Home | History | Annotate | Line # | Download | only in netinet6
nd6.c revision 1.99
      1 /*	$NetBSD: nd6.c,v 1.99 2006/03/05 23:47:08 rpaulo Exp $	*/
      2 /*	$KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $	*/
      3 
      4 /*
      5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. Neither the name of the project nor the names of its contributors
     17  *    may be used to endorse or promote products derived from this software
     18  *    without specific prior written permission.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     30  * SUCH DAMAGE.
     31  */
     32 
     33 #include <sys/cdefs.h>
     34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.99 2006/03/05 23:47:08 rpaulo Exp $");
     35 
     36 #include "opt_ipsec.h"
     37 
     38 #include <sys/param.h>
     39 #include <sys/systm.h>
     40 #include <sys/callout.h>
     41 #include <sys/malloc.h>
     42 #include <sys/mbuf.h>
     43 #include <sys/socket.h>
     44 #include <sys/sockio.h>
     45 #include <sys/time.h>
     46 #include <sys/kernel.h>
     47 #include <sys/protosw.h>
     48 #include <sys/errno.h>
     49 #include <sys/ioctl.h>
     50 #include <sys/syslog.h>
     51 #include <sys/queue.h>
     52 
     53 #include <net/if.h>
     54 #include <net/if_dl.h>
     55 #include <net/if_types.h>
     56 #include <net/route.h>
     57 #include <net/if_ether.h>
     58 #include <net/if_fddi.h>
     59 #include <net/if_arc.h>
     60 
     61 #include <netinet/in.h>
     62 #include <netinet6/in6_var.h>
     63 #include <netinet/ip6.h>
     64 #include <netinet6/ip6_var.h>
     65 #include <netinet6/scope6_var.h>
     66 #include <netinet6/nd6.h>
     67 #include <netinet/icmp6.h>
     68 
     69 #ifdef IPSEC
     70 #include <netinet6/ipsec.h>
     71 #endif
     72 
     73 #include <net/net_osdep.h>
     74 
     75 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
     76 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
     77 
     78 #define SIN6(s) ((struct sockaddr_in6 *)s)
     79 #define SDL(s) ((struct sockaddr_dl *)s)
     80 
     81 /* timer values */
     82 int	nd6_prune	= 1;	/* walk list every 1 seconds */
     83 int	nd6_delay	= 5;	/* delay first probe time 5 second */
     84 int	nd6_umaxtries	= 3;	/* maximum unicast query */
     85 int	nd6_mmaxtries	= 3;	/* maximum multicast query */
     86 int	nd6_useloopback = 1;	/* use loopback interface for local traffic */
     87 int	nd6_gctimer	= (60 * 60 * 24); /* 1 day: garbage collection timer */
     88 
     89 /* preventing too many loops in ND option parsing */
     90 int nd6_maxndopt = 10;	/* max # of ND options allowed */
     91 
     92 int nd6_maxnudhint = 0;	/* max # of subsequent upper layer hints */
     93 
     94 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
     95 
     96 #ifdef ND6_DEBUG
     97 int nd6_debug = 1;
     98 #else
     99 int nd6_debug = 0;
    100 #endif
    101 
    102 /* for debugging? */
    103 static int nd6_inuse, nd6_allocated;
    104 
    105 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
    106 struct nd_drhead nd_defrouter;
    107 struct nd_prhead nd_prefix = { 0 };
    108 
    109 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
    110 static struct sockaddr_in6 all1_sa;
    111 
    112 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
    113 static void nd6_slowtimo __P((void *));
    114 static int regen_tmpaddr __P((struct in6_ifaddr *));
    115 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
    116 static void nd6_llinfo_timer __P((void *));
    117 
    118 struct callout nd6_slowtimo_ch = CALLOUT_INITIALIZER;
    119 struct callout nd6_timer_ch = CALLOUT_INITIALIZER;
    120 extern struct callout in6_tmpaddrtimer_ch;
    121 
    122 static int fill_drlist __P((void *, size_t *, size_t));
    123 static int fill_prlist __P((void *, size_t *, size_t));
    124 
    125 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
    126 
    127 void
    128 nd6_init()
    129 {
    130 	static int nd6_init_done = 0;
    131 	int i;
    132 
    133 	if (nd6_init_done) {
    134 		log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
    135 		return;
    136 	}
    137 
    138 	all1_sa.sin6_family = AF_INET6;
    139 	all1_sa.sin6_len = sizeof(struct sockaddr_in6);
    140 	for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
    141 		all1_sa.sin6_addr.s6_addr[i] = 0xff;
    142 
    143 	/* initialization of the default router list */
    144 	TAILQ_INIT(&nd_defrouter);
    145 
    146 	nd6_init_done = 1;
    147 
    148 	/* start timer */
    149 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
    150 	    nd6_slowtimo, NULL);
    151 }
    152 
    153 struct nd_ifinfo *
    154 nd6_ifattach(ifp)
    155 	struct ifnet *ifp;
    156 {
    157 	struct nd_ifinfo *nd;
    158 
    159 	nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
    160 	bzero(nd, sizeof(*nd));
    161 
    162 	nd->initialized = 1;
    163 
    164 	nd->chlim = IPV6_DEFHLIM;
    165 	nd->basereachable = REACHABLE_TIME;
    166 	nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
    167 	nd->retrans = RETRANS_TIMER;
    168 	/*
    169 	 * Note that the default value of ip6_accept_rtadv is 0, which means
    170 	 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
    171 	 * here.
    172 	 */
    173 	nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
    174 
    175 	/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
    176 	nd6_setmtu0(ifp, nd);
    177 
    178 	return nd;
    179 }
    180 
    181 void
    182 nd6_ifdetach(nd)
    183 	struct nd_ifinfo *nd;
    184 {
    185 
    186 	free(nd, M_IP6NDP);
    187 }
    188 
    189 void
    190 nd6_setmtu(ifp)
    191 	struct ifnet *ifp;
    192 {
    193 	nd6_setmtu0(ifp, ND_IFINFO(ifp));
    194 }
    195 
    196 void
    197 nd6_setmtu0(ifp, ndi)
    198 	struct ifnet *ifp;
    199 	struct nd_ifinfo *ndi;
    200 {
    201 	u_int32_t omaxmtu;
    202 
    203 	omaxmtu = ndi->maxmtu;
    204 
    205 	switch (ifp->if_type) {
    206 	case IFT_ARCNET:
    207 		ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
    208 		break;
    209 	case IFT_FDDI:
    210 		ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
    211 		break;
    212 	default:
    213 		ndi->maxmtu = ifp->if_mtu;
    214 		break;
    215 	}
    216 
    217 	/*
    218 	 * Decreasing the interface MTU under IPV6 minimum MTU may cause
    219 	 * undesirable situation.  We thus notify the operator of the change
    220 	 * explicitly.  The check for omaxmtu is necessary to restrict the
    221 	 * log to the case of changing the MTU, not initializing it.
    222 	 */
    223 	if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
    224 		log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
    225 		    " small for IPv6 which needs %lu\n",
    226 		    if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
    227 		    IPV6_MMTU);
    228 	}
    229 
    230 	if (ndi->maxmtu > in6_maxmtu)
    231 		in6_setmaxmtu(); /* check all interfaces just in case */
    232 }
    233 
    234 void
    235 nd6_option_init(opt, icmp6len, ndopts)
    236 	void *opt;
    237 	int icmp6len;
    238 	union nd_opts *ndopts;
    239 {
    240 
    241 	bzero(ndopts, sizeof(*ndopts));
    242 	ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
    243 	ndopts->nd_opts_last
    244 		= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
    245 
    246 	if (icmp6len == 0) {
    247 		ndopts->nd_opts_done = 1;
    248 		ndopts->nd_opts_search = NULL;
    249 	}
    250 }
    251 
    252 /*
    253  * Take one ND option.
    254  */
    255 struct nd_opt_hdr *
    256 nd6_option(ndopts)
    257 	union nd_opts *ndopts;
    258 {
    259 	struct nd_opt_hdr *nd_opt;
    260 	int olen;
    261 
    262 	if (ndopts == NULL)
    263 		panic("ndopts == NULL in nd6_option");
    264 	if (ndopts->nd_opts_last == NULL)
    265 		panic("uninitialized ndopts in nd6_option");
    266 	if (ndopts->nd_opts_search == NULL)
    267 		return NULL;
    268 	if (ndopts->nd_opts_done)
    269 		return NULL;
    270 
    271 	nd_opt = ndopts->nd_opts_search;
    272 
    273 	/* make sure nd_opt_len is inside the buffer */
    274 	if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
    275 		bzero(ndopts, sizeof(*ndopts));
    276 		return NULL;
    277 	}
    278 
    279 	olen = nd_opt->nd_opt_len << 3;
    280 	if (olen == 0) {
    281 		/*
    282 		 * Message validation requires that all included
    283 		 * options have a length that is greater than zero.
    284 		 */
    285 		bzero(ndopts, sizeof(*ndopts));
    286 		return NULL;
    287 	}
    288 
    289 	ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
    290 	if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
    291 		/* option overruns the end of buffer, invalid */
    292 		bzero(ndopts, sizeof(*ndopts));
    293 		return NULL;
    294 	} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
    295 		/* reached the end of options chain */
    296 		ndopts->nd_opts_done = 1;
    297 		ndopts->nd_opts_search = NULL;
    298 	}
    299 	return nd_opt;
    300 }
    301 
    302 /*
    303  * Parse multiple ND options.
    304  * This function is much easier to use, for ND routines that do not need
    305  * multiple options of the same type.
    306  */
    307 int
    308 nd6_options(ndopts)
    309 	union nd_opts *ndopts;
    310 {
    311 	struct nd_opt_hdr *nd_opt;
    312 	int i = 0;
    313 
    314 	if (ndopts == NULL)
    315 		panic("ndopts == NULL in nd6_options");
    316 	if (ndopts->nd_opts_last == NULL)
    317 		panic("uninitialized ndopts in nd6_options");
    318 	if (ndopts->nd_opts_search == NULL)
    319 		return 0;
    320 
    321 	while (1) {
    322 		nd_opt = nd6_option(ndopts);
    323 		if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
    324 			/*
    325 			 * Message validation requires that all included
    326 			 * options have a length that is greater than zero.
    327 			 */
    328 			icmp6stat.icp6s_nd_badopt++;
    329 			bzero(ndopts, sizeof(*ndopts));
    330 			return -1;
    331 		}
    332 
    333 		if (nd_opt == NULL)
    334 			goto skip1;
    335 
    336 		switch (nd_opt->nd_opt_type) {
    337 		case ND_OPT_SOURCE_LINKADDR:
    338 		case ND_OPT_TARGET_LINKADDR:
    339 		case ND_OPT_MTU:
    340 		case ND_OPT_REDIRECTED_HEADER:
    341 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
    342 				nd6log((LOG_INFO,
    343 				    "duplicated ND6 option found (type=%d)\n",
    344 				    nd_opt->nd_opt_type));
    345 				/* XXX bark? */
    346 			} else {
    347 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
    348 					= nd_opt;
    349 			}
    350 			break;
    351 		case ND_OPT_PREFIX_INFORMATION:
    352 			if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
    353 				ndopts->nd_opt_array[nd_opt->nd_opt_type]
    354 					= nd_opt;
    355 			}
    356 			ndopts->nd_opts_pi_end =
    357 				(struct nd_opt_prefix_info *)nd_opt;
    358 			break;
    359 		default:
    360 			/*
    361 			 * Unknown options must be silently ignored,
    362 			 * to accomodate future extension to the protocol.
