nd6.c revision 1.86 1 /* $NetBSD: nd6.c,v 1.86 2003/06/27 08:41:08 itojun Exp $ */
2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.86 2003/06/27 08:41:08 itojun Exp $");
35
36 #include <sys/param.h>
37 #include <sys/systm.h>
38 #include <sys/callout.h>
39 #include <sys/malloc.h>
40 #include <sys/mbuf.h>
41 #include <sys/socket.h>
42 #include <sys/sockio.h>
43 #include <sys/time.h>
44 #include <sys/kernel.h>
45 #include <sys/protosw.h>
46 #include <sys/errno.h>
47 #include <sys/ioctl.h>
48 #include <sys/syslog.h>
49 #include <sys/queue.h>
50
51 #include <net/if.h>
52 #include <net/if_dl.h>
53 #include <net/if_types.h>
54 #include <net/route.h>
55 #include <net/if_ether.h>
56 #include <net/if_fddi.h>
57 #include <net/if_arc.h>
58
59 #include <netinet/in.h>
60 #include <netinet6/in6_var.h>
61 #include <netinet/ip6.h>
62 #include <netinet6/ip6_var.h>
63 #include <netinet6/nd6.h>
64 #include <netinet/icmp6.h>
65
66 #include "loop.h"
67 extern struct ifnet loif[NLOOP];
68
69 #include <net/net_osdep.h>
70
71 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
72 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
73
74 #define SIN6(s) ((struct sockaddr_in6 *)s)
75 #define SDL(s) ((struct sockaddr_dl *)s)
76
77 /* timer values */
78 int nd6_prune = 1; /* walk list every 1 seconds */
79 int nd6_delay = 5; /* delay first probe time 5 second */
80 int nd6_umaxtries = 3; /* maximum unicast query */
81 int nd6_mmaxtries = 3; /* maximum multicast query */
82 int nd6_useloopback = 1; /* use loopback interface for local traffic */
83 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
84
85 /* preventing too many loops in ND option parsing */
86 int nd6_maxndopt = 10; /* max # of ND options allowed */
87
88 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
89
90 #ifdef ND6_DEBUG
91 int nd6_debug = 1;
92 #else
93 int nd6_debug = 0;
94 #endif
95
96 /* for debugging? */
97 static int nd6_inuse, nd6_allocated;
98
99 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
100 struct nd_drhead nd_defrouter;
101 struct nd_prhead nd_prefix = { 0 };
102
103 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
104 static struct sockaddr_in6 all1_sa;
105
106 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
107 static void nd6_slowtimo __P((void *));
108 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
109 static void nd6_llinfo_timer __P((void *));
110
111 struct callout nd6_slowtimo_ch = CALLOUT_INITIALIZER;
112 struct callout nd6_timer_ch = CALLOUT_INITIALIZER;
113
114 static int fill_drlist __P((void *, size_t *, size_t));
115 static int fill_prlist __P((void *, size_t *, size_t));
116
117 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
118
119 void
120 nd6_init()
121 {
122 static int nd6_init_done = 0;
123 int i;
124
125 if (nd6_init_done) {
126 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
127 return;
128 }
129
130 all1_sa.sin6_family = AF_INET6;
131 all1_sa.sin6_len = sizeof(struct sockaddr_in6);
132 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
133 all1_sa.sin6_addr.s6_addr[i] = 0xff;
134
135 /* initialization of the default router list */
136 TAILQ_INIT(&nd_defrouter);
137
138 nd6_init_done = 1;
139
140 /* start timer */
141 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
142 nd6_slowtimo, NULL);
143 }
144
145 struct nd_ifinfo *
146 nd6_ifattach(ifp)
147 struct ifnet *ifp;
148 {
149 struct nd_ifinfo *nd;
150
151 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
152 bzero(nd, sizeof(*nd));
153
154 nd->initialized = 1;
155
156 nd->chlim = IPV6_DEFHLIM;
157 nd->basereachable = REACHABLE_TIME;
158 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
159 nd->retrans = RETRANS_TIMER;
160 /*
161 * Note that the default value of ip6_accept_rtadv is 0, which means
162 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
163 * here.
164 */
165 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
166
167 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
168 nd6_setmtu0(ifp, nd);
169
170 return nd;
171 }
172
173 void
174 nd6_ifdetach(nd)
175 struct nd_ifinfo *nd;
176 {
177
178 free(nd, M_IP6NDP);
179 }
180
181 void
182 nd6_setmtu(ifp)
183 struct ifnet *ifp;
184 {
185 nd6_setmtu0(ifp, ND_IFINFO(ifp));
186 }
187
188 void
189 nd6_setmtu0(ifp, ndi)
190 struct ifnet *ifp;
191 struct nd_ifinfo *ndi;
192 {
193 u_int32_t omaxmtu;
194
195 omaxmtu = ndi->maxmtu;
196
197 switch (ifp->if_type) {
198 case IFT_ARCNET:
199 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
200 break;
201 case IFT_FDDI:
202 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
203 break;
204 default:
205 ndi->maxmtu = ifp->if_mtu;
206 break;
207 }
208
209 /*
210 * Decreasing the interface MTU under IPV6 minimum MTU may cause
211 * undesirable situation. We thus notify the operator of the change
212 * explicitly. The check for omaxmtu is necessary to restrict the
213 * log to the case of changing the MTU, not initializing it.
214 */
215 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
216 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
217 " small for IPv6 which needs %lu\n",
218 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
219 IPV6_MMTU);
220 }
221
222 if (ndi->maxmtu > in6_maxmtu)
223 in6_setmaxmtu(); /* check all interfaces just in case */
224 }
225
226 void
227 nd6_option_init(opt, icmp6len, ndopts)
228 void *opt;
229 int icmp6len;
230 union nd_opts *ndopts;
231 {
232
233 bzero(ndopts, sizeof(*ndopts));
234 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
235 ndopts->nd_opts_last
236 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
237
238 if (icmp6len == 0) {
239 ndopts->nd_opts_done = 1;
240 ndopts->nd_opts_search = NULL;
241 }
242 }
243
244 /*
245 * Take one ND option.
246 */
247 struct nd_opt_hdr *
248 nd6_option(ndopts)
249 union nd_opts *ndopts;
250 {
251 struct nd_opt_hdr *nd_opt;
252 int olen;
253
254 if (!ndopts)
255 panic("ndopts == NULL in nd6_option");
256 if (!ndopts->nd_opts_last)
257 panic("uninitialized ndopts in nd6_option");
258 if (!ndopts->nd_opts_search)
259 return NULL;
260 if (ndopts->nd_opts_done)
261 return NULL;
262
263 nd_opt = ndopts->nd_opts_search;
264
265 /* make sure nd_opt_len is inside the buffer */
266 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
267 bzero(ndopts, sizeof(*ndopts));
268 return NULL;
269 }
270
271 olen = nd_opt->nd_opt_len << 3;
272 if (olen == 0) {
273 /*
274 * Message validation requires that all included
275 * options have a length that is greater than zero.
276 */
277 bzero(ndopts, sizeof(*ndopts));
278 return NULL;
279 }
280
281 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
282 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
283 /* option overruns the end of buffer, invalid */
284 bzero(ndopts, sizeof(*ndopts));
285 return NULL;
286 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
287 /* reached the end of options chain */
288 ndopts->nd_opts_done = 1;
289 ndopts->nd_opts_search = NULL;
290 }
291 return nd_opt;
292 }
293
294 /*
295 * Parse multiple ND options.
296 * This function is much easier to use, for ND routines that do not need
297 * multiple options of the same type.
298 */
299 int
300 nd6_options(ndopts)
301 union nd_opts *ndopts;
302 {
303 struct nd_opt_hdr *nd_opt;
304 int i = 0;
305
306 if (!ndopts)
307 panic("ndopts == NULL in nd6_options");
308 if (!ndopts->nd_opts_last)
309 panic("uninitialized ndopts in nd6_options");
310 if (!ndopts->nd_opts_search)
311 return 0;
312
313 while (1) {
314 nd_opt = nd6_option(ndopts);
315 if (!nd_opt && !ndopts->nd_opts_last) {
316 /*
317 * Message validation requires that all included
318 * options have a length that is greater than zero.
