nd6.c revision 1.98 1 /* $NetBSD: nd6.c,v 1.98 2006/03/03 14:07:06 rpaulo Exp $ */
2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.98 2006/03/03 14:07:06 rpaulo Exp $");
35
36 #include "opt_ipsec.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/callout.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47 #include <sys/protosw.h>
48 #include <sys/errno.h>
49 #include <sys/ioctl.h>
50 #include <sys/syslog.h>
51 #include <sys/queue.h>
52
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_types.h>
56 #include <net/route.h>
57 #include <net/if_ether.h>
58 #include <net/if_fddi.h>
59 #include <net/if_arc.h>
60
61 #include <netinet/in.h>
62 #include <netinet6/in6_var.h>
63 #include <netinet/ip6.h>
64 #include <netinet6/ip6_var.h>
65 #include <netinet6/scope6_var.h>
66 #include <netinet6/nd6.h>
67 #include <netinet/icmp6.h>
68
69 #ifdef IPSEC
70 #include <netinet6/ipsec.h>
71 #endif
72
73 #include <net/net_osdep.h>
74
75 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
76 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
77
78 #define SIN6(s) ((struct sockaddr_in6 *)s)
79 #define SDL(s) ((struct sockaddr_dl *)s)
80
81 /* timer values */
82 int nd6_prune = 1; /* walk list every 1 seconds */
83 int nd6_delay = 5; /* delay first probe time 5 second */
84 int nd6_umaxtries = 3; /* maximum unicast query */
85 int nd6_mmaxtries = 3; /* maximum multicast query */
86 int nd6_useloopback = 1; /* use loopback interface for local traffic */
87 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
88
89 /* preventing too many loops in ND option parsing */
90 int nd6_maxndopt = 10; /* max # of ND options allowed */
91
92 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
93
94 #ifdef ND6_DEBUG
95 int nd6_debug = 1;
96 #else
97 int nd6_debug = 0;
98 #endif
99
100 /* for debugging? */
101 static int nd6_inuse, nd6_allocated;
102
103 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
104 struct nd_drhead nd_defrouter;
105 struct nd_prhead nd_prefix = { 0 };
106
107 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
108 static struct sockaddr_in6 all1_sa;
109
110 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
111 static void nd6_slowtimo __P((void *));
112 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
113 static void nd6_llinfo_timer __P((void *));
114
115 struct callout nd6_slowtimo_ch = CALLOUT_INITIALIZER;
116 struct callout nd6_timer_ch = CALLOUT_INITIALIZER;
117
118 static int fill_drlist __P((void *, size_t *, size_t));
119 static int fill_prlist __P((void *, size_t *, size_t));
120
121 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
122
123 void
124 nd6_init()
125 {
126 static int nd6_init_done = 0;
127 int i;
128
129 if (nd6_init_done) {
130 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
131 return;
132 }
133
134 all1_sa.sin6_family = AF_INET6;
135 all1_sa.sin6_len = sizeof(struct sockaddr_in6);
136 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
137 all1_sa.sin6_addr.s6_addr[i] = 0xff;
138
139 /* initialization of the default router list */
140 TAILQ_INIT(&nd_defrouter);
141
142 nd6_init_done = 1;
143
144 /* start timer */
145 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
146 nd6_slowtimo, NULL);
147 }
148
149 struct nd_ifinfo *
150 nd6_ifattach(ifp)
151 struct ifnet *ifp;
152 {
153 struct nd_ifinfo *nd;
154
155 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
156 bzero(nd, sizeof(*nd));
157
158 nd->initialized = 1;
159
160 nd->chlim = IPV6_DEFHLIM;
161 nd->basereachable = REACHABLE_TIME;
162 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
163 nd->retrans = RETRANS_TIMER;
164 /*
165 * Note that the default value of ip6_accept_rtadv is 0, which means
166 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
167 * here.
168 */
169 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
170
171 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
172 nd6_setmtu0(ifp, nd);
173
174 return nd;
175 }
176
177 void
178 nd6_ifdetach(nd)
179 struct nd_ifinfo *nd;
180 {
181
182 free(nd, M_IP6NDP);
183 }
184
185 void
186 nd6_setmtu(ifp)
187 struct ifnet *ifp;
188 {
189 nd6_setmtu0(ifp, ND_IFINFO(ifp));
190 }
191
192 void
193 nd6_setmtu0(ifp, ndi)
194 struct ifnet *ifp;
195 struct nd_ifinfo *ndi;
196 {
197 u_int32_t omaxmtu;
198
199 omaxmtu = ndi->maxmtu;
200
201 switch (ifp->if_type) {
202 case IFT_ARCNET:
203 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
204 break;
205 case IFT_FDDI:
206 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
207 break;
208 default:
209 ndi->maxmtu = ifp->if_mtu;
210 break;
211 }
212
213 /*
214 * Decreasing the interface MTU under IPV6 minimum MTU may cause
215 * undesirable situation. We thus notify the operator of the change
216 * explicitly. The check for omaxmtu is necessary to restrict the
217 * log to the case of changing the MTU, not initializing it.
218 */
219 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
220 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
221 " small for IPv6 which needs %lu\n",
222 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
223 IPV6_MMTU);
224 }
225
226 if (ndi->maxmtu > in6_maxmtu)
227 in6_setmaxmtu(); /* check all interfaces just in case */
228 }
229
230 void
231 nd6_option_init(opt, icmp6len, ndopts)
232 void *opt;
233 int icmp6len;
234 union nd_opts *ndopts;
235 {
236
237 bzero(ndopts, sizeof(*ndopts));
238 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
239 ndopts->nd_opts_last
240 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
241
242 if (icmp6len == 0) {
243 ndopts->nd_opts_done = 1;
244 ndopts->nd_opts_search = NULL;
245 }
246 }
247
248 /*
249 * Take one ND option.
250 */
251 struct nd_opt_hdr *
252 nd6_option(ndopts)
253 union nd_opts *ndopts;
254 {
255 struct nd_opt_hdr *nd_opt;
256 int olen;
257
258 if (!ndopts)
259 panic("ndopts == NULL in nd6_option");
260 if (!ndopts->nd_opts_last)
261 panic("uninitialized ndopts in nd6_option");
262 if (!ndopts->nd_opts_search)
263 return NULL;
264 if (ndopts->nd_opts_done)
265 return NULL;
266
267 nd_opt = ndopts->nd_opts_search;
268
269 /* make sure nd_opt_len is inside the buffer */
270 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
271 bzero(ndopts, sizeof(*ndopts));
272 return NULL;
273 }
274
275 olen = nd_opt->nd_opt_len << 3;
276 if (olen == 0) {
277 /*
278 * Message validation requires that all included
279 * options have a length that is greater than zero.
280 */
281 bzero(ndopts, sizeof(*ndopts));
282 return NULL;
283 }
284
285 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
286 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
287 /* option overruns the end of buffer, invalid */
288 bzero(ndopts, sizeof(*ndopts));
289 return NULL;
290 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
291 /* reached the end of options chain */
292 ndopts->nd_opts_done = 1;
293 ndopts->nd_opts_search = NULL;
294 }
295 return nd_opt;
296 }
297
298 /*
299 * Parse multiple ND options.
300 * This function is much easier to use, for ND routines that do not need
301 * multiple options of the same type.
302 */
303 int
304 nd6_options(ndopts)
305 union nd_opts *ndopts;
306 {
307 struct nd_opt_hdr *nd_opt;
308 int i = 0;
309
310 if (!ndopts)
311 panic("ndopts == NULL in nd6_options");
312 if (!ndopts->nd_opts_last)
313 panic("uninitialized ndopts in nd6_options");
314 if (!ndopts->nd_opts_search)
315 return 0;
316
317 while (1) {
318 nd_opt = nd6_option(ndopts);
319 if (!nd_opt && !ndopts->nd_opts_last) {
320 /*
321 * Message validation requires that all included
322 * options have a length that is greater than zero.
323 */
324 icmp6stat.icp6s_nd_badopt++;
325 bzero(ndopts, sizeof(*ndopts));
326 return -1;
327 }
328
329 if (!nd_opt)
330 goto skip1;
331
332 switch (nd_opt->nd_opt_type) {
333 case ND_OPT_SOURCE_LINKADDR:
334 case ND_OPT_TARGET_LINKADDR:
335 case ND_OPT_MTU:
336 case ND_OPT_REDIRECTED_HEADER:
337 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
338 nd6log((LOG_INFO,
339 "duplicated ND6 option found (type=%d)\n",
340 nd_opt->nd_opt_type));
341 /* XXX bark? */
342 } else {
343 ndopts->nd_opt_array[nd_opt->nd_opt_type]
344 = nd_opt;
345 }
346 break;
347 case ND_OPT_PREFIX_INFORMATION:
348 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
349 ndopts->nd_opt_array[nd_opt->nd_opt_type]
350 = nd_opt;
351 }
352 ndopts->nd_opts_pi_end =
353 (struct nd_opt_prefix_info *)nd_opt;
354 break;
355 default:
356 /*
357 * Unknown options must be silently ignored,
358 * to accomodate future extension to the protocol.
