nd6.c revision 1.99 1 /* $NetBSD: nd6.c,v 1.99 2006/03/05 23:47:08 rpaulo Exp $ */
2 /* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
3
4 /*
5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the name of the project nor the names of its contributors
17 * may be used to endorse or promote products derived from this software
18 * without specific prior written permission.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30 * SUCH DAMAGE.
31 */
32
33 #include <sys/cdefs.h>
34 __KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.99 2006/03/05 23:47:08 rpaulo Exp $");
35
36 #include "opt_ipsec.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/callout.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/socket.h>
44 #include <sys/sockio.h>
45 #include <sys/time.h>
46 #include <sys/kernel.h>
47 #include <sys/protosw.h>
48 #include <sys/errno.h>
49 #include <sys/ioctl.h>
50 #include <sys/syslog.h>
51 #include <sys/queue.h>
52
53 #include <net/if.h>
54 #include <net/if_dl.h>
55 #include <net/if_types.h>
56 #include <net/route.h>
57 #include <net/if_ether.h>
58 #include <net/if_fddi.h>
59 #include <net/if_arc.h>
60
61 #include <netinet/in.h>
62 #include <netinet6/in6_var.h>
63 #include <netinet/ip6.h>
64 #include <netinet6/ip6_var.h>
65 #include <netinet6/scope6_var.h>
66 #include <netinet6/nd6.h>
67 #include <netinet/icmp6.h>
68
69 #ifdef IPSEC
70 #include <netinet6/ipsec.h>
71 #endif
72
73 #include <net/net_osdep.h>
74
75 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
76 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
77
78 #define SIN6(s) ((struct sockaddr_in6 *)s)
79 #define SDL(s) ((struct sockaddr_dl *)s)
80
81 /* timer values */
82 int nd6_prune = 1; /* walk list every 1 seconds */
83 int nd6_delay = 5; /* delay first probe time 5 second */
84 int nd6_umaxtries = 3; /* maximum unicast query */
85 int nd6_mmaxtries = 3; /* maximum multicast query */
86 int nd6_useloopback = 1; /* use loopback interface for local traffic */
87 int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
88
89 /* preventing too many loops in ND option parsing */
90 int nd6_maxndopt = 10; /* max # of ND options allowed */
91
92 int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
93
94 int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
95
96 #ifdef ND6_DEBUG
97 int nd6_debug = 1;
98 #else
99 int nd6_debug = 0;
100 #endif
101
102 /* for debugging? */
103 static int nd6_inuse, nd6_allocated;
104
105 struct llinfo_nd6 llinfo_nd6 = {&llinfo_nd6, &llinfo_nd6};
106 struct nd_drhead nd_defrouter;
107 struct nd_prhead nd_prefix = { 0 };
108
109 int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
110 static struct sockaddr_in6 all1_sa;
111
112 static void nd6_setmtu0 __P((struct ifnet *, struct nd_ifinfo *));
113 static void nd6_slowtimo __P((void *));
114 static int regen_tmpaddr __P((struct in6_ifaddr *));
115 static struct llinfo_nd6 *nd6_free __P((struct rtentry *, int));
116 static void nd6_llinfo_timer __P((void *));
117
118 struct callout nd6_slowtimo_ch = CALLOUT_INITIALIZER;
119 struct callout nd6_timer_ch = CALLOUT_INITIALIZER;
120 extern struct callout in6_tmpaddrtimer_ch;
121
122 static int fill_drlist __P((void *, size_t *, size_t));
123 static int fill_prlist __P((void *, size_t *, size_t));
124
125 MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
126
127 void
128 nd6_init()
129 {
130 static int nd6_init_done = 0;
131 int i;
132
133 if (nd6_init_done) {
134 log(LOG_NOTICE, "nd6_init called more than once(ignored)\n");
135 return;
136 }
137
138 all1_sa.sin6_family = AF_INET6;
139 all1_sa.sin6_len = sizeof(struct sockaddr_in6);
140 for (i = 0; i < sizeof(all1_sa.sin6_addr); i++)
141 all1_sa.sin6_addr.s6_addr[i] = 0xff;
142
143 /* initialization of the default router list */
144 TAILQ_INIT(&nd_defrouter);
145
146 nd6_init_done = 1;
147
148 /* start timer */
149 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
150 nd6_slowtimo, NULL);
151 }
152
153 struct nd_ifinfo *
154 nd6_ifattach(ifp)
155 struct ifnet *ifp;
156 {
157 struct nd_ifinfo *nd;
158
159 nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK);
160 bzero(nd, sizeof(*nd));
161
162 nd->initialized = 1;
163
164 nd->chlim = IPV6_DEFHLIM;
165 nd->basereachable = REACHABLE_TIME;
166 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
167 nd->retrans = RETRANS_TIMER;
168 /*
169 * Note that the default value of ip6_accept_rtadv is 0, which means
170 * we won't accept RAs by default even if we set ND6_IFF_ACCEPT_RTADV
171 * here.
172 */
173 nd->flags = (ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV);
174
175 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
176 nd6_setmtu0(ifp, nd);
177
178 return nd;
179 }
180
181 void
182 nd6_ifdetach(nd)
183 struct nd_ifinfo *nd;
184 {
185
186 free(nd, M_IP6NDP);
187 }
188
189 void
190 nd6_setmtu(ifp)
191 struct ifnet *ifp;
192 {
193 nd6_setmtu0(ifp, ND_IFINFO(ifp));
194 }
195
196 void
197 nd6_setmtu0(ifp, ndi)
198 struct ifnet *ifp;
199 struct nd_ifinfo *ndi;
200 {
201 u_int32_t omaxmtu;
202
203 omaxmtu = ndi->maxmtu;
204
205 switch (ifp->if_type) {
206 case IFT_ARCNET:
207 ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
208 break;
209 case IFT_FDDI:
210 ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
211 break;
212 default:
213 ndi->maxmtu = ifp->if_mtu;
214 break;
215 }
216
217 /*
218 * Decreasing the interface MTU under IPV6 minimum MTU may cause
219 * undesirable situation. We thus notify the operator of the change
220 * explicitly. The check for omaxmtu is necessary to restrict the
221 * log to the case of changing the MTU, not initializing it.
222 */
223 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
224 log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
225 " small for IPv6 which needs %lu\n",
226 if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
227 IPV6_MMTU);
228 }
229
230 if (ndi->maxmtu > in6_maxmtu)
231 in6_setmaxmtu(); /* check all interfaces just in case */
232 }
233
234 void
235 nd6_option_init(opt, icmp6len, ndopts)
236 void *opt;
237 int icmp6len;
238 union nd_opts *ndopts;
239 {
240
241 bzero(ndopts, sizeof(*ndopts));
242 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
243 ndopts->nd_opts_last
244 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
245
246 if (icmp6len == 0) {
247 ndopts->nd_opts_done = 1;
248 ndopts->nd_opts_search = NULL;
249 }
250 }
251
252 /*
253 * Take one ND option.
254 */
255 struct nd_opt_hdr *
256 nd6_option(ndopts)
257 union nd_opts *ndopts;
258 {
259 struct nd_opt_hdr *nd_opt;
260 int olen;
261
262 if (ndopts == NULL)
263 panic("ndopts == NULL in nd6_option");
264 if (ndopts->nd_opts_last == NULL)
265 panic("uninitialized ndopts in nd6_option");
266 if (ndopts->nd_opts_search == NULL)
267 return NULL;
268 if (ndopts->nd_opts_done)
269 return NULL;
270
271 nd_opt = ndopts->nd_opts_search;
272
273 /* make sure nd_opt_len is inside the buffer */
274 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) {
275 bzero(ndopts, sizeof(*ndopts));
276 return NULL;
277 }
278
279 olen = nd_opt->nd_opt_len << 3;
280 if (olen == 0) {
281 /*
282 * Message validation requires that all included
283 * options have a length that is greater than zero.
284 */
285 bzero(ndopts, sizeof(*ndopts));
286 return NULL;
287 }
288
289 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen);
290 if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
291 /* option overruns the end of buffer, invalid */
292 bzero(ndopts, sizeof(*ndopts));
293 return NULL;
294 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
295 /* reached the end of options chain */
296 ndopts->nd_opts_done = 1;
297 ndopts->nd_opts_search = NULL;
298 }
299 return nd_opt;
300 }
301
302 /*
303 * Parse multiple ND options.
304 * This function is much easier to use, for ND routines that do not need
305 * multiple options of the same type.
306 */
307 int
308 nd6_options(ndopts)
309 union nd_opts *ndopts;
310 {
311 struct nd_opt_hdr *nd_opt;
312 int i = 0;
313
314 if (ndopts == NULL)
315 panic("ndopts == NULL in nd6_options");
316 if (ndopts->nd_opts_last == NULL)
317 panic("uninitialized ndopts in nd6_options");
318 if (ndopts->nd_opts_search == NULL)
319 return 0;
320
321 while (1) {
322 nd_opt = nd6_option(ndopts);
323 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
324 /*
325 * Message validation requires that all included
326 * options have a length that is greater than zero.
327 */
328 icmp6stat.icp6s_nd_badopt++;
329 bzero(ndopts, sizeof(*ndopts));
330 return -1;
331 }
332
333 if (nd_opt == NULL)
334 goto skip1;
335
336 switch (nd_opt->nd_opt_type) {
337 case ND_OPT_SOURCE_LINKADDR:
338 case ND_OPT_TARGET_LINKADDR:
339 case ND_OPT_MTU:
340 case ND_OPT_REDIRECTED_HEADER:
341 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
342 nd6log((LOG_INFO,
343 "duplicated ND6 option found (type=%d)\n",
344 nd_opt->nd_opt_type));
345 /* XXX bark? */
346 } else {
347 ndopts->nd_opt_array[nd_opt->nd_opt_type]
348 = nd_opt;
349 }
350 break;
351 case ND_OPT_PREFIX_INFORMATION:
352 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
353 ndopts->nd_opt_array[nd_opt->nd_opt_type]
354 = nd_opt;
355 }
356 ndopts->nd_opts_pi_end =
357 (struct nd_opt_prefix_info *)nd_opt;
358 break;
359 default:
360 /*
361 * Unknown options must be silently ignored,
362 * to accomodate future extension to the protocol.