319 */
320 icmp6stat.icp6s_nd_badopt++;
321 bzero(ndopts, sizeof(*ndopts));
322 return -1;
323 }
324
325 if (!nd_opt)
326 goto skip1;
327
328 switch (nd_opt->nd_opt_type) {
329 case ND_OPT_SOURCE_LINKADDR:
330 case ND_OPT_TARGET_LINKADDR:
331 case ND_OPT_MTU:
332 case ND_OPT_REDIRECTED_HEADER:
333 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
334 nd6log((LOG_INFO,
335 "duplicated ND6 option found (type=%d)\n",
336 nd_opt->nd_opt_type));
337 /* XXX bark? */
338 } else {
339 ndopts->nd_opt_array[nd_opt->nd_opt_type]
340 = nd_opt;
341 }
342 break;
343 case ND_OPT_PREFIX_INFORMATION:
344 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
345 ndopts->nd_opt_array[nd_opt->nd_opt_type]
346 = nd_opt;
347 }
348 ndopts->nd_opts_pi_end =
349 (struct nd_opt_prefix_info *)nd_opt;
350 break;
351 default:
352 /*
353 * Unknown options must be silently ignored,
354 * to accomodate future extension to the protocol.
355 */
356 nd6log((LOG_DEBUG,
357 "nd6_options: unsupported option %d - "
358 "option ignored\n", nd_opt->nd_opt_type));
359 }
360
361 skip1:
362 i++;
363 if (i > nd6_maxndopt) {
364 icmp6stat.icp6s_nd_toomanyopt++;
365 nd6log((LOG_INFO, "too many loop in nd opt\n"));
366 break;
367 }
368
369 if (ndopts->nd_opts_done)
370 break;
371 }
372
373 return 0;
374 }
375
376 /*
377 * ND6 timer routine to handle ND6 entries
378 */
379 void
380 nd6_llinfo_settimer(ln, tick)
381 struct llinfo_nd6 *ln;
382 long tick;
383 {
384 int s;
385
386 s = splsoftnet();
387
388 if (tick < 0) {
389 ln->ln_expire = 0;
390 ln->ln_ntick = 0;
391 callout_stop(&ln->ln_timer_ch);
392 } else {
393 ln->ln_expire = time.tv_sec + tick / hz;
394 if (tick > INT_MAX) {
395 ln->ln_ntick = tick - INT_MAX;
396 callout_reset(&ln->ln_timer_ch, INT_MAX,
397 nd6_llinfo_timer, ln);
398 } else {
399 ln->ln_ntick = 0;
400 callout_reset(&ln->ln_timer_ch, tick,
401 nd6_llinfo_timer, ln);
402 }
403 }
404
405 splx(s);
406 }
407
408 static void
409 nd6_llinfo_timer(arg)
410 void *arg;
411 {
412 int s;
413 struct llinfo_nd6 *ln;
414 struct rtentry *rt;
415 const struct sockaddr_in6 *dst;
416 struct ifnet *ifp;
417 struct nd_ifinfo *ndi = NULL;
418
419 s = splsoftnet();
420
421 ln = (struct llinfo_nd6 *)arg;
422
423 if (ln->ln_ntick > 0) {
424 if (ln->ln_ntick > INT_MAX) {
425 ln->ln_ntick -= INT_MAX;
426 nd6_llinfo_settimer(ln, INT_MAX);
427 } else {
428 ln->ln_ntick = 0;
429 nd6_llinfo_settimer(ln, ln->ln_ntick);
430 }
431 splx(s);
432 return;
433 }
434
435 if ((rt = ln->ln_rt) == NULL)
436 panic("ln->ln_rt == NULL");
437 if ((ifp = rt->rt_ifp) == NULL)
438 panic("ln->ln_rt->rt_ifp == NULL");
439 ndi = ND_IFINFO(ifp);
440 dst = (struct sockaddr_in6 *)rt_key(rt);
441
442 /* sanity check */
443 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
444 panic("rt_llinfo(%p) is not equal to ln(%p)",
445 rt->rt_llinfo, ln);
446 if (!dst)
447 panic("dst=0 in nd6_timer(ln=%p)", ln);
448
449 switch (ln->ln_state) {
450 case ND6_LLINFO_INCOMPLETE:
451 if (ln->ln_asked < nd6_mmaxtries) {
452 ln->ln_asked++;
453 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
454 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
455 } else {
456 struct mbuf *m = ln->ln_hold;
457 if (m) {
458 ln->ln_hold = NULL;
459 /*
460 * Fake rcvif to make the ICMP error
461 * more helpful in diagnosing for the
462 * receiver.
463 * XXX: should we consider
464 * older rcvif?
465 */
466 m->m_pkthdr.rcvif = rt->rt_ifp;
467
468 icmp6_error(m, ICMP6_DST_UNREACH,
469 ICMP6_DST_UNREACH_ADDR, 0);
470 }
471 (void)nd6_free(rt, 0);
472 ln = NULL;
473 }
474 break;
475 case ND6_LLINFO_REACHABLE:
476 if (!ND6_LLINFO_PERMANENT(ln)) {
477 ln->ln_state = ND6_LLINFO_STALE;
478 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
479 }
480 break;
481
482 case ND6_LLINFO_STALE:
483 /* Garbage Collection(RFC 2461 5.3) */
484 if (!ND6_LLINFO_PERMANENT(ln)) {
485 (void)nd6_free(rt, 1);
486 ln = NULL;
487 }
488 break;
489
490 case ND6_LLINFO_DELAY:
491 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
492 /* We need NUD */
493 ln->ln_asked = 1;
494 ln->ln_state = ND6_LLINFO_PROBE;
495 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
496 nd6_ns_output(ifp, &dst->sin6_addr,
497 &dst->sin6_addr, ln, 0);
498 } else {
499 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
500 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
501 }
502 break;
503 case ND6_LLINFO_PROBE:
504 if (ln->ln_asked < nd6_umaxtries) {
505 ln->ln_asked++;
506 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
507 nd6_ns_output(ifp, &dst->sin6_addr,
508 &dst->sin6_addr, ln, 0);
509 } else {
510 (void)nd6_free(rt, 0);
511 ln = NULL;
512 }
513 break;
514 }
515
516 splx(s);
517 }
518
519 /*
520 * ND6 timer routine to expire default route list and prefix list
521 */
522 void
523 nd6_timer(ignored_arg)
524 void *ignored_arg;
525 {
526 int s;
527 struct nd_defrouter *dr;
528 struct nd_prefix *pr;
529 struct in6_ifaddr *ia6, *nia6;
530 struct in6_addrlifetime *lt6;
531
532 s = splsoftnet();
533 callout_reset(&nd6_timer_ch, nd6_prune * hz,
534 nd6_timer, NULL);
535
536 /* expire default router list */
537 dr = TAILQ_FIRST(&nd_defrouter);
538 while (dr) {
539 if (dr->expire && dr->expire < time.tv_sec) {
540 struct nd_defrouter *t;
541 t = TAILQ_NEXT(dr, dr_entry);
542 defrtrlist_del(dr);
543 dr = t;
544 } else {
545 dr = TAILQ_NEXT(dr, dr_entry);
546 }
547 }
548
549 /*
550 * expire interface addresses.
551 * in the past the loop was inside prefix expiry processing.
552 * However, from a stricter speci-confrmance standpoint, we should
553 * rather separate address lifetimes and prefix lifetimes.
554 */
555 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
556 nia6 = ia6->ia_next;
557 /* check address lifetime */
558 lt6 = &ia6->ia6_lifetime;
559 if (IFA6_IS_INVALID(ia6)) {
560 in6_purgeaddr(&ia6->ia_ifa);
561 }
562 if (IFA6_IS_DEPRECATED(ia6)) {
563 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
564 } else {
565 /*
566 * A new RA might have made a deprecated address
567 * preferred.
568 */
569 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
570 }
571 }
572
573 /* expire prefix list */
574 pr = nd_prefix.lh_first;
575 while (pr) {
576 /*
577 * check prefix lifetime.
578 * since pltime is just for autoconf, pltime processing for
579 * prefix is not necessary.
580 */
581 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
582 time.tv_sec - pr->ndpr_lastupdate > pr->ndpr_vltime) {
583 struct nd_prefix *t;
584 t = pr->ndpr_next;
585
586 /*
587 * address expiration and prefix expiration are
588 * separate. NEVER perform in6_purgeaddr here.
589 */
590
591 prelist_remove(pr);
592 pr = t;
593 } else
594 pr = pr->ndpr_next;
595 }
596 splx(s);
597 }
598
599 /*
600 * Nuke neighbor cache/prefix/default router management table, right before
601 * ifp goes away.
602 */
603 void
604 nd6_purge(ifp)
605 struct ifnet *ifp;
606 {
607 struct llinfo_nd6 *ln, *nln;
608 struct nd_defrouter *dr, *ndr;
609 struct nd_prefix *pr, *npr;
610
611 /*
612 * Nuke default router list entries toward ifp.
613 * We defer removal of default router list entries that is installed
614 * in the routing table, in order to keep additional side effects as
615 * small as possible.
