nd6.c revision 1.84 1 /* $NetBSD: nd6.c,v 1.84 2003/06/24 07:49:03 itojun Exp $ */
2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.84 2003/06/24 07:49:03 itojun Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/callout.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 #include <sys/time.h>
44 #include <sys/kernel.h>
45 #include <sys/protosw.h>
46 #include <sys/errno.h>
47 #include <sys/ioctl.h>
48 #include <sys/syslog.h>
49 #include <sys/queue.h>
50
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_types.h>
54 #include <net/route.h>
55 #include <net/if_ether.h>
56 #include <net/if_fddi.h>
57 #include <net/if_arc.h>
58
59 #include <netinet/in.h>
60 #include <netinet6/in6_var.h>
61 #include <netinet/ip6.h>
62 #include <netinet6/ip6_var.h>
63 #include <netinet6/nd6.h>
64 #include <netinet/icmp6.h>
65
66 #include "loop.h"
67 extern struct ifnet loif[NLOOP];
68
69 #include <net/net_osdep.h>
70
71 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
72 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
73
74 #define SIN6(s) ((struct sockaddr_in6 *)s)
75 #define SDL(s) ((struct sockaddr_dl *)s)
76
77 /* timer values */
78 int nd6_prune = 1; /* walk list every 1 seconds */
79 int nd6_delay = 5; /* delay first probe time 5 second */
80 int nd6_umaxtries = 3; /* maximum unicast query */
81 int nd6_mmaxtries = 3; /* maximum multicast query */
82 int nd6_useloopback = 1; /* use loopback interface for local traffic */
83 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
84
85 /* preventing too many loops in ND option parsing */
86 int nd6_maxndopt = 10; /* max # of ND options allowed */
87
88 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
89
90 #ifdef ND6_DEBUG
91 int nd6_debug = 1;
92 #else
93 int nd6_debug = 0;
94 #endif
95
96 /* for debugging? */
97 static int nd6_inuse, nd6_allocated;
98
99 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
100 struct nd_drhead nd_defrouter;
101 struct nd_prhead nd_prefix = { 0 };
102
103 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
104 static struct sockaddr_in6 all1_sa;
105
106 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
107 static void nd6_slowtimo __P((void *));
108 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
109
110 struct callout nd6_slowtimo_ch = CALLOUT_INITIALIZER;
111 struct callout nd6_timer_ch = CALLOUT_INITIALIZER;
112
113 static int fill_drlist __P((void *, size_t *, size_t));
114 static int fill_prlist __P((void *, size_t *, size_t));
115
116 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
117
118 void
119 nd6_init()
120 {
121 static int nd6_init_done = 0;
122 int i;
123
124 if (nd6_init_done) {
125 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
126 return;
127 }
128
129 all1_sa.sin6_family = AF_INET6;
130 all1_sa.sin6_len = sizeof(struct sockaddr_in6);
131 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
132 all1_sa.sin6_addr.s6_addr[i] = 0xff;
133
134 /* initialization of the default router list */
135 TAILQ_INIT(&nd_defrouter);
136
137 nd6_init_done = 1;
138
139 /* start timer */
140 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
141 nd6_slowtimo, NULL);
142 }
143
144 struct nd_ifinfo *
145 nd6_ifattach(ifp)
146 struct ifnet *ifp;
147 {
148 struct nd_ifinfo *nd;
149
150 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
151 bzero(nd, sizeof(*nd));
152
153 nd->initialized = 1;
154
155 nd->chlim = IPV6_DEFHLIM;
156 nd->basereachable = REACHABLE_TIME;
157 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
158 nd->retrans = RETRANS_TIMER;
159 /*
160 * Note that the default value of ip6_accept_rtadv is 0, which means
161 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
162 * here.
163 */
164 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
165
166 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
167 nd6_setmtu0(ifp, nd);
168
169 return nd;
170 }
171
172 void
173 nd6_ifdetach(nd)
174 struct nd_ifinfo *nd;
175 {
176
177 free(nd, M_IP6NDP);
178 }
179
180 void
181 nd6_setmtu(ifp)
182 struct ifnet *ifp;
183 {
184 nd6_setmtu0(ifp, ND_IFINFO(ifp));
185 }
186
187 void
188 nd6_setmtu0(ifp, ndi)
189 struct ifnet *ifp;
190 struct nd_ifinfo *ndi;
191 {
192 u_int32_t omaxmtu;
193
194 omaxmtu = ndi->maxmtu;
195
196 switch (ifp->if_type) {
197 case IFT_ARCNET:
198 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
199 break;
200 case IFT_FDDI:
201 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
202 break;
203 default:
204 ndi->maxmtu = ifp->if_mtu;
205 break;
206 }
207
208 /*
209 * Decreasing the interface MTU under IPV6 minimum MTU may cause
210 * undesirable situation. We thus notify the operator of the change
211 * explicitly. The check for omaxmtu is necessary to restrict the
212 * log to the case of changing the MTU, not initializing it.
213 */
214 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
215 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
216 " small for IPv6 which needs %lu\n",
217 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
218 IPV6_MMTU);
219 }
220
221 if (ndi->maxmtu > in6_maxmtu)
222 in6_setmaxmtu(); /* check all interfaces just in case */
223 }
224
225 void
226 nd6_option_init(opt, icmp6len, ndopts)
227 void *opt;
228 int icmp6len;
229 union nd_opts *ndopts;
230 {
231
232 bzero(ndopts, sizeof(*ndopts));
233 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
234 ndopts->nd_opts_last
235 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
236
237 if (icmp6len == 0) {
238 ndopts->nd_opts_done = 1;
239 ndopts->nd_opts_search = NULL;
240 }
241 }
242
243 /*
244 * Take one ND option.
245 */
246 struct nd_opt_hdr *
247 nd6_option(ndopts)
248 union nd_opts *ndopts;
249 {
250 struct nd_opt_hdr *nd_opt;
251 int olen;
252
253 if (!ndopts)
254 panic("ndopts == NULL in nd6_option");
255 if (!ndopts->nd_opts_last)
256 panic("uninitialized ndopts in nd6_option");
257 if (!ndopts->nd_opts_search)
258 return NULL;
259 if (ndopts->nd_opts_done)
260 return NULL;
261
262 nd_opt = ndopts->nd_opts_search;
263
264 /* make sure nd_opt_len is inside the buffer */
265 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
266 bzero(ndopts, sizeof(*ndopts));
267 return NULL;
268 }
269
270 olen = nd_opt->nd_opt_len << 3;
271 if (olen == 0) {
272 /*
273 * Message validation requires that all included
274 * options have a length that is greater than zero.
275 */
276 bzero(ndopts, sizeof(*ndopts));
277 return NULL;
278 }
279
280 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
281 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
282 /* option overruns the end of buffer, invalid */
283 bzero(ndopts, sizeof(*ndopts));
284 return NULL;
285 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
286 /* reached the end of options chain */
287 ndopts->nd_opts_done = 1;
288 ndopts->nd_opts_search = NULL;
289 }
290 return nd_opt;
291 }
292
293 /*
294 * Parse multiple ND options.
295 * This function is much easier to use, for ND routines that do not need
296 * multiple options of the same type.
297 */
298 int
299 nd6_options(ndopts)
300 union nd_opts *ndopts;
301 {
302 struct nd_opt_hdr *nd_opt;
303 int i = 0;
304
305 if (!ndopts)
306 panic("ndopts == NULL in nd6_options");
307 if (!ndopts->nd_opts_last)
308 panic("uninitialized ndopts in nd6_options");
309 if (!ndopts->nd_opts_search)
310 return 0;
311
312 while (1) {
313 nd_opt = nd6_option(ndopts);
314 if (!nd_opt && !ndopts->nd_opts_last) {
315 /*
316 * Message validation requires that all included
317 * options have a length that is greater than zero.
318 */
319 icmp6stat.icp6s_nd_badopt++;
320 bzero(ndopts, sizeof(*ndopts));
321 return -1;
322 }
323
324 if (!nd_opt)
325 goto skip1;
326
327 switch (nd_opt->nd_opt_type) {
328 case ND_OPT_SOURCE_LINKADDR:
329 case ND_OPT_TARGET_LINKADDR:
330 case ND_OPT_MTU:
331 case ND_OPT_REDIRECTED_HEADER:
332 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
333 nd6log((LOG_INFO,
334 "duplicated ND6 option found (type=%d)\n",
335 nd_opt->nd_opt_type));
336 /* XXX bark? */
337 } else {
338 ndopts->nd_opt_array[nd_opt->nd_opt_type]
339 = nd_opt;
340 }
341 break;
342 case ND_OPT_PREFIX_INFORMATION:
343 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
344 ndopts->nd_opt_array[nd_opt->nd_opt_type]
345 = nd_opt;
346 }
347 ndopts->nd_opts_pi_end =
348 (struct nd_opt_prefix_info *)nd_opt;
349 break;
350 default:
351 /*
352 * Unknown options must be silently ignored,
353 * to accomodate future extension to the protocol.