363 */
364 nd6log((LOG_DEBUG,
365 "nd6_options: unsupported option %d - "
366 "option ignored\n", nd_opt->nd_opt_type));
367 }
368
369 skip1:
370 i++;
371 if (i > nd6_maxndopt) {
372 icmp6stat.icp6s_nd_toomanyopt++;
373 nd6log((LOG_INFO, "too many loop in nd opt\n"));
374 break;
375 }
376
377 if (ndopts->nd_opts_done)
378 break;
379 }
380
381 return 0;
382 }
383
384 /*
385 * ND6 timer routine to handle ND6 entries
386 */
387 void
388 nd6_llinfo_settimer(ln, xtick)
389 struct llinfo_nd6 *ln;
390 long xtick;
391 {
392 int s;
393
394 s = splsoftnet();
395
396 if (xtick < 0) {
397 ln->ln_expire = 0;
398 ln->ln_ntick = 0;
399 callout_stop(&ln->ln_timer_ch);
400 } else {
401 ln->ln_expire = time.tv_sec + xtick / hz;
402 if (xtick > INT_MAX) {
403 ln->ln_ntick = xtick - INT_MAX;
404 callout_reset(&ln->ln_timer_ch, INT_MAX,
405 nd6_llinfo_timer, ln);
406 } else {
407 ln->ln_ntick = 0;
408 callout_reset(&ln->ln_timer_ch, xtick,
409 nd6_llinfo_timer, ln);
410 }
411 }
412
413 splx(s);
414 }
415
416 static void
417 nd6_llinfo_timer(arg)
418 void *arg;
419 {
420 int s;
421 struct llinfo_nd6 *ln;
422 struct rtentry *rt;
423 const struct sockaddr_in6 *dst;
424 struct ifnet *ifp;
425 struct nd_ifinfo *ndi = NULL;
426
427 s = splsoftnet();
428
429 ln = (struct llinfo_nd6 *)arg;
430
431 if (ln->ln_ntick > 0) {
432 nd6_llinfo_settimer(ln, ln->ln_ntick);
433 splx(s);
434 return;
435 }
436
437 if ((rt = ln->ln_rt) == NULL)
438 panic("ln->ln_rt == NULL");
439 if ((ifp = rt->rt_ifp) == NULL)
440 panic("ln->ln_rt->rt_ifp == NULL");
441 ndi = ND_IFINFO(ifp);
442 dst = (struct sockaddr_in6 *)rt_key(rt);
443
444 /* sanity check */
445 if (rt->rt_llinfo && (struct llinfo_nd6 *)rt->rt_llinfo != ln)
446 panic("rt_llinfo(%p) is not equal to ln(%p)",
447 rt->rt_llinfo, ln);
448 if (!dst)
449 panic("dst=0 in nd6_timer(ln=%p)", ln);
450
451 switch (ln->ln_state) {
452 case ND6_LLINFO_INCOMPLETE:
453 if (ln->ln_asked < nd6_mmaxtries) {
454 ln->ln_asked++;
455 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
456 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
457 } else {
458 struct mbuf *m = ln->ln_hold;
459 if (m) {
460 /*
461 * assuming every packet in ln_hold has
462 * the same IP header
463 */
464 ln->ln_hold = NULL;
465 icmp6_error2(m, ICMP6_DST_UNREACH,
466 ICMP6_DST_UNREACH_ADDR, 0, rt->rt_ifp);
467 }
468 (void)nd6_free(rt, 0);
469 ln = NULL;
470 }
471 break;
472 case ND6_LLINFO_REACHABLE:
473 if (!ND6_LLINFO_PERMANENT(ln)) {
474 ln->ln_state = ND6_LLINFO_STALE;
475 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
476 }
477 break;
478
479 case ND6_LLINFO_STALE:
480 /* Garbage Collection(RFC 2461 5.3) */
481 if (!ND6_LLINFO_PERMANENT(ln)) {
482 (void)nd6_free(rt, 1);
483 ln = NULL;
484 }
485 break;
486
487 case ND6_LLINFO_DELAY:
488 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
489 /* We need NUD */
490 ln->ln_asked = 1;
491 ln->ln_state = ND6_LLINFO_PROBE;
492 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
493 nd6_ns_output(ifp, &dst->sin6_addr,
494 &dst->sin6_addr, ln, 0);
495 } else {
496 ln->ln_state = ND6_LLINFO_STALE; /* XXX */
497 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
498 }
499 break;
500 case ND6_LLINFO_PROBE:
501 if (ln->ln_asked < nd6_umaxtries) {
502 ln->ln_asked++;
503 nd6_llinfo_settimer(ln, (long)ndi->retrans * hz / 1000);
504 nd6_ns_output(ifp, &dst->sin6_addr,
505 &dst->sin6_addr, ln, 0);
506 } else {
507 (void)nd6_free(rt, 0);
508 ln = NULL;
509 }
510 break;
511 }
512
513 splx(s);
514 }
515
516 /*
517 * ND6 timer routine to expire default route list and prefix list
518 */
519 void
520 nd6_timer(ignored_arg)
521 void *ignored_arg;
522 {
523 int s;
524 struct nd_defrouter *dr;
525 struct nd_prefix *pr;
526 struct in6_ifaddr *ia6, *nia6;
527 struct in6_addrlifetime *lt6;
528
529 s = splsoftnet();
530 callout_reset(&nd6_timer_ch, nd6_prune * hz,
531 nd6_timer, NULL);
532
533 /* expire default router list */
534 dr = TAILQ_FIRST(&nd_defrouter);
535 while (dr) {
536 if (dr->expire && dr->expire < time.tv_sec) {
537 struct nd_defrouter *t;
538 t = TAILQ_NEXT(dr, dr_entry);
539 defrtrlist_del(dr);
540 dr = t;
541 } else {
542 dr = TAILQ_NEXT(dr, dr_entry);
543 }
544 }
545
546 /*
547 * expire interface addresses.
548 * in the past the loop was inside prefix expiry processing.
549 * However, from a stricter speci-confrmance standpoint, we should
550 * rather separate address lifetimes and prefix lifetimes.
551 */
552 addrloop:
553 for (ia6 = in6_ifaddr; ia6; ia6 = nia6) {
554 nia6 = ia6->ia_next;
555 /* check address lifetime */
556 lt6 = &ia6->ia6_lifetime;
557 if (IFA6_IS_INVALID(ia6)) {
558 int regen = 0;
559
560 /*
561 * If the expiring address is temporary, try
562 * regenerating a new one. This would be useful when
563 * we suspended a laptop PC, then turned it on after a
564 * period that could invalidate all temporary
565 * addresses. Although we may have to restart the
566 * loop (see below), it must be after purging the
567 * address. Otherwise, we'd see an infinite loop of
568 * regeneration.
569 */
570 if (ip6_use_tempaddr &&
571 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
572 if (regen_tmpaddr(ia6) == 0)
573 regen = 1;
574 }
575
576 in6_purgeaddr(&ia6->ia_ifa);
577
578 if (regen)
579 goto addrloop; /* XXX: see below */
580 } else if (IFA6_IS_DEPRECATED(ia6)) {
581 int oldflags = ia6->ia6_flags;
582
583 ia6->ia6_flags |= IN6_IFF_DEPRECATED;
584
585 /*
586 * If a temporary address has just become deprecated,
587 * regenerate a new one if possible.
588 */
589 if (ip6_use_tempaddr &&
590 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
591 (oldflags & IN6_IFF_DEPRECATED) == 0) {
592
593 if (regen_tmpaddr(ia6) == 0) {
594 /*
595 * A new temporary address is
596 * generated.
597 * XXX: this means the address chain
598 * has changed while we are still in
599 * the loop. Although the change
600 * would not cause disaster (because
601 * it's not a deletion, but an
602 * addition,) we'd rather restart the
603 * loop just for safety. Or does this
604 * significantly reduce performance??
605 */
606 goto addrloop;
607 }
608 }
609 } else {
610 /*
611 * A new RA might have made a deprecated address
612 * preferred.
613 */
614 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
615 }
616 }
617
618 /* expire prefix list */
619 pr = nd_prefix.lh_first;
620 while (pr) {
621 /*
622 * check prefix lifetime.
623 * since pltime is just for autoconf, pltime processing for
624 * prefix is not necessary.
625 */
626 if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
627 time.tv_sec - pr->ndpr_lastupdate > pr->ndpr_vltime) {
628 struct nd_prefix *t;
629 t = pr->ndpr_next;
630
631 /*
632 * address expiration and prefix expiration are
633 * separate. NEVER perform in6_purgeaddr here.
634 */
635
636 prelist_remove(pr);
637 pr = t;
638 } else
639 pr = pr->ndpr_next;
640 }
641 splx(s);
642 }
643
644 static int
645 regen_tmpaddr(ia6)
646 struct in6_ifaddr *ia6; /* deprecated/invalidated temporary address */
647 {
648 struct ifaddr *ifa;
649 struct ifnet *ifp;
650 struct in6_ifaddr *public_ifa6 = NULL;
651
652 ifp = ia6->ia_ifa.ifa_ifp;
653 for (ifa = ifp->if_addrlist.tqh_first; ifa;
654 ifa = ifa->ifa_list.tqe_next) {
655 struct in6_ifaddr *it6;
656
657 if (ifa->ifa_addr->sa_family != AF_INET6)
658 continue;
659
660 it6 = (struct in6_ifaddr *)ifa;
661
662 /* ignore no autoconf addresses. */
663 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
664 continue;
665
666 /* ignore autoconf addresses with different prefixes. */
667 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
668 continue;
669
670 /*
671 * Now we are looking at an autoconf address with the same
672 * prefix as ours. If the address is temporary and is still
673 * preferred, do not create another one. It would be rare, but
674 * could happen, for example, when we resume a laptop PC after
675 * a long period.
676 */
677 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
678 !IFA6_IS_DEPRECATED(it6)) {
679 public_ifa6 = NULL;
680 break;
681 }
682
683 /*
684 * This is a public autoconf address that has the same prefix
685 * as ours. If it is preferred, keep it. We can't break the
686 * loop here, because there may be a still-preferred temporary
687 * address with the prefix.