616 */
617 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
618 ndr = TAILQ_NEXT(dr, dr_entry);
619 if (dr->installed)
620 continue;
621
622 if (dr->ifp == ifp)
623 defrtrlist_del(dr);
624 }
625 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
626 ndr = TAILQ_NEXT(dr, dr_entry);
627 if (!dr->installed)
628 continue;
629
630 if (dr->ifp == ifp)
631 defrtrlist_del(dr);
632 }
633
634 /* Nuke prefix list entries toward ifp */
635 for (pr = nd_prefix.lh_first; pr; pr = npr) {
636 npr = pr->ndpr_next;
637 if (pr->ndpr_ifp == ifp) {
638 /*
639 * Previously, pr->ndpr_addr is removed as well,
640 * but I strongly believe we don't have to do it.
641 * nd6_purge() is only called from in6_ifdetach(),
642 * which removes all the associated interface addresses
643 * by itself.
644 * (jinmei (at) kame.net 20010129)
645 */
646 prelist_remove(pr);
647 }
648 }
649
650 /* cancel default outgoing interface setting */
651 if (nd6_defifindex == ifp->if_index)
652 nd6_setdefaultiface(0);
653
654 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
655 /* refresh default router list */
656 defrouter_select();
657 }
658
659 /*
660 * Nuke neighbor cache entries for the ifp.
661 * Note that rt->rt_ifp may not be the same as ifp,
662 * due to KAME goto ours hack. See RTM_RESOLVE case in
663 * nd6_rtrequest(), and ip6_input().
664 */
665 ln = llinfo_nd6.ln_next;
666 while (ln && ln != &llinfo_nd6) {
667 struct rtentry *rt;
668 struct sockaddr_dl *sdl;
669
670 nln = ln->ln_next;
671 rt = ln->ln_rt;
672 if (rt && rt->rt_gateway &&
673 rt->rt_gateway->sa_family == AF_LINK) {
674 sdl = (struct sockaddr_dl *)rt->rt_gateway;
675 if (sdl->sdl_index == ifp->if_index)
676 nln = nd6_free(rt, 0);
677 }
678 ln = nln;
679 }
680 }
681
682 struct rtentry *
683 nd6_lookup(addr6, create, ifp)
684 struct in6_addr *addr6;
685 int create;
686 struct ifnet *ifp;
687 {
688 struct rtentry *rt;
689 struct sockaddr_in6 sin6;
690
691 bzero(&sin6, sizeof(sin6));
692 sin6.sin6_len = sizeof(struct sockaddr_in6);
693 sin6.sin6_family = AF_INET6;
694 sin6.sin6_addr = *addr6;
695 rt = rtalloc1((struct sockaddr *)&sin6, create);
696 if (rt && (rt->rt_flags & RTF_LLINFO) == 0) {
697 /*
698 * This is the case for the default route.
699 * If we want to create a neighbor cache for the address, we
700 * should free the route for the destination and allocate an
701 * interface route.
702 */
703 if (create) {
704 RTFREE(rt);
705 rt = 0;
706 }
707 }
708 if (!rt) {
709 if (create && ifp) {
710 int e;
711
712 /*
713 * If no route is available and create is set,
714 * we allocate a host route for the destination
715 * and treat it like an interface route.
716 * This hack is necessary for a neighbor which can't
717 * be covered by our own prefix.
718 */
719 struct ifaddr *ifa =
720 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
721 if (ifa == NULL)
722 return (NULL);
723
724 /*
725 * Create a new route. RTF_LLINFO is necessary
726 * to create a Neighbor Cache entry for the
727 * destination in nd6_rtrequest which will be
728 * called in rtrequest via ifa->ifa_rtrequest.
729 */
730 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
731 ifa->ifa_addr, (struct sockaddr *)&all1_sa,
732 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
733 ~RTF_CLONING, &rt)) != 0) {
734 #if 0
735 log(LOG_ERR,
736 "nd6_lookup: failed to add route for a "
737 "neighbor(%s), errno=%d\n",
738 ip6_sprintf(addr6), e);
739 #endif
740 return (NULL);
741 }
742 if (rt == NULL)
743 return (NULL);
744 if (rt->rt_llinfo) {
745 struct llinfo_nd6 *ln =
746 (struct llinfo_nd6 *)rt->rt_llinfo;
747 ln->ln_state = ND6_LLINFO_NOSTATE;
748 }
749 } else
750 return (NULL);
751 }
752 rt->rt_refcnt--;
753 /*
754 * Validation for the entry.
755 * Note that the check for rt_llinfo is necessary because a cloned
756 * route from a parent route that has the L flag (e.g. the default
757 * route to a p2p interface) may have the flag, too, while the
758 * destination is not actually a neighbor.
759 * XXX: we can't use rt->rt_ifp to check for the interface, since
760 * it might be the loopback interface if the entry is for our
761 * own address on a non-loopback interface. Instead, we should
762 * use rt->rt_ifa->ifa_ifp, which would specify the REAL
763 * interface.
764 */
765 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
766 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
767 (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
768 if (create) {
769 nd6log((LOG_DEBUG,
770 "nd6_lookup: failed to lookup %s (if = %s)\n",
771 ip6_sprintf(addr6),
772 ifp ? if_name(ifp) : "unspec"));
773 }
774 return (NULL);
775 }
776 return (rt);
777 }
778
779 /*
780 * Detect if a given IPv6 address identifies a neighbor on a given link.
781 * XXX: should take care of the destination of a p2p link?
782 */
783 int
784 nd6_is_addr_neighbor(addr, ifp)
785 struct sockaddr_in6 *addr;
786 struct ifnet *ifp;
787 {
788 struct nd_prefix *pr;
789 struct rtentry *rt;
790
791 /*
792 * A link-local address is always a neighbor.
793 * XXX: we should use the sin6_scope_id field rather than the embedded
794 * interface index.
795 * XXX: a link does not necessarily specify a single interface.
796 */
797 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr) &&
798 ntohs(*(u_int16_t *)&addr->sin6_addr.s6_addr[2]) == ifp->if_index)
799 return (1);
800
801 /*
802 * If the address matches one of our on-link prefixes, it should be a
803 * neighbor.
804 */
805 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
806 if (pr->ndpr_ifp != ifp)
807 continue;
808
809 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
810 continue;
811
812 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
813 &addr->sin6_addr, &pr->ndpr_mask))
814 return (1);
815 }
816
817 /*
818 * If the default router list is empty, all addresses are regarded
819 * as on-link, and thus, as a neighbor.
820 * XXX: we restrict the condition to hosts, because routers usually do
821 * not have the "default router list".
822 */
823 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
824 nd6_defifindex == ifp->if_index) {
825 return (1);
826 }
827
828 /*
829 * Even if the address matches none of our addresses, it might be
830 * in the neighbor cache.
831 */
832 if ((rt = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL)
833 return (1);
834
835 return (0);
836 }
837
838 /*
839 * Free an nd6 llinfo entry.
840 * Since the function would cause significant changes in the kernel, DO NOT
841 * make it global, unless you have a strong reason for the change, and are sure
842 * that the change is safe.
843 */
844 static struct llinfo_nd6 *
845 nd6_free(rt, gc)
846 struct rtentry *rt;
847 int gc;
848 {
849 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
850 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
851 struct nd_defrouter *dr;
852
853 /*
854 * we used to have pfctlinput(PRC_HOSTDEAD) here.
855 * even though it is not harmful, it was not really necessary.
856 */
857
858 /* cancel timer */
859 nd6_llinfo_settimer(ln, -1);
860
861 if (!ip6_forwarding) {
862 int s;
863 s = splsoftnet();
864 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
865 rt->rt_ifp);
866
867 if (dr != NULL && dr->expire &&
868 ln->ln_state == ND6_LLINFO_STALE && gc) {
869 /*
870 * If the reason for the deletion is just garbage
871 * collection, and the neighbor is an active default
872 * router, do not delete it. Instead, reset the GC
873 * timer using the router's lifetime.
874 * Simply deleting the entry would affect default
875 * router selection, which is not necessarily a good
876 * thing, especially when we're using router preference
877 * values.
878 * XXX: the check for ln_state would be redundant,
879 * but we intentionally keep it just in case.
880 */
881 if (dr->expire > time.tv_sec * hz)
882 nd6_llinfo_settimer(ln,
883 dr->expire - time.tv_sec * hz);
884 else
885 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
886 splx(s);
887 return (ln->ln_next);
888 }
889
890 if (ln->ln_router || dr) {
891 /*
892 * rt6_flush must be called whether or not the neighbor
893 * is in the Default Router List.
894 * See a corresponding comment in nd6_na_input().
895 */
896 rt6_flush(&in6, rt->rt_ifp);
897 }
898
899 if (dr) {
900 /*
901 * Unreachablity of a router might affect the default
902 * router selection and on-link detection of advertised
903 * prefixes.