354 */
355 nd6log((LOG_DEBUG,
356 "nd6_options: unsupported option %d - "
357 "option ignored\n", nd_opt->nd_opt_type));
358 }
359
360 skip1:
361 i++;
362 if (i > nd6_maxndopt) {
363 icmp6stat.icp6s_nd_toomanyopt++;
364 nd6log((LOG_INFO, "too many loop in nd opt\n"));
365 break;
366 }
367
368 if (ndopts->nd_opts_done)
369 break;
370 }
371
372 return 0;
373 }
374
375 /*
376 * ND6 timer routine to expire default route list and prefix list
377 */
378 void
379 nd6_timer(ignored_arg)
380 void *ignored_arg;
381 {
382 int s;
383 struct llinfo_nd6 *ln;
384 struct nd_defrouter *dr;
385 struct nd_prefix *pr;
386 struct ifnet *ifp;
387 struct in6_ifaddr *ia6, *nia6;
388 struct in6_addrlifetime *lt6;
389
390 s = splsoftnet();
391 callout_reset(&nd6_timer_ch, nd6_prune * hz,
392 nd6_timer, NULL);
393
394 ln = llinfo_nd6.ln_next;
395 while (ln && ln != &llinfo_nd6) {
396 struct rtentry *rt;
397 struct sockaddr_in6 *dst;
398 struct llinfo_nd6 *next = ln->ln_next;
399 /* XXX: used for the DELAY case only: */
400 struct nd_ifinfo *ndi = NULL;
401
402 if ((rt = ln->ln_rt) == NULL) {
403 ln = next;
404 continue;
405 }
406 if ((ifp = rt->rt_ifp) == NULL) {
407 ln = next;
408 continue;
409 }
410 ndi = ND_IFINFO(ifp);
411 dst = (struct sockaddr_in6 *)rt_key(rt);
412
413 if (ln->ln_expire > time.tv_sec) {
414 ln = next;
415 continue;
416 }
417
418 /* sanity check */
419 if (!rt)
420 panic("rt=0 in nd6_timer(ln=%p)", ln);
421 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
422 panic("rt_llinfo(%p) is not equal to ln(%p)",
423 rt->rt_llinfo, ln);
424 if (!dst)
425 panic("dst=0 in nd6_timer(ln=%p)", ln);
426
427 switch (ln->ln_state) {
428 case ND6_LLINFO_INCOMPLETE:
429 if (ln->ln_asked < nd6_mmaxtries) {
430 ln->ln_asked++;
431 ln->ln_expire = time.tv_sec +
432 ND6_RETRANS_SEC(ND_IFINFO(ifp)->retrans);
433 nd6_ns_output(ifp, NULL, &dst->sin6_addr,
434 ln, 0);
435 } else {
436 struct mbuf *m = ln->ln_hold;
437 if (m) {
438 ln->ln_hold = NULL;
439 /*
440 * Fake rcvif to make the ICMP error
441 * more helpful in diagnosing for the
442 * receiver.
443 * XXX: should we consider
444 * older rcvif?
445 */
446 m->m_pkthdr.rcvif = rt->rt_ifp;
447
448 icmp6_error(m, ICMP6_DST_UNREACH,
449 ICMP6_DST_UNREACH_ADDR, 0);
450 }
451 next = nd6_free(rt, 0);
452 }
453 break;
454 case ND6_LLINFO_REACHABLE:
455 if (ln->ln_expire) {
456 ln->ln_state = ND6_LLINFO_STALE;
457 ln->ln_expire = time.tv_sec + nd6_gctimer;
458 }
459 break;
460
461 case ND6_LLINFO_STALE:
462 /* Garbage Collection(RFC 2461 5.3) */
463 if (ln->ln_expire)
464 next = nd6_free(rt, 1);
465 break;
466
467 case ND6_LLINFO_DELAY:
468 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
469 /* We need NUD */
470 ln->ln_asked = 1;
471 ln->ln_state = ND6_LLINFO_PROBE;
472 ln->ln_expire = time.tv_sec +
473 ND6_RETRANS_SEC(ndi->retrans);
474 nd6_ns_output(ifp, &dst->sin6_addr,
475 &dst->sin6_addr, ln, 0);
476 } else {
477 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
478 ln->ln_expire = time.tv_sec + nd6_gctimer;
479 }
480 break;
481 case ND6_LLINFO_PROBE:
482 if (ln->ln_asked < nd6_umaxtries) {
483 ln->ln_asked++;
484 ln->ln_expire = time.tv_sec +
485 ND6_RETRANS_SEC(ND_IFINFO(ifp)->retrans);
486 nd6_ns_output(ifp, &dst->sin6_addr,
487 &dst->sin6_addr, ln, 0);
488 } else {
489 next = nd6_free(rt, 0);
490 }
491 break;
492 }
493 ln = next;
494 }
495
496 /* expire default router list */
497 dr = TAILQ_FIRST(&nd_defrouter);
498 while (dr) {
499 if (dr->expire && dr->expire < time.tv_sec) {
500 struct nd_defrouter *t;
501 t = TAILQ_NEXT(dr, dr_entry);
502 defrtrlist_del(dr);
503 dr = t;
504 } else {
505 dr = TAILQ_NEXT(dr, dr_entry);
506 }
507 }
508
509 /*
510 * expire interface addresses.
511 * in the past the loop was inside prefix expiry processing.
512 * However, from a stricter speci-confrmance standpoint, we should
513 * rather separate address lifetimes and prefix lifetimes.
514 */
515 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
516 nia6 = ia6->ia_next;
517 /* check address lifetime */
518 lt6 = &ia6->ia6_lifetime;
519 if (IFA6_IS_INVALID(ia6)) {
520 in6_purgeaddr(&ia6->ia_ifa);
521 }
522 if (IFA6_IS_DEPRECATED(ia6)) {
523 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
524 } else {
525 /*
526 * A new RA might have made a deprecated address
527 * preferred.
528 */
529 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
530 }
531 }
532
533 /* expire prefix list */
534 pr = nd_prefix.lh_first;
535 while (pr) {
536 /*
537 * check prefix lifetime.
538 * since pltime is just for autoconf, pltime processing for
539 * prefix is not necessary.
540 */
541 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
542 time.tv_sec - pr->ndpr_lastupdate > pr->ndpr_vltime) {
543 struct nd_prefix *t;
544 t = pr->ndpr_next;
545
546 /*
547 * address expiration and prefix expiration are
548 * separate. NEVER perform in6_purgeaddr here.
549 */
550
551 prelist_remove(pr);
552 pr = t;
553 } else
554 pr = pr->ndpr_next;
555 }
556 splx(s);
557 }
558
559 /*
560 * Nuke neighbor cache/prefix/default router management table, right before
561 * ifp goes away.
562 */
563 void
564 nd6_purge(ifp)
565 struct ifnet *ifp;
566 {
567 struct llinfo_nd6 *ln, *nln;
568 struct nd_defrouter *dr, *ndr;
569 struct nd_prefix *pr, *npr;
570
571 /*
572 * Nuke default router list entries toward ifp.
573 * We defer removal of default router list entries that is installed
574 * in the routing table, in order to keep additional side effects as
575 * small as possible.
576 */
577 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
578 ndr = TAILQ_NEXT(dr, dr_entry);
579 if (dr->installed)
580 continue;
581
582 if (dr->ifp == ifp)
583 defrtrlist_del(dr);
584 }
585 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
586 ndr = TAILQ_NEXT(dr, dr_entry);
587 if (!dr->installed)
588 continue;
589
590 if (dr->ifp == ifp)
591 defrtrlist_del(dr);
592 }
593
594 /* Nuke prefix list entries toward ifp */
595 for (pr = nd_prefix.lh_first; pr; pr = npr) {
596 npr = pr->ndpr_next;
597 if (pr->ndpr_ifp == ifp) {
598 /*
599 * Previously, pr->ndpr_addr is removed as well,
600 * but I strongly believe we don't have to do it.
601 * nd6_purge() is only called from in6_ifdetach(),
602 * which removes all the associated interface addresses
603 * by itself.