359 */
360 nd6log((LOG_DEBUG,
361 "nd6_options: unsupported option %d - "
362 "option ignored\n", nd_opt->nd_opt_type));
363 }
364
365 skip1:
366 i++;
367 if (i > nd6_maxndopt) {
368 icmp6stat.icp6s_nd_toomanyopt++;
369 nd6log((LOG_INFO, "too many loop in nd opt\n"));
370 break;
371 }
372
373 if (ndopts->nd_opts_done)
374 break;
375 }
376
377 return 0;
378 }
379
380 /*
381 * ND6 timer routine to handle ND6 entries
382 */
383 void
384 nd6_llinfo_settimer(ln, xtick)
385 struct llinfo_nd6 *ln;
386 long xtick;
387 {
388 int s;
389
390 s = splsoftnet();
391
392 if (xtick < 0) {
393 ln->ln_expire = 0;
394 ln->ln_ntick = 0;
395 callout_stop(&ln->ln_timer_ch);
396 } else {
397 ln->ln_expire = time.tv_sec + xtick / hz;
398 if (xtick > INT_MAX) {
399 ln->ln_ntick = xtick - INT_MAX;
400 callout_reset(&ln->ln_timer_ch, INT_MAX,
401 nd6_llinfo_timer, ln);
402 } else {
403 ln->ln_ntick = 0;
404 callout_reset(&ln->ln_timer_ch, xtick,
405 nd6_llinfo_timer, ln);
406 }
407 }
408
409 splx(s);
410 }
411
412 static void
413 nd6_llinfo_timer(arg)
414 void *arg;
415 {
416 int s;
417 struct llinfo_nd6 *ln;
418 struct rtentry *rt;
419 const struct sockaddr_in6 *dst;
420 struct ifnet *ifp;
421 struct nd_ifinfo *ndi = NULL;
422
423 s = splsoftnet();
424
425 ln = (struct llinfo_nd6 *)arg;
426
427 if (ln->ln_ntick > 0) {
428 nd6_llinfo_settimer(ln, ln->ln_ntick);
429 splx(s);
430 return;
431 }
432
433 if ((rt = ln->ln_rt) == NULL)
434 panic("ln->ln_rt == NULL");
435 if ((ifp = rt->rt_ifp) == NULL)
436 panic("ln->ln_rt->rt_ifp == NULL");
437 ndi = ND_IFINFO(ifp);
438 dst = (struct sockaddr_in6 *)rt_key(rt);
439
440 /* sanity check */
441 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
442 panic("rt_llinfo(%p) is not equal to ln(%p)",
443 rt->rt_llinfo, ln);
444 if (!dst)
445 panic("dst=0 in nd6_timer(ln=%p)", ln);
446
447 switch (ln->ln_state) {
448 case ND6_LLINFO_INCOMPLETE:
449 if (ln->ln_asked < nd6_mmaxtries) {
450 ln->ln_asked++;
451 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
452 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
453 } else {
454 struct mbuf *m = ln->ln_hold;
455 if (m) {
456 /*
457 * assuming every packet in ln_hold has
458 * the same IP header
459 */
460 ln->ln_hold = NULL;
461 icmp6_error2(m, ICMP6_DST_UNREACH,
462 ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
463 }
464 (void)nd6_free(rt, 0);
465 ln = NULL;
466 }
467 break;
468 case ND6_LLINFO_REACHABLE:
469 if (!ND6_LLINFO_PERMANENT(ln)) {
470 ln->ln_state = ND6_LLINFO_STALE;
471 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
472 }
473 break;
474
475 case ND6_LLINFO_STALE:
476 /* Garbage Collection(RFC 2461 5.3) */
477 if (!ND6_LLINFO_PERMANENT(ln)) {
478 (void)nd6_free(rt, 1);
479 ln = NULL;
480 }
481 break;
482
483 case ND6_LLINFO_DELAY:
484 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
485 /* We need NUD */
486 ln->ln_asked = 1;
487 ln->ln_state = ND6_LLINFO_PROBE;
488 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
489 nd6_ns_output(ifp, &dst->sin6_addr,
490 &dst->sin6_addr, ln, 0);
491 } else {
492 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
493 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
494 }
495 break;
496 case ND6_LLINFO_PROBE:
497 if (ln->ln_asked < nd6_umaxtries) {
498 ln->ln_asked++;
499 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
500 nd6_ns_output(ifp, &dst->sin6_addr,
501 &dst->sin6_addr, ln, 0);
502 } else {
503 (void)nd6_free(rt, 0);
504 ln = NULL;
505 }
506 break;
507 }
508
509 splx(s);
510 }
511
512 /*
513 * ND6 timer routine to expire default route list and prefix list
514 */
515 void
516 nd6_timer(ignored_arg)
517 void *ignored_arg;
518 {
519 int s;
520 struct nd_defrouter *dr;
521 struct nd_prefix *pr;
522 struct in6_ifaddr *ia6, *nia6;
523
524 s = splsoftnet();
525 callout_reset(&nd6_timer_ch, nd6_prune * hz,
526 nd6_timer, NULL);
527
528 /* expire default router list */
529 dr = TAILQ_FIRST(&nd_defrouter);
530 while (dr) {
531 if (dr->expire && dr->expire < time.tv_sec) {
532 struct nd_defrouter *t;
533 t = TAILQ_NEXT(dr, dr_entry);
534 defrtrlist_del(dr);
535 dr = t;
536 } else {
537 dr = TAILQ_NEXT(dr, dr_entry);
538 }
539 }
540
541 /*
542 * expire interface addresses.
543 * in the past the loop was inside prefix expiry processing.
544 * However, from a stricter speci-confrmance standpoint, we should
545 * rather separate address lifetimes and prefix lifetimes.
546 */
547 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
548 nia6 = ia6->ia_next;
549 /* check address lifetime */
550 if (IFA6_IS_INVALID(ia6)) {
551 in6_purgeaddr(&ia6->ia_ifa);
552 }
553 if (IFA6_IS_DEPRECATED(ia6)) {
554 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
555 } else {
556 /*
557 * A new RA might have made a deprecated address
558 * preferred.
559 */
560 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
561 }
562 }
563
564 /* expire prefix list */
565 pr = nd_prefix.lh_first;
566 while (pr) {
567 /*
568 * check prefix lifetime.
569 * since pltime is just for autoconf, pltime processing for
570 * prefix is not necessary.
571 */
572 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
573 time.tv_sec - pr->ndpr_lastupdate > pr->ndpr_vltime) {
574 struct nd_prefix *t;
575 t = pr->ndpr_next;
576
577 /*
578 * address expiration and prefix expiration are
579 * separate. NEVER perform in6_purgeaddr here.
580 */
581
582 prelist_remove(pr);
583 pr = t;
584 } else
585 pr = pr->ndpr_next;
586 }
587 splx(s);
588 }
589
590 /*
591 * Nuke neighbor cache/prefix/default router management table, right before
592 * ifp goes away.
593 */
594 void
595 nd6_purge(ifp)
596 struct ifnet *ifp;
597 {
598 struct llinfo_nd6 *ln, *nln;
599 struct nd_defrouter *dr, *ndr;
600 struct nd_prefix *pr, *npr;
601
602 /*
603 * Nuke default router list entries toward ifp.
604 * We defer removal of default router list entries that is installed
605 * in the routing table, in order to keep additional side effects as
606 * small as possible.
607 */
608 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
609 ndr = TAILQ_NEXT(dr, dr_entry);
610 if (dr->installed)
611 continue;
612
613 if (dr->ifp == ifp)
614 defrtrlist_del(dr);
615 }
616 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
617 ndr = TAILQ_NEXT(dr, dr_entry);
618 if (!dr->installed)
619 continue;
620
621 if (dr->ifp == ifp)
622 defrtrlist_del(dr);
623 }
624
625 /* Nuke prefix list entries toward ifp */
626 for (pr = nd_prefix.lh_first; pr; pr = npr) {
627 npr = pr->ndpr_next;
628 if (pr->ndpr_ifp == ifp) {
629 /*
630 * Because if_detach() does *not* release prefixes
631 * while purging addresses the reference count will
632 * still be above zero. We therefore reset it to
633 * make sure that the prefix really gets purged.