688 */
689 if (!IFA6_IS_DEPRECATED(it6))
690 public_ifa6 = it6;
691 }
692
693 if (public_ifa6 != NULL) {
694 int e;
695
696 /*
697 * Random factor is introduced in the preferred lifetime, so
698 * we do not need additional delay (3rd arg to in6_tmpifadd).
699 */
700 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
701 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
702 " tmp addr, errno=%d\n", e);
703 return (-1);
704 }
705 return (0);
706 }
707
708 return (-1);
709 }
710
711 /*
712 * Nuke neighbor cache/prefix/default router management table, right before
713 * ifp goes away.
714 */
715 void
716 nd6_purge(ifp)
717 struct ifnet *ifp;
718 {
719 struct llinfo_nd6 *ln, *nln;
720 struct nd_defrouter *dr, *ndr;
721 struct nd_prefix *pr, *npr;
722
723 /*
724 * Nuke default router list entries toward ifp.
725 * We defer removal of default router list entries that is installed
726 * in the routing table, in order to keep additional side effects as
727 * small as possible.
728 */
729 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
730 ndr = TAILQ_NEXT(dr, dr_entry);
731 if (dr->installed)
732 continue;
733
734 if (dr->ifp == ifp)
735 defrtrlist_del(dr);
736 }
737 for (dr = TAILQ_FIRST(&nd_defrouter); dr; dr = ndr) {
738 ndr = TAILQ_NEXT(dr, dr_entry);
739 if (!dr->installed)
740 continue;
741
742 if (dr->ifp == ifp)
743 defrtrlist_del(dr);
744 }
745
746 /* Nuke prefix list entries toward ifp */
747 for (pr = nd_prefix.lh_first; pr; pr = npr) {
748 npr = pr->ndpr_next;
749 if (pr->ndpr_ifp == ifp) {
750 /*
751 * Because if_detach() does *not* release prefixes
752 * while purging addresses the reference count will
753 * still be above zero. We therefore reset it to
754 * make sure that the prefix really gets purged.
755 */
756 pr->ndpr_refcnt = 0;
757 /*
758 * Previously, pr->ndpr_addr is removed as well,
759 * but I strongly believe we don't have to do it.
760 * nd6_purge() is only called from in6_ifdetach(),
761 * which removes all the associated interface addresses
762 * by itself.
763 * (jinmei (at) kame.net 20010129)
764 */
765 prelist_remove(pr);
766 }
767 }
768
769 /* cancel default outgoing interface setting */
770 if (nd6_defifindex == ifp->if_index)
771 nd6_setdefaultiface(0);
772
773 if (!ip6_forwarding && ip6_accept_rtadv) { /* XXX: too restrictive? */
774 /* refresh default router list */
775 defrouter_select();
776 }
777
778 /*
779 * Nuke neighbor cache entries for the ifp.
780 * Note that rt->rt_ifp may not be the same as ifp,
781 * due to KAME goto ours hack. See RTM_RESOLVE case in
782 * nd6_rtrequest(), and ip6_input().
783 */
784 ln = llinfo_nd6.ln_next;
785 while (ln && ln != &llinfo_nd6) {
786 struct rtentry *rt;
787 struct sockaddr_dl *sdl;
788
789 nln = ln->ln_next;
790 rt = ln->ln_rt;
791 if (rt && rt->rt_gateway &&
792 rt->rt_gateway->sa_family == AF_LINK) {
793 sdl = (struct sockaddr_dl *)rt->rt_gateway;
794 if (sdl->sdl_index == ifp->if_index)
795 nln = nd6_free(rt, 0);
796 }
797 ln = nln;
798 }
799 }
800
801 struct rtentry *
802 nd6_lookup(addr6, create, ifp)
803 struct in6_addr *addr6;
804 int create;
805 struct ifnet *ifp;
806 {
807 struct rtentry *rt;
808 struct sockaddr_in6 sin6;
809
810 bzero(&sin6, sizeof(sin6));
811 sin6.sin6_len = sizeof(struct sockaddr_in6);
812 sin6.sin6_family = AF_INET6;
813 sin6.sin6_addr = *addr6;
814 rt = rtalloc1((struct sockaddr *)&sin6, create);
815 if (rt && (rt->rt_flags & RTF_LLINFO) == 0) {
816 /*
817 * This is the case for the default route.
818 * If we want to create a neighbor cache for the address, we
819 * should free the route for the destination and allocate an
820 * interface route.
821 */
822 if (create) {
823 RTFREE(rt);
824 rt = NULL;
825 }
826 }
827 if (rt == NULL) {
828 if (create && ifp) {
829 int e;
830
831 /*
832 * If no route is available and create is set,
833 * we allocate a host route for the destination
834 * and treat it like an interface route.
835 * This hack is necessary for a neighbor which can't
836 * be covered by our own prefix.
837 */
838 struct ifaddr *ifa =
839 ifaof_ifpforaddr((struct sockaddr *)&sin6, ifp);
840 if (ifa == NULL)
841 return (NULL);
842
843 /*
844 * Create a new route. RTF_LLINFO is necessary
845 * to create a Neighbor Cache entry for the
846 * destination in nd6_rtrequest which will be
847 * called in rtrequest via ifa->ifa_rtrequest.
848 */
849 if ((e = rtrequest(RTM_ADD, (struct sockaddr *)&sin6,
850 ifa->ifa_addr, (struct sockaddr *)&all1_sa,
851 (ifa->ifa_flags | RTF_HOST | RTF_LLINFO) &
852 ~RTF_CLONING, &rt)) != 0) {
853 #if 0
854 log(LOG_ERR,
855 "nd6_lookup: failed to add route for a "
856 "neighbor(%s), errno=%d\n",
857 ip6_sprintf(addr6), e);
858 #endif
859 return (NULL);
860 }
861 if (rt == NULL)
862 return (NULL);
863 if (rt->rt_llinfo) {
864 struct llinfo_nd6 *ln =
865 (struct llinfo_nd6 *)rt->rt_llinfo;
866 ln->ln_state = ND6_LLINFO_NOSTATE;
867 }
868 } else
869 return (NULL);
870 }
871 rt->rt_refcnt--;
872 /*
873 * Validation for the entry.
874 * Note that the check for rt_llinfo is necessary because a cloned
875 * route from a parent route that has the L flag (e.g. the default
876 * route to a p2p interface) may have the flag, too, while the
877 * destination is not actually a neighbor.
878 * XXX: we can't use rt->rt_ifp to check for the interface, since
879 * it might be the loopback interface if the entry is for our
880 * own address on a non-loopback interface. Instead, we should
881 * use rt->rt_ifa->ifa_ifp, which would specify the REAL
882 * interface.
883 * Note also that ifa_ifp and ifp may differ when we connect two
884 * interfaces to a same link, install a link prefix to an interface,
885 * and try to install a neighbor cache on an interface that does not
886 * have a route to the prefix.
887 */
888 if ((rt->rt_flags & RTF_GATEWAY) || (rt->rt_flags & RTF_LLINFO) == 0 ||
889 rt->rt_gateway->sa_family != AF_LINK || rt->rt_llinfo == NULL ||
890 (ifp && rt->rt_ifa->ifa_ifp != ifp)) {
891 if (create) {
892 nd6log((LOG_DEBUG,
893 "nd6_lookup: failed to lookup %s (if = %s)\n",
894 ip6_sprintf(addr6),
895 ifp ? if_name(ifp) : "unspec"));
896 }
897 return (NULL);
898 }
899 return (rt);
900 }
901
902 /*
903 * Detect if a given IPv6 address identifies a neighbor on a given link.
904 * XXX: should take care of the destination of a p2p link?
905 */
906 int
907 nd6_is_addr_neighbor(addr, ifp)
908 struct sockaddr_in6 *addr;
909 struct ifnet *ifp;
910 {
911 struct nd_prefix *pr;
912
913 /*
914 * A link-local address is always a neighbor.
915 * XXX: a link does not necessarily specify a single interface.
916 */
917 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
918 struct sockaddr_in6 sin6_copy;
919 u_int32_t zone;
920
921 /*
922 * We need sin6_copy since sa6_recoverscope() may modify the
923 * content (XXX).
924 */
925 sin6_copy = *addr;
926 if (sa6_recoverscope(&sin6_copy))
927 return (0); /* XXX: should be impossible */
928 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
929 return (0);
930 if (sin6_copy.sin6_scope_id == zone)
931 return (1);
932 else
933 return (0);
934 }
935
936 /*
937 * If the address matches one of our on-link prefixes, it should be a
938 * neighbor.
939 */
940 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
941 if (pr->ndpr_ifp != ifp)
942 continue;
943
944 if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
945 continue;
946
947 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
948 &addr->sin6_addr, &pr->ndpr_mask))
949 return (1);
950 }
951
952 /*
953 * If the default router list is empty, all addresses are regarded
954 * as on-link, and thus, as a neighbor.
955 * XXX: we restrict the condition to hosts, because routers usually do
956 * not have the "default router list".
957 */
958 if (!ip6_forwarding && TAILQ_FIRST(&nd_defrouter) == NULL &&
959 nd6_defifindex == ifp->if_index) {
960 return (1);
961 }
962
963 /*
964 * Even if the address matches none of our addresses, it might be
965 * in the neighbor cache.
966 */
967 if (nd6_lookup(&addr->sin6_addr, 0, ifp) != NULL)
968 return (1);
969
970 return (0);
971 }
972
973 /*
974 * Free an nd6 llinfo entry.
975 * Since the function would cause significant changes in the kernel, DO NOT
976 * make it global, unless you have a strong reason for the change, and are sure
977 * that the change is safe.
978 */
979 static struct llinfo_nd6 *
980 nd6_free(rt, gc)
981 struct rtentry *rt;
982 int gc;
983 {
984 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo, *next;
985 struct in6_addr in6 = ((struct sockaddr_in6 *)rt_key(rt))->sin6_addr;
986 struct nd_defrouter *dr;
987
988 /*
989 * we used to have pfctlinput(PRC_HOSTDEAD) here.
990 * even though it is not harmful, it was not really necessary.