    363 			 */
    364 			nd6log((LOG_DEBUG,
    365 			    "nd6_options: unsupported option %d - "
    366 			    "option ignored\n", nd_opt->nd_opt_type));
    367 		}
    368 
    369 skip1:
    370 		i++;
    371 		if (i > nd6_maxndopt) {
    372 			icmp6stat.icp6s_nd_toomanyopt++;
    373 			nd6log((LOG_INFO, "too many loop in nd opt\n"));
    374 			break;
    375 		}
    376 
    377 		if (ndopts->nd_opts_done)
    378 			break;
    379 	}
    380 
    381 	return 0;
    382 }
    383 
    384 /*
    385  * ND6 timer routine to handle ND6 entries
    386  */
    387 void
    388 nd6_llinfo_settimer(ln, xtick)
    389 	struct llinfo_nd6 *ln;
    390 	long xtick;
    391 {
    392 	int s;
    393 
    394 	s = splsoftnet();
    395 
    396 	if (xtick < 0) {
    397 		ln->ln_expire = 0;
    398 		ln->ln_ntick = 0;
    399 		callout_stop(&ln->ln_timer_ch);
    400 	} else {
    401 		ln->ln_expire = time.tv_sec + xtick / hz;
    402 		if (xtick > INT_MAX) {
    403 			ln->ln_ntick = xtick - INT_MAX;
    404 			callout_reset(&ln->ln_timer_ch, INT_MAX,
    405 			    nd6_llinfo_timer, ln);
    406 		} else {
    407 			ln->ln_ntick = 0;
    408 			callout_reset(&ln->ln_timer_ch, xtick,
    409 			    nd6_llinfo_timer, ln);
    410 		}
    411 	}
    412 
    413 	splx(s);
    414 }
    415 
    416 static void
    417 nd6_llinfo_timer(arg)
    418 	void *arg;
    419 {
    420 	int s;
    421 	struct llinfo_nd6 *ln;
    422 	struct rtentry *rt;
    423 	const struct sockaddr_in6 *dst;
    424 	struct ifnet *ifp;
    425 	struct nd_ifinfo *ndi = NULL;
    426 
    427 	s = splsoftnet();
    428 
    429 	ln = (struct llinfo_nd6 *)arg;
    430 
    431 	if (ln->ln_ntick > 0) {
    432 		nd6_llinfo_settimer(ln, ln->ln_ntick);
    433 		splx(s);
    434 		return;
    435 	}
    436 
    437 	if ((rt = ln->ln_rt) == NULL)
    438 		panic("ln->ln_rt == NULL");
    439 	if ((ifp = rt->rt_ifp) == NULL)
    440 		panic("ln->ln_rt->rt_ifp == NULL");
    441 	ndi = ND_IFINFO(ifp);
    442 	dst = (struct sockaddr_in6 *)rt_key(rt);
    443 
    444 	/* sanity check */
    445 	if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
    446 		panic("rt_llinfo(%p) is not equal to ln(%p)",
    447 		      rt->rt_llinfo, ln);
    448 	if (!dst)
    449 		panic("dst=0 in nd6_timer(ln=%p)", ln);
    450 
    451 	switch (ln->ln_state) {
    452 	case ND6_LLINFO_INCOMPLETE:
    453 		if (ln->ln_asked < nd6_mmaxtries) {
    454 			ln->ln_asked++;
    455 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
    456 			nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
    457 		} else {
    458 			struct mbuf *m = ln->ln_hold;
    459 			if (m) {
    460 				/*
    461 				 * assuming every packet in ln_hold has
    462 				 * the same IP header
    463 				 */
    464 				ln->ln_hold = NULL;
    465 				icmp6_error2(m, ICMP6_DST_UNREACH,
    466 				    ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
    467 			}
    468 			(void)nd6_free(rt, 0);
    469 			ln = NULL;
    470 		}
    471 		break;
    472 	case ND6_LLINFO_REACHABLE:
    473 		if (!ND6_LLINFO_PERMANENT(ln)) {
    474 			ln->ln_state = ND6_LLINFO_STALE;
    475 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
    476 		}
    477 		break;
    478 
    479 	case ND6_LLINFO_STALE:
    480 		/* Garbage Collection(RFC 2461 5.3) */
    481 		if (!ND6_LLINFO_PERMANENT(ln)) {
    482 			(void)nd6_free(rt, 1);
    483 			ln = NULL;
    484 		}
    485 		break;
    486 
    487 	case ND6_LLINFO_DELAY:
    488 		if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
    489 			/* We need NUD */
    490 			ln->ln_asked = 1;
    491 			ln->ln_state = ND6_LLINFO_PROBE;
    492 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
    493 			nd6_ns_output(ifp, &dst->sin6_addr,
    494 			    &dst->sin6_addr, ln, 0);
    495 		} else {
    496 			ln->ln_state = ND6_LLINFO_STALE; /* XXX */
    497 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
    498 		}
    499 		break;
    500 	case ND6_LLINFO_PROBE:
    501 		if (ln->ln_asked < nd6_umaxtries) {
    502 			ln->ln_asked++;
    503 			nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
    504 			nd6_ns_output(ifp, &dst->sin6_addr,
    505 			    &dst->sin6_addr, ln, 0);
    506 		} else {
    507 			(void)nd6_free(rt, 0);
    508 			ln = NULL;
    509 		}
    510 		break;
    511 	}
    512 
    513 	splx(s);
    514 }
    515 
    516 /*
    517  * ND6 timer routine to expire default route list and prefix list
    518  */
    519 void
    520 nd6_timer(ignored_arg)
    521 	void	*ignored_arg;
    522 {
    523 	int s;
    524 	struct nd_defrouter *dr;
    525 	struct nd_prefix *pr;
    526 	struct in6_ifaddr *ia6, *nia6;
    527 	struct in6_addrlifetime *lt6;
    528 
    529 	s = splsoftnet();
    530 	callout_reset(&nd6_timer_ch, nd6_prune * hz,
    531 	    nd6_timer, NULL);
    532 
    533 	/* expire default router list */
    534 	dr = TAILQ_FIRST(&nd_defrouter);
    535 	while (dr) {
    536 		if (dr->expire && dr->expire < time.tv_sec) {
    537 			struct nd_defrouter *t;
    538 			t = TAILQ_NEXT(dr, dr_entry);
    539 			defrtrlist_del(dr);
    540 			dr = t;
    541 		} else {
    542 			dr = TAILQ_NEXT(dr, dr_entry);
    543 		}
    544 	}
    545 
    546 	/*
    547 	 * expire interface addresses.
    548 	 * in the past the loop was inside prefix expiry processing.
    549 	 * However, from a stricter speci-confrmance standpoint, we should
    550 	 * rather separate address lifetimes and prefix lifetimes.
    551 	 */
    552   addrloop:
    553 	for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
    554 		nia6 = ia6->ia_next;
    555 		/* check address lifetime */
    556 		lt6 = &ia6->ia6_lifetime;
    557 		if (IFA6_IS_INVALID(ia6)) {
    558 			int regen = 0;
    559 
    560 			/*
    561 			 * If the expiring address is temporary, try
    562 			 * regenerating a new one.  This would be useful when
    563 			 * we suspended a laptop PC, then turned it on after a
    564 			 * period that could invalidate all temporary
    565 			 * addresses.  Although we may have to restart the
    566 			 * loop (see below), it must be after purging the
    567 			 * address.  Otherwise, we'd see an infinite loop of
    568 			 * regeneration.
    569 			 */
    570 			if (ip6_use_tempaddr &&
    571 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
    572 				if (regen_tmpaddr(ia6) == 0)
    573 					regen = 1;
    574 			}
    575 
    576  			in6_purgeaddr(&ia6->ia_ifa);
    577 
    578 			if (regen)
    579 				goto addrloop; /* XXX: see below */
    580 		} else if (IFA6_IS_DEPRECATED(ia6)) {
    581 			int oldflags = ia6->ia6_flags;
    582 
    583  			ia6->ia6_flags |= IN6_IFF_DEPRECATED;
    584 
    585 			/*
    586 			 * If a temporary address has just become deprecated,
    587 			 * regenerate a new one if possible.
    588 			 */
    589 			if (ip6_use_tempaddr &&
    590 			    (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
    591 			    (oldflags & IN6_IFF_DEPRECATED) == 0) {
    592 
    593 				if (regen_tmpaddr(ia6) == 0) {
    594 					/*
    595 					 * A new temporary address is
    596 					 * generated.
    597 					 * XXX: this means the address chain
    598 					 * has changed while we are still in
    599 					 * the loop.  Although the change
    600 					 * would not cause disaster (because
    601 					 * it's not a deletion, but an
    602 					 * addition,) we'd rather restart the
    603 					 * loop just for safety.  Or does this
    604 					 * significantly reduce performance??
    605 					 */
    606 					goto addrloop;
    607 				}
    608 			}
    609 		} else {
    610 			/*
    611 			 * A new RA might have made a deprecated address
    612 			 * preferred.
    613 			 */
    614 			ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
    615 		}
    616 	}
    617 
    618 	/* expire prefix list */
    619 	pr = nd_prefix.lh_first;
    620 	while (pr) {
    621 		/*
    622 		 * check prefix lifetime.
    623 		 * since pltime is just for autoconf, pltime processing for
    624 		 * prefix is not necessary.
    625 		 */
    626 		if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
    627 		    time.tv_sec - pr->ndpr_lastupdate > pr->ndpr_vltime) {
    628 			struct nd_prefix *t;
    629 			t = pr->ndpr_next;
    630 
    631 			/*
    632 			 * address expiration and prefix expiration are
    633 			 * separate.  NEVER perform in6_purgeaddr here.
    634 			 */
    635 
    636 			prelist_remove(pr);
    637 			pr = t;
    638 		} else
    639 			pr = pr->ndpr_next;
    640 	}
    641 	splx(s);
    642 }
    643 
    644 static int
    645 regen_tmpaddr(ia6)
    646 	struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */
    647 {
    648 	struct ifaddr *ifa;
    649 	struct ifnet *ifp;
    650 	struct in6_ifaddr *public_ifa6 = NULL;
    651 
    652 	ifp = ia6->ia_ifa.ifa_ifp;
    653 	for (ifa = ifp->if_addrlist.tqh_first; ifa;
    654 	     ifa = ifa->ifa_list.tqe_next) {
    655 		struct in6_ifaddr *it6;
    656 
    657 		if (ifa->ifa_addr->sa_family != AF_INET6)
    658 			continue;
    659 
    660 		it6 = (struct in6_ifaddr *)ifa;
    661 
    662 		/* ignore no autoconf addresses. */
    663 		if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
    664 			continue;
    665 
    666 		/* ignore autoconf addresses with different prefixes. */
    667 		if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
    668 			continue;
    669 
    670 		/*
    671 		 * Now we are looking at an autoconf address with the same
    672 		 * prefix as ours.  If the address is temporary and is still
    673 		 * preferred, do not create another one.  It would be rare, but
    674 		 * could happen, for example, when we resume a laptop PC after
    675 		 * a long period.