634 */
635 pr->ndpr_refcnt = 0;
636 /*
637 * Previously, pr->ndpr_addr is removed as well,
638 * but I strongly believe we don't have to do it.
639 * nd6_purge() is only called from in6_ifdetach(),
640 * which removes all the associated interface addresses
641 * by itself.
642 * (jinmei (at) kame.net 20010129)
643 */
644 prelist_remove(pr);
645 }
646 }
647
648 /* cancel default outgoing interface setting */
649 if (nd6_defifindex == ifp->if_index)
650 nd6_setdefaultiface(0);
651
652 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
653 /* refresh default router list */
654 defrouter_select();
655 }
656
657 /*
658 * Nuke neighbor cache entries for the ifp.
659 * Note that rt->rt_ifp may not be the same as ifp,
660 * due to KAME goto ours hack. See RTM_RESOLVE case in
661 * nd6_rtrequest(), and ip6_input().
662 */
663 ln = llinfo_nd6.ln_next;
664 while (ln && ln != &llinfo_nd6) {
665 struct rtentry *rt;
666 struct sockaddr_dl *sdl;
667
668 nln = ln->ln_next;
669 rt = ln->ln_rt;
670 if (rt && rt->rt_gateway &&
671 rt->rt_gateway->sa_family == AF_LINK) {
672 sdl = (struct sockaddr_dl *)rt->rt_gateway;
673 if (sdl->sdl_index == ifp->if_index)
674 nln = nd6_free(rt, 0);
675 }
676 ln = nln;
677 }
678 }
679
680 struct rtentry *
681 nd6_lookup(addr6, create, ifp)
682 struct in6_addr *addr6;
683 int create;
684 struct ifnet *ifp;
685 {
686 struct rtentry *rt;
687 struct sockaddr_in6 sin6;
688
689 bzero(&sin6, sizeof(sin6));
690 sin6.sin6_len = sizeof(struct sockaddr_in6);
691 sin6.sin6_family = AF_INET6;
692 sin6.sin6_addr = *addr6;
693 rt = rtalloc1((struct sockaddr *)&sin6, create);
694 if (rt && (rt->rt_flags & RTF_LLINFO) == 0) {
695 /*
696 * This is the case for the default route.
697 * If we want to create a neighbor cache for the address, we
698 * should free the route for the destination and allocate an
699 * interface route.
700 */
701 if (create) {
702 RTFREE(rt);
703 rt = 0;
704 }
705 }
706 if (!rt) {
707 if (create && ifp) {
708 int e;
709
710 /*
711 * If no route is available and create is set,
712 * we allocate a host route for the destination
713 * and treat it like an interface route.
714 * This hack is necessary for a neighbor which can't
715 * be covered by our own prefix.
716 */
717 struct ifaddr *ifa =
718 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
719 if (ifa == NULL)
720 return (NULL);
721
722 /*
723 * Create a new route. RTF_LLINFO is necessary
724 * to create a Neighbor Cache entry for the
725 * destination in nd6_rtrequest which will be
726 * called in rtrequest via ifa->ifa_rtrequest.
727 */
728 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
729 ifa->ifa_addr, (struct sockaddr *)&all1_sa,
730 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
731 ~RTF_CLONING, &rt)) != 0) {
732 #if 0
733 log(LOG_ERR,
734 "nd6_lookup: failed to add route for a "
735 "neighbor(%s), errno=%d\n",
736 ip6_sprintf(addr6), e);
737 #endif
738 return (NULL);
739 }
740 if (rt == NULL)
741 return (NULL);
742 if (rt->rt_llinfo) {
743 struct llinfo_nd6 *ln =
744 (struct llinfo_nd6 *)rt->rt_llinfo;
745 ln->ln_state = ND6_LLINFO_NOSTATE;
746 }
747 } else
748 return (NULL);
749 }
750 rt->rt_refcnt--;
751 /*
752 * Validation for the entry.
753 * Note that the check for rt_llinfo is necessary because a cloned
754 * route from a parent route that has the L flag (e.g. the default
755 * route to a p2p interface) may have the flag, too, while the
756 * destination is not actually a neighbor.
757 * XXX: we can't use rt->rt_ifp to check for the interface, since
758 * it might be the loopback interface if the entry is for our
759 * own address on a non-loopback interface. Instead, we should
760 * use rt->rt_ifa->ifa_ifp, which would specify the REAL
761 * interface.
762 */
763 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
764 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
765 (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
766 if (create) {
767 nd6log((LOG_DEBUG,
768 "nd6_lookup: failed to lookup %s (if = %s)\n",
769 ip6_sprintf(addr6),
770 ifp ? if_name(ifp) : "unspec"));
771 }
772 return (NULL);
773 }
774 return (rt);
775 }
776
777 /*
778 * Detect if a given IPv6 address identifies a neighbor on a given link.
779 * XXX: should take care of the destination of a p2p link?
780 */
781 int
782 nd6_is_addr_neighbor(addr, ifp)
783 struct sockaddr_in6 *addr;
784 struct ifnet *ifp;
785 {
786 struct nd_prefix *pr;
787
788 /*
789 * A link-local address is always a neighbor.
790 * XXX: a link does not necessarily specify a single interface.
791 */
792 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
793 struct sockaddr_in6 sin6_copy;
794 u_int32_t zone;
795
796 /*
797 * We need sin6_copy since sa6_recoverscope() may modify the
798 * content (XXX).
799 */
800 sin6_copy = *addr;
801 if (sa6_recoverscope(&sin6_copy))
802 return (0); /* XXX: should be impossible */
803 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
804 return (0);
805 if (sin6_copy.sin6_scope_id == zone)
806 return (1);
807 else
808 return (0);
809 }
810
811 /*
812 * If the address matches one of our on-link prefixes, it should be a
813 * neighbor.
814 */
815 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
816 if (pr->ndpr_ifp != ifp)
817 continue;
818
819 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
820 continue;
821
822 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
823 &addr->sin6_addr, &pr->ndpr_mask))
824 return (1);
825 }
826
827 /*
828 * If the default router list is empty, all addresses are regarded
829 * as on-link, and thus, as a neighbor.
830 * XXX: we restrict the condition to hosts, because routers usually do
831 * not have the "default router list".
832 */
833 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
834 nd6_defifindex == ifp->if_index) {
835 return (1);
836 }
837
838 /*
839 * Even if the address matches none of our addresses, it might be
840 * in the neighbor cache.
841 */
842 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
843 return (1);
844
845 return (0);
846 }
847
848 /*
849 * Free an nd6 llinfo entry.
850 * Since the function would cause significant changes in the kernel, DO NOT
851 * make it global, unless you have a strong reason for the change, and are sure
852 * that the change is safe.
853 */
854 static struct llinfo_nd6 *
855 nd6_free(rt, gc)
856 struct rtentry *rt;
857 int gc;
858 {
859 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
860 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
861 struct nd_defrouter *dr;
862
863 /*
864 * we used to have pfctlinput(PRC_HOSTDEAD) here.
865 * even though it is not harmful, it was not really necessary.
866 */
867
868 /* cancel timer */
869 nd6_llinfo_settimer(ln, -1);
870
871 if (!ip6_forwarding) {
872 int s;
873 s = splsoftnet();
874 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
875 rt->rt_ifp);
876
877 if (dr != NULL && dr->expire &&
878 ln->ln_state == ND6_LLINFO_STALE && gc) {
879 /*
880 * If the reason for the deletion is just garbage
881 * collection, and the neighbor is an active default
882 * router, do not delete it. Instead, reset the GC
883 * timer using the router's lifetime.
884 * Simply deleting the entry would affect default
885 * router selection, which is not necessarily a good
886 * thing, especially when we're using router preference
887 * values.
888 * XXX: the check for ln_state would be redundant,
889 * but we intentionally keep it just in case.
890 */
891 if (dr->expire > time.tv_sec)
892 nd6_llinfo_settimer(ln,
893 (dr->expire - time.tv_sec) * hz);
894 else
895 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
896 splx(s);
897 return (ln->ln_next);
898 }
899
900 if (ln->ln_router || dr) {
901 /*
902 * rt6_flush must be called whether or not the neighbor
903 * is in the Default Router List.
904 * See a corresponding comment in nd6_na_input().
905 */
906 rt6_flush(&in6, rt->rt_ifp);
907 }
908
909 if (dr) {
910 /*
911 * Unreachablity of a router might affect the default
912 * router selection and on-link detection of advertised
913 * prefixes.
