327 case SIOCGIFINFO_IN6:
1328 ndi->ndi = *ND_IFINFO(ifp);
1329 break;
1330 case SIOCSIFINFO_FLAGS:
1331 ND_IFINFO(ifp)->flags = ndi->ndi.flags;
1332 break;
1333 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1334 /* sync kernel routing table with the default router list */
1335 defrouter_reset();
1336 defrouter_select();
1337 break;
1338 case SIOCSPFXFLUSH_IN6:
1339 {
1340 /* flush all the prefix advertised by routers */
1341 struct nd_prefix *pr, *next;
1342
1343 s = splsoftnet();
1344 for (pr = nd_prefix.lh_first; pr; pr = next) {
1345 struct in6_ifaddr *ia, *ia_next;
1346
1347 next = pr->ndpr_next;
1348
1349 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1350 continue; /* XXX */
1351
1352 /* do we really have to remove addresses as well? */
1353 for (ia = in6_ifaddr; ia; ia = ia_next) {
1354 /* ia might be removed. keep the next ptr. */
1355 ia_next = ia->ia_next;
1356
1357 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1358 continue;
1359
1360 if (ia->ia6_ndpr == pr)
1361 in6_purgeaddr(&ia->ia_ifa);
1362 }
1363 prelist_remove(pr);
1364 }
1365 splx(s);
1366 break;
1367 }
1368 case SIOCSRTRFLUSH_IN6:
1369 {
1370 /* flush all the default routers */
1371 struct nd_defrouter *dr, *next;
1372
1373 s = splsoftnet();
1374 defrouter_reset();
1375 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) {
1376 next = TAILQ_NEXT(dr, dr_entry);
1377 defrtrlist_del(dr);
1378 }
1379 defrouter_select();
1380 splx(s);
1381 break;
1382 }
1383 case SIOCGNBRINFO_IN6:
1384 {
1385 struct llinfo_nd6 *ln;
1386 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1387
1388 /*
1389 * XXX: KAME specific hack for scoped addresses
1390 * XXXX: for other scopes than link-local?
1391 */
1392 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) ||
1393 IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) {
1394 u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2];
1395
1396 if (*idp == 0)
1397 *idp = htons(ifp->if_index);
1398 }
1399
1400 s = splsoftnet();
1401 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL ||
1402 (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) {
1403 error = EINVAL;
1404 splx(s);
1405 break;
1406 }
1407 nbi->state = ln->ln_state;
1408 nbi->asked = ln->ln_asked;
1409 nbi->isrouter = ln->ln_router;
1410 nbi->expire = ln->ln_expire;
1411 splx(s);
1412
1413 break;
1414 }
1415 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1416 ndif->ifindex = nd6_defifindex;
1417 break;
1418 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1419 return (nd6_setdefaultiface(ndif->ifindex));
1420 }
1421 return (error);
1422 }
1423
1424 /*
1425 * Create neighbor cache entry and cache link-layer address,
1426 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1427 */
1428 struct rtentry *
1429 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
1430 struct ifnet *ifp;
1431 struct in6_addr *from;
1432 char *lladdr;
1433 int lladdrlen;
1434 int type; /* ICMP6 type */
1435 int code; /* type dependent information */
1436 {
1437 struct rtentry *rt = NULL;
1438 struct llinfo_nd6 *ln = NULL;
1439 int is_newentry;
1440 struct sockaddr_dl *sdl = NULL;
1441 int do_update;
1442 int olladdr;
1443 int llchange;
1444 int newstate = 0;
1445 long time_second = time.tv_sec;
1446
1447 if (!ifp)
1448 panic("ifp == NULL in nd6_cache_lladdr");
1449 if (!from)
1450 panic("from == NULL in nd6_cache_lladdr");
1451
1452 /* nothing must be updated for unspecified address */
1453 if (IN6_IS_ADDR_UNSPECIFIED(from))
1454 return NULL;
1455
1456 /*
1457 * Validation about ifp->if_addrlen and lladdrlen must be done in
1458 * the caller.