991 */
992
993 /* cancel timer */
994 nd6_llinfo_settimer(ln, -1);
995
996 if (!ip6_forwarding) {
997 int s;
998 s = splsoftnet();
999 dr = defrouter_lookup(&((struct sockaddr_in6 *)rt_key(rt))->sin6_addr,
1000 rt->rt_ifp);
1001
1002 if (dr != NULL && dr->expire &&
1003 ln->ln_state == ND6_LLINFO_STALE && gc) {
1004 /*
1005 * If the reason for the deletion is just garbage
1006 * collection, and the neighbor is an active default
1007 * router, do not delete it. Instead, reset the GC
1008 * timer using the router's lifetime.
1009 * Simply deleting the entry would affect default
1010 * router selection, which is not necessarily a good
1011 * thing, especially when we're using router preference
1012 * values.
1013 * XXX: the check for ln_state would be redundant,
1014 * but we intentionally keep it just in case.
1015 */
1016 if (dr->expire > time.tv_sec)
1017 nd6_llinfo_settimer(ln,
1018 (dr->expire - time.tv_sec) * hz);
1019 else
1020 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1021 splx(s);
1022 return (ln->ln_next);
1023 }
1024
1025 if (ln->ln_router || dr) {
1026 /*
1027 * rt6_flush must be called whether or not the neighbor
1028 * is in the Default Router List.
1029 * See a corresponding comment in nd6_na_input().
1030 */
1031 rt6_flush(&in6, rt->rt_ifp);
1032 }
1033
1034 if (dr) {
1035 /*
1036 * Unreachablity of a router might affect the default
1037 * router selection and on-link detection of advertised
1038 * prefixes.
1039 */
1040
1041 /*
1042 * Temporarily fake the state to choose a new default
1043 * router and to perform on-link determination of
1044 * prefixes correctly.
1045 * Below the state will be set correctly,
1046 * or the entry itself will be deleted.
1047 */
1048 ln->ln_state = ND6_LLINFO_INCOMPLETE;
1049
1050 /*
1051 * Since defrouter_select() does not affect the
1052 * on-link determination and MIP6 needs the check
1053 * before the default router selection, we perform
1054 * the check now.
1055 */
1056 pfxlist_onlink_check();
1057
1058 /*
1059 * refresh default router list
1060 */
1061 defrouter_select();
1062 }
1063 splx(s);
1064 }
1065
1066 /*
1067 * Before deleting the entry, remember the next entry as the
1068 * return value. We need this because pfxlist_onlink_check() above
1069 * might have freed other entries (particularly the old next entry) as
1070 * a side effect (XXX).
1071 */
1072 next = ln->ln_next;
1073
1074 /*
1075 * Detach the route from the routing tree and the list of neighbor
1076 * caches, and disable the route entry not to be used in already
1077 * cached routes.
1078 */
1079 rtrequest(RTM_DELETE, rt_key(rt), (struct sockaddr *)0,
1080 rt_mask(rt), 0, (struct rtentry **)0);
1081
1082 return (next);
1083 }
1084
1085 /*
1086 * Upper-layer reachability hint for Neighbor Unreachability Detection.
1087 *
1088 * XXX cost-effective methods?
1089 */
1090 void
1091 nd6_nud_hint(rt, dst6, force)
1092 struct rtentry *rt;
1093 struct in6_addr *dst6;
1094 int force;
1095 {
1096 struct llinfo_nd6 *ln;
1097
1098 /*
1099 * If the caller specified "rt", use that. Otherwise, resolve the
1100 * routing table by supplied "dst6".
1101 */
1102 if (rt == NULL) {
1103 if (dst6 == NULL)
1104 return;
1105 if ((rt = nd6_lookup(dst6, 0, NULL)) == NULL)
1106 return;
1107 }
1108
1109 if ((rt->rt_flags & RTF_GATEWAY) != 0 ||
1110 (rt->rt_flags & RTF_LLINFO) == 0 ||
1111 !rt->rt_llinfo || !rt->rt_gateway ||
1112 rt->rt_gateway->sa_family != AF_LINK) {
1113 /* This is not a host route. */
1114 return;
1115 }
1116
1117 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1118 if (ln->ln_state < ND6_LLINFO_REACHABLE)
1119 return;
1120
1121 /*
1122 * if we get upper-layer reachability confirmation many times,
1123 * it is possible we have false information.
1124 */
1125 if (!force) {
1126 ln->ln_byhint++;
1127 if (ln->ln_byhint > nd6_maxnudhint)
1128 return;
1129 }
1130
1131 ln->ln_state = ND6_LLINFO_REACHABLE;
1132 if (!ND6_LLINFO_PERMANENT(ln)) {
1133 nd6_llinfo_settimer(ln,
1134 (long)ND_IFINFO(rt->rt_ifp)->reachable * hz);
1135 }
1136 }
1137
1138 void
1139 nd6_rtrequest(req, rt, info)
1140 int req;
1141 struct rtentry *rt;
1142 struct rt_addrinfo *info; /* xxx unused */
1143 {
1144 struct sockaddr *gate = rt->rt_gateway;
1145 struct llinfo_nd6 *ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1146 static struct sockaddr_dl null_sdl = {sizeof(null_sdl), AF_LINK};
1147 struct ifnet *ifp = rt->rt_ifp;
1148 struct ifaddr *ifa;
1149
1150 if ((rt->rt_flags & RTF_GATEWAY) != 0)
1151 return;
1152
1153 if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
1154 /*
1155 * This is probably an interface direct route for a link
1156 * which does not need neighbor caches (e.g. fe80::%lo0/64).
1157 * We do not need special treatment below for such a route.
1158 * Moreover, the RTF_LLINFO flag which would be set below
1159 * would annoy the ndp(8) command.
1160 */
1161 return;
1162 }
1163
1164 if (req == RTM_RESOLVE &&
1165 (nd6_need_cache(ifp) == 0 || /* stf case */
1166 !nd6_is_addr_neighbor((struct sockaddr_in6 *)rt_key(rt), ifp))) {
1167 /*
1168 * FreeBSD and BSD/OS often make a cloned host route based
1169 * on a less-specific route (e.g. the default route).
1170 * If the less specific route does not have a "gateway"
1171 * (this is the case when the route just goes to a p2p or an
1172 * stf interface), we'll mistakenly make a neighbor cache for
1173 * the host route, and will see strange neighbor solicitation
1174 * for the corresponding destination. In order to avoid the
1175 * confusion, we check if the destination of the route is
1176 * a neighbor in terms of neighbor discovery, and stop the
1177 * process if not. Additionally, we remove the LLINFO flag
1178 * so that ndp(8) will not try to get the neighbor information
1179 * of the destination.
1180 */
1181 rt->rt_flags &= ~RTF_LLINFO;
1182 return;
1183 }
1184
1185 switch (req) {
1186 case RTM_ADD:
1187 /*
1188 * There is no backward compatibility :)
1189 *
1190 * if ((rt->rt_flags & RTF_HOST) == 0 &&
1191 * SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
1192 * rt->rt_flags |= RTF_CLONING;
1193 */
1194 if ((rt->rt_flags & RTF_CLONING) ||
1195 ((rt->rt_flags & RTF_LLINFO) && !ln)) {
1196 /*
1197 * Case 1: This route should come from a route to
1198 * interface (RTF_CLONING case) or the route should be
1199 * treated as on-link but is currently not
1200 * (RTF_LLINFO && !ln case).
1201 */
1202 rt_setgate(rt, rt_key(rt),
1203 (struct sockaddr *)&null_sdl);
1204 gate = rt->rt_gateway;
1205 SDL(gate)->sdl_type = ifp->if_type;
1206 SDL(gate)->sdl_index = ifp->if_index;
1207 if (ln)
1208 nd6_llinfo_settimer(ln, 0);
1209 if ((rt->rt_flags & RTF_CLONING) != 0)
1210 break;
1211 }
1212 /*
1213 * In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
1214 * We don't do that here since llinfo is not ready yet.
1215 *
1216 * There are also couple of other things to be discussed:
1217 * - unsolicited NA code needs improvement beforehand
1218 * - RFC2461 says we MAY send multicast unsolicited NA
1219 * (7.2.6 paragraph 4), however, it also says that we
1220 * SHOULD provide a mechanism to prevent multicast NA storm.
1221 * we don't have anything like it right now.
1222 * note that the mechanism needs a mutual agreement
1223 * between proxies, which means that we need to implement
1224 * a new protocol, or a new kludge.
1225 * - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
1226 * we need to check ip6forwarding before sending it.
1227 * (or should we allow proxy ND configuration only for
1228 * routers? there's no mention about proxy ND from hosts)
1229 */
1230 #if 0
1231 /* XXX it does not work */
1232 if (rt->rt_flags & RTF_ANNOUNCE)
1233 nd6_na_output(ifp,
1234 &SIN6(rt_key(rt))->sin6_addr,
1235 &SIN6(rt_key(rt))->sin6_addr,
1236 ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
1237 1, NULL);
1238 #endif
1239 /* FALLTHROUGH */
1240 case RTM_RESOLVE:
1241 if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
1242 /*
1243 * Address resolution isn't necessary for a point to
1244 * point link, so we can skip this test for a p2p link.
1245 */
1246 if (gate->sa_family != AF_LINK ||
1247 gate->sa_len < sizeof(null_sdl)) {
1248 log(LOG_DEBUG,
1249 "nd6_rtrequest: bad gateway value: %s\n",
1250 if_name(ifp));
1251 break;
1252 }
1253 SDL(gate)->sdl_type = ifp->if_type;
1254 SDL(gate)->sdl_index = ifp->if_index;
1255 }
1256 if (ln != NULL)
1257 break; /* This happens on a route change */
1258 /*
1259 * Case 2: This route may come from cloning, or a manual route
1260 * add with a LL address.
1261 */
1262 R_Malloc(ln, struct llinfo_nd6 *, sizeof(*ln));
1263 rt->rt_llinfo = (caddr_t)ln;
1264 if (ln == NULL) {
1265 log(LOG_DEBUG, "nd6_rtrequest: malloc failed\n");
1266 break;
1267 }
1268 nd6_inuse++;
1269 nd6_allocated++;
1270 bzero(ln, sizeof(*ln));
1271 ln->ln_rt = rt;
1272 callout_init(&ln->ln_timer_ch);
1273 /* this is required for "ndp" command. - shin */
1274 if (req == RTM_ADD) {
1275 /*
1276 * gate should have some valid AF_LINK entry,
1277 * and ln->ln_expire should have some lifetime
1278 * which is specified by ndp command.