914 */
915
916 /*
917 * Temporarily fake the state to choose a new default
918 * router and to perform on-link determination of
919 * prefixes correctly.
920 * Below the state will be set correctly,
921 * or the entry itself will be deleted.
922 */
923 ln->ln_state = ND6_LLINFO_INCOMPLETE;
924
925 /*
926 * Since defrouter_select() does not affect the
927 * on-link determination and MIP6 needs the check
928 * before the default router selection, we perform
929 * the check now.
930 */
931 pfxlist_onlink_check();
932
933 /*
934 * refresh default router list
935 */
936 defrouter_select();
937 }
938 splx(s);
939 }
940
941 /*
942 * Before deleting the entry, remember the next entry as the
943 * return value. We need this because pfxlist_onlink_check() above
944 * might have freed other entries (particularly the old next entry) as
945 * a side effect (XXX).
946 */
947 next = ln->ln_next;
948
949 /*
950 * Detach the route from the routing tree and the list of neighbor
951 * caches, and disable the route entry not to be used in already
952 * cached routes.
953 */
954 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
955 rt_mask(rt), 0, (struct rtentry **)0);
956
957 return (next);
958 }
959
960 /*
961 * Upper-layer reachability hint for Neighbor Unreachability Detection.
962 *
963 * XXX cost-effective methods?
964 */
965 void
966 nd6_nud_hint(rt, dst6, force)
967 struct rtentry *rt;
968 struct in6_addr *dst6;
969 int force;
970 {
971 struct llinfo_nd6 *ln;
972
973 /*
974 * If the caller specified "rt", use that. Otherwise, resolve the
975 * routing table by supplied "dst6".
976 */
977 if (!rt) {
978 if (!dst6)
979 return;
980 if (!(rt = nd6_lookup(dst6, 0, NULL)))
981 return;
982 }
983
984 if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
985 (rt->rt_flags & RTF_LLINFO) == 0 ||
986 !rt->rt_llinfo || !rt->rt_gateway ||
987 rt->rt_gateway->sa_family != AF_LINK) {
988 /* This is not a host route. */
989 return;
990 }
991
992 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
993 if (ln->ln_state < ND6_LLINFO_REACHABLE)
994 return;
995
996 /*
997 * if we get upper-layer reachability confirmation many times,
998 * it is possible we have false information.
999 */
1000 if (!force) {
1001 ln->ln_byhint++;
1002 if (ln->ln_byhint > nd6_maxnudhint)
1003 return;
1004 }
1005
1006 ln->ln_state = ND6_LLINFO_REACHABLE;
1007 if (!ND6_LLINFO_PERMANENT(ln)) {
1008 nd6_llinfo_settimer(ln,
1009 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1010 }
1011 }
1012
1013 void
1014 nd6_rtrequest(req, rt, info)
1015 int req;
1016 struct rtentry *rt;
1017 struct rt_addrinfo *info; /* xxx unused */
1018 {
1019 struct sockaddr *gate = rt->rt_gateway;
1020 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1021 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1022 struct ifnet *ifp = rt->rt_ifp;
1023 struct ifaddr *ifa;
1024
1025 if ((rt->rt_flags & RTF_GATEWAY) != 0)
1026 return;
1027
1028 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1029 /*
1030 * This is probably an interface direct route for a link
1031 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1032 * We do not need special treatment below for such a route.
1033 * Moreover, the RTF_LLINFO flag which would be set below
1034 * would annoy the ndp(8) command.
1035 */
1036 return;
1037 }
1038
1039 if (req == RTM_RESOLVE &&
1040 (nd6_need_cache(ifp) == 0 || /* stf case */
1041 !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) {
1042 /*
1043 * FreeBSD and BSD/OS often make a cloned host route based
1044 * on a less-specific route (e.g. the default route).
1045 * If the less specific route does not have a "gateway"
1046 * (this is the case when the route just goes to a p2p or an
1047 * stf interface), we'll mistakenly make a neighbor cache for
1048 * the host route, and will see strange neighbor solicitation
1049 * for the corresponding destination. In order to avoid the
1050 * confusion, we check if the destination of the route is
1051 * a neighbor in terms of neighbor discovery, and stop the
1052 * process if not. Additionally, we remove the LLINFO flag
1053 * so that ndp(8) will not try to get the neighbor information
1054 * of the destination.
1055 */
1056 rt->rt_flags &= ~RTF_LLINFO;
1057 return;
1058 }
1059
1060 switch (req) {
1061 case RTM_ADD:
1062 /*
1063 * There is no backward compatibility :)
1064 *
1065 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1066 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1067 * rt->rt_flags |= RTF_CLONING;
1068 */
1069 if ((rt->rt_flags & RTF_CLONING) ||
1070 ((rt->rt_flags & RTF_LLINFO) && !ln)) {
1071 /*
1072 * Case 1: This route should come from a route to
1073 * interface (RTF_CLONING case) or the route should be
1074 * treated as on-link but is currently not
1075 * (RTF_LLINFO && !ln case).
1076 */
1077 rt_setgate(rt, rt_key(rt),
1078 (struct sockaddr *)&null_sdl);
1079 gate = rt->rt_gateway;
1080 SDL(gate)->sdl_type = ifp->if_type;
1081 SDL(gate)->sdl_index = ifp->if_index;
1082 if (ln)
1083 nd6_llinfo_settimer(ln, 0);
1084 if ((rt->rt_flags & RTF_CLONING) != 0)
1085 break;
1086 }
1087 /*
1088 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1089 * We don't do that here since llinfo is not ready yet.
1090 *
1091 * There are also couple of other things to be discussed:
1092 * - unsolicited NA code needs improvement beforehand
1093 * - RFC2461 says we MAY send multicast unsolicited NA
1094 * (7.2.6 paragraph 4), however, it also says that we
1095 * SHOULD provide a mechanism to prevent multicast NA storm.
1096 * we don't have anything like it right now.
1097 * note that the mechanism needs a mutual agreement
1098 * between proxies, which means that we need to implement
1099 * a new protocol, or a new kludge.
1100 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1101 * we need to check ip6forwarding before sending it.
1102 * (or should we allow proxy ND configuration only for
1103 * routers? there's no mention about proxy ND from hosts)
1104 */
1105 #if 0
1106 /* XXX it does not work */
1107 if (rt->rt_flags & RTF_ANNOUNCE)
1108 nd6_na_output(ifp,
1109 &SIN6(rt_key(rt))->sin6_addr,
1110 &SIN6(rt_key(rt))->sin6_addr,
1111 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1112 1, NULL);
1113 #endif
1114 /* FALLTHROUGH */
1115 case RTM_RESOLVE:
1116 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1117 /*
1118 * Address resolution isn't necessary for a point to
1119 * point link, so we can skip this test for a p2p link.
1120 */
1121 if (gate->sa_family != AF_LINK ||
1122 gate->sa_len < sizeof(null_sdl)) {
1123 log(LOG_DEBUG,
1124 "nd6_rtrequest: bad gateway value: %s\n",
1125 if_name(ifp));
1126 break;
1127 }
1128 SDL(gate)->sdl_type = ifp->if_type;
1129 SDL(gate)->sdl_index = ifp->if_index;
1130 }
1131 if (ln != NULL)
1132 break; /* This happens on a route change */
1133 /*
1134 * Case 2: This route may come from cloning, or a manual route
1135 * add with a LL address.
1136 */
1137 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1138 rt->rt_llinfo = (caddr_t)ln;
1139 if (!ln) {
1140 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1141 break;
1142 }
1143 nd6_inuse++;
1144 nd6_allocated++;
1145 Bzero(ln, sizeof(*ln));
1146 ln->ln_rt = rt;
1147 callout_init(&ln->ln_timer_ch);
1148 /* this is required for "ndp" command. - shin */
1149 if (req == RTM_ADD) {
1150 /*
1151 * gate should have some valid AF_LINK entry,
1152 * and ln->ln_expire should have some lifetime
1153 * which is specified by ndp command.
1154 */
1155 ln->ln_state = ND6_LLINFO_REACHABLE;
1156 ln->ln_byhint = 0;
1157 } else {
1158 /*
1159 * When req == RTM_RESOLVE, rt is created and
1160 * initialized in rtrequest(), so rt_expire is 0.