1459 *
1460 * XXX If the link does not have link-layer adderss, what should
1461 * we do? (ifp->if_addrlen == 0)
1462 * Spec says nothing in sections for RA, RS and NA. There's small
1463 * description on it in NS section (RFC 2461 7.2.3).
1464 */
1465
1466 rt = nd6_lookup(from, 0, ifp);
1467 if (!rt) {
1468 #if 0
1469 /* nothing must be done if there's no lladdr */
1470 if (!lladdr || !lladdrlen)
1471 return NULL;
1472 #endif
1473
1474 rt = nd6_lookup(from, 1, ifp);
1475 is_newentry = 1;
1476 } else {
1477 /* do nothing if static ndp is set */
1478 if (rt->rt_flags & RTF_STATIC)
1479 return NULL;
1480 is_newentry = 0;
1481 }
1482
1483 if (!rt)
1484 return NULL;
1485 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1486 fail:
1487 (void)nd6_free(rt, 0);
1488 return NULL;
1489 }
1490 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1491 if (!ln)
1492 goto fail;
1493 if (!rt->rt_gateway)
1494 goto fail;
1495 if (rt->rt_gateway->sa_family != AF_LINK)
1496 goto fail;
1497 sdl = SDL(rt->rt_gateway);
1498
1499 olladdr = (sdl->sdl_alen) ? 1 : 0;
1500 if (olladdr && lladdr) {
1501 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1502 llchange = 1;
1503 else
1504 llchange = 0;
1505 } else
1506 llchange = 0;
1507
1508 /*
1509 * newentry olladdr lladdr llchange (*=record)
1510 * 0 n n -- (1)
1511 * 0 y n -- (2)
1512 * 0 n y -- (3) * STALE
1513 * 0 y y n (4) *
1514 * 0 y y y (5) * STALE
1515 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1516 * 1 -- y -- (7) * STALE
1517 */
1518
1519 if (lladdr) { /* (3-5) and (7) */
1520 /*
1521 * Record source link-layer address
1522 * XXX is it dependent to ifp->if_type?
1523 */
1524 sdl->sdl_alen = ifp->if_addrlen;
1525 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1526 }
1527
1528 if (!is_newentry) {
1529 if ((!olladdr && lladdr) || /* (3) */
1530 (olladdr && lladdr && llchange)) { /* (5) */
1531 do_update = 1;
1532 newstate = ND6_LLINFO_STALE;
1533 } else /* (1-2,4) */
1534 do_update = 0;
1535 } else {
1536 do_update = 1;
1537 if (!lladdr) /* (6) */
1538 newstate = ND6_LLINFO_NOSTATE;
1539 else /* (7) */
1540 newstate = ND6_LLINFO_STALE;
1541 }
1542
1543 if (do_update) {
1544 /*
1545 * Update the state of the neighbor cache.
1546 */
1547 ln->ln_state = newstate;
1548
1549 if (ln->ln_state == ND6_LLINFO_STALE) {
1550 /*
1551 * XXX: since nd6_output() below will cause
1552 * state tansition to DELAY and reset the timer,
1553 * we must set the timer now, although it is actually
1554 * meaningless.
1555 */
1556 ln->ln_expire = time_second + nd6_gctimer;
1557
1558 if (ln->ln_hold) {
1559 /*
1560 * we assume ifp is not a p2p here, so just
1561 * set the 2nd argument as the 1st one.
1562 */
1563 nd6_output(ifp, ifp, ln->ln_hold,
1564 (struct sockaddr_in6 *)rt_key(rt), rt);
1565 ln->ln_hold = NULL;
1566 }
1567 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1568 /* probe right away */
1569 ln->ln_expire = time_second;
1570 }
1571 }
1572
1573 /*
1574 * ICMP6 type dependent behavior.