1279 */
1280 ln->ln_state = ND6_LLINFO_REACHABLE;
1281 ln->ln_byhint = 0;
1282 } else {
1283 /*
1284 * When req == RTM_RESOLVE, rt is created and
1285 * initialized in rtrequest(), so rt_expire is 0.
1286 */
1287 ln->ln_state = ND6_LLINFO_NOSTATE;
1288 nd6_llinfo_settimer(ln, 0);
1289 }
1290 rt->rt_flags |= RTF_LLINFO;
1291 ln->ln_next = llinfo_nd6.ln_next;
1292 llinfo_nd6.ln_next = ln;
1293 ln->ln_prev = &llinfo_nd6;
1294 ln->ln_next->ln_prev = ln;
1295
1296 /*
1297 * check if rt_key(rt) is one of my address assigned
1298 * to the interface.
1299 */
1300 ifa = (struct ifaddr *)in6ifa_ifpwithaddr(rt->rt_ifp,
1301 &SIN6(rt_key(rt))->sin6_addr);
1302 if (ifa) {
1303 caddr_t macp = nd6_ifptomac(ifp);
1304 nd6_llinfo_settimer(ln, -1);
1305 ln->ln_state = ND6_LLINFO_REACHABLE;
1306 ln->ln_byhint = 0;
1307 if (macp) {
1308 bcopy(macp, LLADDR(SDL(gate)), ifp->if_addrlen);
1309 SDL(gate)->sdl_alen = ifp->if_addrlen;
1310 }
1311 if (nd6_useloopback) {
1312 rt->rt_ifp = lo0ifp; /* XXX */
1313 /*
1314 * Make sure rt_ifa be equal to the ifaddr
1315 * corresponding to the address.
1316 * We need this because when we refer
1317 * rt_ifa->ia6_flags in ip6_input, we assume
1318 * that the rt_ifa points to the address instead
1319 * of the loopback address.
1320 */
1321 if (ifa != rt->rt_ifa) {
1322 IFAFREE(rt->rt_ifa);
1323 IFAREF(ifa);
1324 rt->rt_ifa = ifa;
1325 }
1326 }
1327 } else if (rt->rt_flags & RTF_ANNOUNCE) {
1328 nd6_llinfo_settimer(ln, -1);
1329 ln->ln_state = ND6_LLINFO_REACHABLE;
1330 ln->ln_byhint = 0;
1331
1332 /* join solicited node multicast for proxy ND */
1333 if (ifp->if_flags & IFF_MULTICAST) {
1334 struct in6_addr llsol;
1335 int error;
1336
1337 llsol = SIN6(rt_key(rt))->sin6_addr;
1338 llsol.s6_addr32[0] = htonl(0xff020000);
1339 llsol.s6_addr32[1] = 0;
1340 llsol.s6_addr32[2] = htonl(1);
1341 llsol.s6_addr8[12] = 0xff;
1342 if (in6_setscope(&llsol, ifp, NULL))
1343 break;
1344 if (!in6_addmulti(&llsol, ifp, &error, 0)) {
1345 nd6log((LOG_ERR, "%s: failed to join "
1346 "%s (errno=%d)\n", if_name(ifp),
1347 ip6_sprintf(&llsol), error));
1348 }
1349 }
1350 }
1351 break;
1352
1353 case RTM_DELETE:
1354 if (ln == NULL)
1355 break;
1356 /* leave from solicited node multicast for proxy ND */
1357 if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
1358 (ifp->if_flags & IFF_MULTICAST) != 0) {
1359 struct in6_addr llsol;
1360 struct in6_multi *in6m;
1361
1362 llsol = SIN6(rt_key(rt))->sin6_addr;
1363 llsol.s6_addr32[0] = htonl(0xff020000);
1364 llsol.s6_addr32[1] = 0;
1365 llsol.s6_addr32[2] = htonl(1);
1366 llsol.s6_addr8[12] = 0xff;
1367 if (in6_setscope(&llsol, ifp, NULL) == 0) {
1368 IN6_LOOKUP_MULTI(llsol, ifp, in6m);
1369 if (in6m)
1370 in6_delmulti(in6m);
1371 } else
1372 ; /* XXX: should not happen. bark here? */
1373 }
1374 nd6_inuse--;
1375 ln->ln_next->ln_prev = ln->ln_prev;
1376 ln->ln_prev->ln_next = ln->ln_next;
1377 ln->ln_prev = NULL;
1378 nd6_llinfo_settimer(ln, -1);
1379 rt->rt_llinfo = 0;
1380 rt->rt_flags &= ~RTF_LLINFO;
1381 if (ln->ln_hold)
1382 m_freem(ln->ln_hold);
1383 Free((caddr_t)ln);
1384 }
1385 }
1386
1387 int
1388 nd6_ioctl(cmd, data, ifp)
1389 u_long cmd;
1390 caddr_t data;
1391 struct ifnet *ifp;
1392 {
1393 struct in6_drlist *drl = (struct in6_drlist *)data;
1394 struct in6_oprlist *oprl = (struct in6_oprlist *)data;
1395 struct in6_ndireq *ndi = (struct in6_ndireq *)data;
1396 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
1397 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
1398 struct nd_defrouter *dr;
1399 struct nd_prefix *pr;
1400 struct rtentry *rt;
1401 int i = 0, error = 0;
1402 int s;
1403
1404 switch (cmd) {
1405 case SIOCGDRLST_IN6:
1406 /*
1407 * obsolete API, use sysctl under net.inet6.icmp6
1408 */
1409 bzero(drl, sizeof(*drl));
1410 s = splsoftnet();
1411 dr = TAILQ_FIRST(&nd_defrouter);
1412 while (dr && i < DRLSTSIZ) {
1413 drl->defrouter[i].rtaddr = dr->rtaddr;
1414 in6_clearscope(&drl->defrouter[i].rtaddr);
1415
1416 drl->defrouter[i].flags = dr->flags;
1417 drl->defrouter[i].rtlifetime = dr->rtlifetime;
1418 drl->defrouter[i].expire = dr->expire;
1419 drl->defrouter[i].if_index = dr->ifp->if_index;
1420 i++;
1421 dr = TAILQ_NEXT(dr, dr_entry);
1422 }
1423 splx(s);
1424 break;
1425 case SIOCGPRLST_IN6:
1426 /*
1427 * obsolete API, use sysctl under net.inet6.icmp6
1428 *
1429 * XXX the structure in6_prlist was changed in backward-
1430 * incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
1431 * in6_prlist is used for nd6_sysctl() - fill_prlist().
1432 */
1433 /*
1434 * XXX meaning of fields, especialy "raflags", is very
1435 * differnet between RA prefix list and RR/static prefix list.
1436 * how about separating ioctls into two?
1437 */
1438 bzero(oprl, sizeof(*oprl));
1439 s = splsoftnet();
1440 pr = nd_prefix.lh_first;
1441 while (pr && i < PRLSTSIZ) {
1442 struct nd_pfxrouter *pfr;
1443 int j;
1444
1445 oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
1446 oprl->prefix[i].raflags = pr->ndpr_raf;
1447 oprl->prefix[i].prefixlen = pr->ndpr_plen;
1448 oprl->prefix[i].vltime = pr->ndpr_vltime;
1449 oprl->prefix[i].pltime = pr->ndpr_pltime;
1450 oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
1451 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
1452 oprl->prefix[i].expire = 0;
1453 else {
1454 time_t maxexpire;
1455
1456 /* XXX: we assume time_t is signed. */
1457 maxexpire = (-1) &
1458 ~((time_t)1 <<
1459 ((sizeof(maxexpire) * 8) - 1));
1460 if (pr->ndpr_vltime <
1461 maxexpire - pr->ndpr_lastupdate) {
1462 oprl->prefix[i].expire =
1463 pr->ndpr_lastupdate +
1464 pr->ndpr_vltime;
1465 } else
1466 oprl->prefix[i].expire = maxexpire;
1467 }
1468
1469 pfr = pr->ndpr_advrtrs.lh_first;
1470 j = 0;
1471 while (pfr) {
1472 if (j < DRLSTSIZ) {
1473 #define RTRADDR oprl->prefix[i].advrtr[j]
1474 RTRADDR = pfr->router->rtaddr;
1475 in6_clearscope(&RTRADDR);
1476 #undef RTRADDR
1477 }
1478 j++;
1479 pfr = pfr->pfr_next;
1480 }
1481 oprl->prefix[i].advrtrs = j;
1482 oprl->prefix[i].origin = PR_ORIG_RA;
1483
1484 i++;
1485 pr = pr->ndpr_next;
1486 }
1487 splx(s);
1488
1489 break;
1490 case OSIOCGIFINFO_IN6:
1491 #define ND ndi->ndi
1492 /* XXX: old ndp(8) assumes a positive value for linkmtu. */
1493 memset(&ND, 0, sizeof(ND));
1494 ND.linkmtu = IN6_LINKMTU(ifp);
1495 ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
1496 ND.basereachable = ND_IFINFO(ifp)->basereachable;
1497 ND.reachable = ND_IFINFO(ifp)->reachable;
1498 ND.retrans = ND_IFINFO(ifp)->retrans;
1499 ND.flags = ND_IFINFO(ifp)->flags;
1500 ND.recalctm = ND_IFINFO(ifp)->recalctm;
1501 ND.chlim = ND_IFINFO(ifp)->chlim;
1502 break;
1503 case SIOCGIFINFO_IN6:
1504 ND = *ND_IFINFO(ifp);
1505 break;
1506 case SIOCSIFINFO_IN6:
1507 /*
1508 * used to change host variables from userland.
1509 * intented for a use on router to reflect RA configurations.