1161 */
1162 ln->ln_state = ND6_LLINFO_NOSTATE;
1163 nd6_llinfo_settimer(ln, 0);
1164 }
1165 rt->rt_flags |= RTF_LLINFO;
1166 ln->ln_next = llinfo_nd6.ln_next;
1167 llinfo_nd6.ln_next = ln;
1168 ln->ln_prev = &llinfo_nd6;
1169 ln->ln_next->ln_prev = ln;
1170
1171 /*
1172 * check if rt_key(rt) is one of my address assigned
1173 * to the interface.
1174 */
1175 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1176 &SIN6(rt_key(rt))->sin6_addr);
1177 if (ifa) {
1178 caddr_t macp = nd6_ifptomac(ifp);
1179 nd6_llinfo_settimer(ln, -1);
1180 ln->ln_state = ND6_LLINFO_REACHABLE;
1181 ln->ln_byhint = 0;
1182 if (macp) {
1183 Bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1184 SDL(gate)->sdl_alen = ifp->if_addrlen;
1185 }
1186 if (nd6_useloopback) {
1187 rt->rt_ifp = lo0ifp; /* XXX */
1188 /*
1189 * Make sure rt_ifa be equal to the ifaddr
1190 * corresponding to the address.
1191 * We need this because when we refer
1192 * rt_ifa->ia6_flags in ip6_input, we assume
1193 * that the rt_ifa points to the address instead
1194 * of the loopback address.
1195 */
1196 if (ifa != rt->rt_ifa) {
1197 IFAFREE(rt->rt_ifa);
1198 IFAREF(ifa);
1199 rt->rt_ifa = ifa;
1200 }
1201 }
1202 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1203 nd6_llinfo_settimer(ln, -1);
1204 ln->ln_state = ND6_LLINFO_REACHABLE;
1205 ln->ln_byhint = 0;
1206
1207 /* join solicited node multicast for proxy ND */
1208 if (ifp->if_flags & IFF_MULTICAST) {
1209 struct in6_addr llsol;
1210 int error;
1211
1212 llsol = SIN6(rt_key(rt))->sin6_addr;
1213 llsol.s6_addr32[0] = htonl(0xff020000);
1214 llsol.s6_addr32[1] = 0;
1215 llsol.s6_addr32[2] = htonl(1);
1216 llsol.s6_addr8[12] = 0xff;
1217 if (in6_setscope(&llsol, ifp, NULL))
1218 break;
1219 if (!in6_addmulti(&llsol, ifp, &error)) {
1220 nd6log((LOG_ERR, "%s: failed to join "
1221 "%s (errno=%d)\n", if_name(ifp),
1222 ip6_sprintf(&llsol), error));
1223 }
1224 }
1225 }
1226 break;
1227
1228 case RTM_DELETE:
1229 if (!ln)
1230 break;
1231 /* leave from solicited node multicast for proxy ND */
1232 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1233 (ifp->if_flags & IFF_MULTICAST) != 0) {
1234 struct in6_addr llsol;
1235 struct in6_multi *in6m;
1236
1237 llsol = SIN6(rt_key(rt))->sin6_addr;
1238 llsol.s6_addr32[0] = htonl(0xff020000);
1239 llsol.s6_addr32[1] = 0;
1240 llsol.s6_addr32[2] = htonl(1);
1241 llsol.s6_addr8[12] = 0xff;
1242 if (in6_setscope(&llsol, ifp, NULL) == 0) {
1243 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1244 if (in6m)
1245 in6_delmulti(in6m);
1246 } else
1247 ; /* XXX: should not happen. bark here? */
1248 }
1249 nd6_inuse--;
1250 ln->ln_next->ln_prev = ln->ln_prev;
1251 ln->ln_prev->ln_next = ln->ln_next;
1252 ln->ln_prev = NULL;
1253 nd6_llinfo_settimer(ln, -1);
1254 rt->rt_llinfo = 0;
1255 rt->rt_flags &= ~RTF_LLINFO;
1256 if (ln->ln_hold)
1257 m_freem(ln->ln_hold);
1258 Free((caddr_t)ln);
1259 }
1260 }
1261
1262 int
1263 nd6_ioctl(cmd, data, ifp)
1264 u_long cmd;
1265 caddr_t data;
1266 struct ifnet *ifp;
1267 {
1268 struct in6_drlist *drl = (struct in6_drlist *)data;
1269 struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1270 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1271 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1272 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1273 struct nd_defrouter *dr;
1274 struct nd_prefix *pr;
1275 struct rtentry *rt;
1276 int i = 0, error = 0;
1277 int s;
1278
1279 switch (cmd) {
1280 case SIOCGDRLST_IN6:
1281 /*
1282 * obsolete API, use sysctl under net.inet6.icmp6
1283 */
1284 bzero(drl, sizeof(*drl));
1285 s = splsoftnet();
1286 dr = TAILQ_FIRST(&nd_defrouter);
1287 while (dr && i < DRLSTSIZ) {
1288 drl->defrouter[i].rtaddr = dr->rtaddr;
1289 in6_clearscope(&drl->defrouter[i].rtaddr);
1290
1291 drl->defrouter[i].flags = dr->flags;
1292 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1293 drl->defrouter[i].expire = dr->expire;
1294 drl->defrouter[i].if_index = dr->ifp->if_index;
1295 i++;
1296 dr = TAILQ_NEXT(dr, dr_entry);
1297 }
1298 splx(s);
1299 break;
1300 case SIOCGPRLST_IN6:
1301 /*
1302 * obsolete API, use sysctl under net.inet6.icmp6
1303 *
1304 * XXX the structure in6_prlist was changed in backward-
1305 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1306 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1307 */
1308 /*
1309 * XXX meaning of fields, especialy "raflags", is very
1310 * differnet between RA prefix list and RR/static prefix list.
1311 * how about separating ioctls into two?
1312 */
1313 bzero(oprl, sizeof(*oprl));
1314 s = splsoftnet();
1315 pr = nd_prefix.lh_first;
1316 while (pr && i < PRLSTSIZ) {
1317 struct nd_pfxrouter *pfr;
1318 int j;
1319
1320 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1321 oprl->prefix[i].raflags = pr->ndpr_raf;
1322 oprl->prefix[i].prefixlen = pr->ndpr_plen;
1323 oprl->prefix[i].vltime = pr->ndpr_vltime;
1324 oprl->prefix[i].pltime = pr->ndpr_pltime;
1325 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1326 oprl->prefix[i].expire = pr->ndpr_expire;
1327
1328 pfr = pr->ndpr_advrtrs.lh_first;
1329 j = 0;
1330 while (pfr) {
1331 if (j < DRLSTSIZ) {
1332 #define RTRADDR oprl->prefix[i].advrtr[j]
1333 RTRADDR = pfr->router->rtaddr;
1334 in6_clearscope(&RTRADDR);
1335 #undef RTRADDR
1336 }
1337 j++;
1338 pfr = pfr->pfr_next;
1339 }
1340 oprl->prefix[i].advrtrs = j;
1341 oprl->prefix[i].origin = PR_ORIG_RA;
1342
1343 i++;
1344 pr = pr->ndpr_next;
1345 }
1346 splx(s);
1347
1348 break;
1349 case OSIOCGIFINFO_IN6:
1350 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1351 bzero(&ndi->ndi, sizeof(ndi->ndi));
1352 ndi->ndi.linkmtu = IN6_LINKMTU(ifp);
1353 ndi->ndi.maxmtu = ND_IFINFO(ifp)->maxmtu;
1354 ndi->ndi.basereachable = ND_IFINFO(ifp)->basereachable;
1355 ndi->ndi.reachable = ND_IFINFO(ifp)->reachable;
1356 ndi->ndi.retrans = ND_IFINFO(ifp)->retrans;
1357 ndi->ndi.flags = ND_IFINFO(ifp)->flags;
1358 ndi->ndi.recalctm = ND_IFINFO(ifp)->recalctm;
1359 ndi->ndi.chlim = ND_IFINFO(ifp)->chlim;
1360 break;
1361 case SIOCGIFINFO_IN6:
1362 ndi->ndi = *ND_IFINFO(ifp);
1363 break;
1364 case SIOCSIFINFO_FLAGS:
1365 ND_IFINFO(ifp)->flags = ndi->ndi.flags;
1366 break;
1367 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1368 /* sync kernel routing table with the default router list */
1369 defrouter_reset();
1370 defrouter_select();
1371 break;
1372 case SIOCSPFXFLUSH_IN6:
1373 {
1374 /* flush all the prefix advertised by routers */
1375 struct nd_prefix *pfx, *next;
1376
1377 s = splsoftnet();
1378 for (pfx = nd_prefix.lh_first; pfx; pfx = next) {
1379 struct in6_ifaddr *ia, *ia_next;
1380
1381 next = pfx->ndpr_next;
1382
1383 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
1384 continue; /* XXX */
1385
1386 /* do we really have to remove addresses as well? */
1387 for (ia = in6_ifaddr; ia; ia = ia_next) {
1388 /* ia might be removed. keep the next ptr. */
1389 ia_next = ia->ia_next;
1390