904 */
905
906 /*
907 * Temporarily fake the state to choose a new default
908 * router and to perform on-link determination of
909 * prefixes correctly.
910 * Below the state will be set correctly,
911 * or the entry itself will be deleted.
912 */
913 ln->ln_state = ND6_LLINFO_INCOMPLETE;
914
915 /*
916 * Since defrouter_select() does not affect the
917 * on-link determination and MIP6 needs the check
918 * before the default router selection, we perform
919 * the check now.
920 */
921 pfxlist_onlink_check();
922
923 /*
924 * refresh default router list
925 */
926 defrouter_select();
927 }
928 splx(s);
929 }
930
931 /*
932 * Before deleting the entry, remember the next entry as the
933 * return value. We need this because pfxlist_onlink_check() above
934 * might have freed other entries (particularly the old next entry) as
935 * a side effect (XXX).
936 */
937 next = ln->ln_next;
938
939 /*
940 * Detach the route from the routing tree and the list of neighbor
941 * caches, and disable the route entry not to be used in already
942 * cached routes.
943 */
944 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
945 rt_mask(rt), 0, (struct rtentry **)0);
946
947 return (next);
948 }
949
950 /*
951 * Upper-layer reachability hint for Neighbor Unreachability Detection.
952 *
953 * XXX cost-effective metods?
954 */
955 void
956 nd6_nud_hint(rt, dst6, force)
957 struct rtentry *rt;
958 struct in6_addr *dst6;
959 int force;
960 {
961 struct llinfo_nd6 *ln;
962
963 /*
964 * If the caller specified "rt", use that. Otherwise, resolve the
965 * routing table by supplied "dst6".
966 */
967 if (!rt) {
968 if (!dst6)
969 return;
970 if (!(rt = nd6_lookup(dst6, 0, NULL)))
971 return;
972 }
973
974 if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
975 (rt->rt_flags & RTF_LLINFO) == 0 ||
976 !rt->rt_llinfo || !rt->rt_gateway ||
977 rt->rt_gateway->sa_family != AF_LINK) {
978 /* This is not a host route. */
979 return;
980 }
981
982 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
983 if (ln->ln_state < ND6_LLINFO_REACHABLE)
984 return;
985
986 /*
987 * if we get upper-layer reachability confirmation many times,
988 * it is possible we have false information.
989 */
990 if (!force) {
991 ln->ln_byhint++;
992 if (ln->ln_byhint > nd6_maxnudhint)
993 return;
994 }
995
996 ln->ln_state = ND6_LLINFO_REACHABLE;
997 if (!ND6_LLINFO_PERMANENT(ln)) {
998 nd6_llinfo_settimer(ln,
999 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1000 }
1001 }
1002
1003 void
1004 nd6_rtrequest(req, rt, info)
1005 int req;
1006 struct rtentry *rt;
1007 struct rt_addrinfo *info; /* xxx unused */
1008 {
1009 struct sockaddr *gate = rt->rt_gateway;
1010 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1011 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1012 struct ifnet *ifp = rt->rt_ifp;
1013 struct ifaddr *ifa;
1014 int mine = 0;
1015
1016 if ((rt->rt_flags & RTF_GATEWAY) != 0)
1017 return;
1018
1019 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1020 /*
1021 * This is probably an interface direct route for a link
1022 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1023 * We do not need special treatment below for such a route.
1024 * Moreover, the RTF_LLINFO flag which would be set below
1025 * would annoy the ndp(8) command.
1026 */
1027 return;
1028 }
1029
1030 if (req == RTM_RESOLVE &&
1031 (nd6_need_cache(ifp) == 0 || /* stf case */
1032 !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) {
1033 /*
1034 * FreeBSD and BSD/OS often make a cloned host route based
1035 * on a less-specific route (e.g. the default route).
1036 * If the less specific route does not have a "gateway"
1037 * (this is the case when the route just goes to a p2p or an
1038 * stf interface), we'll mistakenly make a neighbor cache for
1039 * the host route, and will see strange neighbor solicitation
1040 * for the corresponding destination. In order to avoid the
1041 * confusion, we check if the destination of the route is
1042 * a neighbor in terms of neighbor discovery, and stop the
1043 * process if not. Additionally, we remove the LLINFO flag
1044 * so that ndp(8) will not try to get the neighbor information
1045 * of the destination.
1046 */
1047 rt->rt_flags &= ~RTF_LLINFO;
1048 return;
1049 }
1050
1051 switch (req) {
1052 case RTM_ADD:
1053 /*
1054 * There is no backward compatibility :)
1055 *
1056 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1057 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1058 * rt->rt_flags |= RTF_CLONING;
1059 */
1060 if ((rt->rt_flags & RTF_CLONING) ||
1061 ((rt->rt_flags & RTF_LLINFO) && !ln)) {
1062 /*
1063 * Case 1: This route should come from a route to
1064 * interface (RTF_CLONING case) or the route should be
1065 * treated as on-link but is currently not
1066 * (RTF_LLINFO && !ln case).
1067 */
1068 rt_setgate(rt, rt_key(rt),
1069 (struct sockaddr *)&null_sdl);
1070 gate = rt->rt_gateway;
1071 SDL(gate)->sdl_type = ifp->if_type;
1072 SDL(gate)->sdl_index = ifp->if_index;
1073 if (ln)
1074 nd6_llinfo_settimer(ln, 0);
1075 if ((rt->rt_flags & RTF_CLONING) != 0)
1076 break;
1077 }
1078 /*
1079 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1080 * We don't do that here since llinfo is not ready yet.
1081 *
1082 * There are also couple of other things to be discussed:
1083 * - unsolicited NA code needs improvement beforehand
1084 * - RFC2461 says we MAY send multicast unsolicited NA
1085 * (7.2.6 paragraph 4), however, it also says that we
1086 * SHOULD provide a mechanism to prevent multicast NA storm.
1087 * we don't have anything like it right now.
1088 * note that the mechanism needs a mutual agreement
1089 * between proxies, which means that we need to implement
1090 * a new protocol, or a new kludge.
1091 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1092 * we need to check ip6forwarding before sending it.
1093 * (or should we allow proxy ND configuration only for
1094 * routers? there's no mention about proxy ND from hosts)
1095 */
1096 #if 0
1097 /* XXX it does not work */
1098 if (rt->rt_flags & RTF_ANNOUNCE)
1099 nd6_na_output(ifp,
1100 &SIN6(rt_key(rt))->sin6_addr,
1101 &SIN6(rt_key(rt))->sin6_addr,
1102 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1103 1, NULL);
1104 #endif
1105 /* FALLTHROUGH */
1106 case RTM_RESOLVE:
1107 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1108 /*
1109 * Address resolution isn't necessary for a point to
1110 * point link, so we can skip this test for a p2p link.
1111 */
1112 if (gate->sa_family != AF_LINK ||
1113 gate->sa_len < sizeof(null_sdl)) {
1114 log(LOG_DEBUG,
1115 "nd6_rtrequest: bad gateway value: %s\n",
1116 if_name(ifp));
1117 break;
1118 }
1119 SDL(gate)->sdl_type = ifp->if_type;
1120 SDL(gate)->sdl_index = ifp->if_index;
1121 }
1122 if (ln != NULL)
1123 break; /* This happens on a route change */
1124 /*
1125 * Case 2: This route may come from cloning, or a manual route
1126 * add with a LL address.
1127 */
1128 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1129 rt->rt_llinfo = (caddr_t)ln;
1130 if (!ln) {
1131 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1132 break;
1133 }
1134 nd6_inuse++;
1135 nd6_allocated++;
1136 Bzero(ln, sizeof(*ln));
1137 ln->ln_rt = rt;
1138 callout_init(&ln->ln_timer_ch);
1139 /* this is required for "ndp" command. - shin */
1140 if (req == RTM_ADD) {
1141 /*
1142 * gate should have some valid AF_LINK entry,
1143 * and ln->ln_expire should have some lifetime
1144 * which is specified by ndp command.
1145 */
1146 ln->ln_state = ND6_LLINFO_REACHABLE;
1147 ln->ln_byhint = 0;
1148 } else {
1149 /*
1150 * When req == RTM_RESOLVE, rt is created and
1151 * initialized in rtrequest(), so rt_expire is 0.
1152 */
1153 ln->ln_state = ND6_LLINFO_NOSTATE;
1154 nd6_llinfo_settimer(ln, 0);
1155 }
1156 rt->rt_flags |= RTF_LLINFO;
1157 ln->ln_next = llinfo_nd6.ln_next;
1158 llinfo_nd6.ln_next = ln;
1159 ln->ln_prev = &llinfo_nd6;
1160 ln->ln_next->ln_prev = ln;
1161
1162 /*
1163 * check if rt_key(rt) is one of my address assigned
1164 * to the interface.