1510 */
1511 /* 0 means 'unspecified' */
1512 if (ND.linkmtu != 0) {
1513 if (ND.linkmtu < IPV6_MMTU ||
1514 ND.linkmtu > IN6_LINKMTU(ifp)) {
1515 error = EINVAL;
1516 break;
1517 }
1518 ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
1519 }
1520
1521 if (ND.basereachable != 0) {
1522 int obasereachable = ND_IFINFO(ifp)->basereachable;
1523
1524 ND_IFINFO(ifp)->basereachable = ND.basereachable;
1525 if (ND.basereachable != obasereachable)
1526 ND_IFINFO(ifp)->reachable =
1527 ND_COMPUTE_RTIME(ND.basereachable);
1528 }
1529 if (ND.retrans != 0)
1530 ND_IFINFO(ifp)->retrans = ND.retrans;
1531 if (ND.chlim != 0)
1532 ND_IFINFO(ifp)->chlim = ND.chlim;
1533 /* FALLTHROUGH */
1534 case SIOCSIFINFO_FLAGS:
1535 ND_IFINFO(ifp)->flags = ND.flags;
1536 break;
1537 #undef ND
1538 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
1539 /* sync kernel routing table with the default router list */
1540 defrouter_reset();
1541 defrouter_select();
1542 break;
1543 case SIOCSPFXFLUSH_IN6:
1544 {
1545 /* flush all the prefix advertised by routers */
1546 struct nd_prefix *pfx, *next;
1547
1548 s = splsoftnet();
1549 for (pfx = nd_prefix.lh_first; pfx; pfx = next) {
1550 struct in6_ifaddr *ia, *ia_next;
1551
1552 next = pfx->ndpr_next;
1553
1554 if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
1555 continue; /* XXX */
1556
1557 /* do we really have to remove addresses as well? */
1558 for (ia = in6_ifaddr; ia; ia = ia_next) {
1559 /* ia might be removed. keep the next ptr. */
1560 ia_next = ia->ia_next;
1561
1562 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
1563 continue;
1564
1565 if (ia->ia6_ndpr == pfx)
1566 in6_purgeaddr(&ia->ia_ifa);
1567 }
1568 prelist_remove(pfx);
1569 }
1570 splx(s);
1571 break;
1572 }
1573 case SIOCSRTRFLUSH_IN6:
1574 {
1575 /* flush all the default routers */
1576 struct nd_defrouter *drtr, *next;
1577
1578 s = splsoftnet();
1579 defrouter_reset();
1580 for (drtr = TAILQ_FIRST(&nd_defrouter); drtr; drtr = next) {
1581 next = TAILQ_NEXT(drtr, dr_entry);
1582 defrtrlist_del(drtr);
1583 }
1584 defrouter_select();
1585 splx(s);
1586 break;
1587 }
1588 case SIOCGNBRINFO_IN6:
1589 {
1590 struct llinfo_nd6 *ln;
1591 struct in6_addr nb_addr = nbi->addr; /* make local for safety */
1592
1593 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
1594 return (error);
1595
1596 s = splsoftnet();
1597 if ((rt = nd6_lookup(&nb_addr, 0, ifp)) == NULL ||
1598 (ln = (struct llinfo_nd6 *)rt->rt_llinfo) == NULL) {
1599 error = EINVAL;
1600 splx(s);
1601 break;
1602 }
1603 nbi->state = ln->ln_state;
1604 nbi->asked = ln->ln_asked;
1605 nbi->isrouter = ln->ln_router;
1606 nbi->expire = ln->ln_expire;
1607 splx(s);
1608
1609 break;
1610 }
1611 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1612 ndif->ifindex = nd6_defifindex;
1613 break;
1614 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
1615 return (nd6_setdefaultiface(ndif->ifindex));
1616 }
1617 return (error);
1618 }
1619
1620 /*
1621 * Create neighbor cache entry and cache link-layer address,
1622 * on reception of inbound ND6 packets. (RS/RA/NS/redirect)
1623 */
1624 struct rtentry *
1625 nd6_cache_lladdr(ifp, from, lladdr, lladdrlen, type, code)
1626 struct ifnet *ifp;
1627 struct in6_addr *from;
1628 char *lladdr;
1629 int lladdrlen;
1630 int type; /* ICMP6 type */
1631 int code; /* type dependent information */
1632 {
1633 struct rtentry *rt = NULL;
1634 struct llinfo_nd6 *ln = NULL;
1635 int is_newentry;
1636 struct sockaddr_dl *sdl = NULL;
1637 int do_update;
1638 int olladdr;
1639 int llchange;
1640 int newstate = 0;
1641
1642 if (ifp == NULL)
1643 panic("ifp == NULL in nd6_cache_lladdr");
1644 if (from == NULL)
1645 panic("from == NULL in nd6_cache_lladdr");
1646
1647 /* nothing must be updated for unspecified address */
1648 if (IN6_IS_ADDR_UNSPECIFIED(from))
1649 return NULL;
1650
1651 /*
1652 * Validation about ifp->if_addrlen and lladdrlen must be done in
1653 * the caller.
1654 *
1655 * XXX If the link does not have link-layer adderss, what should
1656 * we do? (ifp->if_addrlen == 0)
1657 * Spec says nothing in sections for RA, RS and NA. There's small
1658 * description on it in NS section (RFC 2461 7.2.3).
1659 */
1660
1661 rt = nd6_lookup(from, 0, ifp);
1662 if (rt == NULL) {
1663 #if 0
1664 /* nothing must be done if there's no lladdr */
1665 if (!lladdr || !lladdrlen)
1666 return NULL;
1667 #endif
1668
1669 rt = nd6_lookup(from, 1, ifp);
1670 is_newentry = 1;
1671 } else {
1672 /* do nothing if static ndp is set */
1673 if (rt->rt_flags & RTF_STATIC)
1674 return NULL;
1675 is_newentry = 0;
1676 }
1677
1678 if (rt == NULL)
1679 return NULL;
1680 if ((rt->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) != RTF_LLINFO) {
1681 fail:
1682 (void)nd6_free(rt, 0);
1683 return NULL;
1684 }
1685 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1686 if (ln == NULL)
1687 goto fail;
1688 if (rt->rt_gateway == NULL)
1689 goto fail;
1690 if (rt->rt_gateway->sa_family != AF_LINK)
1691 goto fail;
1692 sdl = SDL(rt->rt_gateway);
1693
1694 olladdr = (sdl->sdl_alen) ? 1 : 0;
1695 if (olladdr && lladdr) {
1696 if (bcmp(lladdr, LLADDR(sdl), ifp->if_addrlen))
1697 llchange = 1;
1698 else
1699 llchange = 0;
1700 } else
1701 llchange = 0;
1702
1703 /*
1704 * newentry olladdr lladdr llchange (*=record)
1705 * 0 n n -- (1)
1706 * 0 y n -- (2)
1707 * 0 n y -- (3) * STALE
1708 * 0 y y n (4) *
1709 * 0 y y y (5) * STALE
1710 * 1 -- n -- (6) NOSTATE(= PASSIVE)
1711 * 1 -- y -- (7) * STALE
1712 */
1713
1714 if (lladdr) { /* (3-5) and (7) */
1715 /*
1716 * Record source link-layer address
1717 * XXX is it dependent to ifp->if_type?
1718 */
1719 sdl->sdl_alen = ifp->if_addrlen;
1720 bcopy(lladdr, LLADDR(sdl), ifp->if_addrlen);
1721 }
1722
1723 if (!is_newentry) {
1724 if ((!olladdr && lladdr) || /* (3) */
1725 (olladdr && lladdr && llchange)) { /* (5) */
1726 do_update = 1;
1727 newstate = ND6_LLINFO_STALE;
1728 } else /* (1-2,4) */
1729 do_update = 0;
1730 } else {
1731 do_update = 1;
1732 if (lladdr == NULL) /* (6) */
1733 newstate = ND6_LLINFO_NOSTATE;
1734 else /* (7) */
1735 newstate = ND6_LLINFO_STALE;
1736 }
1737
1738 if (do_update) {
1739 /*
1740 * Update the state of the neighbor cache.
1741 */
1742 ln->ln_state = newstate;
1743
1744 if (ln->ln_state == ND6_LLINFO_STALE) {
1745 /*
1746 * XXX: since nd6_output() below will cause
1747 * state tansition to DELAY and reset the timer,
1748 * we must set the timer now, although it is actually
1749 * meaningless.
1750 */
1751 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
1752
1753 if (ln->ln_hold) {
1754 struct mbuf *m_hold, *m_hold_next;
1755 for (m_hold = ln->ln_hold; m_hold;
1756 m_hold = m_hold_next) {
1757 struct mbuf *mpkt = NULL;
1758
1759 m_hold_next = m_hold->m_nextpkt;
1760 mpkt = m_copym(m_hold, 0, M_COPYALL, M_DONTWAIT);
1761 if (mpkt == NULL) {
1762 m_freem(m_hold);
1763 break;
1764 }
1765 mpkt->m_nextpkt = NULL;
1766
1767 /*
1768 * we assume ifp is not a p2p here, so
1769 * just set the 2nd argument as the
1770 * 1st one.
1771 */
1772 nd6_output(ifp, ifp, mpkt,
1773 (struct sockaddr_in6 *)rt_key(rt),
1774 rt);
1775 }
1776 ln->ln_hold = NULL;
1777 }
1778 } else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
1779 /* probe right away */
1780 nd6_llinfo_settimer((void *)ln, 0);
1781 }
1782 }
1783
1784 /*
1785 * ICMP6 type dependent behavior.
1786 *
1787 * NS: clear IsRouter if new entry
1788 * RS: clear IsRouter
1789 * RA: set IsRouter if there's lladdr
1790 * redir: clear IsRouter if new entry
1791 *
1792 * RA case, (1):
1793 * The spec says that we must set IsRouter in the following cases:
1794 * - If lladdr exist, set IsRouter. This means (1-5).
1795 * - If it is old entry (!newentry), set IsRouter. This means (7).
1796 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
1797 * A quetion arises for (1) case. (1) case has no lladdr in the
1798 * neighbor cache, this is similar to (6).
1799 * This case is rare but we figured that we MUST NOT set IsRouter.
1800 *
1801 * newentry olladdr lladdr llchange NS RS RA redir
1802 * D R
1803 * 0 n n -- (1) c ? s
1804 * 0 y n -- (2) c s s
1805 * 0 n y -- (3) c s s
1806 * 0 y y n (4) c s s
1807 * 0 y y y (5) c s s
1808 * 1 -- n -- (6) c c c s
1809 * 1 -- y -- (7) c c s c s
1810 *
1811 * (c=clear s=set)
1812 */
1813 switch (type & 0xff) {
1814 case ND_NEIGHBOR_SOLICIT:
1815 /*
1816 * New entry must have is_router flag cleared.