1575 *
1576 * NS: clear IsRouter if new entry
1577 * RS: clear IsRouter
1578 * RA: set IsRouter if there's lladdr
1579 * redir: clear IsRouter if new entry
1580 *
1581 * RA case, (1):
1582 * The spec says that we must set IsRouter in the following cases:
1583 * - If lladdr exist, set IsRouter. This means (1-5).
1584 * - If it is old entry (!newentry), set IsRouter. This means (7).
1585 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1586 * A quetion arises for (1) case. (1) case has no lladdr in the
1587 * neighbor cache, this is similar to (6).
1588 * This case is rare but we figured that we MUST NOT set IsRouter.
1589 *
1590 * newentry olladdr lladdr llchange NS RS RA redir
1591 * D R
1592 * 0 n n -- (1) c ? s
1593 * 0 y n -- (2) c s s
1594 * 0 n y -- (3) c s s
1595 * 0 y y n (4) c s s
1596 * 0 y y y (5) c s s
1597 * 1 -- n -- (6) c c c s
1598 * 1 -- y -- (7) c c s c s
1599 *
1600 * (c=clear s=set)
1601 */
1602 switch (type & 0xff) {
1603 case ND_NEIGHBOR_SOLICIT:
1604 /*
1605 * New entry must have is_router flag cleared.
1606 */
1607 if (is_newentry) /* (6-7) */
1608 ln->ln_router = 0;
1609 break;
1610 case ND_REDIRECT:
1611 /*
1612 * If the icmp is a redirect to a better router, always set the
1613 * is_router flag. Otherwise, if the entry is newly created,
1614 * clear the flag. [RFC 2461, sec 8.3]
1615 */
1616 if (code == ND_REDIRECT_ROUTER)
1617 ln->ln_router = 1;
1618 else if (is_newentry) /* (6-7) */
1619 ln->ln_router = 0;
1620 break;
1621 case ND_ROUTER_SOLICIT:
1622 /*
1623 * is_router flag must always be cleared.
1624 */
1625 ln->ln_router = 0;
1626 break;
1627 case ND_ROUTER_ADVERT:
1628 /*
1629 * Mark an entry with lladdr as a router.
1630 */
1631 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
1632 (is_newentry && lladdr)) { /* (7) */
1633 ln->ln_router = 1;
1634 }
1635 break;
1636 }
1637
1638 /*
1639 * When the link-layer address of a router changes, select the
1640 * best router again. In particular, when the neighbor entry is newly
1641 * created, it might affect the selection policy.
1642 * Question: can we restrict the first condition to the "is_newentry"
1643 * case?
1644 * XXX: when we hear an RA from a new router with the link-layer
1645 * address option, defrouter_select() is called twice, since
1646 * defrtrlist_update called the function as well. However, I believe
1647 * we can compromise the overhead, since it only happens the first
1648 * time.
1649 * XXX: although defrouter_select() should not have a bad effect
1650 * for those are not autoconfigured hosts, we explicitly avoid such
1651 * cases for safety.
1652 */
1653 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1654 defrouter_select();
1655
1656 return rt;
1657 }
1658
1659 static void
1660 nd6_slowtimo(ignored_arg)
1661 void *ignored_arg;
1662 {
1663 int s = splsoftnet();
1664 struct nd_ifinfo *nd6if;
1665 struct ifnet *ifp;
1666
1667 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1668 nd6_slowtimo, NULL);
1669 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
1670 {
1671 nd6if = ND_IFINFO(ifp);
1672 if (nd6if->basereachable && /* already initialized */
1673 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1674 /*
1675 * Since reachable time rarely changes by router
1676 * advertisements, we SHOULD insure that a new random
1677 * value gets recomputed at least once every few hours.