    676 		 */
    677 		if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
    678 		    !IFA6_IS_DEPRECATED(it6)) {
    679 			public_ifa6 = NULL;
    680 			break;
    681 		}
    682 
    683 		/*
    684 		 * This is a public autoconf address that has the same prefix
    685 		 * as ours.  If it is preferred, keep it.  We can't break the
    686 		 * loop here, because there may be a still-preferred temporary
    687 		 * address with the prefix.
    688 		 */
    689 		if (!IFA6_IS_DEPRECATED(it6))
    690 		    public_ifa6 = it6;
    691 	}
    692 
    693 	if (public_ifa6 != NULL) {
    694 		int e;
    695 
    696 		/*
    697 		 * Random factor is introduced in the preferred lifetime, so
    698 		 * we do not need additional delay (3rd arg to in6_tmpifadd).
    699 		 */
    700 		if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
    701 			log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
    702 			    " tmp addr, errno=%d\n", e);
    703 			return (-1);
    704 		}
    705 		return (0);
    706 	}
    707 
    708 	return (-1);
    709 }
    710 
    711 /*
    712  * Nuke neighbor cache/prefix/default router management table, right before
    713  * ifp goes away.
    714  */
    715 void
    716 nd6_purge(ifp)
    717 	struct ifnet *ifp;
    718 {
    719 	struct llinfo_nd6 *ln, *nln;
    720 	struct nd_defrouter *dr, *ndr;
    721 	struct nd_prefix *pr, *npr;
    722 
    723 	/*
    724 	 * Nuke default router list entries toward ifp.
    725 	 * We defer removal of default router list entries that is installed
    726 	 * in the routing table, in order to keep additional side effects as
    727 	 * small as possible.
    728 	 */
    729 	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
    730 		ndr = TAILQ_NEXT(dr, dr_entry);
    731 		if (dr->installed)
    732 			continue;
    733 
    734 		if (dr->ifp == ifp)
    735 			defrtrlist_del(dr);
    736 	}
    737 	for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
    738 		ndr = TAILQ_NEXT(dr, dr_entry);
    739 		if (!dr->installed)
    740 			continue;
    741 
    742 		if (dr->ifp == ifp)
    743 			defrtrlist_del(dr);
    744 	}
    745 
    746 	/* Nuke prefix list entries toward ifp */
    747 	for (pr = nd_prefix.lh_first; pr; pr = npr) {
    748 		npr = pr->ndpr_next;
    749 		if (pr->ndpr_ifp == ifp) {
    750 			/*
    751 			 * Because if_detach() does *not* release prefixes
    752 			 * while purging addresses the reference count will
    753 			 * still be above zero. We therefore reset it to
    754 			 * make sure that the prefix really gets purged.
    755 			 */
    756 			pr->ndpr_refcnt = 0;
    757 			/*
    758 			 * Previously, pr->ndpr_addr is removed as well,
    759 			 * but I strongly believe we don't have to do it.
    760 			 * nd6_purge() is only called from in6_ifdetach(),
    761 			 * which removes all the associated interface addresses
    762 			 * by itself.
    763 			 * (jinmei (at) kame.net 20010129)
    764 			 */
    765 			prelist_remove(pr);
    766 		}
    767 	}
    768 
    769 	/* cancel default outgoing interface setting */
    770 	if (nd6_defifindex == ifp->if_index)
    771 		nd6_setdefaultiface(0);
    772 
    773 	if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
    774 		/* refresh default router list */
    775 		defrouter_select();
    776 	}
    777 
    778 	/*
    779 	 * Nuke neighbor cache entries for the ifp.
    780 	 * Note that rt->rt_ifp may not be the same as ifp,
    781 	 * due to KAME goto ours hack.  See RTM_RESOLVE case in
    782 	 * nd6_rtrequest(), and ip6_input().
    783 	 */
    784 	ln = llinfo_nd6.ln_next;
    785 	while (ln && ln != &llinfo_nd6) {
    786 		struct rtentry *rt;
    787 		struct sockaddr_dl *sdl;
    788 
    789 		nln = ln->ln_next;
    790 		rt = ln->ln_rt;
    791 		if (rt && rt->rt_gateway &&
    792 		    rt->rt_gateway->sa_family == AF_LINK) {
    793 			sdl = (struct sockaddr_dl *)rt->rt_gateway;
    794 			if (sdl->sdl_index == ifp->if_index)
    795 				nln = nd6_free(rt, 0);
    796 		}
    797 		ln = nln;
    798 	}
    799 }
    800 
    801 struct rtentry *
    802 nd6_lookup(addr6, create, ifp)
    803 	struct in6_addr *addr6;
    804 	int create;
    805 	struct ifnet *ifp;
    806 {
    807 	struct rtentry *rt;
    808 	struct sockaddr_in6 sin6;
    809 
    810 	bzero(&sin6, sizeof(sin6));
    811 	sin6.sin6_len = sizeof(struct sockaddr_in6);
    812 	sin6.sin6_family = AF_INET6;
    813 	sin6.sin6_addr = *addr6;
    814 	rt = rtalloc1((struct sockaddr *)&sin6, create);
    815 	if (rt && (rt->rt_flags & RTF_LLINFO) == 0) {
    816 		/*
    817 		 * This is the case for the default route.
    818 		 * If we want to create a neighbor cache for the address, we
    819 		 * should free the route for the destination and allocate an
    820 		 * interface route.
    821 		 */
    822 		if (create) {
    823 			RTFREE(rt);
    824 			rt = NULL;
    825 		}
    826 	}
    827 	if (rt == NULL) {
    828 		if (create && ifp) {
    829 			int e;
    830 
    831 			/*
    832 			 * If no route is available and create is set,
    833 			 * we allocate a host route for the destination
    834 			 * and treat it like an interface route.
    835 			 * This hack is necessary for a neighbor which can't
    836 			 * be covered by our own prefix.
    837 			 */
    838 			struct ifaddr *ifa =
    839 			    ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
    840 			if (ifa == NULL)
    841 				return (NULL);
    842 
    843 			/*
    844 			 * Create a new route.  RTF_LLINFO is necessary
    845 			 * to create a Neighbor Cache entry for the
    846 			 * destination in nd6_rtrequest which will be
    847 			 * called in rtrequest via ifa->ifa_rtrequest.
    848 			 */
    849 			if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
    850 			    ifa->ifa_addr, (struct sockaddr *)&all1_sa,
    851 			    (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
    852 			    ~RTF_CLONING, &rt)) != 0) {
    853 #if 0
    854 				log(LOG_ERR,
    855 				    "nd6_lookup: failed to add route for a "
    856 				    "neighbor(%s), errno=%d\n",
    857 				    ip6_sprintf(addr6), e);
    858 #endif
    859 				return (NULL);
    860 			}
    861 			if (rt == NULL)
    862 				return (NULL);
    863 			if (rt->rt_llinfo) {
    864 				struct llinfo_nd6 *ln =
    865 				    (struct llinfo_nd6 *)rt->rt_llinfo;
    866 				ln->ln_state = ND6_LLINFO_NOSTATE;
    867 			}
    868 		} else
    869 			return (NULL);
    870 	}
    871 	rt->rt_refcnt--;
    872 	/*
    873 	 * Validation for the entry.
    874 	 * Note that the check for rt_llinfo is necessary because a cloned
    875 	 * route from a parent route that has the L flag (e.g. the default
    876 	 * route to a p2p interface) may have the flag, too, while the
    877 	 * destination is not actually a neighbor.
    878 	 * XXX: we can't use rt->rt_ifp to check for the interface, since
    879 	 *      it might be the loopback interface if the entry is for our
    880 	 *      own address on a non-loopback interface. Instead, we should
    881 	 *      use rt->rt_ifa->ifa_ifp, which would specify the REAL
    882 	 *	interface.
    883 	 * Note also that ifa_ifp and ifp may differ when we connect two
    884 	 * interfaces to a same link, install a link prefix to an interface,
    885 	 * and try to install a neighbor cache on an interface that does not
    886 	 * have a route to the prefix.
    887 	 */
    888 	if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
    889 	    rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
    890 	    (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
    891 		if (create) {
    892 			nd6log((LOG_DEBUG,
    893 			    "nd6_lookup: failed to lookup %s (if = %s)\n",
    894 			    ip6_sprintf(addr6),
    895 			    ifp ? if_name(ifp) : "unspec"));
    896 		}
    897 		return (NULL);
    898 	}
    899 	return (rt);
    900 }
    901 
    902 /*
    903  * Detect if a given IPv6 address identifies a neighbor on a given link.
    904  * XXX: should take care of the destination of a p2p link?
    905  */
    906 int
    907 nd6_is_addr_neighbor(addr, ifp)
    908 	struct sockaddr_in6 *addr;
    909 	struct ifnet *ifp;
    910 {
    911 	struct nd_prefix *pr;
    912 
    913 	/*
    914 	 * A link-local address is always a neighbor.
    915 	 * XXX: a link does not necessarily specify a single interface.
    916 	 */
    917 	if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
    918 		struct sockaddr_in6 sin6_copy;
    919 		u_int32_t zone;
    920 
    921 		/*
    922 		 * We need sin6_copy since sa6_recoverscope() may modify the
    923 		 * content (XXX).
    924 		 */
    925 		sin6_copy = *addr;
    926 		if (sa6_recoverscope(&sin6_copy))
    927 			return (0); /* XXX: should be impossible */
    928 		if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
    929 			return (0);
    930 		if (sin6_copy.sin6_scope_id == zone)
    931 			return (1);
    932 		else
    933 			return (0);
    934 	}
    935 
    936 	/*
    937 	 * If the address matches one of our on-link prefixes, it should be a
    938 	 * neighbor.
    939 	 */
    940 	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
    941 		if (pr->ndpr_ifp != ifp)
    942 			continue;
    943 
    944 		if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
    945 			continue;
    946 
    947 		if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
    948 		    &addr->sin6_addr, &pr->ndpr_mask))
    949 			return (1);
    950 	}
    951 
    952 	/*
    953 	 * If the default router list is empty, all addresses are regarded
    954 	 * as on-link, and thus, as a neighbor.
    955 	 * XXX: we restrict the condition to hosts, because routers usually do
    956 	 * not have the "default router list".
    957 	 */
    958 	if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
    959 	    nd6_defifindex == ifp->if_index) {
    960 		return (1);
    961 	}
    962 
    963 	/*
    964 	 * Even if the address matches none of our addresses, it might be
    965 	 * in the neighbor cache.
    966 	 */
    967 	if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
    968 		return (1);
    969 
    970 	return (0);
    971 }
    972 
    973 /*
    974  * Free an nd6 llinfo entry.
    975  * Since the function would cause significant changes in the kernel, DO NOT
    976  * make it global, unless you have a strong reason for the change, and are sure
    977  * that the change is safe.
    978  */
    979 static struct llinfo_nd6 *
    980 nd6_free(rt, gc)
    981 	struct rtentry *rt;
    982 	int gc;
    983 {
    984 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
    985 	struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
    986 	struct nd_defrouter *dr;
    987 
    988 	/*
    989 	 * we used to have pfctlinput(PRC_HOSTDEAD) here.
    990 	 * even though it is not harmful, it was not really necessary.