1165 */
1166 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1167 &SIN6(rt_key(rt))->sin6_addr);
1168 if (ifa) {
1169 caddr_t macp = nd6_ifptomac(ifp);
1170 nd6_llinfo_settimer(ln, -1);
1171 ln->ln_state = ND6_LLINFO_REACHABLE;
1172 ln->ln_byhint = 0;
1173 mine = 1;
1174 if (macp) {
1175 Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1176 SDL(gate)->sdl_alen = ifp->if_addrlen;
1177 }
1178 if (nd6_useloopback) {
1179 rt->rt_ifp = &loif[0]; /* XXX */
1180 /*
1181 * Make sure rt_ifa be equal to the ifaddr
1182 * corresponding to the address.
1183 * We need this because when we refer
1184 * rt_ifa->ia6_flags in ip6_input, we assume
1185 * that the rt_ifa points to the address instead
1186 * of the loopback address.
1187 */
1188 if (ifa != rt->rt_ifa) {
1189 IFAFREE(rt->rt_ifa);
1190 IFAREF(ifa);
1191 rt->rt_ifa = ifa;
1192 }
1193 }
1194 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1195 nd6_llinfo_settimer(ln, -1);
1196 ln->ln_state = ND6_LLINFO_REACHABLE;
1197 ln->ln_byhint = 0;
1198
1199 /* join solicited node multicast for proxy ND */
1200 if (ifp->if_flags & IFF_MULTICAST) {
1201 struct in6_addr llsol;
1202 int error;
1203
1204 llsol = SIN6(rt_key(rt))->sin6_addr;
1205 llsol.s6_addr16[0] = htons(0xff02);
1206 llsol.s6_addr16[1] = htons(ifp->if_index);
1207 llsol.s6_addr32[1] = 0;
1208 llsol.s6_addr32[2] = htonl(1);
1209 llsol.s6_addr8[12] = 0xff;
1210
1211 if (!in6_addmulti(&llsol, ifp, &error)) {
1212 nd6log((LOG_ERR, "%s: failed to join "
1213 "%s (errno=%d)\n", if_name(ifp),
1214 ip6_sprintf(&llsol), error));
1215 }
1216 }
1217 }
1218 break;
1219
1220 case RTM_DELETE:
1221 if (!ln)
1222 break;
1223 /* leave from solicited node multicast for proxy ND */
1224 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1225 (ifp->if_flags & IFF_MULTICAST) != 0) {
1226 struct in6_addr llsol;
1227 struct in6_multi *in6m;
1228
1229 llsol = SIN6(rt_key(rt))->sin6_addr;
1230 llsol.s6_addr16[0] = htons(0xff02);
1231 llsol.s6_addr16[1] = htons(ifp->if_index);
1232 llsol.s6_addr32[1] = 0;
1233 llsol.s6_addr32[2] = htonl(1);
1234 llsol.s6_addr8[12] = 0xff;
1235
1236 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1237 if (in6m)
1238 in6_delmulti(in6m);
1239 }
1240 nd6_inuse--;
1241 ln->ln_next->ln_prev = ln->ln_prev;
1242 ln->ln_prev->ln_next = ln->ln_next;
1243 ln->ln_prev = NULL;
1244 nd6_llinfo_settimer(ln, -1);
1245 rt->rt_llinfo = 0;
1246 rt->rt_flags &= ~RTF_LLINFO;
1247 if (ln->ln_hold)
1248 m_freem(ln->ln_hold);
1249 Free((caddr_t)ln);
1250 }
1251 }
1252
1253 int
1254 nd6_ioctl(cmd, data, ifp)
1255 u_long cmd;
1256 caddr_t data;
1257 struct ifnet *ifp;
1258 {
1259 struct in6_drlist *drl = (struct in6_drlist *)data;
1260 struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1261 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1262 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1263 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1264 struct nd_defrouter *dr;
1265 struct nd_prefix *pr;
1266 struct rtentry *rt;
1267 int i = 0, error = 0;
1268 int s;
1269
1270 switch (cmd) {
1271 case SIOCGDRLST_IN6:
1272 /*
1273 * obsolete API, use sysctl under net.inet6.icmp6
1274 */
1275 bzero(drl, sizeof(*drl));
1276 s = splsoftnet();
1277 dr = TAILQ_FIRST(&nd_defrouter);
1278 while (dr && i < DRLSTSIZ) {
1279 drl->defrouter[i].rtaddr = dr->rtaddr;
1280 if (IN6_IS_ADDR_LINKLOCAL(&drl->defrouter[i].rtaddr)) {
1281 /* XXX: need to this hack for KAME stack */
1282 drl->defrouter[i].rtaddr.s6_addr16[1] = 0;
1283 } else
1284 log(LOG_ERR,
1285 "default router list contains a "
1286 "non-linklocal address(%s)\n",
1287 ip6_sprintf(&drl->defrouter[i].rtaddr));
1288
1289 drl->defrouter[i].flags = dr->flags;
1290 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1291 drl->defrouter[i].expire = dr->expire;
1292 drl->defrouter[i].if_index = dr->ifp->if_index;
1293 i++;
1294 dr = TAILQ_NEXT(dr, dr_entry);
1295 }
1296 splx(s);
1297 break;
1298 case SIOCGPRLST_IN6:
1299 /*
1300 * obsolete API, use sysctl under net.inet6.icmp6
1301 *
1302 * XXX the structure in6_prlist was changed in backward-
1303 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1304 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1305 */
1306 /*
1307 * XXX meaning of fields, especialy "raflags", is very
1308 * differnet between RA prefix list and RR/static prefix list.
1309 * how about separating ioctls into two?
1310 */
1311 bzero(oprl, sizeof(*oprl));
1312 s = splsoftnet();
1313 pr = nd_prefix.lh_first;
1314 while (pr && i < PRLSTSIZ) {
1315 struct nd_pfxrouter *pfr;
1316 int j;
1317
1318 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1319 oprl->prefix[i].raflags = pr->ndpr_raf;
1320 oprl->prefix[i].prefixlen = pr->ndpr_plen;
1321 oprl->prefix[i].vltime = pr->ndpr_vltime;
1322 oprl->prefix[i].pltime = pr->ndpr_pltime;
1323 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1324 oprl->prefix[i].expire = pr->ndpr_expire;
1325
1326 pfr = pr->ndpr_advrtrs.lh_first;
1327 j = 0;
1328 while (pfr) {
1329 if (j < DRLSTSIZ) {
1330 #define RTRADDR oprl->prefix[i].advrtr[j]
1331 RTRADDR = pfr->router->rtaddr;
1332 if (IN6_IS_ADDR_LINKLOCAL(&RTRADDR)) {
1333 /* XXX: hack for KAME */
1334 RTRADDR.s6_addr16[1] = 0;
1335 } else
1336 log(LOG_ERR,
1337 "a router(%s) advertises "
1338 "a prefix with "
1339 "non-link local address\n",
1340 ip6_sprintf(&RTRADDR));
1341 #undef RTRADDR
1342 }
1343 j++;
1344 pfr = pfr->pfr_next;
1345 }
1346 oprl->prefix[i].advrtrs = j;
1347 oprl->prefix[i].origin = PR_ORIG_RA;
1348
1349 i++;
1350 pr = pr->ndpr_next;
1351 }
1352 splx(s);
1353
1354 break;
1355 case OSIOCGIFINFO_IN6:
1356 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1357 bzero(&ndi->ndi, sizeof(ndi->ndi));
1358 ndi->ndi.linkmtu = IN6_LINKMTU(ifp);
1359 ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu;
1360 ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable;
1361 ndi->ndi.reachable = ND_IFINFO(ifp)->reachable;
1362 ndi->ndi.retrans = ND_IFINFO(ifp)->retrans;
1363 ndi->ndi.flags = ND_IFINFO(ifp)->flags;
1364 ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm;
1365 ndi->ndi.chlim = ND_IFINFO(ifp)->chlim;
1366 break;
1367 case SIOCGIFINFO_IN6:
1368 ndi->ndi = *ND_IFINFO(ifp);
1369 break;
1370 case SIOCSIFINFO_FLAGS:
1371 ND_IFINFO(ifp)->flags = ndi->ndi.flags;
1372 break;
1373 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1374 /* sync kernel routing table with the default router list */
1375 defrouter_reset();
1376 defrouter_select();
1377 break;
1378 case SIOCSPFXFLUSH_IN6:
1379 {
1380 /* flush all the prefix advertised by routers */
1381 struct nd_prefix *pr, *next;
1382
1383 s = splsoftnet();
1384 for (pr = nd_prefix.lh_first; pr; pr = next) {
1385 struct in6_ifaddr *ia, *ia_next;
1386
1387 next = pr->ndpr_next;
1388
1389 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr))
1390 continue; /* XXX */
1391
1392 /* do we really have to remove addresses as well? */
1393 for (ia = in6_ifaddr; ia; ia = ia_next) {
1394 /* ia might be removed. keep the next ptr. */
1395 ia_next = ia->ia_next;
1396
1397 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1398 continue;
1399
1400 if (ia->ia6_ndpr == pr)
1401 in6_purgeaddr(&ia->ia_ifa);
1402 }
1403 prelist_remove(pr);
1404 }
1405 splx(s);
1406 break;
1407 }
1408 case SIOCSRTRFLUSH_IN6:
1409 {
1410 /* flush all the default routers */
1411 struct nd_defrouter *dr, *next;
1412
1413 s = splsoftnet();
1414 defrouter_reset();
1415 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = next) {
1416 next = TAILQ_NEXT(dr, dr_entry);
1417 defrtrlist_del(dr);
1418 }
1419 defrouter_select();
1420 splx(s);
1421 break;
1422 }
1423 case SIOCGNBRINFO_IN6:
1424 {
1425 struct llinfo_nd6 *ln;
1426 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1427
1428 /*
1429 * XXX: KAME specific hack for scoped addresses
1430 * XXXX: for other scopes than link-local?