604 * (jinmei (at) kame.net 20010129)
605 */
606 prelist_remove(pr);
607 }
608 }
609
610 /* cancel default outgoing interface setting */
611 if (nd6_defifindex == ifp->if_index)
612 nd6_setdefaultiface(0);
613
614 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
615 /* refresh default router list */
616 defrouter_select();
617 }
618
619 /*
620 * Nuke neighbor cache entries for the ifp.
621 * Note that rt->rt_ifp may not be the same as ifp,
622 * due to KAME goto ours hack. See RTM_RESOLVE case in
623 * nd6_rtrequest(), and ip6_input().
624 */
625 ln = llinfo_nd6.ln_next;
626 while (ln && ln != &llinfo_nd6) {
627 struct rtentry *rt;
628 struct sockaddr_dl *sdl;
629
630 nln = ln->ln_next;
631 rt = ln->ln_rt;
632 if (rt && rt->rt_gateway &&
633 rt->rt_gateway->sa_family == AF_LINK) {
634 sdl = (struct sockaddr_dl *)rt->rt_gateway;
635 if (sdl->sdl_index == ifp->if_index)
636 nln = nd6_free(rt, 0);
637 }
638 ln = nln;
639 }
640 }
641
642 struct rtentry *
643 nd6_lookup(addr6, create, ifp)
644 struct in6_addr *addr6;
645 int create;
646 struct ifnet *ifp;
647 {
648 struct rtentry *rt;
649 struct sockaddr_in6 sin6;
650
651 bzero(&sin6, sizeof(sin6));
652 sin6.sin6_len = sizeof(struct sockaddr_in6);
653 sin6.sin6_family = AF_INET6;
654 sin6.sin6_addr = *addr6;
655 rt = rtalloc1((struct sockaddr *)&sin6, create);
656 if (rt && (rt->rt_flags & RTF_LLINFO) == 0) {
657 /*
658 * This is the case for the default route.
659 * If we want to create a neighbor cache for the address, we
660 * should free the route for the destination and allocate an
661 * interface route.
662 */
663 if (create) {
664 RTFREE(rt);
665 rt = 0;
666 }
667 }
668 if (!rt) {
669 if (create && ifp) {
670 int e;
671
672 /*
673 * If no route is available and create is set,
674 * we allocate a host route for the destination
675 * and treat it like an interface route.
676 * This hack is necessary for a neighbor which can't
677 * be covered by our own prefix.
678 */
679 struct ifaddr *ifa =
680 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
681 if (ifa == NULL)
682 return (NULL);
683
684 /*
685 * Create a new route. RTF_LLINFO is necessary
686 * to create a Neighbor Cache entry for the
687 * destination in nd6_rtrequest which will be
688 * called in rtrequest via ifa->ifa_rtrequest.
689 */
690 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
691 ifa->ifa_addr, (struct sockaddr *)&all1_sa,
692 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
693 ~RTF_CLONING, &rt)) != 0) {
694 #if 0
695 log(LOG_ERR,
696 "nd6_lookup: failed to add route for a "
697 "neighbor(%s), errno=%d\n",
698 ip6_sprintf(addr6), e);
699 #endif
700 return (NULL);
701 }
702 if (rt == NULL)
703 return (NULL);
704 if (rt->rt_llinfo) {
705 struct llinfo_nd6 *ln =
706 (struct llinfo_nd6 *)rt->rt_llinfo;
707 ln->ln_state = ND6_LLINFO_NOSTATE;
708 }
709 } else
710 return (NULL);
711 }
712 rt->rt_refcnt--;
713 /*
714 * Validation for the entry.
715 * Note that the check for rt_llinfo is necessary because a cloned
716 * route from a parent route that has the L flag (e.g. the default
717 * route to a p2p interface) may have the flag, too, while the
718 * destination is not actually a neighbor.
719 * XXX: we can't use rt->rt_ifp to check for the interface, since
720 * it might be the loopback interface if the entry is for our
721 * own address on a non-loopback interface. Instead, we should
722 * use rt->rt_ifa->ifa_ifp, which would specify the REAL
723 * interface.
724 */
725 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
726 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
727 (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
728 if (create) {
729 nd6log((LOG_DEBUG,
730 "nd6_lookup: failed to lookup %s (if = %s)\n",
731 ip6_sprintf(addr6),
732 ifp ? if_name(ifp) : "unspec"));
733 }
734 return (NULL);
735 }
736 return (rt);
737 }
738
739 /*
740 * Detect if a given IPv6 address identifies a neighbor on a given link.
741 * XXX: should take care of the destination of a p2p link?
742 */
743 int
744 nd6_is_addr_neighbor(addr, ifp)
745 struct sockaddr_in6 *addr;
746 struct ifnet *ifp;
747 {
748 struct nd_prefix *pr;
749 struct rtentry *rt;
750
751 /*
752 * A link-local address is always a neighbor.
753 * XXX: we should use the sin6_scope_id field rather than the embedded
754 * interface index.
755 * XXX: a link does not necessarily specify a single interface.
756 */
757 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) &&
758 ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index)
759 return (1);
760
761 /*
762 * If the address matches one of our on-link prefixes, it should be a
763 * neighbor.
764 */
765 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
766 if (pr->ndpr_ifp != ifp)
767 continue;
768
769 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
770 continue;
771
772 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
773 &addr->sin6_addr, &pr->ndpr_mask))
774 return (1);
775 }
776
777 /*
778 * If the default router list is empty, all addresses are regarded
779 * as on-link, and thus, as a neighbor.
780 * XXX: we restrict the condition to hosts, because routers usually do
781 * not have the "default router list".
782 */
783 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
784 nd6_defifindex == ifp->if_index) {
785 return (1);
786 }
787
788 /*
789 * Even if the address matches none of our addresses, it might be
790 * in the neighbor cache.
791 */
792 if ((rt = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL)
793 return (1);
794
795 return (0);
796 }
797
798 /*
799 * Free an nd6 llinfo entry.
800 * Since the function would cause significant changes in the kernel, DO NOT
801 * make it global, unless you have a strong reason for the change, and are sure
802 * that the change is safe.
803 */
804 static struct llinfo_nd6 *
805 nd6_free(rt, gc)
806 struct rtentry *rt;
807 int gc;
808 {
809 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
810 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
811 struct nd_defrouter *dr;
812
813 /*
814 * we used to have pfctlinput(PRC_HOSTDEAD) here.
815 * even though it is not harmful, it was not really necessary.
816 */
817
818 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
819 int s;
820 s = splsoftnet();
821 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
822 rt->rt_ifp);
823
824 if (dr != NULL && dr->expire &&
825 ln->ln_state == ND6_LLINFO_STALE && gc) {
826 /*
827 * If the reason for the deletion is just garbage
828 * collection, and the neighbor is an active default
829 * router, do not delete it. Instead, reset the GC
830 * timer using the router's lifetime.
831 * Simply deleting the entry would affect default
832 * router selection, which is not necessarily a good
833 * thing, especially when we're using router preference
834 * values.
835 * XXX: the check for ln_state would be redundant,
836 * but we intentionally keep it just in case.
837 */
838 ln->ln_expire = dr->expire;
839 splx(s);
840 return (ln->ln_next);
841 }
842
843 if (ln->ln_router || dr) {
844 /*
845 * rt6_flush must be called whether or not the neighbor
846 * is in the Default Router List.
847 * See a corresponding comment in nd6_na_input().
848 */
849 rt6_flush(&in6, rt->rt_ifp);
850 }
851
852 if (dr) {
853 /*
854 * Unreachablity of a router might affect the default
855 * router selection and on-link detection of advertised
856 * prefixes.
857 */
858
859 /*
860 * Temporarily fake the state to choose a new default
861 * router and to perform on-link determination of
862 * prefixes correctly.
863 * Below the state will be set correctly,
864 * or the entry itself will be deleted.
865 */
866 ln->ln_state = ND6_LLINFO_INCOMPLETE;
867
868 /*
869 * Since defrouter_select() does not affect the
870 * on-link determination and MIP6 needs the check
871 * before the default router selection, we perform
872 * the check now.
873 */
874 pfxlist_onlink_check();
875
876 /*
877 * refresh default router list
878 */
879 defrouter_select();
880 }
881 splx(s);
882 }
883
884 /*
885 * Before deleting the entry, remember the next entry as the
886 * return value. We need this because pfxlist_onlink_check() above
887 * might have freed other entries (particularly the old next entry) as
888 * a side effect (XXX).
889 */
890 next = ln->ln_next;
891
892 /*
893 * Detach the route from the routing tree and the list of neighbor
894 * caches, and disable the route entry not to be used in already
895 * cached routes.