    991 	 */
    992 
    993 	/* cancel timer */
    994 	nd6_llinfo_settimer(ln, -1);
    995 
    996 	if (!ip6_forwarding) {
    997 		int s;
    998 		s = splsoftnet();
    999 		dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
   1000 		    rt->rt_ifp);
   1001 
   1002 		if (dr != NULL && dr->expire &&
   1003 		    ln->ln_state == ND6_LLINFO_STALE && gc) {
   1004 			/*
   1005 			 * If the reason for the deletion is just garbage
   1006 			 * collection, and the neighbor is an active default
   1007 			 * router, do not delete it.  Instead, reset the GC
   1008 			 * timer using the router's lifetime.
   1009 			 * Simply deleting the entry would affect default
   1010 			 * router selection, which is not necessarily a good
   1011 			 * thing, especially when we're using router preference
   1012 			 * values.
   1013 			 * XXX: the check for ln_state would be redundant,
   1014 			 *      but we intentionally keep it just in case.
   1015 			 */
   1016 			if (dr->expire > time.tv_sec)
   1017 				nd6_llinfo_settimer(ln,
   1018 				    (dr->expire - time.tv_sec) * hz);
   1019 			else
   1020 				nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
   1021 			splx(s);
   1022 			return (ln->ln_next);
   1023 		}
   1024 
   1025 		if (ln->ln_router || dr) {
   1026 			/*
   1027 			 * rt6_flush must be called whether or not the neighbor
   1028 			 * is in the Default Router List.
   1029 			 * See a corresponding comment in nd6_na_input().
   1030 			 */
   1031 			rt6_flush(&in6, rt->rt_ifp);
   1032 		}
   1033 
   1034 		if (dr) {
   1035 			/*
   1036 			 * Unreachablity of a router might affect the default
   1037 			 * router selection and on-link detection of advertised
   1038 			 * prefixes.
   1039 			 */
   1040 
   1041 			/*
   1042 			 * Temporarily fake the state to choose a new default
   1043 			 * router and to perform on-link determination of
   1044 			 * prefixes correctly.
   1045 			 * Below the state will be set correctly,
   1046 			 * or the entry itself will be deleted.
   1047 			 */
   1048 			ln->ln_state = ND6_LLINFO_INCOMPLETE;
   1049 
   1050 			/*
   1051 			 * Since defrouter_select() does not affect the
   1052 			 * on-link determination and MIP6 needs the check
   1053 			 * before the default router selection, we perform
   1054 			 * the check now.
   1055 			 */
   1056 			pfxlist_onlink_check();
   1057 
   1058 			/*
   1059 			 * refresh default router list
   1060 			 */
   1061 			defrouter_select();
   1062 		}
   1063 		splx(s);
   1064 	}
   1065 
   1066 	/*
   1067 	 * Before deleting the entry, remember the next entry as the
   1068 	 * return value.  We need this because pfxlist_onlink_check() above
   1069 	 * might have freed other entries (particularly the old next entry) as
   1070 	 * a side effect (XXX).
   1071 	 */
   1072 	next = ln->ln_next;
   1073 
   1074 	/*
   1075 	 * Detach the route from the routing tree and the list of neighbor
   1076 	 * caches, and disable the route entry not to be used in already
   1077 	 * cached routes.
   1078 	 */
   1079 	rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
   1080 	    rt_mask(rt), 0, (struct rtentry **)0);
   1081 
   1082 	return (next);
   1083 }
   1084 
   1085 /*
   1086  * Upper-layer reachability hint for Neighbor Unreachability Detection.
   1087  *
   1088  * XXX cost-effective methods?
   1089  */
   1090 void
   1091 nd6_nud_hint(rt, dst6, force)
   1092 	struct rtentry *rt;
   1093 	struct in6_addr *dst6;
   1094 	int force;
   1095 {
   1096 	struct llinfo_nd6 *ln;
   1097 
   1098 	/*
   1099 	 * If the caller specified "rt", use that.  Otherwise, resolve the
   1100 	 * routing table by supplied "dst6".
   1101 	 */
   1102 	if (rt == NULL) {
   1103 		if (dst6 == NULL)
   1104 			return;
   1105 		if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
   1106 			return;
   1107 	}
   1108 
   1109 	if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
   1110 	    (rt->rt_flags & RTF_LLINFO) == 0 ||
   1111 	    !rt->rt_llinfo || !rt->rt_gateway ||
   1112 	    rt->rt_gateway->sa_family != AF_LINK) {
   1113 		/* This is not a host route. */
   1114 		return;
   1115 	}
   1116 
   1117 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
   1118 	if (ln->ln_state < ND6_LLINFO_REACHABLE)
   1119 		return;
   1120 
   1121 	/*
   1122 	 * if we get upper-layer reachability confirmation many times,
   1123 	 * it is possible we have false information.
   1124 	 */
   1125 	if (!force) {
   1126 		ln->ln_byhint++;
   1127 		if (ln->ln_byhint > nd6_maxnudhint)
   1128 			return;
   1129 	}
   1130 
   1131 	ln->ln_state = ND6_LLINFO_REACHABLE;
   1132 	if (!ND6_LLINFO_PERMANENT(ln)) {
   1133 		nd6_llinfo_settimer(ln,
   1134 		    (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
   1135 	}
   1136 }
   1137 
   1138 void
   1139 nd6_rtrequest(req, rt, info)
   1140 	int	req;
   1141 	struct rtentry *rt;
   1142 	struct rt_addrinfo *info; /* xxx unused */
   1143 {
   1144 	struct sockaddr *gate = rt->rt_gateway;
   1145 	struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
   1146 	static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
   1147 	struct ifnet *ifp = rt->rt_ifp;
   1148 	struct ifaddr *ifa;
   1149 
   1150 	if ((rt->rt_flags & RTF_GATEWAY) != 0)
   1151 		return;
   1152 
   1153 	if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
   1154 		/*
   1155 		 * This is probably an interface direct route for a link
   1156 		 * which does not need neighbor caches (e.g. fe80::%lo0/64).
   1157 		 * We do not need special treatment below for such a route.
   1158 		 * Moreover, the RTF_LLINFO flag which would be set below
   1159 		 * would annoy the ndp(8) command.
   1160 		 */
   1161 		return;
   1162 	}
   1163 
   1164 	if (req == RTM_RESOLVE &&
   1165 	    (nd6_need_cache(ifp) == 0 || /* stf case */
   1166 	     !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) {
   1167 		/*
   1168 		 * FreeBSD and BSD/OS often make a cloned host route based
   1169 		 * on a less-specific route (e.g. the default route).
   1170 		 * If the less specific route does not have a "gateway"
   1171 		 * (this is the case when the route just goes to a p2p or an
   1172 		 * stf interface), we'll mistakenly make a neighbor cache for
   1173 		 * the host route, and will see strange neighbor solicitation
   1174 		 * for the corresponding destination.  In order to avoid the
   1175 		 * confusion, we check if the destination of the route is
   1176 		 * a neighbor in terms of neighbor discovery, and stop the
   1177 		 * process if not.  Additionally, we remove the LLINFO flag
   1178 		 * so that ndp(8) will not try to get the neighbor information
   1179 		 * of the destination.
   1180 		 */
   1181 		rt->rt_flags &= ~RTF_LLINFO;
   1182 		return;
   1183 	}
   1184 
   1185 	switch (req) {
   1186 	case RTM_ADD:
   1187 		/*
   1188 		 * There is no backward compatibility :)
   1189 		 *
   1190 		 * if ((rt->rt_flags & RTF_HOST) == 0 &&
   1191 		 *     SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
   1192 		 *	   rt->rt_flags |= RTF_CLONING;
   1193 		 */
   1194 		if ((rt->rt_flags & RTF_CLONING) ||
   1195 		    ((rt->rt_flags & RTF_LLINFO) && !ln)) {
   1196 			/*
   1197 			 * Case 1: This route should come from a route to
   1198 			 * interface (RTF_CLONING case) or the route should be
   1199 			 * treated as on-link but is currently not
   1200 			 * (RTF_LLINFO && !ln case).
   1201 			 */
   1202 			rt_setgate(rt, rt_key(rt),
   1203 				   (struct sockaddr *)&null_sdl);
   1204 			gate = rt->rt_gateway;
   1205 			SDL(gate)->sdl_type = ifp->if_type;
   1206 			SDL(gate)->sdl_index = ifp->if_index;
   1207 			if (ln)
   1208 				nd6_llinfo_settimer(ln, 0);
   1209 			if ((rt->rt_flags & RTF_CLONING) != 0)
   1210 				break;
   1211 		}
   1212 		/*
   1213 		 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
   1214 		 * We don't do that here since llinfo is not ready yet.
   1215 		 *
   1216 		 * There are also couple of other things to be discussed:
   1217 		 * - unsolicited NA code needs improvement beforehand
   1218 		 * - RFC2461 says we MAY send multicast unsolicited NA
   1219 		 *   (7.2.6 paragraph 4), however, it also says that we
   1220 		 *   SHOULD provide a mechanism to prevent multicast NA storm.
   1221 		 *   we don't have anything like it right now.
   1222 		 *   note that the mechanism needs a mutual agreement
   1223 		 *   between proxies, which means that we need to implement
   1224 		 *   a new protocol, or a new kludge.
   1225 		 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
   1226 		 *   we need to check ip6forwarding before sending it.
   1227 		 *   (or should we allow proxy ND configuration only for
   1228 		 *   routers?  there's no mention about proxy ND from hosts)
   1229 		 */
   1230 #if 0
   1231 		/* XXX it does not work */
   1232 		if (rt->rt_flags & RTF_ANNOUNCE)
   1233 			nd6_na_output(ifp,
   1234 			      &SIN6(rt_key(rt))->sin6_addr,
   1235 			      &SIN6(rt_key(rt))->sin6_addr,
   1236 			      ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
   1237 			      1, NULL);
   1238 #endif
   1239 		/* FALLTHROUGH */
   1240 	case RTM_RESOLVE:
   1241 		if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
   1242 			/*
   1243 			 * Address resolution isn't necessary for a point to
   1244 			 * point link, so we can skip this test for a p2p link.
   1245 			 */
   1246 			if (gate->sa_family != AF_LINK ||
   1247 			    gate->sa_len < sizeof(null_sdl)) {
   1248 				log(LOG_DEBUG,
   1249 				    "nd6_rtrequest: bad gateway value: %s\n",
   1250 				    if_name(ifp));
   1251 				break;
   1252 			}
   1253 			SDL(gate)->sdl_type = ifp->if_type;
   1254 			SDL(gate)->sdl_index = ifp->if_index;
   1255 		}
   1256 		if (ln != NULL)
   1257 			break;	/* This happens on a route change */
   1258 		/*
   1259 		 * Case 2: This route may come from cloning, or a manual route
   1260 		 * add with a LL address.
   1261 		 */
   1262 		R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
   1263 		rt->rt_llinfo = (caddr_t)ln;
   1264 		if (ln == NULL) {
   1265 			log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
   1266 			break;
   1267 		}
   1268 		nd6_inuse++;
   1269 		nd6_allocated++;
   1270 		bzero(ln, sizeof(*ln));
   1271 		ln->ln_rt = rt;
   1272 		callout_init(&ln->ln_timer_ch);
   1273 		/* this is required for "ndp" command. - shin */
   1274 		if (req == RTM_ADD) {
   1275 		        /*
   1276 			 * gate should have some valid AF_LINK entry,
   1277 			 * and ln->ln_expire should have some lifetime
   1278 			 * which is specified by ndp command.