1678 * (RFC 2461, 6.3.4)
1679 */
1680 nd6if->recalctm = nd6_recalc_reachtm_interval;
1681 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1682 }
1683 }
1684 splx(s);
1685 }
1686
1687 #define senderr(e) { error = (e); goto bad;}
1688 int
1689 nd6_output(ifp, origifp, m0, dst, rt0)
1690 struct ifnet *ifp;
1691 struct ifnet *origifp;
1692 struct mbuf *m0;
1693 struct sockaddr_in6 *dst;
1694 struct rtentry *rt0;
1695 {
1696 struct mbuf *m = m0;
1697 struct rtentry *rt = rt0;
1698 struct sockaddr_in6 *gw6 = NULL;
1699 struct llinfo_nd6 *ln = NULL;
1700 int error = 0;
1701 long time_second = time.tv_sec;
1702
1703 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1704 goto sendpkt;
1705
1706 if (nd6_need_cache(ifp) == 0)
1707 goto sendpkt;
1708
1709 /*
1710 * next hop determination. This routine is derived from ether_outpout.
1711 */
1712 if (rt) {
1713 if ((rt->rt_flags & RTF_UP) == 0) {
1714 if ((rt0 = rt = rtalloc1((struct sockaddr *)dst,
1715 1)) != NULL)
1716 {
1717 rt->rt_refcnt--;
1718 if (rt->rt_ifp != ifp) {
1719 /* XXX: loop care? */
1720 return nd6_output(ifp, origifp, m0,
1721 dst, rt);
1722 }
1723 } else
1724 senderr(EHOSTUNREACH);
1725 }
1726
1727 if (rt->rt_flags & RTF_GATEWAY) {
1728 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1729
1730 /*
1731 * We skip link-layer address resolution and NUD
1732 * if the gateway is not a neighbor from ND point
1733 * of view, regardless of the value of nd_ifinfo.flags.
1734 * The second condition is a bit tricky; we skip
1735 * if the gateway is our own address, which is
1736 * sometimes used to install a route to a p2p link.
1737 */
1738 if (!nd6_is_addr_neighbor(gw6, ifp) ||
1739 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1740 /*
1741 * We allow this kind of tricky route only
1742 * when the outgoing interface is p2p.
1743 * XXX: we may need a more generic rule here.
1744 */
1745 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1746 senderr(EHOSTUNREACH);
1747
1748 goto sendpkt;
1749 }
1750
1751 if (rt->rt_gwroute == 0)
1752 goto lookup;
1753 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
1754 rtfree(rt); rt = rt0;
1755 lookup:
1756 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
1757 if ((rt = rt->rt_gwroute) == 0)
1758 senderr(EHOSTUNREACH);
1759 /* the "G" test below also prevents rt == rt0 */
1760 if ((rt->rt_flags & RTF_GATEWAY) ||
1761 (rt->rt_ifp != ifp)) {
1762 rt->rt_refcnt--;
1763 rt0->rt_gwroute = 0;
1764 senderr(EHOSTUNREACH);
1765 }
1766 }
1767 }
1768 }
1769
1770 /*
1771 * Address resolution or Neighbor Unreachability Detection
1772 * for the next hop.
1773 * At this point, the destination of the packet must be a unicast
1774 * or an anycast address(i.e. not a multicast).
1775 */
1776
1777 /* Look up the neighbor cache for the nexthop */
1778 if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
1779 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1780 else {
1781 /*
1782 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1783 * the condition below is not very efficient. But we believe
1784 * it is tolerable, because this should be a rare case.
1785 */
1786 if (nd6_is_addr_neighbor(dst, ifp) &&
1787 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
1788 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1789 }
1790 if (!ln || !rt) {
1791 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
1792 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
1793 log(LOG_DEBUG,
1794 "nd6_output: can't allocate llinfo for %s "
1795 "(ln=%p, rt=%p)\n",
1796 ip6_sprintf(&dst->sin6_addr), ln, rt);
1797 senderr(EIO); /* XXX: good error? */
1798 }
1799
1800 goto sendpkt; /* send anyway */
1801 }
1802
1803 /* We don't have to do link-layer address resolution on a p2p link. */
1804 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
1805 ln->ln_state < ND6_LLINFO_REACHABLE) {
1806 ln->ln_state = ND6_LLINFO_STALE;
1807 ln->ln_expire = time_second + nd6_gctimer;
1808 }
1809
1810 /*
1811 * The first time we send a packet to a neighbor whose entry is
1812 * STALE, we have to change the state to DELAY and a sets a timer to
1813 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
1814 * neighbor unreachability detection on expiration.