1817 */
1818 if (is_newentry) /* (6-7) */
1819 ln->ln_router = 0;
1820 break;
1821 case ND_REDIRECT:
1822 /*
1823 * If the icmp is a redirect to a better router, always set the
1824 * is_router flag. Otherwise, if the entry is newly created,
1825 * clear the flag. [RFC 2461, sec 8.3]
1826 */
1827 if (code == ND_REDIRECT_ROUTER)
1828 ln->ln_router = 1;
1829 else if (is_newentry) /* (6-7) */
1830 ln->ln_router = 0;
1831 break;
1832 case ND_ROUTER_SOLICIT:
1833 /*
1834 * is_router flag must always be cleared.
1835 */
1836 ln->ln_router = 0;
1837 break;
1838 case ND_ROUTER_ADVERT:
1839 /*
1840 * Mark an entry with lladdr as a router.
1841 */
1842 if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
1843 (is_newentry && lladdr)) { /* (7) */
1844 ln->ln_router = 1;
1845 }
1846 break;
1847 }
1848
1849 /*
1850 * When the link-layer address of a router changes, select the
1851 * best router again. In particular, when the neighbor entry is newly
1852 * created, it might affect the selection policy.
1853 * Question: can we restrict the first condition to the "is_newentry"
1854 * case?
1855 * XXX: when we hear an RA from a new router with the link-layer
1856 * address option, defrouter_select() is called twice, since
1857 * defrtrlist_update called the function as well. However, I believe
1858 * we can compromise the overhead, since it only happens the first
1859 * time.
1860 * XXX: although defrouter_select() should not have a bad effect
1861 * for those are not autoconfigured hosts, we explicitly avoid such
1862 * cases for safety.
1863 */
1864 if (do_update && ln->ln_router && !ip6_forwarding && ip6_accept_rtadv)
1865 defrouter_select();
1866
1867 return rt;
1868 }
1869
1870 static void
1871 nd6_slowtimo(ignored_arg)
1872 void *ignored_arg;
1873 {
1874 int s = splsoftnet();
1875 struct nd_ifinfo *nd6if;
1876 struct ifnet *ifp;
1877
1878 callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
1879 nd6_slowtimo, NULL);
1880 for (ifp = TAILQ_FIRST(&ifnet); ifp; ifp = TAILQ_NEXT(ifp, if_list))
1881 {
1882 nd6if = ND_IFINFO(ifp);
1883 if (nd6if->basereachable && /* already initialized */
1884 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
1885 /*
1886 * Since reachable time rarely changes by router
1887 * advertisements, we SHOULD insure that a new random
1888 * value gets recomputed at least once every few hours.
1889 * (RFC 2461, 6.3.4)
1890 */
1891 nd6if->recalctm = nd6_recalc_reachtm_interval;
1892 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
1893 }
1894 }
1895 splx(s);
1896 }
1897
1898 #define senderr(e) { error = (e); goto bad;}
1899 int
1900 nd6_output(ifp, origifp, m0, dst, rt0)
1901 struct ifnet *ifp;
1902 struct ifnet *origifp;
1903 struct mbuf *m0;
1904 struct sockaddr_in6 *dst;
1905 struct rtentry *rt0;
1906 {
1907 struct mbuf *m = m0;
1908 struct rtentry *rt = rt0;
1909 struct sockaddr_in6 *gw6 = NULL;
1910 struct llinfo_nd6 *ln = NULL;
1911 int error = 0;
1912
1913 if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
1914 goto sendpkt;
1915
1916 if (nd6_need_cache(ifp) == 0)
1917 goto sendpkt;
1918
1919 /*
1920 * next hop determination. This routine is derived from ether_output.
1921 */
1922 if (rt) {
1923 if ((rt->rt_flags & RTF_UP) == 0) {
1924 if ((rt0 = rt = rtalloc1((struct sockaddr *)dst,
1925 1)) != NULL)
1926 {
1927 rt->rt_refcnt--;
1928 if (rt->rt_ifp != ifp)
1929 senderr(EHOSTUNREACH);
1930 } else
1931 senderr(EHOSTUNREACH);
1932 }
1933
1934 if (rt->rt_flags & RTF_GATEWAY) {
1935 gw6 = (struct sockaddr_in6 *)rt->rt_gateway;
1936
1937 /*
1938 * We skip link-layer address resolution and NUD
1939 * if the gateway is not a neighbor from ND point
1940 * of view, regardless of the value of nd_ifinfo.flags.
1941 * The second condition is a bit tricky; we skip
1942 * if the gateway is our own address, which is
1943 * sometimes used to install a route to a p2p link.
1944 */
1945 if (!nd6_is_addr_neighbor(gw6, ifp) ||
1946 in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
1947 /*
1948 * We allow this kind of tricky route only
1949 * when the outgoing interface is p2p.
1950 * XXX: we may need a more generic rule here.
1951 */
1952 if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
1953 senderr(EHOSTUNREACH);
1954
1955 goto sendpkt;
1956 }
1957
1958 if (rt->rt_gwroute == 0)
1959 goto lookup;
1960 if (((rt = rt->rt_gwroute)->rt_flags & RTF_UP) == 0) {
1961 rtfree(rt); rt = rt0;
1962 lookup:
1963 rt->rt_gwroute = rtalloc1(rt->rt_gateway, 1);
1964 if ((rt = rt->rt_gwroute) == 0)
1965 senderr(EHOSTUNREACH);
1966 /* the "G" test below also prevents rt == rt0 */
1967 if ((rt->rt_flags & RTF_GATEWAY) ||
1968 (rt->rt_ifp != ifp)) {
1969 rt->rt_refcnt--;
1970 rt0->rt_gwroute = 0;
1971 senderr(EHOSTUNREACH);
1972 }
1973 }
1974 }
1975 }
1976
1977 /*
1978 * Address resolution or Neighbor Unreachability Detection
1979 * for the next hop.
1980 * At this point, the destination of the packet must be a unicast
1981 * or an anycast address(i.e. not a multicast).
1982 */
1983
1984 /* Look up the neighbor cache for the nexthop */
1985 if (rt && (rt->rt_flags & RTF_LLINFO) != 0)
1986 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1987 else {
1988 /*
1989 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
1990 * the condition below is not very efficient. But we believe
1991 * it is tolerable, because this should be a rare case.
1992 */
1993 if (nd6_is_addr_neighbor(dst, ifp) &&
1994 (rt = nd6_lookup(&dst->sin6_addr, 1, ifp)) != NULL)
1995 ln = (struct llinfo_nd6 *)rt->rt_llinfo;
1996 }
1997 if (ln == NULL || rt == NULL) {
1998 if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
1999 !(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
2000 log(LOG_DEBUG,
2001 "nd6_output: can't allocate llinfo for %s "
2002 "(ln=%p, rt=%p)\n",
2003 ip6_sprintf(&dst->sin6_addr), ln, rt);
2004 senderr(EIO); /* XXX: good error? */
2005 }
2006
2007 goto sendpkt; /* send anyway */
2008 }
2009
2010 /* We don't have to do link-layer address resolution on a p2p link. */
2011 if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
2012 ln->ln_state < ND6_LLINFO_REACHABLE) {
2013 ln->ln_state = ND6_LLINFO_STALE;
2014 nd6_llinfo_settimer(ln, (long)nd6_gctimer * hz);
2015 }
2016
2017 /*
2018 * The first time we send a packet to a neighbor whose entry is
2019 * STALE, we have to change the state to DELAY and a sets a timer to
2020 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
2021 * neighbor unreachability detection on expiration.
2022 * (RFC 2461 7.3.3)
2023 */
2024 if (ln->ln_state == ND6_LLINFO_STALE) {
2025 ln->ln_asked = 0;
2026 ln->ln_state = ND6_LLINFO_DELAY;
2027 nd6_llinfo_settimer(ln, (long)nd6_delay * hz);
2028 }
2029
2030 /*
2031 * If the neighbor cache entry has a state other than INCOMPLETE
2032 * (i.e. its link-layer address is already resolved), just
2033 * send the packet.
2034 */
2035 if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
2036 goto sendpkt;
2037
2038 /*
2039 * There is a neighbor cache entry, but no ethernet address
2040 * response yet. Append this latest packet to the end of the
2041 * packet queue in the mbuf, unless the number of the packet
2042 * does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen,
2043 * the oldest packet in the queue will be removed.
2044 */
2045 if (ln->ln_state == ND6_LLINFO_NOSTATE)
2046 ln->ln_state = ND6_LLINFO_INCOMPLETE;
2047 if (ln->ln_hold) {
2048 struct mbuf *m_hold;
2049 int i;
2050
2051 i = 0;
2052 for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
2053 i++;
2054 if (m_hold->m_nextpkt == NULL) {
2055 m_hold->m_nextpkt = m;
2056 break;
2057 }
2058 }
2059 while (i >= nd6_maxqueuelen) {
2060 m_hold = ln->ln_hold;
2061 ln->ln_hold = ln->ln_hold->m_nextpkt;
2062 m_free(m_hold);
2063 i--;
2064 }
2065 } else {
2066 ln->ln_hold = m;
2067 }
2068
2069 /*
2070 * If there has been no NS for the neighbor after entering the
2071 * INCOMPLETE state, send the first solicitation.
2072 */
2073 if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
2074 ln->ln_asked++;
2075 nd6_llinfo_settimer(ln,
2076 (long)ND_IFINFO(ifp)->retrans * hz / 1000);
2077 nd6_ns_output(ifp, NULL, &dst->sin6_addr, ln, 0);
2078 }
2079 return (0);
2080
2081 sendpkt:
2082 /* discard the packet if IPv6 operation is disabled on the interface */
2083 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
2084 error = ENETDOWN; /* better error? */
2085 goto bad;
2086 }
2087
2088 #ifdef IPSEC
2089 /* clean ipsec history once it goes out of the node */
2090 ipsec_delaux(m);
2091 #endif
2092 if ((ifp->if_flags & IFF_LOOPBACK) != 0) {
2093 return ((*ifp->if_output)(origifp, m, (struct sockaddr *)dst,
2094 rt));
2095 }
2096 return ((*ifp->if_output)(ifp, m, (struct sockaddr *)dst, rt));
2097
2098 bad:
2099 if (m)
2100 m_freem(m);
2101 return (error);
2102 }
2103 #undef senderr
2104
2105 int
2106 nd6_need_cache(ifp)
2107 struct ifnet *ifp;
2108 {
2109 /*
2110 * XXX: we currently do not make neighbor cache on any interface
2111 * other than ARCnet, Ethernet, FDDI and GIF.