   1279 			 */
   1280 			ln->ln_state = ND6_LLINFO_REACHABLE;
   1281 			ln->ln_byhint = 0;
   1282 		} else {
   1283 		        /*
   1284 			 * When req == RTM_RESOLVE, rt is created and
   1285 			 * initialized in rtrequest(), so rt_expire is 0.
   1286 			 */
   1287 			ln->ln_state = ND6_LLINFO_NOSTATE;
   1288 			nd6_llinfo_settimer(ln, 0);
   1289 		}
   1290 		rt->rt_flags |= RTF_LLINFO;
   1291 		ln->ln_next = llinfo_nd6.ln_next;
   1292 		llinfo_nd6.ln_next = ln;
   1293 		ln->ln_prev = &llinfo_nd6;
   1294 		ln->ln_next->ln_prev = ln;
   1295 
   1296 		/*
   1297 		 * check if rt_key(rt) is one of my address assigned
   1298 		 * to the interface.
   1299 		 */
   1300 		ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
   1301 		    &SIN6(rt_key(rt))->sin6_addr);
   1302 		if (ifa) {
   1303 			caddr_t macp = nd6_ifptomac(ifp);
   1304 			nd6_llinfo_settimer(ln, -1);
   1305 			ln->ln_state = ND6_LLINFO_REACHABLE;
   1306 			ln->ln_byhint = 0;
   1307 			if (macp) {
   1308 				bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
   1309 				SDL(gate)->sdl_alen = ifp->if_addrlen;
   1310 			}
   1311 			if (nd6_useloopback) {
   1312 				rt->rt_ifp = lo0ifp;	/* XXX */
   1313 				/*
   1314 				 * Make sure rt_ifa be equal to the ifaddr
   1315 				 * corresponding to the address.
   1316 				 * We need this because when we refer
   1317 				 * rt_ifa->ia6_flags in ip6_input, we assume
   1318 				 * that the rt_ifa points to the address instead
   1319 				 * of the loopback address.
   1320 				 */
   1321 				if (ifa != rt->rt_ifa) {
   1322 					IFAFREE(rt->rt_ifa);
   1323 					IFAREF(ifa);
   1324 					rt->rt_ifa = ifa;
   1325 				}
   1326 			}
   1327 		} else if (rt->rt_flags & RTF_ANNOUNCE) {
   1328 			nd6_llinfo_settimer(ln, -1);
   1329 			ln->ln_state = ND6_LLINFO_REACHABLE;
   1330 			ln->ln_byhint = 0;
   1331 
   1332 			/* join solicited node multicast for proxy ND */
   1333 			if (ifp->if_flags & IFF_MULTICAST) {
   1334 				struct in6_addr llsol;
   1335 				int error;
   1336 
   1337 				llsol = SIN6(rt_key(rt))->sin6_addr;
   1338 				llsol.s6_addr32[0] = htonl(0xff020000);
   1339 				llsol.s6_addr32[1] = 0;
   1340 				llsol.s6_addr32[2] = htonl(1);
   1341 				llsol.s6_addr8[12] = 0xff;
   1342 				if (in6_setscope(&llsol, ifp, NULL))
   1343 					break;
   1344 				if (!in6_addmulti(&llsol, ifp, &error, 0)) {
   1345 					nd6log((LOG_ERR, "%s: failed to join "
   1346 					    "%s (errno=%d)\n", if_name(ifp),
   1347 					    ip6_sprintf(&llsol), error));
   1348 				}
   1349 			}
   1350 		}
   1351 		break;
   1352 
   1353 	case RTM_DELETE:
   1354 		if (ln == NULL)
   1355 			break;
   1356 		/* leave from solicited node multicast for proxy ND */
   1357 		if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
   1358 		    (ifp->if_flags & IFF_MULTICAST) != 0) {
   1359 			struct in6_addr llsol;
   1360 			struct in6_multi *in6m;
   1361 
   1362 			llsol = SIN6(rt_key(rt))->sin6_addr;
   1363 			llsol.s6_addr32[0] = htonl(0xff020000);
   1364 			llsol.s6_addr32[1] = 0;
   1365 			llsol.s6_addr32[2] = htonl(1);
   1366 			llsol.s6_addr8[12] = 0xff;
   1367 			if (in6_setscope(&llsol, ifp, NULL) == 0) {
   1368 				IN6_LOOKUP_MULTI(llsol, ifp, in6m);
   1369 				if (in6m)
   1370 					in6_delmulti(in6m);
   1371 			} else
   1372 				; /* XXX: should not happen. bark here? */
   1373 		}
   1374 		nd6_inuse--;
   1375 		ln->ln_next->ln_prev = ln->ln_prev;
   1376 		ln->ln_prev->ln_next = ln->ln_next;
   1377 		ln->ln_prev = NULL;
   1378 		nd6_llinfo_settimer(ln, -1);
   1379 		rt->rt_llinfo = 0;
   1380 		rt->rt_flags &= ~RTF_LLINFO;
   1381 		if (ln->ln_hold)
   1382 			m_freem(ln->ln_hold);
   1383 		Free((caddr_t)ln);
   1384 	}
   1385 }
   1386 
   1387 int
   1388 nd6_ioctl(cmd, data, ifp)
   1389 	u_long cmd;
   1390 	caddr_t	data;
   1391 	struct ifnet *ifp;
   1392 {
   1393 	struct in6_drlist *drl = (struct in6_drlist *)data;
   1394 	struct in6_oprlist *oprl = (struct in6_oprlist *)data;
   1395 	struct in6_ndireq *ndi = (struct in6_ndireq *)data;
   1396 	struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
   1397 	struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
   1398 	struct nd_defrouter *dr;
   1399 	struct nd_prefix *pr;
   1400 	struct rtentry *rt;
   1401 	int i = 0, error = 0;
   1402 	int s;
   1403 
   1404 	switch (cmd) {
   1405 	case SIOCGDRLST_IN6:
   1406 		/*
   1407 		 * obsolete API, use sysctl under net.inet6.icmp6
   1408 		 */
   1409 		bzero(drl, sizeof(*drl));
   1410 		s = splsoftnet();
   1411 		dr = TAILQ_FIRST(&nd_defrouter);
   1412 		while (dr && i < DRLSTSIZ) {
   1413 			drl->defrouter[i].rtaddr = dr->rtaddr;
   1414 			in6_clearscope(&drl->defrouter[i].rtaddr);
   1415 
   1416 			drl->defrouter[i].flags = dr->flags;
   1417 			drl->defrouter[i].rtlifetime = dr->rtlifetime;
   1418 			drl->defrouter[i].expire = dr->expire;
   1419 			drl->defrouter[i].if_index = dr->ifp->if_index;
   1420 			i++;
   1421 			dr = TAILQ_NEXT(dr, dr_entry);
   1422 		}
   1423 		splx(s);
   1424 		break;
   1425 	case SIOCGPRLST_IN6:
   1426 		/*
   1427 		 * obsolete API, use sysctl under net.inet6.icmp6
   1428 		 *
   1429 		 * XXX the structure in6_prlist was changed in backward-
   1430 		 * incompatible manner.  in6_oprlist is used for SIOCGPRLST_IN6,
   1431 		 * in6_prlist is used for nd6_sysctl() - fill_prlist().
   1432 		 */
   1433 		/*
   1434 		 * XXX meaning of fields, especialy "raflags", is very
   1435 		 * differnet between RA prefix list and RR/static prefix list.
   1436 		 * how about separating ioctls into two?
   1437 		 */
   1438 		bzero(oprl, sizeof(*oprl));
   1439 		s = splsoftnet();
   1440 		pr = nd_prefix.lh_first;
   1441 		while (pr && i < PRLSTSIZ) {
   1442 			struct nd_pfxrouter *pfr;
   1443 			int j;
   1444 
   1445 			oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
   1446 			oprl->prefix[i].raflags = pr->ndpr_raf;
   1447 			oprl->prefix[i].prefixlen = pr->ndpr_plen;
   1448 			oprl->prefix[i].vltime = pr->ndpr_vltime;
   1449 			oprl->prefix[i].pltime = pr->ndpr_pltime;
   1450 			oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
   1451 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
   1452 				oprl->prefix[i].expire = 0;
   1453 			else {
   1454 				time_t maxexpire;
   1455 
   1456 				/* XXX: we assume time_t is signed. */
   1457 				maxexpire = (-1) &
   1458 				    ~((time_t)1 <<
   1459 				    ((sizeof(maxexpire) * 8) - 1));
   1460 				if (pr->ndpr_vltime <
   1461 				    maxexpire - pr->ndpr_lastupdate) {
   1462 					oprl->prefix[i].expire =
   1463 						 pr->ndpr_lastupdate +
   1464 						pr->ndpr_vltime;
   1465 				} else
   1466 					oprl->prefix[i].expire = maxexpire;
   1467 			}
   1468 
   1469 			pfr = pr->ndpr_advrtrs.lh_first;
   1470 			j = 0;
   1471 			while (pfr) {
   1472 				if (j < DRLSTSIZ) {
   1473 #define RTRADDR oprl->prefix[i].advrtr[j]
   1474 					RTRADDR = pfr->router->rtaddr;
   1475 					in6_clearscope(&RTRADDR);
   1476 #undef RTRADDR
   1477 				}
   1478 				j++;
   1479 				pfr = pfr->pfr_next;
   1480 			}
   1481 			oprl->prefix[i].advrtrs = j;
   1482 			oprl->prefix[i].origin = PR_ORIG_RA;
   1483 
   1484 			i++;
   1485 			pr = pr->ndpr_next;
   1486 		}
   1487 		splx(s);
   1488 
   1489 		break;
   1490 	case OSIOCGIFINFO_IN6:
   1491 #define ND	ndi->ndi
   1492 		/* XXX: old ndp(8) assumes a positive value for linkmtu. */
   1493 		memset(&ND, 0, sizeof(ND));
   1494 		ND.linkmtu = IN6_LINKMTU(ifp);
   1495 		ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
   1496 		ND.basereachable = ND_IFINFO(ifp)->basereachable;
   1497 		ND.reachable = ND_IFINFO(ifp)->reachable;
   1498 		ND.retrans = ND_IFINFO(ifp)->retrans;
   1499 		ND.flags = ND_IFINFO(ifp)->flags;
   1500 		ND.recalctm = ND_IFINFO(ifp)->recalctm;
   1501 		ND.chlim = ND_IFINFO(ifp)->chlim;
   1502 		break;
   1503 	case SIOCGIFINFO_IN6:
   1504 		ND = *ND_IFINFO(ifp);
   1505 		break;
   1506 	case SIOCSIFINFO_IN6:
   1507 		/*
   1508 		 * used to change host variables from userland.
   1509 		 * intented for a use on router to reflect RA configurations.