1815 * (RFC 2461 7.3.3)
1816 */
1817 if (ln->ln_state == ND6_LLINFO_STALE) {
1818 ln->ln_asked = 0;
1819 ln->ln_state = ND6_LLINFO_DELAY;
1820 ln->ln_expire = time_second + nd6_delay;
1821 }
1822
1823 /*
1824 * If the neighbor cache entry has a state other than INCOMPLETE
1825 * (i.e. its link-layer address is already resolved), just
1826 * send the packet.
1827 */
1828 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1829 goto sendpkt;
1830
1831 /*
1832 * There is a neighbor cache entry, but no ethernet address
1833 * response yet. Replace the held mbuf (if any) with this
1834 * latest one.
1835 */
1836 if (ln->ln_state == ND6_LLINFO_NOSTATE)
1837 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1838 if (ln->ln_hold)
1839 m_freem(ln->ln_hold);
1840 ln->ln_hold = m;
1841 /*
1842 * If there has been no NS for the neighbor after entering the
1843 * INCOMPLETE state, send the first solicitation.
1844 * Technically this can be against the rate-limiting rule described in
1845 * Section 7.2.2 of RFC 2461 because the interval to the next scheduled
1846 * solicitation issued in nd6_timer() may be less than the specified
1847 * retransmission time. This should not be a problem from a practical
1848 * point of view, because we'll typically see an immediate response
1849 * from the neighbor, which suppresses the succeeding solicitations.
1850 */
1851 if (ln->ln_expire && ln->ln_asked == 0) {
1852 ln->ln_asked++;
1853 ln->ln_expire = time_second +
1854 ND6_RETRANS_SEC(ND_IFINFO(ifp)->retrans);
1855 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
1856 }
1857 return (0);
1858
1859 sendpkt:
1860
1861 #ifdef IPSEC
1862 /* clean ipsec history once it goes out of the node */
1863 ipsec_delaux(m);
1864 #endif
1865 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
1866 return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
1867 rt));
1868 }
1869 return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
1870
1871 bad:
1872 if (m)
1873 m_freem(m);
1874 return (error);
1875 }
1876 #undef senderr
1877
1878 int
1879 nd6_need_cache(ifp)
1880 struct ifnet *ifp;
1881 {
1882 /*
1883 * XXX: we currently do not make neighbor cache on any interface
1884 * other than ARCnet, Ethernet, FDDI and GIF.