1431 */
1432 if (IN6_IS_ADDR_LINKLOCAL(&nbi->addr) ||
1433 IN6_IS_ADDR_MC_LINKLOCAL(&nbi->addr)) {
1434 u_int16_t *idp = (u_int16_t *)&nb_addr.s6_addr[2];
1435
1436 if (*idp == 0)
1437 *idp = htons(ifp->if_index);
1438 }
1439
1440 s = splsoftnet();
1441 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL ||
1442 (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) {
1443 error = EINVAL;
1444 splx(s);
1445 break;
1446 }
1447 nbi->state = ln->ln_state;
1448 nbi->asked = ln->ln_asked;
1449 nbi->isrouter = ln->ln_router;
1450 nbi->expire = ln->ln_expire;
1451 splx(s);
1452
1453 break;
1454 }
1455 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1456 ndif->ifindex = nd6_defifindex;
1457 break;
1458 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1459 return (nd6_setdefaultiface(ndif->ifindex));
1460 }
1461 return (error);
1462 }
1463
1464 /*
1465 * Create neighbor cache entry and cache link-layer address,
1466 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1467 */
1468 struct rtentry *
1469 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
1470 struct ifnet *ifp;
1471 struct in6_addr *from;
1472 char *lladdr;
1473 int lladdrlen;
1474 int type; /* ICMP6 type */
1475 int code; /* type dependent information */
1476 {
1477 struct rtentry *rt = NULL;
1478 struct llinfo_nd6 *ln = NULL;
1479 int is_newentry;
1480 struct sockaddr_dl *sdl = NULL;
1481 int do_update;
1482 int olladdr;
1483 int llchange;
1484 int newstate = 0;
1485
1486 if (!ifp)
1487 panic("ifp == NULL in nd6_cache_lladdr");
1488 if (!from)
1489 panic("from == NULL in nd6_cache_lladdr");
1490
1491 /* nothing must be updated for unspecified address */
1492 if (IN6_IS_ADDR_UNSPECIFIED(from))
1493 return NULL;
1494
1495 /*
1496 * Validation about ifp->if_addrlen and lladdrlen must be done in
1497 * the caller.
1498 *
1499 * XXX If the link does not have link-layer adderss, what should
1500 * we do? (ifp->if_addrlen == 0)
1501 * Spec says nothing in sections for RA, RS and NA. There's small
1502 * description on it in NS section (RFC 2461 7.2.3).
1503 */
1504
1505 rt = nd6_lookup(from, 0, ifp);
1506 if (!rt) {
1507 #if 0
1508 /* nothing must be done if there's no lladdr */
1509 if (!lladdr || !lladdrlen)
1510 return NULL;
1511 #endif
1512
1513 rt = nd6_lookup(from, 1, ifp);
1514 is_newentry = 1;
1515 } else {
1516 /* do nothing if static ndp is set */
1517 if (rt->rt_flags & RTF_STATIC)
1518 return NULL;
1519 is_newentry = 0;
1520 }
1521
1522 if (!rt)
1523 return NULL;
1524 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1525 fail:
1526 (void)nd6_free(rt, 0);
1527 return NULL;
1528 }
1529 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1530 if (!ln)
1531 goto fail;
1532 if (!rt->rt_gateway)
1533 goto fail;
1534 if (rt->rt_gateway->sa_family != AF_LINK)
1535 goto fail;
1536 sdl = SDL(rt->rt_gateway);
1537
1538 olladdr = (sdl->sdl_alen) ? 1 : 0;
1539 if (olladdr && lladdr) {
1540 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1541 llchange = 1;
1542 else
1543 llchange = 0;
1544 } else
1545 llchange = 0;
1546
1547 /*
1548 * newentry olladdr lladdr llchange (*=record)
1549 * 0 n n -- (1)
1550 * 0 y n -- (2)
1551 * 0 n y -- (3) * STALE
1552 * 0 y y n (4) *
1553 * 0 y y y (5) * STALE
1554 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1555 * 1 -- y -- (7) * STALE
1556 */
1557
1558 if (lladdr) { /* (3-5) and (7) */
1559 /*
1560 * Record source link-layer address
1561 * XXX is it dependent to ifp->if_type?
1562 */
1563 sdl->sdl_alen = ifp->if_addrlen;
1564 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1565 }
1566
1567 if (!is_newentry) {
1568 if ((!olladdr && lladdr) || /* (3) */
1569 (olladdr && lladdr && llchange)) { /* (5) */
1570 do_update = 1;
1571 newstate = ND6_LLINFO_STALE;
1572 } else /* (1-2,4) */
1573 do_update = 0;
1574 } else {
1575 do_update = 1;
1576 if (!lladdr) /* (6) */
1577 newstate = ND6_LLINFO_NOSTATE;
1578 else /* (7) */
1579 newstate = ND6_LLINFO_STALE;
1580 }
1581
1582 if (do_update) {
1583 /*
1584 * Update the state of the neighbor cache.
1585 */
1586 ln->ln_state = newstate;
1587
1588 if (ln->ln_state == ND6_LLINFO_STALE) {
1589 /*
1590 * XXX: since nd6_output() below will cause
1591 * state tansition to DELAY and reset the timer,
1592 * we must set the timer now, although it is actually
1593 * meaningless.
1594 */
1595 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1596
1597 if (ln->ln_hold) {
1598 /*
1599 * we assume ifp is not a p2p here, so just
1600 * set the 2nd argument as the 1st one.
1601 */
1602 nd6_output(ifp, ifp, ln->ln_hold,
1603 (struct sockaddr_in6 *)rt_key(rt), rt);
1604 ln->ln_hold = NULL;
1605 }
1606 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1607 /* probe right away */
1608 nd6_llinfo_settimer((void *)ln, 0);
1609 }
1610 }
1611
1612 /*
1613 * ICMP6 type dependent behavior.
1614 *
1615 * NS: clear IsRouter if new entry
1616 * RS: clear IsRouter
1617 * RA: set IsRouter if there's lladdr
1618 * redir: clear IsRouter if new entry
1619 *
1620 * RA case, (1):
1621 * The spec says that we must set IsRouter in the following cases:
1622 * - If lladdr exist, set IsRouter. This means (1-5).
1623 * - If it is old entry (!newentry), set IsRouter. This means (7).
1624 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1625 * A quetion arises for (1) case. (1) case has no lladdr in the
1626 * neighbor cache, this is similar to (6).
1627 * This case is rare but we figured that we MUST NOT set IsRouter.
1628 *
1629 * newentry olladdr lladdr llchange NS RS RA redir
1630 * D R
1631 * 0 n n -- (1) c ? s
1632 * 0 y n -- (2) c s s
1633 * 0 n y -- (3) c s s
1634 * 0 y y n (4) c s s
1635 * 0 y y y (5) c s s
1636 * 1 -- n -- (6) c c c s
1637 * 1 -- y -- (7) c c s c s
1638 *
1639 * (c=clear s=set)
1640 */
1641 switch (type & 0xff) {
1642 case ND_NEIGHBOR_SOLICIT:
1643 /*
1644 * New entry must have is_router flag cleared.