896 */
897 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
898 rt_mask(rt), 0, (struct rtentry **)0);
899
900 return (next);
901 }
902
903 /*
904 * Upper-layer reachability hint for Neighbor Unreachability Detection.
905 *
906 * XXX cost-effective metods?
907 */
908 void
909 nd6_nud_hint(rt, dst6, force)
910 struct rtentry *rt;
911 struct in6_addr *dst6;
912 int force;
913 {
914 struct llinfo_nd6 *ln;
915
916 /*
917 * If the caller specified "rt", use that. Otherwise, resolve the
918 * routing table by supplied "dst6".
919 */
920 if (!rt) {
921 if (!dst6)
922 return;
923 if (!(rt = nd6_lookup(dst6, 0, NULL)))
924 return;
925 }
926
927 if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
928 (rt->rt_flags & RTF_LLINFO) == 0 ||
929 !rt->rt_llinfo || !rt->rt_gateway ||
930 rt->rt_gateway->sa_family != AF_LINK) {
931 /* This is not a host route. */
932 return;
933 }
934
935 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
936 if (ln->ln_state < ND6_LLINFO_REACHABLE)
937 return;
938
939 /*
940 * if we get upper-layer reachability confirmation many times,
941 * it is possible we have false information.
942 */
943 if (!force) {
944 ln->ln_byhint++;
945 if (ln->ln_byhint > nd6_maxnudhint)
946 return;
947 }
948
949 ln->ln_state = ND6_LLINFO_REACHABLE;
950 if (ln->ln_expire)
951 ln->ln_expire = time.tv_sec + ND_IFINFO(rt->rt_ifp)->reachable;
952 }
953
954 void
955 nd6_rtrequest(req, rt, info)
956 int req;
957 struct rtentry *rt;
958 struct rt_addrinfo *info; /* xxx unused */
959 {
960 struct sockaddr *gate = rt->rt_gateway;
961 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
962 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
963 struct ifnet *ifp = rt->rt_ifp;
964 struct ifaddr *ifa;
965 int mine = 0;
966
967 if ((rt->rt_flags & RTF_GATEWAY) != 0)
968 return;
969
970 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
971 /*
972 * This is probably an interface direct route for a link
973 * which does not need neighbor caches (e.g. fe80::%lo0/64).
974 * We do not need special treatment below for such a route.
975 * Moreover, the RTF_LLINFO flag which would be set below
976 * would annoy the ndp(8) command.
977 */
978 return;
979 }
980
981 if (req == RTM_RESOLVE &&
982 (nd6_need_cache(ifp) == 0 || /* stf case */
983 !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) {
984 /*
985 * FreeBSD and BSD/OS often make a cloned host route based
986 * on a less-specific route (e.g. the default route).
987 * If the less specific route does not have a "gateway"
988 * (this is the case when the route just goes to a p2p or an
989 * stf interface), we'll mistakenly make a neighbor cache for
990 * the host route, and will see strange neighbor solicitation
991 * for the corresponding destination. In order to avoid the
992 * confusion, we check if the destination of the route is
993 * a neighbor in terms of neighbor discovery, and stop the
994 * process if not. Additionally, we remove the LLINFO flag
995 * so that ndp(8) will not try to get the neighbor information
996 * of the destination.
997 */
998 rt->rt_flags &= ~RTF_LLINFO;
999 return;
1000 }
1001
1002 switch (req) {
1003 case RTM_ADD:
1004 /*
1005 * There is no backward compatibility :)
1006 *
1007 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1008 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1009 * rt->rt_flags |= RTF_CLONING;
1010 */
1011 if ((rt->rt_flags & RTF_CLONING) ||
1012 ((rt->rt_flags & RTF_LLINFO) && !ln)) {
1013 /*
1014 * Case 1: This route should come from a route to
1015 * interface (RTF_CLONING case) or the route should be
1016 * treated as on-link but is currently not
1017 * (RTF_LLINFO && !ln case).
1018 */
1019 rt_setgate(rt, rt_key(rt),
1020 (struct sockaddr *)&null_sdl);
1021 gate = rt->rt_gateway;
1022 SDL(gate)->sdl_type = ifp->if_type;
1023 SDL(gate)->sdl_index = ifp->if_index;
1024 if (ln)
1025 ln->ln_expire = time.tv_sec;
1026 #if 1
1027 if (ln && ln->ln_expire == 0) {
1028 /* kludge for desktops */
1029 #if 0
1030 printf("nd6_rtrequest: time.tv_sec is zero; "
1031 "treat it as 1\n");
1032 #endif
1033 ln->ln_expire = 1;
1034 }
1035 #endif
1036 if ((rt->rt_flags & RTF_CLONING) != 0)
1037 break;
1038 }
1039 /*
1040 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1041 * We don't do that here since llinfo is not ready yet.
1042 *
1043 * There are also couple of other things to be discussed:
1044 * - unsolicited NA code needs improvement beforehand
1045 * - RFC2461 says we MAY send multicast unsolicited NA
1046 * (7.2.6 paragraph 4), however, it also says that we
1047 * SHOULD provide a mechanism to prevent multicast NA storm.
1048 * we don't have anything like it right now.
1049 * note that the mechanism needs a mutual agreement
1050 * between proxies, which means that we need to implement
1051 * a new protocol, or a new kludge.
1052 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1053 * we need to check ip6forwarding before sending it.
1054 * (or should we allow proxy ND configuration only for
1055 * routers? there's no mention about proxy ND from hosts)
1056 */
1057 #if 0
1058 /* XXX it does not work */
1059 if (rt->rt_flags & RTF_ANNOUNCE)
1060 nd6_na_output(ifp,
1061 &SIN6(rt_key(rt))->sin6_addr,
1062 &SIN6(rt_key(rt))->sin6_addr,
1063 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1064 1, NULL);
1065 #endif
1066 /* FALLTHROUGH */
1067 case RTM_RESOLVE:
1068 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1069 /*
1070 * Address resolution isn't necessary for a point to
1071 * point link, so we can skip this test for a p2p link.
1072 */
1073 if (gate->sa_family != AF_LINK ||
1074 gate->sa_len < sizeof(null_sdl)) {
1075 log(LOG_DEBUG,
1076 "nd6_rtrequest: bad gateway value: %s\n",
1077 if_name(ifp));
1078 break;
1079 }
1080 SDL(gate)->sdl_type = ifp->if_type;
1081 SDL(gate)->sdl_index = ifp->if_index;
1082 }
1083 if (ln != NULL)
1084 break; /* This happens on a route change */
1085 /*
1086 * Case 2: This route may come from cloning, or a manual route
1087 * add with a LL address.
1088 */
1089 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1090 rt->rt_llinfo = (caddr_t)ln;
1091 if (!ln) {
1092 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1093 break;
1094 }
1095 nd6_inuse++;
1096 nd6_allocated++;
1097 Bzero(ln, sizeof(*ln));
1098 ln->ln_rt = rt;
1099 /* this is required for "ndp" command. - shin */
1100 if (req == RTM_ADD) {
1101 /*
1102 * gate should have some valid AF_LINK entry,
1103 * and ln->ln_expire should have some lifetime
1104 * which is specified by ndp command.
1105 */
1106 ln->ln_state = ND6_LLINFO_REACHABLE;
1107 ln->ln_byhint = 0;
1108 } else {
1109 /*
1110 * When req == RTM_RESOLVE, rt is created and
1111 * initialized in rtrequest(), so rt_expire is 0.
1112 */
1113 ln->ln_state = ND6_LLINFO_NOSTATE;
1114 ln->ln_expire = time.tv_sec;
1115 }
1116 rt->rt_flags |= RTF_LLINFO;
1117 ln->ln_next = llinfo_nd6.ln_next;
1118 llinfo_nd6.ln_next = ln;
1119 ln->ln_prev = &llinfo_nd6;
1120 ln->ln_next->ln_prev = ln;
1121
1122 /*
1123 * check if rt_key(rt) is one of my address assigned
1124 * to the interface.
1125 */
1126 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1127 &SIN6(rt_key(rt))->sin6_addr);
1128 if (ifa) {
1129 caddr_t macp = nd6_ifptomac(ifp);
1130 ln->ln_expire = 0;
1131 ln->ln_state = ND6_LLINFO_REACHABLE;
1132 ln->ln_byhint = 0;
1133 mine = 1;
1134 if (macp) {
1135 Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1136 SDL(gate)->sdl_alen = ifp->if_addrlen;
1137 }
1138 if (nd6_useloopback) {
1139 rt->rt_ifp = &loif[0]; /* XXX */
1140 /*
1141 * Make sure rt_ifa be equal to the ifaddr
1142 * corresponding to the address.