1885 *
1886 * RFC2893 says:
1887 * - unidirectional tunnels needs no ND
1888 */
1889 switch (ifp->if_type) {
1890 case IFT_ARCNET:
1891 case IFT_ETHER:
1892 case IFT_FDDI:
1893 case IFT_IEEE1394:
1894 case IFT_GIF: /* XXX need more cases? */
1895 return (1);
1896 default:
1897 return (0);
1898 }
1899 }
1900
1901 int
1902 nd6_storelladdr(ifp, rt, m, dst, desten)
1903 struct ifnet *ifp;
1904 struct rtentry *rt;
1905 struct mbuf *m;
1906 struct sockaddr *dst;
1907 u_char *desten;
1908 {
1909 struct sockaddr_dl *sdl;
1910
1911 if (m->m_flags & M_MCAST) {
1912 switch (ifp->if_type) {
1913 case IFT_ETHER:
1914 case IFT_FDDI:
1915 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
1916 desten);
1917 return (1);
1918 case IFT_IEEE1394:
1919 bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen);
1920 return (1);
1921 case IFT_ARCNET:
1922 *desten = 0;
1923 return (1);
1924 default:
1925 m_freem(m);
1926 return (0);
1927 }
1928 }
1929
1930 if (rt == NULL) {
1931 /* this could happen, if we could not allocate memory */
1932 m_freem(m);
1933 return (0);
1934 }
1935 if (rt->rt_gateway->sa_family != AF_LINK) {
1936 printf("nd6_storelladdr: something odd happens\n");
1937 m_freem(m);
1938 return (0);
1939 }
1940 sdl = SDL(rt->rt_gateway);
1941 if (sdl->sdl_alen == 0) {
1942 /* this should be impossible, but we bark here for debugging */
1943 printf("nd6_storelladdr: sdl_alen == 0, dst=%s, if=%s\n",
1944 ip6_sprintf(&SIN6(dst)->sin6_addr), if_name(ifp));
1945 m_freem(m);
1946 return (0);
1947 }
1948
1949 bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
1950 return (1);
1951 }
1952
1953 int
1954 nd6_sysctl(name, oldp, oldlenp, newp, newlen)
1955 int name;
1956 void *oldp; /* syscall arg, need copyout */
1957 size_t *oldlenp;
1958 void *newp; /* syscall arg, need copyin */
1959 size_t newlen;
1960 {
1961 void *p;
1962 size_t ol, l;
1963 int error;
1964
1965 error = 0;
1966 l = 0;
1967
1968 if (newp)
1969 return EPERM;
1970 if (oldp && !oldlenp)
1971 return EINVAL;
1972 ol = oldlenp ? *oldlenp : 0;
1973
1974 if (oldp) {
1975 p = malloc(*oldlenp, M_TEMP, M_WAITOK);
1976 if (!p)
1977 return ENOMEM;
1978 } else
1979 p = NULL;
1980 switch (name) {
1981 case ICMPV6CTL_ND6_DRLIST:
1982 error = fill_drlist(p, oldlenp, ol);
1983 if (!error && p && oldp)
1984 error = copyout(p, oldp, *oldlenp);
1985 break;
1986
1987 case ICMPV6CTL_ND6_PRLIST:
1988 error = fill_prlist(p, oldlenp, ol);
1989 if (!error && p && oldp)
1990 error = copyout(p, oldp, *oldlenp);
1991 break;
1992
1993 default:
1994 error = ENOPROTOOPT;
1995 break;
1996 }
1997 if (p)
1998 free(p, M_TEMP);
1999
2000 return (error);
2001 }
2002
2003 static int
2004 fill_drlist(oldp, oldlenp, ol)
2005 void *oldp;
2006 size_t *oldlenp, ol;
2007 {
2008 int error = 0, s;
2009 struct in6_defrouter *d = NULL, *de = NULL;
2010 struct nd_defrouter *dr;
2011 size_t l;
2012
2013 s = splsoftnet();
2014
2015 if (oldp) {
2016 d = (struct in6_defrouter *)oldp;
2017 de = (struct in6_defrouter *)((caddr_t)oldp + *oldlenp);
2018 }
2019 l = 0;
2020
2021 for (dr = TAILQ_FIRST(&nd_defrouter); dr;
2022 dr = TAILQ_NEXT(dr, dr_entry)) {
2023
2024 if (oldp && d + 1 <= de) {
2025 bzero(d, sizeof(*d));