1391 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1392 continue;
1393
1394 if (ia->ia6_ndpr == pfx)
1395 in6_purgeaddr(&ia->ia_ifa);
1396 }
1397 prelist_remove(pfx);
1398 }
1399 splx(s);
1400 break;
1401 }
1402 case SIOCSRTRFLUSH_IN6:
1403 {
1404 /* flush all the default routers */
1405 struct nd_defrouter *drtr, *next;
1406
1407 s = splsoftnet();
1408 defrouter_reset();
1409 for (drtr = TAILQ_FIRST(&nd_defrouter); drtr; drtr = next) {
1410 next = TAILQ_NEXT(drtr, dr_entry);
1411 defrtrlist_del(drtr);
1412 }
1413 defrouter_select();
1414 splx(s);
1415 break;
1416 }
1417 case SIOCGNBRINFO_IN6:
1418 {
1419 struct llinfo_nd6 *ln;
1420 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1421
1422 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1423 return (error);
1424
1425 s = splsoftnet();
1426 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL ||
1427 (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) {
1428 error = EINVAL;
1429 splx(s);
1430 break;
1431 }
1432 nbi->state = ln->ln_state;
1433 nbi->asked = ln->ln_asked;
1434 nbi->isrouter = ln->ln_router;
1435 nbi->expire = ln->ln_expire;
1436 splx(s);
1437
1438 break;
1439 }
1440 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1441 ndif->ifindex = nd6_defifindex;
1442 break;
1443 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1444 return (nd6_setdefaultiface(ndif->ifindex));
1445 }
1446 return (error);
1447 }
1448
1449 /*
1450 * Create neighbor cache entry and cache link-layer address,
1451 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1452 */
1453 struct rtentry *
1454 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
1455 struct ifnet *ifp;
1456 struct in6_addr *from;
1457 char *lladdr;
1458 int lladdrlen;
1459 int type; /* ICMP6 type */
1460 int code; /* type dependent information */
1461 {
1462 struct rtentry *rt = NULL;
1463 struct llinfo_nd6 *ln = NULL;
1464 int is_newentry;
1465 struct sockaddr_dl *sdl = NULL;
1466 int do_update;
1467 int olladdr;
1468 int llchange;
1469 int newstate = 0;
1470
1471 if (!ifp)
1472 panic("ifp == NULL in nd6_cache_lladdr");
1473 if (!from)
1474 panic("from == NULL in nd6_cache_lladdr");
1475
1476 /* nothing must be updated for unspecified address */
1477 if (IN6_IS_ADDR_UNSPECIFIED(from))
1478 return NULL;
1479
1480 /*
1481 * Validation about ifp->if_addrlen and lladdrlen must be done in
1482 * the caller.
1483 *
1484 * XXX If the link does not have link-layer adderss, what should
1485 * we do? (ifp->if_addrlen == 0)
1486 * Spec says nothing in sections for RA, RS and NA. There's small
1487 * description on it in NS section (RFC 2461 7.2.3).
1488 */
1489
1490 rt = nd6_lookup(from, 0, ifp);
1491 if (!rt) {
1492 #if 0
1493 /* nothing must be done if there's no lladdr */
1494 if (!lladdr || !lladdrlen)
1495 return NULL;
1496 #endif
1497
1498 rt = nd6_lookup(from, 1, ifp);
1499 is_newentry = 1;
1500 } else {
1501 /* do nothing if static ndp is set */
1502 if (rt->rt_flags & RTF_STATIC)
1503 return NULL;
1504 is_newentry = 0;
1505 }
1506
1507 if (!rt)
1508 return NULL;
1509 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1510 fail:
1511 (void)nd6_free(rt, 0);
1512 return NULL;
1513 }
1514 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1515 if (!ln)
1516 goto fail;
1517 if (!rt->rt_gateway)
1518 goto fail;
1519 if (rt->rt_gateway->sa_family != AF_LINK)
1520 goto fail;
1521 sdl = SDL(rt->rt_gateway);
1522
1523 olladdr = (sdl->sdl_alen) ? 1 : 0;
1524 if (olladdr && lladdr) {
1525 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1526 llchange = 1;
1527 else
1528 llchange = 0;
1529 } else
1530 llchange = 0;
1531
1532 /*
1533 * newentry olladdr lladdr llchange (*=record)
1534 * 0 n n -- (1)
1535 * 0 y n -- (2)
1536 * 0 n y -- (3) * STALE
1537 * 0 y y n (4) *
1538 * 0 y y y (5) * STALE
1539 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1540 * 1 -- y -- (7) * STALE
1541 */
1542
1543 if (lladdr) { /* (3-5) and (7) */
1544 /*
1545 * Record source link-layer address
1546 * XXX is it dependent to ifp->if_type?
1547 */
1548 sdl->sdl_alen = ifp->if_addrlen;
1549 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1550 }
1551
1552 if (!is_newentry) {
1553 if ((!olladdr && lladdr) || /* (3) */
1554 (olladdr && lladdr && llchange)) { /* (5) */
1555 do_update = 1;
1556 newstate = ND6_LLINFO_STALE;
1557 } else /* (1-2,4) */
1558 do_update = 0;
1559 } else {
1560 do_update = 1;
1561 if (!lladdr) /* (6) */
1562 newstate = ND6_LLINFO_NOSTATE;
1563 else /* (7) */
1564 newstate = ND6_LLINFO_STALE;
1565 }
1566
1567 if (do_update) {
1568 /*
1569 * Update the state of the neighbor cache.
1570 */
1571 ln->ln_state = newstate;
1572
1573 if (ln->ln_state == ND6_LLINFO_STALE) {
1574 /*
1575 * XXX: since nd6_output() below will cause
1576 * state tansition to DELAY and reset the timer,
1577 * we must set the timer now, although it is actually
1578 * meaningless.
1579 */
1580 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1581
1582 if (ln->ln_hold) {
1583 /*
1584 * we assume ifp is not a p2p here, so just
1585 * set the 2nd argument as the 1st one.
1586 */
1587 nd6_output(ifp, ifp, ln->ln_hold,
1588 (struct sockaddr_in6 *)rt_key(rt), rt);
1589 ln->ln_hold = NULL;
1590 }
1591 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1592 /* probe right away */
1593 nd6_llinfo_settimer((void *)ln, 0);
1594 }
1595 }
1596
1597 /*
1598 * ICMP6 type dependent behavior.
1599 *
1600 * NS: clear IsRouter if new entry
1601 * RS: clear IsRouter
1602 * RA: set IsRouter if there's lladdr
1603 * redir: clear IsRouter if new entry
1604 *
1605 * RA case, (1):
1606 * The spec says that we must set IsRouter in the following cases:
1607 * - If lladdr exist, set IsRouter. This means (1-5).
1608 * - If it is old entry (!newentry), set IsRouter. This means (7).
1609 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1610 * A quetion arises for (1) case. (1) case has no lladdr in the
1611 * neighbor cache, this is similar to (6).
1612 * This case is rare but we figured that we MUST NOT set IsRouter.
1613 *
1614 * newentry olladdr lladdr llchange NS RS RA redir
1615 * D R
1616 * 0 n n -- (1) c ? s
1617 * 0 y n -- (2) c s s
1618 * 0 n y -- (3) c s s
1619 * 0 y y n (4) c s s
1620 * 0 y y y (5) c s s
1621 * 1 -- n -- (6) c c c s
1622 * 1 -- y -- (7) c c s c s
1623 *
1624 * (c=clear s=set)
1625 */
1626 switch (type & 0xff) {
1627 case ND_NEIGHBOR_SOLICIT:
1628 /*
1629 * New entry must have is_router flag cleared.
1630 */
1631 if (is_newentry) /* (6-7) */
1632 ln->ln_router = 0;
1633 break;
1634 case ND_REDIRECT:
1635 /*
1636 * If the icmp is a redirect to a better router, always set the
1637 * is_router flag. Otherwise, if the entry is newly created,
1638 * clear the flag. [RFC 2461, sec 8.3]
1639 */
1640 if (code == ND_REDIRECT_ROUTER)
1641 ln->ln_router = 1;
1642 else if (is_newentry) /* (6-7) */
1643 ln->ln_router = 0;
1644 break;
1645 case ND_ROUTER_SOLICIT:
1646 /*
1647 * is_router flag must always be cleared.