1645 */
1646 if (is_newentry) /* (6-7) */
1647 ln->ln_router = 0;
1648 break;
1649 case ND_REDIRECT:
1650 /*
1651 * If the icmp is a redirect to a better router, always set the
1652 * is_router flag. Otherwise, if the entry is newly created,
1653 * clear the flag. [RFC 2461, sec 8.3]
1654 */
1655 if (code == ND_REDIRECT_ROUTER)
1656 ln->ln_router = 1;
1657 else if (is_newentry) /* (6-7) */
1658 ln->ln_router = 0;
1659 break;
1660 case ND_ROUTER_SOLICIT:
1661 /*
1662 * is_router flag must always be cleared.
1663 */
1664 ln->ln_router = 0;
1665 break;
1666 case ND_ROUTER_ADVERT:
1667 /*
1668 * Mark an entry with lladdr as a router.
1669 */
1670 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
1671 (is_newentry && lladdr)) { /* (7) */
1672 ln->ln_router = 1;
1673 }
1674 break;
1675 }
1676
1677 /*
1678 * When the link-layer address of a router changes, select the
1679 * best router again. In particular, when the neighbor entry is newly
1680 * created, it might affect the selection policy.
1681 * Question: can we restrict the first condition to the "is_newentry"
1682 * case?
1683 * XXX: when we hear an RA from a new router with the link-layer
1684 * address option, defrouter_select() is called twice, since
1685 * defrtrlist_update called the function as well. However, I believe
1686 * we can compromise the overhead, since it only happens the first
1687 * time.
1688 * XXX: although defrouter_select() should not have a bad effect
1689 * for those are not autoconfigured hosts, we explicitly avoid such
1690 * cases for safety.
1691 */
1692 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1693 defrouter_select();
1694
1695 return rt;
1696 }
1697
1698 static void
1699 nd6_slowtimo(ignored_arg)
1700 void *ignored_arg;
1701 {
1702 int s = splsoftnet();
1703 struct nd_ifinfo *nd6if;
1704 struct ifnet *ifp;
1705
1706 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1707 nd6_slowtimo, NULL);
1708 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
1709 {
1710 nd6if = ND_IFINFO(ifp);
1711 if (nd6if->basereachable && /* already initialized */
1712 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1713 /*
1714 * Since reachable time rarely changes by router
1715 * advertisements, we SHOULD insure that a new random
1716 * value gets recomputed at least once every few hours.
1717 * (RFC 2461, 6.3.4)
1718 */
1719 nd6if->recalctm = nd6_recalc_reachtm_interval;
1720 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1721 }
1722 }
1723 splx(s);
1724 }
1725
1726 #define senderr(e) { error = (e); goto bad;}
1727 int
1728 nd6_output(ifp, origifp, m0, dst, rt0)
1729 struct ifnet *ifp;
1730 struct ifnet *origifp;
1731 struct mbuf *m0;
1732 struct sockaddr_in6 *dst;
1733 struct rtentry *rt0;
1734 {
1735 struct mbuf *m = m0;
1736 struct rtentry *rt = rt0;
1737 struct sockaddr_in6 *gw6 = NULL;
1738 struct llinfo_nd6 *ln = NULL;
1739 int error = 0;
1740
1741 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1742 goto sendpkt;
1743
1744 if (nd6_need_cache(ifp) == 0)
1745 goto sendpkt;
1746
1747 /*
1748 * next hop determination. This routine is derived from ether_outpout.
1749 */
1750 if (rt) {
1751 if ((rt->rt_flags & RTF_UP) == 0) {
1752 if ((rt0 = rt = rtalloc1((struct sockaddr *)dst,
1753 1)) != NULL)
1754 {
1755 rt->rt_refcnt--;
1756 if (rt->rt_ifp != ifp) {
1757 /* XXX: loop care? */
1758 return nd6_output(ifp, origifp, m0,
1759 dst, rt);
1760 }
1761 } else
1762 senderr(EHOSTUNREACH);
1763 }
1764
1765 if (rt->rt_flags & RTF_GATEWAY) {
1766 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1767
1768 /*
1769 * We skip link-layer address resolution and NUD
1770 * if the gateway is not a neighbor from ND point
1771 * of view, regardless of the value of nd_ifinfo.flags.
1772 * The second condition is a bit tricky; we skip
1773 * if the gateway is our own address, which is
1774 * sometimes used to install a route to a p2p link.
1775 */
1776 if (!nd6_is_addr_neighbor(gw6, ifp) ||
1777 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1778 /*
1779 * We allow this kind of tricky route only
1780 * when the outgoing interface is p2p.
1781 * XXX: we may need a more generic rule here.
1782 */
1783 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1784 senderr(EHOSTUNREACH);
1785
1786 goto sendpkt;
1787 }
1788
1789 if (rt->rt_gwroute == 0)
1790 goto lookup;
1791 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
1792 rtfree(rt); rt = rt0;
1793 lookup:
1794 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
1795 if ((rt = rt->rt_gwroute) == 0)
1796 senderr(EHOSTUNREACH);
1797 /* the "G" test below also prevents rt == rt0 */
1798 if ((rt->rt_flags & RTF_GATEWAY) ||
1799 (rt->rt_ifp != ifp)) {
1800 rt->rt_refcnt--;
1801 rt0->rt_gwroute = 0;
1802 senderr(EHOSTUNREACH);
1803 }
1804 }
1805 }
1806 }
1807
1808 /*
1809 * Address resolution or Neighbor Unreachability Detection
1810 * for the next hop.
1811 * At this point, the destination of the packet must be a unicast
1812 * or an anycast address(i.e. not a multicast).
1813 */
1814
1815 /* Look up the neighbor cache for the nexthop */
1816 if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
1817 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1818 else {
1819 /*
1820 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1821 * the condition below is not very efficient. But we believe
1822 * it is tolerable, because this should be a rare case.
1823 */
1824 if (nd6_is_addr_neighbor(dst, ifp) &&
1825 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
1826 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1827 }
1828 if (!ln || !rt) {
1829 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
1830 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
1831 log(LOG_DEBUG,
1832 "nd6_output: can't allocate llinfo for %s "
1833 "(ln=%p, rt=%p)\n",
1834 ip6_sprintf(&dst->sin6_addr), ln, rt);
1835 senderr(EIO); /* XXX: good error? */
1836 }
1837
1838 goto sendpkt; /* send anyway */
1839 }
1840
1841 /* We don't have to do link-layer address resolution on a p2p link. */
1842 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
1843 ln->ln_state < ND6_LLINFO_REACHABLE) {
1844 ln->ln_state = ND6_LLINFO_STALE;
1845 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1846 }
1847
1848 /*
1849 * The first time we send a packet to a neighbor whose entry is
1850 * STALE, we have to change the state to DELAY and a sets a timer to
1851 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
1852 * neighbor unreachability detection on expiration.
1853 * (RFC 2461 7.3.3)
1854 */
1855 if (ln->ln_state == ND6_LLINFO_STALE) {
1856 ln->ln_asked = 0;
1857 ln->ln_state = ND6_LLINFO_DELAY;
1858 nd6_llinfo_settimer(ln, nd6_delay * hz);
1859 }
1860
1861 /*
1862 * If the neighbor cache entry has a state other than INCOMPLETE
1863 * (i.e. its link-layer address is already resolved), just
1864 * send the packet.
1865 */
1866 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1867 goto sendpkt;
1868
1869 /*
1870 * There is a neighbor cache entry, but no ethernet address
1871 * response yet. Replace the held mbuf (if any) with this
1872 * latest one.
1873 */
1874 if (ln->ln_state == ND6_LLINFO_NOSTATE)
1875 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1876 if (ln->ln_hold)
1877 m_freem(ln->ln_hold);
1878 ln->ln_hold = m;
1879 /*
1880 * If there has been no NS for the neighbor after entering the
1881 * INCOMPLETE state, send the first solicitation.
1882 */
1883 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
1884 ln->ln_asked++;
1885 nd6_llinfo_settimer(ln,
1886 (long)ND_IFINFO(ifp)->retrans * hz / 1000);
1887 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
1888 }
1889 return (0);
1890
1891 sendpkt:
1892
1893 #ifdef IPSEC
1894 /* clean ipsec history once it goes out of the node */
1895 ipsec_delaux(m);
1896 #endif
1897 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
1898 return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
1899 rt));
1900 }
1901 return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
1902
1903 bad:
1904 if (m)
1905 m_freem(m);
1906 return (error);
1907 }
1908 #undef senderr
1909
1910 int
1911 nd6_need_cache(ifp)
1912 struct ifnet *ifp;
1913 {
1914 /*
1915 * XXX: we currently do not make neighbor cache on any interface
1916 * other than ARCnet, Ethernet, FDDI and GIF.