2112 *
2113 * RFC2893 says:
2114 * - unidirectional tunnels needs no ND
2115 */
2116 switch (ifp->if_type) {
2117 case IFT_ARCNET:
2118 case IFT_ETHER:
2119 case IFT_FDDI:
2120 case IFT_IEEE1394:
2121 case IFT_GIF: /* XXX need more cases? */
2122 case IFT_PPP:
2123 case IFT_TUNNEL:
2124 return (1);
2125 default:
2126 return (0);
2127 }
2128 }
2129
2130 int
2131 nd6_storelladdr(ifp, rt, m, dst, desten)
2132 struct ifnet *ifp;
2133 struct rtentry *rt;
2134 struct mbuf *m;
2135 struct sockaddr *dst;
2136 u_char *desten;
2137 {
2138 struct sockaddr_dl *sdl;
2139
2140 if (m->m_flags & M_MCAST) {
2141 switch (ifp->if_type) {
2142 case IFT_ETHER:
2143 case IFT_FDDI:
2144 ETHER_MAP_IPV6_MULTICAST(&SIN6(dst)->sin6_addr,
2145 desten);
2146 return (1);
2147 case IFT_IEEE1394:
2148 bcopy(ifp->if_broadcastaddr, desten, ifp->if_addrlen);
2149 return (1);
2150 case IFT_ARCNET:
2151 *desten = 0;
2152 return (1);
2153 default:
2154 m_freem(m);
2155 return (0);
2156 }
2157 }
2158
2159 if (rt == NULL) {
2160 /* this could happen, if we could not allocate memory */
2161 m_freem(m);
2162 return (0);
2163 }
2164 if (rt->rt_gateway->sa_family != AF_LINK) {
2165 printf("nd6_storelladdr: something odd happens\n");
2166 m_freem(m);
2167 return (0);
2168 }
2169 sdl = SDL(rt->rt_gateway);
2170 if (sdl->sdl_alen == 0) {
2171 /* this should be impossible, but we bark here for debugging */
2172 printf("nd6_storelladdr: sdl_alen == 0, dst=%s, if=%s\n",
2173 ip6_sprintf(&SIN6(dst)->sin6_addr), if_name(ifp));
2174 m_freem(m);
2175 return (0);
2176 }
2177
2178 bcopy(LLADDR(sdl), desten, sdl->sdl_alen);
2179 return (1);
2180 }
2181
2182 int
2183 nd6_sysctl(name, oldp, oldlenp, newp, newlen)
2184 int name;
2185 void *oldp; /* syscall arg, need copyout */
2186 size_t *oldlenp;
2187 void *newp; /* syscall arg, need copyin */
2188 size_t newlen;
2189 {
2190 void *p;
2191 size_t ol;
2192 int error;
2193
2194 error = 0;
2195
2196 if (newp)
2197 return EPERM;
2198 if (oldp && !oldlenp)
2199 return EINVAL;
2200 ol = oldlenp ? *oldlenp : 0;
2201
2202 if (oldp) {
2203 p = malloc(*oldlenp, M_TEMP, M_WAITOK);
2204 if (p == NULL)
2205 return ENOMEM;
2206 } else
2207 p = NULL;
2208 switch (name) {
2209 case ICMPV6CTL_ND6_DRLIST:
2210 error = fill_drlist(p, oldlenp, ol);
2211 if (!error && p != NULL && oldp != NULL)
2212 error = copyout(p, oldp, *oldlenp);
2213 break;
2214
2215 case ICMPV6CTL_ND6_PRLIST:
2216 error = fill_prlist(p, oldlenp, ol);
2217 if (!error && p != NULL && oldp != NULL)
2218 error = copyout(p, oldp, *oldlenp);
2219 break;
2220
2221 case ICMPV6CTL_ND6_MAXQLEN:
2222 break;
2223
2224 default:
2225 error = ENOPROTOOPT;
2226 break;
2227 }
2228 if (p)
2229 free(p, M_TEMP);
2230
2231 return (error);
2232 }
2233
2234 static int
2235 fill_drlist(oldp, oldlenp, ol)
2236 void *oldp;
2237 size_t *oldlenp, ol;
2238 {
2239 int error = 0, s;
2240 struct in6_defrouter *d = NULL, *de = NULL;
2241 struct nd_defrouter *dr;
2242 size_t l;
2243
2244 s = splsoftnet();
2245
2246 if (oldp) {
2247 d = (struct in6_defrouter *)oldp;
2248 de = (struct in6_defrouter *)((caddr_t)oldp + *oldlenp);
2249 }
2250 l = 0;
2251
2252 for (dr = TAILQ_FIRST(&nd_defrouter); dr;
2253 dr = TAILQ_NEXT(dr, dr_entry)) {
2254
2255 if (oldp && d + 1 <= de) {
2256 bzero(d, sizeof(*d));
2257 d->rtaddr.sin6_family = AF_INET6;
2258 d->rtaddr.sin6_len = sizeof(struct sockaddr_in6);
2259 d->rtaddr.sin6_addr = dr->rtaddr;
2260 if (sa6_recoverscope(&d->rtaddr)) {
2261 log(LOG_ERR,
2262 "scope error in router list (%s)\n",
2263 ip6_sprintf(&d->rtaddr.sin6_addr));
2264 /* XXX: press on... */
2265 }
2266 d->flags = dr->flags;
2267 d->rtlifetime = dr->rtlifetime;
2268 d->expire = dr->expire;
2269 d->if_index = dr->ifp->if_index;
2270 }
2271
2272 l += sizeof(*d);
2273 if (d)
2274 d++;
2275 }
2276
2277 if (oldp) {
2278 *oldlenp = l; /* (caddr_t)d - (caddr_t)oldp */
2279 if (l > ol)
2280 error = ENOMEM;
2281 } else
2282 *oldlenp = l;
2283
2284 splx(s);
2285
2286 return (error);
2287 }
2288
2289 static int
2290 fill_prlist(oldp, oldlenp, ol)
2291 void *oldp;
2292 size_t *oldlenp, ol;
2293 {
2294 int error = 0, s;
2295 struct nd_prefix *pr;
2296 struct in6_prefix *p = NULL;
2297 struct in6_prefix *pe = NULL;
2298 size_t l;
2299
2300 s = splsoftnet();
2301
2302 if (oldp) {
2303 p = (struct in6_prefix *)oldp;
2304 pe = (struct in6_prefix *)((caddr_t)oldp + *oldlenp);
2305 }
2306 l = 0;
2307
2308 for (pr = nd_prefix.lh_first; pr; pr = pr->ndpr_next) {
2309 u_short advrtrs;
2310 size_t advance;
2311 struct sockaddr_in6 *sin6;
2312 struct sockaddr_in6 *s6;
2313 struct nd_pfxrouter *pfr;
2314
2315 if (oldp && p + 1 <= pe)
2316 {
2317 bzero(p, sizeof(*p));
2318 sin6 = (struct sockaddr_in6 *)(p + 1);
2319
2320 p->prefix = pr->ndpr_prefix;
2321 if (sa6_recoverscope(&p->prefix)) {
2322 log(LOG_ERR,
2323 "scope error in prefix list (%s)\n",
2324 ip6_sprintf(&p->prefix.sin6_addr));
2325 /* XXX: press on... */
2326 }
2327 p->raflags = pr->ndpr_raf;
2328 p->prefixlen = pr->ndpr_plen;
2329 p->vltime = pr->ndpr_vltime;
2330 p->pltime = pr->ndpr_pltime;
2331 p->if_index = pr->ndpr_ifp->if_index;
2332 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
2333 p->expire = 0;
2334 else {
2335 time_t maxexpire;
2336
2337 /* XXX: we assume time_t is signed. */
2338 maxexpire = (-1) &
2339 ~((time_t)1 <<
2340 ((sizeof(maxexpire) * 8) - 1));
2341 if (pr->ndpr_vltime <
2342 maxexpire - pr->ndpr_lastupdate) {
2343 p->expire = pr->ndpr_lastupdate +
2344 pr->ndpr_vltime;
2345 } else
2346 p->expire = maxexpire;
2347 }
2348 p->refcnt = pr->ndpr_refcnt;
2349 p->flags = pr->ndpr_stateflags;
2350 p->origin = PR_ORIG_RA;
2351 advrtrs = 0;
2352 for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2353 pfr = pfr->pfr_next) {
2354 if ((void *)&sin6[advrtrs + 1] > (void *)pe) {
2355 advrtrs++;
2356 continue;
2357 }
2358 s6 = &sin6[advrtrs];
2359 s6->sin6_family = AF_INET6;
2360 s6->sin6_len = sizeof(struct sockaddr_in6);
2361 s6->sin6_addr = pfr->router->rtaddr;
2362 s6->sin6_scope_id = 0;
2363 if (sa6_recoverscope(s6)) {
2364 log(LOG_ERR,
2365 "scope error in "
2366 "prefix list (%s)\n",
2367 ip6_sprintf(&pfr->router->rtaddr));
2368 }
2369 advrtrs++;
2370 }
2371 p->advrtrs = advrtrs;
2372 }
2373 else {
2374 advrtrs = 0;
2375 for (pfr = pr->ndpr_advrtrs.lh_first; pfr;
2376 pfr = pfr->pfr_next)
2377 advrtrs++;
2378 }
2379
2380 advance = sizeof(*p) + sizeof(*sin6) * advrtrs;
2381 l += advance;
2382 if (p)
2383 p = (struct in6_prefix *)((caddr_t)p + advance);
2384 }
2385
2386 if (oldp) {
2387 *oldlenp = l; /* (caddr_t)d - (caddr_t)oldp */
2388 if (l > ol)
2389 error = ENOMEM;
2390 } else
2391 *oldlenp = l;
2392
2393 splx(s);
2394
2395 return (error);
2396 }
2397