   1510 		 */
   1511 		/* 0 means 'unspecified' */
   1512 		if (ND.linkmtu != 0) {
   1513 			if (ND.linkmtu < IPV6_MMTU ||
   1514 			    ND.linkmtu > IN6_LINKMTU(ifp)) {
   1515 				error = EINVAL;
   1516 				break;
   1517 			}
   1518 			ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
   1519 		}
   1520 
   1521 		if (ND.basereachable != 0) {
   1522 			int obasereachable = ND_IFINFO(ifp)->basereachable;
   1523 
   1524 			ND_IFINFO(ifp)->basereachable = ND.basereachable;
   1525 			if (ND.basereachable != obasereachable)
   1526 				ND_IFINFO(ifp)->reachable =
   1527 				    ND_COMPUTE_RTIME(ND.basereachable);
   1528 		}
   1529 		if (ND.retrans != 0)
   1530 			ND_IFINFO(ifp)->retrans = ND.retrans;
   1531 		if (ND.chlim != 0)
   1532 			ND_IFINFO(ifp)->chlim = ND.chlim;
   1533 		/* FALLTHROUGH */
   1534 	case SIOCSIFINFO_FLAGS:
   1535 		ND_IFINFO(ifp)->flags = ND.flags;
   1536 		break;
   1537 #undef ND
   1538 	case SIOCSNDFLUSH_IN6:	/* XXX: the ioctl name is confusing... */
   1539 		/* sync kernel routing table with the default router list */
   1540 		defrouter_reset();
   1541 		defrouter_select();
   1542 		break;
   1543 	case SIOCSPFXFLUSH_IN6:
   1544 	{
   1545 		/* flush all the prefix advertised by routers */
   1546 		struct nd_prefix *pfx, *next;
   1547 
   1548 		s = splsoftnet();
   1549 		for (pfx = nd_prefix.lh_first; pfx; pfx = next) {
   1550 			struct in6_ifaddr *ia, *ia_next;
   1551 
   1552 			next = pfx->ndpr_next;
   1553 
   1554 			if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
   1555 				continue; /* XXX */
   1556 
   1557 			/* do we really have to remove addresses as well? */
   1558 			for (ia = in6_ifaddr; ia; ia = ia_next) {
   1559 				/* ia might be removed.  keep the next ptr. */
   1560 				ia_next = ia->ia_next;
   1561 
   1562 				if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
   1563 					continue;
   1564 
   1565 				if (ia->ia6_ndpr == pfx)
   1566 					in6_purgeaddr(&ia->ia_ifa);
   1567 			}
   1568 			prelist_remove(pfx);
   1569 		}
   1570 		splx(s);
   1571 		break;
   1572 	}
   1573 	case SIOCSRTRFLUSH_IN6:
   1574 	{
   1575 		/* flush all the default routers */
   1576 		struct nd_defrouter *drtr, *next;
   1577 
   1578 		s = splsoftnet();
   1579 		defrouter_reset();
   1580 		for (drtr = TAILQ_FIRST(&nd_defrouter); drtr; drtr = next) {
   1581 			next = TAILQ_NEXT(drtr, dr_entry);
   1582 			defrtrlist_del(drtr);
   1583 		}
   1584 		defrouter_select();
   1585 		splx(s);
   1586 		break;
   1587 	}
   1588 	case SIOCGNBRINFO_IN6:
   1589 	{
   1590 		struct llinfo_nd6 *ln;
   1591 		struct in6_addr nb_addr = nbi->addr; /* make local for safety */
   1592 
   1593 		if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
   1594 			return (error);
   1595 
   1596 		s = splsoftnet();
   1597 		if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL ||
   1598 		    (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) {
   1599 			error = EINVAL;
   1600 			splx(s);
   1601 			break;
   1602 		}
   1603 		nbi->state = ln->ln_state;
   1604 		nbi->asked = ln->ln_asked;
   1605 		nbi->isrouter = ln->ln_router;
   1606 		nbi->expire = ln->ln_expire;
   1607 		splx(s);
   1608 
   1609 		break;
   1610 	}
   1611 	case SIOCGDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
   1612 		ndif->ifindex = nd6_defifindex;
   1613 		break;
   1614 	case SIOCSDEFIFACE_IN6:	/* XXX: should be implemented as a sysctl? */
   1615 		return (nd6_setdefaultiface(ndif->ifindex));
   1616 	}
   1617 	return (error);
   1618 }
   1619 
   1620 /*
   1621  * Create neighbor cache entry and cache link-layer address,
   1622  * on reception of inbound ND6 packets.  (RS/RA/NS/redirect)
   1623  */
   1624 struct rtentry *
   1625 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
   1626 	struct ifnet *ifp;
   1627 	struct in6_addr *from;
   1628 	char *lladdr;
   1629 	int lladdrlen;
   1630 	int type;	/* ICMP6 type */
   1631 	int code;	/* type dependent information */
   1632 {
   1633 	struct rtentry *rt = NULL;
   1634 	struct llinfo_nd6 *ln = NULL;
   1635 	int is_newentry;
   1636 	struct sockaddr_dl *sdl = NULL;
   1637 	int do_update;
   1638 	int olladdr;
   1639 	int llchange;
   1640 	int newstate = 0;
   1641 
   1642 	if (ifp == NULL)
   1643 		panic("ifp == NULL in nd6_cache_lladdr");
   1644 	if (from == NULL)
   1645 		panic("from == NULL in nd6_cache_lladdr");
   1646 
   1647 	/* nothing must be updated for unspecified address */
   1648 	if (IN6_IS_ADDR_UNSPECIFIED(from))
   1649 		return NULL;
   1650 
   1651 	/*
   1652 	 * Validation about ifp->if_addrlen and lladdrlen must be done in
   1653 	 * the caller.
   1654 	 *
   1655 	 * XXX If the link does not have link-layer adderss, what should
   1656 	 * we do? (ifp->if_addrlen == 0)
   1657 	 * Spec says nothing in sections for RA, RS and NA.  There's small
   1658 	 * description on it in NS section (RFC 2461 7.2.3).
   1659 	 */
   1660 
   1661 	rt = nd6_lookup(from, 0, ifp);
   1662 	if (rt == NULL) {
   1663 #if 0
   1664 		/* nothing must be done if there's no lladdr */
   1665 		if (!lladdr || !lladdrlen)
   1666 			return NULL;
   1667 #endif
   1668 
   1669 		rt = nd6_lookup(from, 1, ifp);
   1670 		is_newentry = 1;
   1671 	} else {
   1672 		/* do nothing if static ndp is set */
   1673 		if (rt->rt_flags & RTF_STATIC)
   1674 			return NULL;
   1675 		is_newentry = 0;
   1676 	}
   1677 
   1678 	if (rt == NULL)
   1679 		return NULL;
   1680 	if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
   1681 fail:
   1682 		(void)nd6_free(rt, 0);
   1683 		return NULL;
   1684 	}
   1685 	ln = (struct llinfo_nd6 *)rt->rt_llinfo;
   1686 	if (ln == NULL)
   1687 		goto fail;
   1688 	if (rt->rt_gateway == NULL)
   1689 		goto fail;
   1690 	if (rt->rt_gateway->sa_family != AF_LINK)
   1691 		goto fail;
   1692 	sdl = SDL(rt->rt_gateway);
   1693 
   1694 	olladdr = (sdl->sdl_alen) ? 1 : 0;
   1695 	if (olladdr && lladdr) {
   1696 		if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
   1697 			llchange = 1;
   1698 		else
   1699 			llchange = 0;
   1700 	} else
   1701 		llchange = 0;
   1702 
   1703 	/*
   1704 	 * newentry olladdr  lladdr  llchange	(*=record)
   1705 	 *	0	n	n	--	(1)
   1706 	 *	0	y	n	--	(2)
   1707 	 *	0	n	y	--	(3) * STALE
   1708 	 *	0	y	y	n	(4) *
   1709 	 *	0	y	y	y	(5) * STALE
   1710 	 *	1	--	n	--	(6)   NOSTATE(= PASSIVE)
   1711 	 *	1	--	y	--	(7) * STALE
   1712 	 */
   1713 
   1714 	if (lladdr) {		/* (3-5) and (7) */
   1715 		/*
   1716 		 * Record source link-layer address
   1717 		 * XXX is it dependent to ifp->if_type?
   1718 		 */
   1719 		sdl->sdl_alen = ifp->if_addrlen;
   1720 		bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
   1721 	}
   1722 
   1723 	if (!is_newentry) {
   1724 		if ((!olladdr && lladdr) ||		/* (3) */
   1725 		    (olladdr && lladdr && llchange)) {	/* (5) */
   1726 			do_update = 1;
   1727 			newstate = ND6_LLINFO_STALE;
   1728 		} else					/* (1-2,4) */
   1729 			do_update = 0;
   1730 	} else {
   1731 		do_update = 1;
   1732 		if (lladdr == NULL)			/* (6) */
   1733 			newstate = ND6_LLINFO_NOSTATE;
   1734 		else					/* (7) */
   1735 			newstate = ND6_LLINFO_STALE;
   1736 	}
   1737 
   1738 	if (do_update) {
   1739 		/*
   1740 		 * Update the state of the neighbor cache.
   1741 		 */
   1742 		ln->ln_state = newstate;
   1743 
   1744 		if (ln->ln_state == ND6_LLINFO_STALE) {
   1745 			/*
   1746 			 * XXX: since nd6_output() below will cause
   1747 			 * state tansition to DELAY and reset the timer,
   1748 			 * we must set the timer now, although it is actually
   1749 			 * meaningless.
   1750 			 */
   1751 			nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
   1752 
   1753  			if (ln->ln_hold) {
   1754 				struct mbuf *m_hold, *m_hold_next;
   1755 				for (m_hold = ln->ln_hold; m_hold;
   1756 				     m_hold = m_hold_next) {
   1757 					struct mbuf *mpkt = NULL;
   1758 
   1759 					m_hold_next = m_hold->m_nextpkt;
   1760 					mpkt = m_copym(m_hold, 0, M_COPYALL, M_DONTWAIT);
   1761 					if (mpkt == NULL) {
   1762 						m_freem(m_hold);
   1763 						break;
   1764 					}
   1765 					mpkt->m_nextpkt = NULL;
   1766 
   1767 					/*
   1768 					 * we assume ifp is not a p2p here, so
   1769 					 * just set the 2nd argument as the
   1770 					 * 1st one.
   1771 					 */
   1772 					nd6_output(ifp, ifp, mpkt,
   1773 					     (struct sockaddr_in6 *)rt_key(rt),
   1774 					     rt);
   1775 				}
   1776  				ln->ln_hold = NULL;
   1777  			}
   1778 		} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
   1779 			/* probe right away */
   1780 			nd6_llinfo_settimer((void *)ln, 0);
   1781 		}
   1782 	}
   1783 
   1784 	/*
   1785 	 * ICMP6 type dependent behavior.
   1786 	 *
   1787 	 * NS: clear IsRouter if new entry
   1788 	 * RS: clear IsRouter
   1789 	 * RA: set IsRouter if there's lladdr
   1790 	 * redir: clear IsRouter if new entry
   1791 	 *
   1792 	 * RA case, (1):
   1793 	 * The spec says that we must set IsRouter in the following cases:
   1794 	 * - If lladdr exist, set IsRouter.  This means (1-5).
   1795 	 * - If it is old entry (!newentry), set IsRouter.  This means (7).
   1796 	 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
   1797 	 * A quetion arises for (1) case.  (1) case has no lladdr in the
   1798 	 * neighbor cache, this is similar to (6).
   1799 	 * This case is rare but we figured that we MUST NOT set IsRouter.