1143 * We need this because when we refer
1144 * rt_ifa->ia6_flags in ip6_input, we assume
1145 * that the rt_ifa points to the address instead
1146 * of the loopback address.
1147 */
1148 if (ifa != rt->rt_ifa) {
1149 IFAFREE(rt->rt_ifa);
1150 IFAREF(ifa);
1151 rt->rt_ifa = ifa;
1152 }
1153 }
1154 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1155 ln->ln_expire = 0;
1156 ln->ln_state = ND6_LLINFO_REACHABLE;
1157 ln->ln_byhint = 0;
1158
1159 /* join solicited node multicast for proxy ND */
1160 if (ifp->if_flags & IFF_MULTICAST) {
1161 struct in6_addr llsol;
1162 int error;
1163
1164 llsol = SIN6(rt_key(rt))->sin6_addr;
1165 llsol.s6_addr16[0] = htons(0xff02);
1166 llsol.s6_addr16[1] = htons(ifp->if_index);
1167 llsol.s6_addr32[1] = 0;
1168 llsol.s6_addr32[2] = htonl(1);
1169 llsol.s6_addr8[12] = 0xff;
1170
1171 if (!in6_addmulti(&llsol, ifp, &error)) {
1172 nd6log((LOG_ERR, "%s: failed to join "
1173 "%s (errno=%d)\n", if_name(ifp),
1174 ip6_sprintf(&llsol), error));
1175 }
1176 }
1177 }
1178 break;
1179
1180 case RTM_DELETE:
1181 if (!ln)
1182 break;
1183 /* leave from solicited node multicast for proxy ND */
1184 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1185 (ifp->if_flags & IFF_MULTICAST) != 0) {
1186 struct in6_addr llsol;
1187 struct in6_multi *in6m;
1188
1189 llsol = SIN6(rt_key(rt))->sin6_addr;
1190 llsol.s6_addr16[0] = htons(0xff02);
1191 llsol.s6_addr16[1] = htons(ifp->if_index);
1192 llsol.s6_addr32[1] = 0;
1193 llsol.s6_addr32[2] = htonl(1);
1194 llsol.s6_addr8[12] = 0xff;
1195
1196 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1197 if (in6m)
1198 in6_delmulti(in6m);
1199 }
1200 nd6_inuse--;
1201 ln->ln_next->ln_prev = ln->ln_prev;
1202 ln->ln_prev->ln_next = ln->ln_next;
1203 ln->ln_prev = NULL;
1204 rt->rt_llinfo = 0;
1205 rt->rt_flags &= ~RTF_LLINFO;
1206 if (ln->ln_hold)
1207 m_freem(ln->ln_hold);
1208 Free((caddr_t)ln);
1209 }
1210 }
1211
1212 int
1213 nd6_ioctl(cmd, data, ifp)
1214 u_long cmd;
1215 caddr_t data;
1216 struct ifnet *ifp;
1217 {
1218 struct in6_drlist *drl = (struct in6_drlist *)data;
1219 struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1220 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1221 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1222 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1223 struct nd_defrouter *dr;
1224 struct nd_prefix *pr;
1225 struct rtentry *rt;
1226 int i = 0, error = 0;
1227 int s;
1228
1229 switch (cmd) {
1230 case SIOCGDRLST_IN6:
1231 /*
1232 * obsolete API, use sysctl under net.inet6.icmp6
1233 */
1234 bzero(drl, sizeof(*drl));
1235 s = splsoftnet();
1236 dr = TAILQ_FIRST(&nd_defrouter);
1237 while (dr && i < DRLSTSIZ) {
1238 drl->defrouter[i].rtaddr = dr->rtaddr;
1239 if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) {
1240 /* XXX: need to this hack for KAME stack */
1241 drl->defrouter[i].rtaddr.s6_addr16[1] = 0;
1242 } else
1243 log(LOG_ERR,
1244 "default router list contains a "
1245 "non-linklocal address(%s)\n",
1246 ip6_sprintf(&drl->defrouter[i].rtaddr));
1247
1248 drl->defrouter[i].flags = dr->flags;
1249 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1250 drl->defrouter[i].expire = dr->expire;
1251 drl->defrouter[i].if_index = dr->ifp->if_index;
1252 i++;
1253 dr = TAILQ_NEXT(dr, dr_entry);
1254 }
1255 splx(s);
1256 break;
1257 case SIOCGPRLST_IN6:
1258 /*
1259 * obsolete API, use sysctl under net.inet6.icmp6
1260 *
1261 * XXX the structure in6_prlist was changed in backward-
1262 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1263 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1264 */
1265 /*
1266 * XXX meaning of fields, especialy "raflags", is very
1267 * differnet between RA prefix list and RR/static prefix list.
1268 * how about separating ioctls into two?
1269 */
1270 bzero(oprl, sizeof(*oprl));
1271 s = splsoftnet();
1272 pr = nd_prefix.lh_first;
1273 while (pr && i < PRLSTSIZ) {
1274 struct nd_pfxrouter *pfr;
1275 int j;
1276
1277 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1278 oprl->prefix[i].raflags = pr->ndpr_raf;
1279 oprl->prefix[i].prefixlen = pr->ndpr_plen;
1280 oprl->prefix[i].vltime = pr->ndpr_vltime;
1281 oprl->prefix[i].pltime = pr->ndpr_pltime;
1282 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1283 oprl->prefix[i].expire = pr->ndpr_expire;
1284
1285 pfr = pr->ndpr_advrtrs.lh_first;
1286 j = 0;
1287 while (pfr) {
1288 if (j < DRLSTSIZ) {
1289 #define RTRADDR oprl->prefix[i].advrtr[j]
1290 RTRADDR = pfr->router->rtaddr;
1291 if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) {
1292 /* XXX: hack for KAME */
1293 RTRADDR.s6_addr16[1] = 0;
1294 } else
1295 log(LOG_ERR,
1296 "a router(%s) advertises "
1297 "a prefix with "
1298 "non-link local address\n",
1299 ip6_sprintf(&RTRADDR));
1300 #undef RTRADDR
1301 }
1302 j++;
1303 pfr = pfr->pfr_next;
1304 }
1305 oprl->prefix[i].advrtrs = j;
1306 oprl->prefix[i].origin = PR_ORIG_RA;
1307
1308 i++;
1309 pr = pr->ndpr_next;
1310 }
1311 splx(s);
1312
1313 break;
1314 case OSIOCGIFINFO_IN6:
1315 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1316 bzero(&ndi->ndi, sizeof(ndi->ndi));
1317 ndi->ndi.linkmtu = IN6_LINKMTU(ifp);
1318 ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu;
1319 ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable;
1320 ndi->ndi.reachable = ND_IFINFO(ifp)->reachable;
1321 ndi->ndi.retrans = ND_IFINFO(ifp)->retrans;
1322 ndi->ndi.flags = ND_IFINFO(ifp)->flags;
1323 ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm;
1324 ndi->ndi.chlim = ND_IFINFO(ifp)->chlim;
1325 break;
1326 case SIOCGIFINFO_IN6:
1327 ndi->ndi = *ND_IFINFO(ifp);
1328 break;
1329 case SIOCSIFINFO_FLAGS:
1330 ND_IFINFO(ifp)->flags = ndi->ndi.flags;
1331 break;
1332 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1333 /* sync kernel routing table with the default router list */
1334 defrouter_reset();
1335 defrouter_select();
1336 break;
1337 case SIOCSPFXFLUSH_IN6:
1338 {
1339 /* flush all the prefix advertised by routers */
1340 struct nd_prefix *pr, *next;
1341
1342 s = splsoftnet();
1343 for (pr = nd_prefix.lh_first; pr; pr = next) {
1344 struct in6_ifaddr *ia, *ia_next;
1345
1346 next = pr->ndpr_next;
1347
1348 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1349 continue; /* XXX */
1350
1351 /* do we really have to remove addresses as well? */
1352 for (ia = in6_ifaddr; ia; ia = ia_next) {
1353 /* ia might be removed. keep the next ptr. */
1354 ia_next = ia->ia_next;
1355
1356 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1357 continue;
1358
1359 if (ia->ia6_ndpr == pr)
1360 in6_purgeaddr(&ia->ia_ifa);
1361 }
1362 prelist_remove(pr);
1363 }
1364 splx(s);
1365 break;
1366 }
1367 case SIOCSRTRFLUSH_IN6:
1368 {
1369 /* flush all the default routers */
1370 struct nd_defrouter *dr, *next;
1371
1372 s = splsoftnet();
1373 defrouter_reset();
1374 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) {
1375 next = TAILQ_NEXT(dr, dr_entry);
1376 defrtrlist_del(dr);
1377 }
1378 defrouter_select();
1379 splx(s);
1380 break;
1381 }
1382 case SIOCGNBRINFO_IN6:
1383 {
1384 struct llinfo_nd6 *ln;
1385 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1386
1387 /*
1388 * XXX: KAME specific hack for scoped addresses
1389 * XXXX: for other scopes than link-local?