1917 *
1918 * RFC2893 says:
1919 * - unidirectional tunnels needs no ND
1920 */
1921 switch (ifp->if_type) {
1922 case IFT_ARCNET:
1923 case IFT_ETHER:
1924 case IFT_FDDI:
1925 case IFT_IEEE1394:
1926 case IFT_GIF: /* XXX need more cases? */
1927 return (1);
1928 default:
1929 return (0);
1930 }
1931 }
1932
1933 int
1934 nd6_storelladdr(ifp, rt, m, dst, desten)
1935 struct ifnet *ifp;
1936 struct rtentry *rt;
1937 struct mbuf *m;
1938 struct sockaddr *dst;
1939 u_char *desten;
1940 {
1941 struct sockaddr_dl *sdl;
1942
1943 if (m->m_flags & M_MCAST) {
1944 switch (ifp->if_type) {
1945 case IFT_ETHER:
1946 case IFT_FDDI:
1947 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
1948 desten);
1949 return (1);
1950 case IFT_IEEE1394:
1951 bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen);
1952 return (1);
1953 case IFT_ARCNET:
1954 *desten = 0;
1955 return (1);
1956 default:
1957 m_freem(m);
1958 return (0);
1959 }
1960 }
1961
1962 if (rt == NULL) {
1963 /* this could happen, if we could not allocate memory */
1964 m_freem(m);
1965 return (0);
1966 }
1967 if (rt->rt_gateway->sa_family != AF_LINK) {
1968 printf("nd6_storelladdr: something odd happens\n");
1969 m_freem(m);
1970 return (0);
1971 }
1972 sdl = SDL(rt->rt_gateway);
1973 if (sdl->sdl_alen == 0) {
1974 /* this should be impossible, but we bark here for debugging */
1975 printf("nd6_storelladdr: sdl_alen == 0, dst=%s, if=%s\n",
1976 ip6_sprintf(&SIN6(dst)->sin6_addr), if_name(ifp));
1977 m_freem(m);
1978 return (0);
1979 }
1980
1981 bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
1982 return (1);
1983 }
1984
1985 int
1986 nd6_sysctl(name, oldp, oldlenp, newp, newlen)
1987 int name;
1988 void *oldp; /* syscall arg, need copyout */
1989 size_t *oldlenp;
1990 void *newp; /* syscall arg, need copyin */
1991 size_t newlen;
1992 {
1993 void *p;
1994 size_t ol, l;
1995 int error;
1996
1997 error = 0;
1998 l = 0;
1999
2000 if (newp)
2001 return EPERM;
2002 if (oldp && !oldlenp)
2003 return EINVAL;
2004 ol = oldlenp ? *oldlenp : 0;
2005
2006 if (oldp) {
2007 p = malloc(*oldlenp, M_TEMP, M_WAITOK);
2008 if (!p)
2009 return ENOMEM;
2010 } else
2011 p = NULL;
2012 switch (name) {
2013 case ICMPV6CTL_ND6_DRLIST:
2014 error = fill_drlist(p, oldlenp, ol);
2015 if (!error && p && oldp)
2016 error = copyout(p, oldp, *oldlenp);
2017 break;
2018
2019 case ICMPV6CTL_ND6_PRLIST:
2020 error = fill_prlist(p, oldlenp, ol);
2021 if (!error && p && oldp)
2022 error = copyout(p, oldp, *oldlenp);
2023 break;
2024
2025 default:
2026 error = ENOPROTOOPT;
2027 break;
2028 }
2029 if (p)
2030 free(p, M_TEMP);
2031
2032 return (error);
2033 }
2034
2035 static int
2036 fill_drlist(oldp, oldlenp, ol)
2037 void *oldp;
2038 size_t *oldlenp, ol;
2039 {
2040 int error = 0, s;
2041 struct in6_defrouter *d = NULL, *de = NULL;
2042 struct nd_defrouter *dr;
2043 size_t l;
2044
2045 s = splsoftnet();
2046
2047 if (oldp) {
2048 d = (struct in6_defrouter *)oldp;
2049 de = (struct in6_defrouter *)((caddr_t)oldp + *oldlenp);
2050 }
2051 l = 0;
2052
2053 for (dr = TAILQ_FIRST(&nd_defrouter); dr;
2054 dr = TAILQ_NEXT(dr, dr_entry)) {
2055
2056 if (oldp && d + 1 <= de) {
2057 bzero(d, sizeof(*d));
2058 d->rtaddr.sin6_family = AF_INET6;
2059 d->rtaddr.sin6_len = sizeof(struct sockaddr_in6);
2060 d->rtaddr.sin6_addr = dr->rtaddr;
2061 in6_recoverscope(&d->rtaddr, &d->rtaddr.sin6_addr,
2062 dr->ifp);
2063 d->flags = dr->flags;
2064 d->rtlifetime = dr->rtlifetime;
2065 d->expire = dr->expire;
2066 d->if_index = dr->ifp->if_index;
2067 }
2068
2069 l += sizeof(*d);
2070 if (d)
2071 d++;
2072 }
2073
2074 if (oldp) {
2075 *oldlenp = l; /* (caddr_t)d - (caddr_t)oldp */
2076 if (l > ol)
2077 error = ENOMEM;
2078 } else
2079 *oldlenp = l;
2080
2081 splx(s);
2082
2083 return (error);
2084 }
2085
2086 static int
2087 fill_prlist(oldp, oldlenp, ol)
2088 void *oldp;
2089 size_t *oldlenp, ol;
2090 {
2091 int error = 0, s;
2092 struct nd_prefix *pr;
2093 struct in6_prefix *p = NULL;
2094 struct in6_prefix *pe = NULL;
2095 size_t l;
2096
2097 s = splsoftnet();
2098
2099 if (oldp) {
2100 p = (struct in6_prefix *)oldp;
2101 pe = (struct in6_prefix *)((caddr_t)oldp + *oldlenp);
2102 }
2103 l = 0;
2104
2105 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2106 u_short advrtrs;
2107 size_t advance;
2108 struct sockaddr_in6 *sin6;
2109 struct sockaddr_in6 *s6;
2110 struct nd_pfxrouter *pfr;
2111
2112 if (oldp && p + 1 <= pe)
2113 {
2114 bzero(p, sizeof(*p));
2115 sin6 = (struct sockaddr_in6 *)(p + 1);
2116
2117 p->prefix = pr->ndpr_prefix;
2118 if (in6_recoverscope(&p->prefix,
2119 &p->prefix.sin6_addr, pr->ndpr_ifp) != 0)
2120 log(LOG_ERR,
2121 "scope error in prefix list (%s)\n",
2122 ip6_sprintf(&p->prefix.sin6_addr));
2123 p->raflags = pr->ndpr_raf;
2124 p->prefixlen = pr->ndpr_plen;
2125 p->vltime = pr->ndpr_vltime;
2126 p->pltime = pr->ndpr_pltime;
2127 p->if_index = pr->ndpr_ifp->if_index;
2128 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2129 p->expire = 0;
2130 else {
2131 time_t maxexpire;
2132
2133 /* XXX: we assume time_t is signed. */
2134 maxexpire = (-1) &
2135 ~(1 << ((sizeof(maxexpire) * 8) - 1));
2136 if (pr->ndpr_vltime <
2137 maxexpire - pr->ndpr_lastupdate) {
2138 p->expire = pr->ndpr_lastupdate +
2139 pr->ndpr_vltime;
2140 } else
2141 p->expire = maxexpire;
2142 }
2143 p->refcnt = pr->ndpr_refcnt;
2144 p->flags = pr->ndpr_stateflags;
2145 p->origin = PR_ORIG_RA;
2146 advrtrs = 0;
2147 for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2148 pfr = pfr->pfr_next) {
2149 if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2150 advrtrs++;
2151 continue;
2152 }
2153 s6 = &sin6[advrtrs];
2154 s6->sin6_family = AF_INET6;
2155 s6->sin6_len = sizeof(struct sockaddr_in6);
2156 s6->sin6_addr = pfr->router->rtaddr;
2157 in6_recoverscope(s6, &s6->sin6_addr,
2158 pfr->router->ifp);
2159 advrtrs++;
2160 }
2161 p->advrtrs = advrtrs;
2162 }
2163 else {
2164 advrtrs = 0;
2165 for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2166 pfr = pfr->pfr_next)
2167 advrtrs++;
2168 }
2169
2170 advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2171 l += advance;
2172 if (p)
2173 p = (struct in6_prefix *)((caddr_t)p + advance);
2174 }
2175
2176 if (oldp) {
2177 *oldlenp = l; /* (caddr_t)d - (caddr_t)oldp */
2178 if (l > ol)
2179 error = ENOMEM;
2180 } else
2181 *oldlenp = l;
2182
2183 splx(s);
2184
2185 return (error);
2186 }
2187