1648 */
1649 ln->ln_router = 0;
1650 break;
1651 case ND_ROUTER_ADVERT:
1652 /*
1653 * Mark an entry with lladdr as a router.
1654 */
1655 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
1656 (is_newentry && lladdr)) { /* (7) */
1657 ln->ln_router = 1;
1658 }
1659 break;
1660 }
1661
1662 /*
1663 * When the link-layer address of a router changes, select the
1664 * best router again. In particular, when the neighbor entry is newly
1665 * created, it might affect the selection policy.
1666 * Question: can we restrict the first condition to the "is_newentry"
1667 * case?
1668 * XXX: when we hear an RA from a new router with the link-layer
1669 * address option, defrouter_select() is called twice, since
1670 * defrtrlist_update called the function as well. However, I believe
1671 * we can compromise the overhead, since it only happens the first
1672 * time.
1673 * XXX: although defrouter_select() should not have a bad effect
1674 * for those are not autoconfigured hosts, we explicitly avoid such
1675 * cases for safety.
1676 */
1677 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1678 defrouter_select();
1679
1680 return rt;
1681 }
1682
1683 static void
1684 nd6_slowtimo(ignored_arg)
1685 void *ignored_arg;
1686 {
1687 int s = splsoftnet();
1688 struct nd_ifinfo *nd6if;
1689 struct ifnet *ifp;
1690
1691 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1692 nd6_slowtimo, NULL);
1693 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
1694 {
1695 nd6if = ND_IFINFO(ifp);
1696 if (nd6if->basereachable && /* already initialized */
1697 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1698 /*
1699 * Since reachable time rarely changes by router
1700 * advertisements, we SHOULD insure that a new random
1701 * value gets recomputed at least once every few hours.
1702 * (RFC 2461, 6.3.4)
1703 */
1704 nd6if->recalctm = nd6_recalc_reachtm_interval;
1705 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1706 }
1707 }
1708 splx(s);
1709 }
1710
1711 #define senderr(e) { error = (e); goto bad;}
1712 int
1713 nd6_output(ifp, origifp, m0, dst, rt0)
1714 struct ifnet *ifp;
1715 struct ifnet *origifp;
1716 struct mbuf *m0;
1717 struct sockaddr_in6 *dst;
1718 struct rtentry *rt0;
1719 {
1720 struct mbuf *m = m0;
1721 struct rtentry *rt = rt0;
1722 struct sockaddr_in6 *gw6 = NULL;
1723 struct llinfo_nd6 *ln = NULL;
1724 int error = 0;
1725
1726 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1727 goto sendpkt;
1728
1729 if (nd6_need_cache(ifp) == 0)
1730 goto sendpkt;
1731
1732 /*
1733 * next hop determination. This routine is derived from ether_output.
1734 */
1735 if (rt) {
1736 if ((rt->rt_flags & RTF_UP) == 0) {
1737 if ((rt0 = rt = rtalloc1((struct sockaddr *)dst,
1738 1)) != NULL)
1739 {
1740 rt->rt_refcnt--;
1741 if (rt->rt_ifp != ifp)
1742 senderr(EHOSTUNREACH);
1743 } else
1744 senderr(EHOSTUNREACH);
1745 }
1746
1747 if (rt->rt_flags & RTF_GATEWAY) {
1748 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1749
1750 /*
1751 * We skip link-layer address resolution and NUD
1752 * if the gateway is not a neighbor from ND point
1753 * of view, regardless of the value of nd_ifinfo.flags.
1754 * The second condition is a bit tricky; we skip
1755 * if the gateway is our own address, which is
1756 * sometimes used to install a route to a p2p link.
1757 */
1758 if (!nd6_is_addr_neighbor(gw6, ifp) ||
1759 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1760 /*
1761 * We allow this kind of tricky route only
1762 * when the outgoing interface is p2p.
1763 * XXX: we may need a more generic rule here.
1764 */
1765 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1766 senderr(EHOSTUNREACH);
1767
1768 goto sendpkt;
1769 }
1770
1771 if (rt->rt_gwroute == 0)
1772 goto lookup;
1773 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
1774 rtfree(rt); rt = rt0;
1775 lookup:
1776 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
1777 if ((rt = rt->rt_gwroute) == 0)
1778 senderr(EHOSTUNREACH);
1779 /* the "G" test below also prevents rt == rt0 */
1780 if ((rt->rt_flags & RTF_GATEWAY) ||
1781 (rt->rt_ifp != ifp)) {
1782 rt->rt_refcnt--;
1783 rt0->rt_gwroute = 0;
1784 senderr(EHOSTUNREACH);
1785 }
1786 }
1787 }
1788 }
1789
1790 /*
1791 * Address resolution or Neighbor Unreachability Detection
1792 * for the next hop.
1793 * At this point, the destination of the packet must be a unicast
1794 * or an anycast address(i.e. not a multicast).
1795 */
1796
1797 /* Look up the neighbor cache for the nexthop */
1798 if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
1799 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1800 else {
1801 /*
1802 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1803 * the condition below is not very efficient. But we believe
1804 * it is tolerable, because this should be a rare case.
1805 */
1806 if (nd6_is_addr_neighbor(dst, ifp) &&
1807 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
1808 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1809 }
1810 if (!ln || !rt) {
1811 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
1812 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
1813 log(LOG_DEBUG,
1814 "nd6_output: can't allocate llinfo for %s "
1815 "(ln=%p, rt=%p)\n",
1816 ip6_sprintf(&dst->sin6_addr), ln, rt);
1817 senderr(EIO); /* XXX: good error? */
1818 }
1819
1820 goto sendpkt; /* send anyway */
1821 }
1822
1823 /* We don't have to do link-layer address resolution on a p2p link. */
1824 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
1825 ln->ln_state < ND6_LLINFO_REACHABLE) {
1826 ln->ln_state = ND6_LLINFO_STALE;
1827 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1828 }
1829
1830 /*
1831 * The first time we send a packet to a neighbor whose entry is
1832 * STALE, we have to change the state to DELAY and a sets a timer to
1833 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
1834 * neighbor unreachability detection on expiration.
1835 * (RFC 2461 7.3.3)
1836 */
1837 if (ln->ln_state == ND6_LLINFO_STALE) {
1838 ln->ln_asked = 0;
1839 ln->ln_state = ND6_LLINFO_DELAY;
1840 nd6_llinfo_settimer(ln, nd6_delay * hz);
1841 }
1842
1843 /*
1844 * If the neighbor cache entry has a state other than INCOMPLETE
1845 * (i.e. its link-layer address is already resolved), just
1846 * send the packet.
1847 */
1848 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
1849 goto sendpkt;
1850
1851 /*
1852 * There is a neighbor cache entry, but no ethernet address
1853 * response yet. Replace the held mbuf (if any) with this
1854 * latest one.
1855 */
1856 if (ln->ln_state == ND6_LLINFO_NOSTATE)
1857 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1858 if (ln->ln_hold)
1859 m_freem(ln->ln_hold);
1860 ln->ln_hold = m;
1861 /*
1862 * If there has been no NS for the neighbor after entering the
1863 * INCOMPLETE state, send the first solicitation.
1864 */
1865 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
1866 ln->ln_asked++;
1867 nd6_llinfo_settimer(ln,
1868 (long)ND_IFINFO(ifp)->retrans * hz / 1000);
1869 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
1870 }
1871 return (0);
1872
1873 sendpkt:
1874
1875 #ifdef IPSEC
1876 /* clean ipsec history once it goes out of the node */
1877 ipsec_delaux(m);
1878 #endif
1879 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
1880 return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
1881 rt));
1882 }
1883 return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
1884
1885 bad:
1886 if (m)
1887 m_freem(m);
1888 return (error);
1889 }
1890 #undef senderr
1891
1892 int
1893 nd6_need_cache(ifp)
1894 struct ifnet *ifp;
1895 {
1896 /*
1897 * XXX: we currently do not make neighbor cache on any interface
1898 * other than ARCnet, Ethernet, FDDI and GIF.