   1800 	 *
   1801 	 * newentry olladdr  lladdr  llchange	    NS  RS  RA	redir
   1802 	 *							D R
   1803 	 *	0	n	n	--	(1)	c   ?     s
   1804 	 *	0	y	n	--	(2)	c   s     s
   1805 	 *	0	n	y	--	(3)	c   s     s
   1806 	 *	0	y	y	n	(4)	c   s     s
   1807 	 *	0	y	y	y	(5)	c   s     s
   1808 	 *	1	--	n	--	(6) c	c 	c s
   1809 	 *	1	--	y	--	(7) c	c   s	c s
   1810 	 *
   1811 	 *					(c=clear s=set)
   1812 	 */
   1813 	switch (type & 0xff) {
   1814 	case ND_NEIGHBOR_SOLICIT:
   1815 		/*
   1816 		 * New entry must have is_router flag cleared.
   1817 		 */
   1818 		if (is_newentry)	/* (6-7) */
   1819 			ln->ln_router = 0;
   1820 		break;
   1821 	case ND_REDIRECT:
   1822 		/*
   1823 		 * If the icmp is a redirect to a better router, always set the
   1824 		 * is_router flag.  Otherwise, if the entry is newly created,
   1825 		 * clear the flag.  [RFC 2461, sec 8.3]
   1826 		 */
   1827 		if (code == ND_REDIRECT_ROUTER)
   1828 			ln->ln_router = 1;
   1829 		else if (is_newentry) /* (6-7) */
   1830 			ln->ln_router = 0;
   1831 		break;
   1832 	case ND_ROUTER_SOLICIT:
   1833 		/*
   1834 		 * is_router flag must always be cleared.
   1835 		 */
   1836 		ln->ln_router = 0;
   1837 		break;
   1838 	case ND_ROUTER_ADVERT:
   1839 		/*
   1840 		 * Mark an entry with lladdr as a router.
   1841 		 */
   1842 		if ((!is_newentry && (olladdr || lladdr)) ||	/* (2-5) */
   1843 		    (is_newentry && lladdr)) {			/* (7) */
   1844 			ln->ln_router = 1;
   1845 		}
   1846 		break;
   1847 	}
   1848 
   1849 	/*
   1850 	 * When the link-layer address of a router changes, select the
   1851 	 * best router again.  In particular, when the neighbor entry is newly
   1852 	 * created, it might affect the selection policy.
   1853 	 * Question: can we restrict the first condition to the "is_newentry"
   1854 	 * case?
   1855 	 * XXX: when we hear an RA from a new router with the link-layer
   1856 	 * address option, defrouter_select() is called twice, since
   1857 	 * defrtrlist_update called the function as well.  However, I believe
   1858 	 * we can compromise the overhead, since it only happens the first
   1859 	 * time.
   1860 	 * XXX: although defrouter_select() should not have a bad effect
   1861 	 * for those are not autoconfigured hosts, we explicitly avoid such
   1862 	 * cases for safety.
   1863 	 */
   1864 	if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
   1865 		defrouter_select();
   1866 
   1867 	return rt;
   1868 }
   1869 
   1870 static void
   1871 nd6_slowtimo(ignored_arg)
   1872     void *ignored_arg;
   1873 {
   1874 	int s = splsoftnet();
   1875 	struct nd_ifinfo *nd6if;
   1876 	struct ifnet *ifp;
   1877 
   1878 	callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
   1879 	    nd6_slowtimo, NULL);
   1880 	for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
   1881 	{
   1882 		nd6if = ND_IFINFO(ifp);
   1883 		if (nd6if->basereachable && /* already initialized */
   1884 		    (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
   1885 			/*
   1886 			 * Since reachable time rarely changes by router
   1887 			 * advertisements, we SHOULD insure that a new random
   1888 			 * value gets recomputed at least once every few hours.
   1889 			 * (RFC 2461, 6.3.4)
   1890 			 */
   1891 			nd6if->recalctm = nd6_recalc_reachtm_interval;
   1892 			nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
   1893 		}
   1894 	}
   1895 	splx(s);
   1896 }
   1897 
   1898 #define senderr(e) { error = (e); goto bad;}
   1899 int
   1900 nd6_output(ifp, origifp, m0, dst, rt0)
   1901 	struct ifnet *ifp;
   1902 	struct ifnet *origifp;
   1903 	struct mbuf *m0;
   1904 	struct sockaddr_in6 *dst;
   1905 	struct rtentry *rt0;
   1906 {
   1907 	struct mbuf *m = m0;
   1908 	struct rtentry *rt = rt0;
   1909 	struct sockaddr_in6 *gw6 = NULL;
   1910 	struct llinfo_nd6 *ln = NULL;
   1911 	int error = 0;
   1912 
   1913 	if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
   1914 		goto sendpkt;
   1915 
   1916 	if (nd6_need_cache(ifp) == 0)
   1917 		goto sendpkt;
   1918 
   1919 	/*
   1920 	 * next hop determination.  This routine is derived from ether_output.
   1921 	 */
   1922 	if (rt) {
   1923 		if ((rt->rt_flags & RTF_UP) == 0) {
   1924 			if ((rt0 = rt = rtalloc1((struct sockaddr *)dst,
   1925 			    1)) != NULL)
   1926 			{
   1927 				rt->rt_refcnt--;
   1928 				if (rt->rt_ifp != ifp)
   1929 					senderr(EHOSTUNREACH);
   1930 			} else
   1931 				senderr(EHOSTUNREACH);
   1932 		}
   1933 
   1934 		if (rt->rt_flags & RTF_GATEWAY) {
   1935 			gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
   1936 
   1937 			/*
   1938 			 * We skip link-layer address resolution and NUD
   1939 			 * if the gateway is not a neighbor from ND point
   1940 			 * of view, regardless of the value of nd_ifinfo.flags.
   1941 			 * The second condition is a bit tricky; we skip
   1942 			 * if the gateway is our own address, which is
   1943 			 * sometimes used to install a route to a p2p link.
   1944 			 */
   1945 			if (!nd6_is_addr_neighbor(gw6, ifp) ||
   1946 			    in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
   1947 				/*
   1948 				 * We allow this kind of tricky route only
   1949 				 * when the outgoing interface is p2p.
   1950 				 * XXX: we may need a more generic rule here.
   1951 				 */
   1952 				if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
   1953 					senderr(EHOSTUNREACH);
   1954 
   1955 				goto sendpkt;
   1956 			}
   1957 
   1958 			if (rt->rt_gwroute == 0)
   1959 				goto lookup;
   1960 			if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
   1961 				rtfree(rt); rt = rt0;
   1962 			lookup:
   1963 				rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
   1964 				if ((rt = rt->rt_gwroute) == 0)
   1965 					senderr(EHOSTUNREACH);
   1966 				/* the "G" test below also prevents rt == rt0 */
   1967 				if ((rt->rt_flags & RTF_GATEWAY) ||
   1968 				    (rt->rt_ifp != ifp)) {
   1969 					rt->rt_refcnt--;
   1970 					rt0->rt_gwroute = 0;
   1971 					senderr(EHOSTUNREACH);
   1972 				}
   1973 			}
   1974 		}
   1975 	}
   1976 
   1977 	/*
   1978 	 * Address resolution or Neighbor Unreachability Detection
   1979 	 * for the next hop.
   1980 	 * At this point, the destination of the packet must be a unicast
   1981 	 * or an anycast address(i.e. not a multicast).
   1982 	 */
   1983 
   1984 	/* Look up the neighbor cache for the nexthop */
   1985 	if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
   1986 		ln = (struct llinfo_nd6 *)rt->rt_llinfo;
   1987 	else {
   1988 		/*
   1989 		 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
   1990 		 * the condition below is not very efficient.  But we believe
   1991 		 * it is tolerable, because this should be a rare case.
   1992 		 */
   1993 		if (nd6_is_addr_neighbor(dst, ifp) &&
   1994 		    (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
   1995 			ln = (struct llinfo_nd6 *)rt->rt_llinfo;
   1996 	}
   1997 	if (ln == NULL || rt == NULL) {
   1998 		if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
   1999 		    !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
   2000 			log(LOG_DEBUG,
   2001 			    "nd6_output: can't allocate llinfo for %s "
   2002 			    "(ln=%p, rt=%p)\n",
   2003 			    ip6_sprintf(&dst->sin6_addr), ln, rt);
   2004 			senderr(EIO);	/* XXX: good error? */
   2005 		}
   2006 
   2007 		goto sendpkt;	/* send anyway */
   2008 	}
   2009 
   2010 	/* We don't have to do link-layer address resolution on a p2p link. */
   2011 	if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
   2012 	    ln->ln_state < ND6_LLINFO_REACHABLE) {
   2013 		ln->ln_state = ND6_LLINFO_STALE;
   2014 		nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
   2015 	}
   2016 
   2017 	/*
   2018 	 * The first time we send a packet to a neighbor whose entry is
   2019 	 * STALE, we have to change the state to DELAY and a sets a timer to
   2020 	 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
   2021 	 * neighbor unreachability detection on expiration.
   2022 	 * (RFC 2461 7.3.3)
   2023 	 */
   2024 	if (ln->ln_state == ND6_LLINFO_STALE) {
   2025 		ln->ln_asked = 0;
   2026 		ln->ln_state = ND6_LLINFO_DELAY;
   2027 		nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
   2028 	}
   2029 
   2030 	/*
   2031 	 * If the neighbor cache entry has a state other than INCOMPLETE
   2032 	 * (i.e. its link-layer address is already resolved), just
   2033 	 * send the packet.
   2034 	 */
   2035 	if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
   2036 		goto sendpkt;
   2037 
   2038 	/*
   2039 	 * There is a neighbor cache entry, but no ethernet address
   2040 	 * response yet.  Append this latest packet to the end of the
   2041 	 * packet queue in the mbuf, unless the number of the packet
   2042 	 * does not exceed nd6_maxqueuelen.  When it exceeds nd6_maxqueuelen,
   2043 	 * the oldest packet in the queue will be removed.
   2044 	 */
   2045 	if (ln->ln_state == ND6_LLINFO_NOSTATE)
   2046 		ln->ln_state = ND6_LLINFO_INCOMPLETE;
   2047 	if (ln->ln_hold) {
   2048 		struct mbuf *m_hold;
   2049 		int i;
   2050 
   2051 		i = 0;
   2052 		for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
   2053 			i++;
   2054 			if (m_hold->m_nextpkt == NULL) {
   2055 				m_hold->m_nextpkt = m;
   2056 				break;
   2057 			}
   2058 		}
   2059 		while (i >= nd6_maxqueuelen) {
   2060 			m_hold = ln->ln_hold;
   2061 			ln->ln_hold = ln->ln_hold->m_nextpkt;
   2062 			m_free(m_hold);
   2063 			i--;
   2064 		}
   2065 	} else {
   2066 		ln->ln_hold = m;
   2067 	}
   2068 
   2069 	/*
   2070 	 * If there has been no NS for the neighbor after entering the
   2071 	 * INCOMPLETE state, send the first solicitation.