1390 */
1391 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) ||
1392 IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) {
1393 u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2];
1394
1395 if (*idp == 0)
1396 *idp = htons(ifp->if_index);
1397 }
1398
1399 s = splsoftnet();
1400 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL ||
1401 (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) {
1402 error = EINVAL;
1403 splx(s);
1404 break;
1405 }
1406 nbi->state = ln->ln_state;
1407 nbi->asked = ln->ln_asked;
1408 nbi->isrouter = ln->ln_router;
1409 nbi->expire = ln->ln_expire;
1410 splx(s);
1411
1412 break;
1413 }
1414 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1415 ndif->ifindex = nd6_defifindex;
1416 break;
1417 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1418 return (nd6_setdefaultiface(ndif->ifindex));
1419 }
1420 return (error);
1421 }
1422
1423 /*
1424 * Create neighbor cache entry and cache link-layer address,
1425 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1426 */
1427 struct rtentry *
1428 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
1429 struct ifnet *ifp;
1430 struct in6_addr *from;
1431 char *lladdr;
1432 int lladdrlen;
1433 int type; /* ICMP6 type */
1434 int code; /* type dependent information */
1435 {
1436 struct rtentry *rt = NULL;
1437 struct llinfo_nd6 *ln = NULL;
1438 int is_newentry;
1439 struct sockaddr_dl *sdl = NULL;
1440 int do_update;
1441 int olladdr;
1442 int llchange;
1443 int newstate = 0;
1444
1445 if (!ifp)
1446 panic("ifp == NULL in nd6_cache_lladdr");
1447 if (!from)
1448 panic("from == NULL in nd6_cache_lladdr");
1449
1450 /* nothing must be updated for unspecified address */
1451 if (IN6_IS_ADDR_UNSPECIFIED(from))
1452 return NULL;
1453
1454 /*
1455 * Validation about ifp->if_addrlen and lladdrlen must be done in
1456 * the caller.
1457 *
1458 * XXX If the link does not have link-layer adderss, what should
1459 * we do? (ifp->if_addrlen == 0)
1460 * Spec says nothing in sections for RA, RS and NA. There's small
1461 * description on it in NS section (RFC 2461 7.2.3).
1462 */
1463
1464 rt = nd6_lookup(from, 0, ifp);
1465 if (!rt) {
1466 #if 0
1467 /* nothing must be done if there's no lladdr */
1468 if (!lladdr || !lladdrlen)
1469 return NULL;
1470 #endif
1471
1472 rt = nd6_lookup(from, 1, ifp);
1473 is_newentry = 1;
1474 } else {
1475 /* do nothing if static ndp is set */
1476 if (rt->rt_flags & RTF_STATIC)
1477 return NULL;
1478 is_newentry = 0;
1479 }
1480
1481 if (!rt)
1482 return NULL;
1483 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1484 fail:
1485 (void)nd6_free(rt, 0);
1486 return NULL;
1487 }
1488 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1489 if (!ln)
1490 goto fail;
1491 if (!rt->rt_gateway)
1492 goto fail;
1493 if (rt->rt_gateway->sa_family != AF_LINK)
1494 goto fail;
1495 sdl = SDL(rt->rt_gateway);
1496
1497 olladdr = (sdl->sdl_alen) ? 1 : 0;
1498 if (olladdr && lladdr) {
1499 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1500 llchange = 1;
1501 else
1502 llchange = 0;
1503 } else
1504 llchange = 0;
1505
1506 /*
1507 * newentry olladdr lladdr llchange (*=record)
1508 * 0 n n -- (1)
1509 * 0 y n -- (2)
1510 * 0 n y -- (3) * STALE
1511 * 0 y y n (4) *
1512 * 0 y y y (5) * STALE
1513 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1514 * 1 -- y -- (7) * STALE
1515 */
1516
1517 if (lladdr) { /* (3-5) and (7) */
1518 /*
1519 * Record source link-layer address
1520 * XXX is it dependent to ifp->if_type?
1521 */
1522 sdl->sdl_alen = ifp->if_addrlen;
1523 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1524 }
1525
1526 if (!is_newentry) {
1527 if ((!olladdr && lladdr) || /* (3) */
1528 (olladdr && lladdr && llchange)) { /* (5) */
1529 do_update = 1;
1530 newstate = ND6_LLINFO_STALE;
1531 } else /* (1-2,4) */
1532 do_update = 0;
1533 } else {
1534 do_update = 1;
1535 if (!lladdr) /* (6) */
1536 newstate = ND6_LLINFO_NOSTATE;
1537 else /* (7) */
1538 newstate = ND6_LLINFO_STALE;
1539 }
1540
1541 if (do_update) {
1542 /*
1543 * Update the state of the neighbor cache.
1544 */
1545 ln->ln_state = newstate;
1546
1547 if (ln->ln_state == ND6_LLINFO_STALE) {
1548 /*
1549 * XXX: since nd6_output() below will cause
1550 * state tansition to DELAY and reset the timer,
1551 * we must set the timer now, although it is actually
1552 * meaningless.
1553 */
1554 ln->ln_expire = time.tv_sec + nd6_gctimer;
1555
1556 if (ln->ln_hold) {
1557 /*
1558 * we assume ifp is not a p2p here, so just
1559 * set the 2nd argument as the 1st one.
1560 */
1561 nd6_output(ifp, ifp, ln->ln_hold,
1562 (struct sockaddr_in6 *)rt_key(rt), rt);
1563 ln->ln_hold = NULL;
1564 }
1565 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1566 /* probe right away */
1567 ln->ln_expire = time.tv_sec;
1568 }
1569 }
1570
1571 /*
1572 * ICMP6 type dependent behavior.
1573 *
1574 * NS: clear IsRouter if new entry
1575 * RS: clear IsRouter
1576 * RA: set IsRouter if there's lladdr
1577 * redir: clear IsRouter if new entry
1578 *
1579 * RA case, (1):
1580 * The spec says that we must set IsRouter in the following cases:
1581 * - If lladdr exist, set IsRouter. This means (1-5).
1582 * - If it is old entry (!newentry), set IsRouter. This means (7).
1583 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1584 * A quetion arises for (1) case. (1) case has no lladdr in the
1585 * neighbor cache, this is similar to (6).
1586 * This case is rare but we figured that we MUST NOT set IsRouter.
1587 *
1588 * newentry olladdr lladdr llchange NS RS RA redir
1589 * D R
1590 * 0 n n -- (1) c ? s
1591 * 0 y n -- (2) c s s
1592 * 0 n y -- (3) c s s
1593 * 0 y y n (4) c s s
1594 * 0 y y y (5) c s s
1595 * 1 -- n -- (6) c c c s
1596 * 1 -- y -- (7) c c s c s
1597 *
1598 * (c=clear s=set)
1599 */
1600 switch (type & 0xff) {
1601 case ND_NEIGHBOR_SOLICIT:
1602 /*
1603 * New entry must have is_router flag cleared.
1604 */
1605 if (is_newentry) /* (6-7) */
1606 ln->ln_router = 0;
1607 break;
1608 case ND_REDIRECT:
1609 /*
1610 * If the icmp is a redirect to a better router, always set the
1611 * is_router flag. Otherwise, if the entry is newly created,
1612 * clear the flag. [RFC 2461, sec 8.3]
1613 */
1614 if (code == ND_REDIRECT_ROUTER)
1615 ln->ln_router = 1;
1616 else if (is_newentry) /* (6-7) */
1617 ln->ln_router = 0;
1618 break;
1619 case ND_ROUTER_SOLICIT:
1620 /*
1621 * is_router flag must always be cleared.
1622 */
1623 ln->ln_router = 0;
1624 break;
1625 case ND_ROUTER_ADVERT:
1626 /*
1627 * Mark an entry with lladdr as a router.