1899 *
1900 * RFC2893 says:
1901 * - unidirectional tunnels needs no ND
1902 */
1903 switch (ifp->if_type) {
1904 case IFT_ARCNET:
1905 case IFT_ETHER:
1906 case IFT_FDDI:
1907 case IFT_IEEE1394:
1908 case IFT_GIF: /* XXX need more cases? */
1909 return (1);
1910 default:
1911 return (0);
1912 }
1913 }
1914
1915 int
1916 nd6_storelladdr(ifp, rt, m, dst, desten)
1917 struct ifnet *ifp;
1918 struct rtentry *rt;
1919 struct mbuf *m;
1920 struct sockaddr *dst;
1921 u_char *desten;
1922 {
1923 struct sockaddr_dl *sdl;
1924
1925 if (m->m_flags & M_MCAST) {
1926 switch (ifp->if_type) {
1927 case IFT_ETHER:
1928 case IFT_FDDI:
1929 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
1930 desten);
1931 return (1);
1932 case IFT_IEEE1394:
1933 bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen);
1934 return (1);
1935 case IFT_ARCNET:
1936 *desten = 0;
1937 return (1);
1938 default:
1939 m_freem(m);
1940 return (0);
1941 }
1942 }
1943
1944 if (rt == NULL) {
1945 /* this could happen, if we could not allocate memory */
1946 m_freem(m);
1947 return (0);
1948 }
1949 if (rt->rt_gateway->sa_family != AF_LINK) {
1950 printf("nd6_storelladdr: something odd happens\n");
1951 m_freem(m);
1952 return (0);
1953 }
1954 sdl = SDL(rt->rt_gateway);
1955 if (sdl->sdl_alen == 0) {
1956 /* this should be impossible, but we bark here for debugging */
1957 printf("nd6_storelladdr: sdl_alen == 0, dst=%s, if=%s\n",
1958 ip6_sprintf(&SIN6(dst)->sin6_addr), if_name(ifp));
1959 m_freem(m);
1960 return (0);
1961 }
1962
1963 bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
1964 return (1);
1965 }
1966
1967 int
1968 nd6_sysctl(name, oldp, oldlenp, newp, newlen)
1969 int name;
1970 void *oldp; /* syscall arg, need copyout */
1971 size_t *oldlenp;
1972 void *newp; /* syscall arg, need copyin */
1973 size_t newlen;
1974 {
1975 void *p;
1976 size_t ol;
1977 int error;
1978
1979 error = 0;
1980
1981 if (newp)
1982 return EPERM;
1983 if (oldp && !oldlenp)
1984 return EINVAL;
1985 ol = oldlenp ? *oldlenp : 0;
1986
1987 if (oldp) {
1988 p = malloc(*oldlenp, M_TEMP, M_WAITOK);
1989 if (!p)
1990 return ENOMEM;
1991 } else
1992 p = NULL;
1993 switch (name) {
1994 case ICMPV6CTL_ND6_DRLIST:
1995 error = fill_drlist(p, oldlenp, ol);
1996 if (!error && p && oldp)
1997 error = copyout(p, oldp, *oldlenp);
1998 break;
1999
2000 case ICMPV6CTL_ND6_PRLIST:
2001 error = fill_prlist(p, oldlenp, ol);
2002 if (!error && p && oldp)
2003 error = copyout(p, oldp, *oldlenp);
2004 break;
2005
2006 default:
2007 error = ENOPROTOOPT;
2008 break;
2009 }
2010 if (p)
2011 free(p, M_TEMP);
2012
2013 return (error);
2014 }
2015
2016 static int
2017 fill_drlist(oldp, oldlenp, ol)
2018 void *oldp;
2019 size_t *oldlenp, ol;
2020 {
2021 int error = 0, s;
2022 struct in6_defrouter *d = NULL, *de = NULL;
2023 struct nd_defrouter *dr;
2024 size_t l;
2025
2026 s = splsoftnet();
2027
2028 if (oldp) {
2029 d = (struct in6_defrouter *)oldp;
2030 de = (struct in6_defrouter *)((caddr_t)oldp + *oldlenp);
2031 }
2032 l = 0;
2033
2034 for (dr = TAILQ_FIRST(&nd_defrouter); dr;
2035 dr = TAILQ_NEXT(dr, dr_entry)) {
2036
2037 if (oldp && d + 1 <= de) {
2038 bzero(d, sizeof(*d));
2039 d->rtaddr.sin6_family = AF_INET6;
2040 d->rtaddr.sin6_len = sizeof(struct sockaddr_in6);
2041 d->rtaddr.sin6_addr = dr->rtaddr;
2042 if (sa6_recoverscope(&d->rtaddr)) {
2043 log(LOG_ERR,
2044 "scope error in router list (%s)\n",
2045 ip6_sprintf(&d->rtaddr.sin6_addr));
2046 /* XXX: press on... */
2047 }
2048 d->flags = dr->flags;
2049 d->rtlifetime = dr->rtlifetime;
2050 d->expire = dr->expire;
2051 d->if_index = dr->ifp->if_index;
2052 }
2053
2054 l += sizeof(*d);
2055 if (d)
2056 d++;
2057 }
2058
2059 if (oldp) {
2060 *oldlenp = l; /* (caddr_t)d - (caddr_t)oldp */
2061 if (l > ol)
2062 error = ENOMEM;
2063 } else
2064 *oldlenp = l;
2065
2066 splx(s);
2067
2068 return (error);
2069 }
2070
2071 static int
2072 fill_prlist(oldp, oldlenp, ol)
2073 void *oldp;
2074 size_t *oldlenp, ol;
2075 {
2076 int error = 0, s;
2077 struct nd_prefix *pr;
2078 struct in6_prefix *p = NULL;
2079 struct in6_prefix *pe = NULL;
2080 size_t l;
2081
2082 s = splsoftnet();
2083
2084 if (oldp) {
2085 p = (struct in6_prefix *)oldp;
2086 pe = (struct in6_prefix *)((caddr_t)oldp + *oldlenp);
2087 }
2088 l = 0;
2089
2090 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2091 u_short advrtrs;
2092 size_t advance;
2093 struct sockaddr_in6 *sin6;
2094 struct sockaddr_in6 *s6;
2095 struct nd_pfxrouter *pfr;
2096
2097 if (oldp && p + 1 <= pe)
2098 {
2099 bzero(p, sizeof(*p));
2100 sin6 = (struct sockaddr_in6 *)(p + 1);
2101
2102 p->prefix = pr->ndpr_prefix;
2103 if (sa6_recoverscope(&p->prefix)) {
2104 log(LOG_ERR,
2105 "scope error in prefix list (%s)\n",
2106 ip6_sprintf(&p->prefix.sin6_addr));
2107 /* XXX: press on... */
2108 }
2109 p->raflags = pr->ndpr_raf;
2110 p->prefixlen = pr->ndpr_plen;
2111 p->vltime = pr->ndpr_vltime;
2112 p->pltime = pr->ndpr_pltime;
2113 p->if_index = pr->ndpr_ifp->if_index;
2114 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2115 p->expire = 0;
2116 else {
2117 time_t maxexpire;
2118
2119 /* XXX: we assume time_t is signed. */
2120 maxexpire = (-1) &
2121 ~(1 << ((sizeof(maxexpire) * 8) - 1));
2122 if (pr->ndpr_vltime <
2123 maxexpire - pr->ndpr_lastupdate) {
2124 p->expire = pr->ndpr_lastupdate +
2125 pr->ndpr_vltime;
2126 } else
2127 p->expire = maxexpire;
2128 }
2129 p->refcnt = pr->ndpr_refcnt;
2130 p->flags = pr->ndpr_stateflags;
2131 p->origin = PR_ORIG_RA;
2132 advrtrs = 0;
2133 for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2134 pfr = pfr->pfr_next) {
2135 if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2136 advrtrs++;
2137 continue;
2138 }
2139 s6 = &sin6[advrtrs];
2140 s6->sin6_family = AF_INET6;
2141 s6->sin6_len = sizeof(struct sockaddr_in6);
2142 s6->sin6_addr = pfr->router->rtaddr;
2143 s6->sin6_scope_id = 0;
2144 if (sa6_recoverscope(s6)) {
2145 log(LOG_ERR,
2146 "scope error in "
2147 "prefix list (%s)\n",
2148 ip6_sprintf(&pfr->router->rtaddr));
2149 }
2150 advrtrs++;
2151 }
2152 p->advrtrs = advrtrs;
2153 }
2154 else {
2155 advrtrs = 0;
2156 for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2157 pfr = pfr->pfr_next)
2158 advrtrs++;
2159 }
2160
2161 advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2162 l += advance;
2163 if (p)
2164 p = (struct in6_prefix *)((caddr_t)p + advance);
2165 }
2166
2167 if (oldp) {
2168 *oldlenp = l; /* (caddr_t)d - (caddr_t)oldp */
2169 if (l > ol)
2170 error = ENOMEM;
2171 } else
2172 *oldlenp = l;
2173
2174 splx(s);
2175
2176 return (error);
2177 }
2178