   2072 	 */
   2073 	if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
   2074 		ln->ln_asked++;
   2075 		nd6_llinfo_settimer(ln,
   2076 		    (long)ND_IFINFO(ifp)->retrans * hz / 1000);
   2077 		nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
   2078 	}
   2079 	return (0);
   2080 
   2081   sendpkt:
   2082 	/* discard the packet if IPv6 operation is disabled on the interface */
   2083 	if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
   2084 		error = ENETDOWN; /* better error? */
   2085 		goto bad;
   2086 	}
   2087 
   2088 #ifdef IPSEC
   2089 	/* clean ipsec history once it goes out of the node */
   2090 	ipsec_delaux(m);
   2091 #endif
   2092 	if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
   2093 		return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
   2094 					 rt));
   2095 	}
   2096 	return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
   2097 
   2098   bad:
   2099 	if (m)
   2100 		m_freem(m);
   2101 	return (error);
   2102 }
   2103 #undef senderr
   2104 
   2105 int
   2106 nd6_need_cache(ifp)
   2107 	struct ifnet *ifp;
   2108 {
   2109 	/*
   2110 	 * XXX: we currently do not make neighbor cache on any interface
   2111 	 * other than ARCnet, Ethernet, FDDI and GIF.
   2112 	 *
   2113 	 * RFC2893 says:
   2114 	 * - unidirectional tunnels needs no ND
   2115 	 */
   2116 	switch (ifp->if_type) {
   2117 	case IFT_ARCNET:
   2118 	case IFT_ETHER:
   2119 	case IFT_FDDI:
   2120 	case IFT_IEEE1394:
   2121 	case IFT_GIF:		/* XXX need more cases? */
   2122 	case IFT_PPP:
   2123 	case IFT_TUNNEL:
   2124 		return (1);
   2125 	default:
   2126 		return (0);
   2127 	}
   2128 }
   2129 
   2130 int
   2131 nd6_storelladdr(ifp, rt, m, dst, desten)
   2132 	struct ifnet *ifp;
   2133 	struct rtentry *rt;
   2134 	struct mbuf *m;
   2135 	struct sockaddr *dst;
   2136 	u_char *desten;
   2137 {
   2138 	struct sockaddr_dl *sdl;
   2139 
   2140 	if (m->m_flags & M_MCAST) {
   2141 		switch (ifp->if_type) {
   2142 		case IFT_ETHER:
   2143 		case IFT_FDDI:
   2144 			ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
   2145 						 desten);
   2146 			return (1);
   2147 		case IFT_IEEE1394:
   2148 			bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen);
   2149 			return (1);
   2150 		case IFT_ARCNET:
   2151 			*desten = 0;
   2152 			return (1);
   2153 		default:
   2154 			m_freem(m);
   2155 			return (0);
   2156 		}
   2157 	}
   2158 
   2159 	if (rt == NULL) {
   2160 		/* this could happen, if we could not allocate memory */
   2161 		m_freem(m);
   2162 		return (0);
   2163 	}
   2164 	if (rt->rt_gateway->sa_family != AF_LINK) {
   2165 		printf("nd6_storelladdr: something odd happens\n");
   2166 		m_freem(m);
   2167 		return (0);
   2168 	}
   2169 	sdl = SDL(rt->rt_gateway);
   2170 	if (sdl->sdl_alen == 0) {
   2171 		/* this should be impossible, but we bark here for debugging */
   2172 		printf("nd6_storelladdr: sdl_alen == 0, dst=%s, if=%s\n",
   2173 		    ip6_sprintf(&SIN6(dst)->sin6_addr), if_name(ifp));
   2174 		m_freem(m);
   2175 		return (0);
   2176 	}
   2177 
   2178 	bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
   2179 	return (1);
   2180 }
   2181 
   2182 int
   2183 nd6_sysctl(name, oldp, oldlenp, newp, newlen)
   2184 	int name;
   2185 	void *oldp;	/* syscall arg, need copyout */
   2186 	size_t *oldlenp;
   2187 	void *newp;	/* syscall arg, need copyin */
   2188 	size_t newlen;
   2189 {
   2190 	void *p;
   2191 	size_t ol;
   2192 	int error;
   2193 
   2194 	error = 0;
   2195 
   2196 	if (newp)
   2197 		return EPERM;
   2198 	if (oldp && !oldlenp)
   2199 		return EINVAL;
   2200 	ol = oldlenp ? *oldlenp : 0;
   2201 
   2202 	if (oldp) {
   2203 		p = malloc(*oldlenp, M_TEMP, M_WAITOK);
   2204 		if (p == NULL)
   2205 			return ENOMEM;
   2206 	} else
   2207 		p = NULL;
   2208 	switch (name) {
   2209 	case ICMPV6CTL_ND6_DRLIST:
   2210 		error = fill_drlist(p, oldlenp, ol);
   2211 		if (!error && p != NULL && oldp != NULL)
   2212 			error = copyout(p, oldp, *oldlenp);
   2213 		break;
   2214 
   2215 	case ICMPV6CTL_ND6_PRLIST:
   2216 		error = fill_prlist(p, oldlenp, ol);
   2217 		if (!error && p != NULL && oldp != NULL)
   2218 			error = copyout(p, oldp, *oldlenp);
   2219 		break;
   2220 
   2221 	case ICMPV6CTL_ND6_MAXQLEN:
   2222 		break;
   2223 
   2224 	default:
   2225 		error = ENOPROTOOPT;
   2226 		break;
   2227 	}
   2228 	if (p)
   2229 		free(p, M_TEMP);
   2230 
   2231 	return (error);
   2232 }
   2233 
   2234 static int
   2235 fill_drlist(oldp, oldlenp, ol)
   2236 	void *oldp;
   2237 	size_t *oldlenp, ol;
   2238 {
   2239 	int error = 0, s;
   2240 	struct in6_defrouter *d = NULL, *de = NULL;
   2241 	struct nd_defrouter *dr;
   2242 	size_t l;
   2243 
   2244 	s = splsoftnet();
   2245 
   2246 	if (oldp) {
   2247 		d = (struct in6_defrouter *)oldp;
   2248 		de = (struct in6_defrouter *)((caddr_t)oldp + *oldlenp);
   2249 	}
   2250 	l = 0;
   2251 
   2252 	for (dr = TAILQ_FIRST(&nd_defrouter); dr;
   2253 	     dr = TAILQ_NEXT(dr, dr_entry)) {
   2254 
   2255 		if (oldp && d + 1 <= de) {
   2256 			bzero(d, sizeof(*d));
   2257 			d->rtaddr.sin6_family = AF_INET6;
   2258 			d->rtaddr.sin6_len = sizeof(struct sockaddr_in6);
   2259 			d->rtaddr.sin6_addr = dr->rtaddr;
   2260 			if (sa6_recoverscope(&d->rtaddr)) {
   2261 				log(LOG_ERR,
   2262 				    "scope error in router list (%s)\n",
   2263 				    ip6_sprintf(&d->rtaddr.sin6_addr));
   2264 				/* XXX: press on... */
   2265 			}
   2266 			d->flags = dr->flags;
   2267 			d->rtlifetime = dr->rtlifetime;
   2268 			d->expire = dr->expire;
   2269 			d->if_index = dr->ifp->if_index;
   2270 		}
   2271 
   2272 		l += sizeof(*d);
   2273 		if (d)
   2274 			d++;
   2275 	}
   2276 
   2277 	if (oldp) {
   2278 		*oldlenp = l;	/* (caddr_t)d - (caddr_t)oldp */
   2279 		if (l > ol)
   2280 			error = ENOMEM;
   2281 	} else
   2282 		*oldlenp = l;
   2283 
   2284 	splx(s);
   2285 
   2286 	return (error);
   2287 }
   2288 
   2289 static int
   2290 fill_prlist(oldp, oldlenp, ol)
   2291 	void *oldp;
   2292 	size_t *oldlenp, ol;
   2293 {
   2294 	int error = 0, s;
   2295 	struct nd_prefix *pr;
   2296 	struct in6_prefix *p = NULL;
   2297 	struct in6_prefix *pe = NULL;
   2298 	size_t l;
   2299 
   2300 	s = splsoftnet();
   2301 
   2302 	if (oldp) {
   2303 		p = (struct in6_prefix *)oldp;
   2304 		pe = (struct in6_prefix *)((caddr_t)oldp + *oldlenp);
   2305 	}
   2306 	l = 0;
   2307 
   2308 	for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
   2309 		u_short advrtrs;
   2310 		size_t advance;
   2311 		struct sockaddr_in6 *sin6;
   2312 		struct sockaddr_in6 *s6;
   2313 		struct nd_pfxrouter *pfr;
   2314 
   2315 		if (oldp && p + 1 <= pe)
   2316 		{
   2317 			bzero(p, sizeof(*p));
   2318 			sin6 = (struct sockaddr_in6 *)(p + 1);
   2319 
   2320 			p->prefix = pr->ndpr_prefix;
   2321 			if (sa6_recoverscope(&p->prefix)) {
   2322 				log(LOG_ERR,
   2323 				    "scope error in prefix list (%s)\n",
   2324 				    ip6_sprintf(&p->prefix.sin6_addr));
   2325 				/* XXX: press on... */
   2326 			}
   2327 			p->raflags = pr->ndpr_raf;
   2328 			p->prefixlen = pr->ndpr_plen;
   2329 			p->vltime = pr->ndpr_vltime;
   2330 			p->pltime = pr->ndpr_pltime;
   2331 			p->if_index = pr->ndpr_ifp->if_index;
   2332 			if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
   2333 				p->expire = 0;
   2334 			else {
   2335 				time_t maxexpire;
   2336 
   2337 				/* XXX: we assume time_t is signed. */
   2338 				maxexpire = (-1) &
   2339 				    ~((time_t)1 <<
   2340 				    ((sizeof(maxexpire) * 8) - 1));
   2341 				if (pr->ndpr_vltime <
   2342 				    maxexpire - pr->ndpr_lastupdate) {
   2343 					p->expire = pr->ndpr_lastupdate +
   2344 						pr->ndpr_vltime;
   2345 				} else
   2346 					p->expire = maxexpire;
   2347 			}
   2348 			p->refcnt = pr->ndpr_refcnt;
   2349 			p->flags = pr->ndpr_stateflags;
   2350 			p->origin = PR_ORIG_RA;
   2351 			advrtrs = 0;
   2352 			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
   2353 			     pfr = pfr->pfr_next) {
   2354 				if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
   2355 					advrtrs++;
   2356 					continue;
   2357 				}
   2358 				s6 = &sin6[advrtrs];
   2359 				s6->sin6_family = AF_INET6;
   2360 				s6->sin6_len = sizeof(struct sockaddr_in6);
   2361 				s6->sin6_addr = pfr->router->rtaddr;
   2362 				s6->sin6_scope_id = 0;
   2363 				if (sa6_recoverscope(s6)) {
   2364 					log(LOG_ERR,
   2365 					    "scope error in "
   2366 					    "prefix list (%s)\n",
   2367 					    ip6_sprintf(&pfr->router->rtaddr));
   2368 				}
   2369 				advrtrs++;
   2370 			}
   2371 			p->advrtrs = advrtrs;
   2372 		}
   2373 		else {
   2374 			advrtrs = 0;
   2375 			for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
   2376 			     pfr = pfr->pfr_next)
   2377 				advrtrs++;
   2378 		}
   2379 
   2380 		advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
   2381 		l += advance;
   2382 		if (p)
   2383 			p = (struct in6_prefix *)((caddr_t)p + advance);
   2384 	}
   2385 
   2386 	if (oldp) {
   2387 		*oldlenp = l;	/* (caddr_t)d - (caddr_t)oldp */
   2388 		if (l > ol)
   2389 			error = ENOMEM;
   2390 	} else
   2391 		*oldlenp = l;
   2392 
   2393 	splx(s);
   2394 
   2395 	return (error);
   2396 }
   2397