1628 */
1629 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
1630 (is_newentry && lladdr)) { /* (7) */
1631 ln->ln_router = 1;
1632 }
1633 break;
1634 }
1635
1636 /*
1637 * When the link-layer address of a router changes, select the
1638 * best router again. In particular, when the neighbor entry is newly
1639 * created, it might affect the selection policy.
1640 * Question: can we restrict the first condition to the "is_newentry"
1641 * case?
1642 * XXX: when we hear an RA from a new router with the link-layer
1643 * address option, defrouter_select() is called twice, since
1644 * defrtrlist_update called the function as well. However, I believe
1645 * we can compromise the overhead, since it only happens the first
1646 * time.
1647 * XXX: although defrouter_select() should not have a bad effect
1648 * for those are not autoconfigured hosts, we explicitly avoid such
1649 * cases for safety.
1650 */
1651 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1652 defrouter_select();
1653
1654 return rt;
1655 }
1656
1657 static void
1658 nd6_slowtimo(ignored_arg)
1659 void *ignored_arg;
1660 {
1661 int s = splsoftnet();
1662 struct nd_ifinfo *nd6if;
1663 struct ifnet *ifp;
1664
1665 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1666 nd6_slowtimo, NULL);
1667 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
1668 {
1669 nd6if = ND_IFINFO(ifp);
1670 if (nd6if->basereachable && /* already initialized */
1671 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1672 /*
1673 * Since reachable time rarely changes by router
1674 * advertisements, we SHOULD insure that a new random
1675 * value gets recomputed at least once every few hours.
1676 * (RFC 2461, 6.3.4)
1677 */
1678 nd6if->recalctm = nd6_recalc_reachtm_interval;
1679 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1680 }
1681 }
1682 splx(s);
1683 }
1684
1685 #define senderr(e) { error = (e); goto bad;}
1686 int
1687 nd6_output(ifp, origifp, m0, dst, rt0)
1688 struct ifnet *ifp;
1689 struct ifnet *origifp;
1690 struct mbuf *m0;
1691 struct sockaddr_in6 *dst;
1692 struct rtentry *rt0;
1693 {
1694 struct mbuf *m = m0;
1695 struct rtentry *rt = rt0;
1696 struct sockaddr_in6 *gw6 = NULL;
1697 struct llinfo_nd6 *ln = NULL;
1698 int error = 0;
1699
1700 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1701 goto sendpkt;
1702
1703 if (nd6_need_cache(ifp) == 0)
1704 goto sendpkt;
1705
1706 /*
1707 * next hop determination. This routine is derived from ether_outpout.
1708 */
1709 if (rt) {
1710 if ((rt->rt_flags & RTF_UP) == 0) {
1711 if ((rt0 = rt = rtalloc1((struct sockaddr *)dst,
1712 1)) != NULL)
1713 {
1714 rt->rt_refcnt--;
1715 if (rt->rt_ifp != ifp) {
1716 /* XXX: loop care? */
1717 return nd6_output(ifp, origifp, m0,
1718 dst, rt);
1719 }
1720 } else
1721 senderr(EHOSTUNREACH);
1722 }
1723
1724 if (rt->rt_flags & RTF_GATEWAY) {
1725 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1726
1727 /*
1728 * We skip link-layer address resolution and NUD
1729 * if the gateway is not a neighbor from ND point
1730 * of view, regardless of the value of nd_ifinfo.flags.
1731 * The second condition is a bit tricky; we skip
1732 * if the gateway is our own address, which is
1733 * sometimes used to install a route to a p2p link.
1734 */
1735 if (!nd6_is_addr_neighbor(gw6, ifp) ||
1736 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1737 /*
1738 * We allow this kind of tricky route only
1739 * when the outgoing interface is p2p.
1740 * XXX: we may need a more generic rule here.
1741 */
1742 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1743 senderr(EHOSTUNREACH);
1744
1745 goto sendpkt;
1746 }
1747
1748 if (rt->rt_gwroute == 0)
1749 goto lookup;
1750 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
1751 rtfree(rt); rt = rt0;
1752 lookup:
1753 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
1754 if ((rt = rt->rt_gwroute) == 0)
1755 senderr(EHOSTUNREACH);
1756 /* the "G" test below also prevents rt == rt0 */
1757 if ((rt->rt_flags & RTF_GATEWAY) ||
1758 (rt->rt_ifp != ifp)) {
1759 rt->rt_refcnt--;
1760 rt0->rt_gwroute = 0;
1761 senderr(EHOSTUNREACH);
1762 }
1763 }
1764 }
1765 }
1766
1767 /*
1768 * Address resolution or Neighbor Unreachability Detection
1769 * for the next hop.
1770 * At this point, the destination of the packet must be a unicast
1771 * or an anycast address(i.e. not a multicast).
1772 */
1773
1774 /* Look up the neighbor cache for the nexthop */
1775 if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
1776 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1777 else {
1778 /*
1779 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1780 * the condition below is not very efficient. But we believe
1781 * it is tolerable, because this should be a rare case.
1782 */
1783 if (nd6_is_addr_neighbor(dst, ifp) &&
1784 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
1785 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1786 }
1787 if (!ln || !rt) {
1788 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
1789 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
1790 log(LOG_DEBUG,
1791 "nd6_output: can't allocate llinfo for %s "
1792 "(ln=%p, rt=%p)\n",
1793 ip6_sprintf(&dst->sin6_addr), ln, rt);
1794 senderr(EIO); /* XXX: good error? */
1795 }
1796
1797 goto sendpkt; /* send anyway */
1798 }
1799
1800 /* We don't have to do link-layer address resolution on a p2p link. */
1801 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
1802 ln->ln_state < ND6_LLINFO_REACHABLE) {
1803 ln->ln_state = ND6_LLINFO_STALE;
1804 ln->ln_expire = time.tv_sec + nd6_gctimer;
1805 }
1806
1807 /*
1808 * The first time we send a packet to a neighbor whose entry is
1809 * STALE, we have to change the state to DELAY and a sets a timer to
1810 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
1811 * neighbor unreachability detection on expiration.
1812 * (RFC 2461 7.3.3)
1813 */
1814 if (ln->ln_state == ND6_LLINFO_STALE) {
1815 ln->ln_asked = 0;
1816 ln->ln_state = ND6_LLINFO_DELAY;
1817 ln->ln_expire = time.tv_sec + nd6_delay;
1818 }
1819
1820 /*
1821 * If the neighbor cache entry has a state other than INCOMPLETE
1822 * (i.e. its link-layer address is already resolved), just
1823 * send the packet.
1824 */
1825 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1826 goto sendpkt;
1827
1828 /*
1829 * There is a neighbor cache entry, but no ethernet address
1830 * response yet. Replace the held mbuf (if any) with this
1831 * latest one.
1832 */
1833 if (ln->ln_state == ND6_LLINFO_NOSTATE)
1834 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1835 if (ln->ln_hold)
1836 m_freem(ln->ln_hold);
1837 ln->ln_hold = m;
1838 /*
1839 * If there has been no NS for the neighbor after entering the
1840 * INCOMPLETE state, send the first solicitation.
1841 * Technically this can be against the rate-limiting rule described in
1842 * Section 7.2.2 of RFC 2461 because the interval to the next scheduled
1843 * solicitation issued in nd6_timer() may be less than the specified
1844 * retransmission time. This should not be a problem from a practical
1845 * point of view, because we'll typically see an immediate response
1846 * from the neighbor, which suppresses the succeeding solicitations.
1847 */
1848 if (ln->ln_expire && ln->ln_asked == 0) {
1849 ln->ln_asked++;
1850 ln->ln_expire = time.tv_sec +
1851 ND6_RETRANS_SEC(ND_IFINFO(ifp)->retrans);
1852 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
1853 }
1854 return (0);
1855
1856 sendpkt:
1857
1858 #ifdef IPSEC
1859 /* clean ipsec history once it goes out of the node */
1860 ipsec_delaux(m);
1861 #endif
1862 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
1863 return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
1864 rt));
1865 }
1866 return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
1867
1868 bad:
1869 if (m)
1870 m_freem(m);
1871 return (error);
1872 }
1873 #undef senderr
1874
1875 int
1876 nd6_need_cache(ifp)
1877 struct ifnet *ifp;
1878 {
1879 /*
1880 * XXX: we currently do not make neighbor cache on any interface
1881 * other than ARCnet, Ethernet, FDDI and GIF.