2026 d->rtaddr.sin6_family = AF_INET6;
2027 d->rtaddr.sin6_len = sizeof(struct sockaddr_in6);
2028 d->rtaddr.sin6_addr = dr->rtaddr;
2029 in6_recoverscope(&d->rtaddr, &d->rtaddr.sin6_addr,
2030 dr->ifp);
2031 d->flags = dr->flags;
2032 d->rtlifetime = dr->rtlifetime;
2033 d->expire = dr->expire;
2034 d->if_index = dr->ifp->if_index;
2035 }
2036
2037 l += sizeof(*d);
2038 if (d)
2039 d++;
2040 }
2041
2042 if (oldp) {
2043 *oldlenp = l; /* (caddr_t)d - (caddr_t)oldp */
2044 if (l > ol)
2045 error = ENOMEM;
2046 } else
2047 *oldlenp = l;
2048
2049 splx(s);
2050
2051 return (error);
2052 }
2053
2054 static int
2055 fill_prlist(oldp, oldlenp, ol)
2056 void *oldp;
2057 size_t *oldlenp, ol;
2058 {
2059 int error = 0, s;
2060 struct nd_prefix *pr;
2061 struct in6_prefix *p = NULL;
2062 struct in6_prefix *pe = NULL;
2063 size_t l;
2064
2065 s = splsoftnet();
2066
2067 if (oldp) {
2068 p = (struct in6_prefix *)oldp;
2069 pe = (struct in6_prefix *)((caddr_t)oldp + *oldlenp);
2070 }
2071 l = 0;
2072
2073 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2074 u_short advrtrs;
2075 size_t advance;
2076 struct sockaddr_in6 *sin6;
2077 struct sockaddr_in6 *s6;
2078 struct nd_pfxrouter *pfr;
2079
2080 if (oldp && p + 1 <= pe)
2081 {
2082 bzero(p, sizeof(*p));
2083 sin6 = (struct sockaddr_in6 *)(p + 1);
2084
2085 p->prefix = pr->ndpr_prefix;
2086 if (in6_recoverscope(&p->prefix,
2087 &p->prefix.sin6_addr, pr->ndpr_ifp) != 0)
2088 log(LOG_ERR,
2089 "scope error in prefix list (%s)\n",
2090 ip6_sprintf(&p->prefix.sin6_addr));
2091 p->raflags = pr->ndpr_raf;
2092 p->prefixlen = pr->ndpr_plen;
2093 p->vltime = pr->ndpr_vltime;
2094 p->pltime = pr->ndpr_pltime;
2095 p->if_index = pr->ndpr_ifp->if_index;
2096 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2097 p->expire = 0;
2098 else {
2099 time_t maxexpire;
2100
2101 /* XXX: we assume time_t is signed. */
2102 maxexpire = (-1) &
2103 ~(1 << ((sizeof(maxexpire) * 8) - 1));
2104 if (pr->ndpr_vltime <
2105 maxexpire - pr->ndpr_lastupdate) {
2106 p->expire = pr->ndpr_lastupdate +
2107 pr->ndpr_vltime;
2108 } else
2109 p->expire = maxexpire;
2110 }
2111 p->refcnt = pr->ndpr_refcnt;
2112 p->flags = pr->ndpr_stateflags;
2113 p->origin = PR_ORIG_RA;
2114 advrtrs = 0;
2115 for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2116 pfr = pfr->pfr_next) {
2117 if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2118 advrtrs++;
2119 continue;
2120 }
2121 s6 = &sin6[advrtrs];
2122 s6->sin6_family = AF_INET6;
2123 s6->sin6_len = sizeof(struct sockaddr_in6);
2124 s6->sin6_addr = pfr->router->rtaddr;
2125 in6_recoverscope(s6, &s6->sin6_addr,
2126 pfr->router->ifp);
2127 advrtrs++;
2128 }
2129 p->advrtrs = advrtrs;
2130 }
2131 else {
2132 advrtrs = 0;
2133 for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2134 pfr = pfr->pfr_next)
2135 advrtrs++;
2136 }
2137
2138 advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2139 l += advance;
2140 if (p)
2141 p = (struct in6_prefix *)((caddr_t)p + advance);
2142 }
2143
2144 if (oldp) {
2145 *oldlenp = l; /* (caddr_t)d - (caddr_t)oldp */
2146 if (l > ol)
2147 error = ENOMEM;
2148 } else
2149 *oldlenp = l;
2150
2151 splx(s);
2152
2153 return (error);
2154 }
2155