1882 *
1883 * RFC2893 says:
1884 * - unidirectional tunnels needs no ND
1885 */
1886 switch (ifp->if_type) {
1887 case IFT_ARCNET:
1888 case IFT_ETHER:
1889 case IFT_FDDI:
1890 case IFT_IEEE1394:
1891 case IFT_GIF: /* XXX need more cases? */
1892 return (1);
1893 default:
1894 return (0);
1895 }
1896 }
1897
1898 int
1899 nd6_storelladdr(ifp, rt, m, dst, desten)
1900 struct ifnet *ifp;
1901 struct rtentry *rt;
1902 struct mbuf *m;
1903 struct sockaddr *dst;
1904 u_char *desten;
1905 {
1906 struct sockaddr_dl *sdl;
1907
1908 if (m->m_flags & M_MCAST) {
1909 switch (ifp->if_type) {
1910 case IFT_ETHER:
1911 case IFT_FDDI:
1912 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
1913 desten);
1914 return (1);
1915 case IFT_IEEE1394:
1916 bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen);
1917 return (1);
1918 case IFT_ARCNET:
1919 *desten = 0;
1920 return (1);
1921 default:
1922 m_freem(m);
1923 return (0);
1924 }
1925 }
1926
1927 if (rt == NULL) {
1928 /* this could happen, if we could not allocate memory */
1929 m_freem(m);
1930 return (0);
1931 }
1932 if (rt->rt_gateway->sa_family != AF_LINK) {
1933 printf("nd6_storelladdr: something odd happens\n");
1934 m_freem(m);
1935 return (0);
1936 }
1937 sdl = SDL(rt->rt_gateway);
1938 if (sdl->sdl_alen == 0) {
1939 /* this should be impossible, but we bark here for debugging */
1940 printf("nd6_storelladdr: sdl_alen == 0, dst=%s, if=%s\n",
1941 ip6_sprintf(&SIN6(dst)->sin6_addr), if_name(ifp));
1942 m_freem(m);
1943 return (0);
1944 }
1945
1946 bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
1947 return (1);
1948 }
1949
1950 int
1951 nd6_sysctl(name, oldp, oldlenp, newp, newlen)
1952 int name;
1953 void *oldp; /* syscall arg, need copyout */
1954 size_t *oldlenp;
1955 void *newp; /* syscall arg, need copyin */
1956 size_t newlen;
1957 {
1958 void *p;
1959 size_t ol, l;
1960 int error;
1961
1962 error = 0;
1963 l = 0;
1964
1965 if (newp)
1966 return EPERM;
1967 if (oldp && !oldlenp)
1968 return EINVAL;
1969 ol = oldlenp ? *oldlenp : 0;
1970
1971 if (oldp) {
1972 p = malloc(*oldlenp, M_TEMP, M_WAITOK);
1973 if (!p)
1974 return ENOMEM;
1975 } else
1976 p = NULL;
1977 switch (name) {
1978 case ICMPV6CTL_ND6_DRLIST:
1979 error = fill_drlist(p, oldlenp, ol);
1980 if (!error && p && oldp)
1981 error = copyout(p, oldp, *oldlenp);
1982 break;
1983
1984 case ICMPV6CTL_ND6_PRLIST:
1985 error = fill_prlist(p, oldlenp, ol);
1986 if (!error && p && oldp)
1987 error = copyout(p, oldp, *oldlenp);
1988 break;
1989
1990 default:
1991 error = ENOPROTOOPT;
1992 break;
1993 }
1994 if (p)
1995 free(p, M_TEMP);
1996
1997 return (error);
1998 }
1999
2000 static int
2001 fill_drlist(oldp, oldlenp, ol)
2002 void *oldp;
2003 size_t *oldlenp, ol;
2004 {
2005 int error = 0, s;
2006 struct in6_defrouter *d = NULL, *de = NULL;
2007 struct nd_defrouter *dr;
2008 size_t l;
2009
2010 s = splsoftnet();
2011
2012 if (oldp) {
2013 d = (struct in6_defrouter *)oldp;
2014 de = (struct in6_defrouter *)((caddr_t)oldp + *oldlenp);
2015 }
2016 l = 0;
2017
2018 for (dr = TAILQ_FIRST(&nd_defrouter); dr;
2019 dr = TAILQ_NEXT(dr, dr_entry)) {
2020
2021 if (oldp && d + 1 <= de) {
2022 bzero(d, sizeof(*d));
2023 d->rtaddr.sin6_family = AF_INET6;
2024 d->rtaddr.sin6_len = sizeof(struct sockaddr_in6);
2025 d->rtaddr.sin6_addr = dr->rtaddr;
2026 in6_recoverscope(&d->rtaddr, &d->rtaddr.sin6_addr,
2027 dr->ifp);
2028 d->flags = dr->flags;
2029 d->rtlifetime = dr->rtlifetime;
2030 d->expire = dr->expire;
2031 d->if_index = dr->ifp->if_index;
2032 }
2033
2034 l += sizeof(*d);
2035 if (d)
2036 d++;
2037 }
2038
2039 if (oldp) {
2040 *oldlenp = l; /* (caddr_t)d - (caddr_t)oldp */
2041 if (l > ol)
2042 error = ENOMEM;
2043 } else
2044 *oldlenp = l;
2045
2046 splx(s);
2047
2048 return (error);
2049 }
2050
2051 static int
2052 fill_prlist(oldp, oldlenp, ol)
2053 void *oldp;
2054 size_t *oldlenp, ol;
2055 {
2056 int error = 0, s;
2057 struct nd_prefix *pr;
2058 struct in6_prefix *p = NULL;
2059 struct in6_prefix *pe = NULL;
2060 size_t l;
2061
2062 s = splsoftnet();
2063
2064 if (oldp) {
2065 p = (struct in6_prefix *)oldp;
2066 pe = (struct in6_prefix *)((caddr_t)oldp + *oldlenp);
2067 }
2068 l = 0;
2069
2070 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2071 u_short advrtrs;
2072 size_t advance;
2073 struct sockaddr_in6 *sin6;
2074 struct sockaddr_in6 *s6;
2075 struct nd_pfxrouter *pfr;
2076
2077 if (oldp && p + 1 <= pe)
2078 {
2079 bzero(p, sizeof(*p));
2080 sin6 = (struct sockaddr_in6 *)(p + 1);
2081
2082 p->prefix = pr->ndpr_prefix;
2083 if (in6_recoverscope(&p->prefix,
2084 &p->prefix.sin6_addr, pr->ndpr_ifp) != 0)
2085 log(LOG_ERR,
2086 "scope error in prefix list (%s)\n",
2087 ip6_sprintf(&p->prefix.sin6_addr));
2088 p->raflags = pr->ndpr_raf;
2089 p->prefixlen = pr->ndpr_plen;
2090 p->vltime = pr->ndpr_vltime;
2091 p->pltime = pr->ndpr_pltime;
2092 p->if_index = pr->ndpr_ifp->if_index;
2093 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2094 p->expire = 0;
2095 else {
2096 time_t maxexpire;
2097
2098 /* XXX: we assume time_t is signed. */
2099 maxexpire = (-1) &
2100 ~(1 << ((sizeof(maxexpire) * 8) - 1));
2101 if (pr->ndpr_vltime <
2102 maxexpire - pr->ndpr_lastupdate) {
2103 p->expire = pr->ndpr_lastupdate +
2104 pr->ndpr_vltime;
2105 } else
2106 p->expire = maxexpire;
2107 }
2108 p->refcnt = pr->ndpr_refcnt;
2109 p->flags = pr->ndpr_stateflags;
2110 p->origin = PR_ORIG_RA;
2111 advrtrs = 0;
2112 for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2113 pfr = pfr->pfr_next) {
2114 if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2115 advrtrs++;
2116 continue;
2117 }
2118 s6 = &sin6[advrtrs];
2119 s6->sin6_family = AF_INET6;
2120 s6->sin6_len = sizeof(struct sockaddr_in6);
2121 s6->sin6_addr = pfr->router->rtaddr;
2122 in6_recoverscope(s6, &s6->sin6_addr,
2123 pfr->router->ifp);
2124 advrtrs++;
2125 }
2126 p->advrtrs = advrtrs;
2127 }
2128 else {
2129 advrtrs = 0;
2130 for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2131 pfr = pfr->pfr_next)
2132 advrtrs++;
2133 }
2134
2135 advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2136 l += advance;
2137 if (p)
2138 p = (struct in6_prefix *)((caddr_t)p + advance);
2139 }
2140
2141 if (oldp) {
2142 *oldlenp = l; /* (caddr_t)d - (caddr_t)oldp */
2143 if (l > ol)
2144 error = ENOMEM;
2145 } else
2146 *oldlenp = l;
2147
2148 splx(s);
2149
2150 return (error);
2151 }
2152