udp6_usrreq.c revision 1.136 1 /* $NetBSD: udp6_usrreq.c,v 1.136 2018/02/28 11:09:03 maxv Exp $ */
2 /* $KAME: udp6_usrreq.c,v 1.86 2001/05/27 17:33:00 itojun Exp $ */
3 /* $KAME: udp6_output.c,v 1.43 2001/10/15 09:19:52 itojun Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (c) 1982, 1986, 1989, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)udp_var.h 8.1 (Berkeley) 6/10/93
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: udp6_usrreq.c,v 1.136 2018/02/28 11:09:03 maxv Exp $");
67
68 #ifdef _KERNEL_OPT
69 #include "opt_inet.h"
70 #include "opt_inet_csum.h"
71 #include "opt_ipsec.h"
72 #include "opt_net_mpsafe.h"
73 #endif
74
75 #include <sys/param.h>
76 #include <sys/mbuf.h>
77 #include <sys/protosw.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/syslog.h>
83 #include <sys/domain.h>
84 #include <sys/sysctl.h>
85
86 #include <net/if.h>
87 #include <net/if_types.h>
88
89 #include <netinet/in.h>
90 #include <netinet/in_var.h>
91 #include <netinet/in_systm.h>
92 #include <netinet/in_offload.h>
93 #include <netinet/ip.h>
94 #include <netinet/ip_var.h>
95 #include <netinet/in_pcb.h>
96 #include <netinet/udp.h>
97 #include <netinet/udp_var.h>
98 #include <netinet/udp_private.h>
99
100 #include <netinet/ip6.h>
101 #include <netinet/icmp6.h>
102 #include <netinet6/ip6_var.h>
103 #include <netinet6/ip6_private.h>
104 #include <netinet6/in6_pcb.h>
105 #include <netinet6/udp6_var.h>
106 #include <netinet6/udp6_private.h>
107 #include <netinet6/ip6protosw.h>
108 #include <netinet6/scope6_var.h>
109
110 #ifdef IPSEC
111 #include <netipsec/ipsec.h>
112 #include <netipsec/ipsec_var.h>
113 #include <netipsec/ipsec_private.h>
114 #ifdef INET6
115 #include <netipsec/ipsec6.h>
116 #endif
117 #endif
118
119 #include "faith.h"
120 #if defined(NFAITH) && NFAITH > 0
121 #include <net/if_faith.h>
122 #endif
123
124 /*
125 * UDP protocol implementation.
126 * Per RFC 768, August, 1980.
127 */
128
129 extern struct inpcbtable udbtable;
130
131 percpu_t *udp6stat_percpu;
132
133 /* UDP on IP6 parameters */
134 static int udp6_sendspace = 9216; /* really max datagram size */
135 static int udp6_recvspace = 40 * (1024 + sizeof(struct sockaddr_in6));
136 /* 40 1K datagrams */
137
138 static void udp6_notify(struct in6pcb *, int);
139 static void sysctl_net_inet6_udp6_setup(struct sysctllog **);
140
141 #ifdef UDP_CSUM_COUNTERS
142 #include <sys/device.h>
143 struct evcnt udp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
144 NULL, "udp6", "hwcsum bad");
145 struct evcnt udp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
146 NULL, "udp6", "hwcsum ok");
147 struct evcnt udp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
148 NULL, "udp6", "hwcsum data");
149 struct evcnt udp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
150 NULL, "udp6", "swcsum");
151
152 EVCNT_ATTACH_STATIC(udp6_hwcsum_bad);
153 EVCNT_ATTACH_STATIC(udp6_hwcsum_ok);
154 EVCNT_ATTACH_STATIC(udp6_hwcsum_data);
155 EVCNT_ATTACH_STATIC(udp6_swcsum);
156
157 #define UDP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
158 #else
159 #define UDP_CSUM_COUNTER_INCR(ev) /* nothing */
160 #endif
161
162 void
163 udp6_init(void)
164 {
165 sysctl_net_inet6_udp6_setup(NULL);
166 udp6stat_percpu = percpu_alloc(sizeof(uint64_t) * UDP6_NSTATS);
167
168 udp_init_common();
169 }
170
171 /*
172 * Notify a udp user of an asynchronous error;
173 * just wake up so that he can collect error status.
174 */
175 static void
176 udp6_notify(struct in6pcb *in6p, int errno)
177 {
178 in6p->in6p_socket->so_error = errno;
179 sorwakeup(in6p->in6p_socket);
180 sowwakeup(in6p->in6p_socket);
181 }
182
183 void *
184 udp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
185 {
186 struct udphdr uh;
187 struct ip6_hdr *ip6;
188 const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
189 struct mbuf *m;
190 int off;
191 void *cmdarg;
192 struct ip6ctlparam *ip6cp = NULL;
193 const struct sockaddr_in6 *sa6_src = NULL;
194 void (*notify)(struct in6pcb *, int) = udp6_notify;
195 struct udp_portonly {
196 u_int16_t uh_sport;
197 u_int16_t uh_dport;
198 } *uhp;
199
200 if (sa->sa_family != AF_INET6 ||
201 sa->sa_len != sizeof(struct sockaddr_in6))
202 return NULL;
203
204 if ((unsigned)cmd >= PRC_NCMDS)
205 return NULL;
206 if (PRC_IS_REDIRECT(cmd))
207 notify = in6_rtchange, d = NULL;
208 else if (cmd == PRC_HOSTDEAD)
209 d = NULL;
210 else if (cmd == PRC_MSGSIZE) {
211 /* special code is present, see below */
212 notify = in6_rtchange;
213 }
214 else if (inet6ctlerrmap[cmd] == 0)
215 return NULL;
216
217 /* if the parameter is from icmp6, decode it. */
218 if (d != NULL) {
219 ip6cp = (struct ip6ctlparam *)d;
220 m = ip6cp->ip6c_m;
221 ip6 = ip6cp->ip6c_ip6;
222 off = ip6cp->ip6c_off;
223 cmdarg = ip6cp->ip6c_cmdarg;
224 sa6_src = ip6cp->ip6c_src;
225 } else {
226 m = NULL;
227 ip6 = NULL;
228 cmdarg = NULL;
229 sa6_src = &sa6_any;
230 off = 0;
231 }
232
233 if (ip6) {
234 /*
235 * XXX: We assume that when IPV6 is non NULL,
236 * M and OFF are valid.
237 */
238
239 /* check if we can safely examine src and dst ports */
240 if (m->m_pkthdr.len < off + sizeof(*uhp)) {
241 if (cmd == PRC_MSGSIZE)
242 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
243 return NULL;
244 }
245
246 memset(&uh, 0, sizeof(uh));
247 m_copydata(m, off, sizeof(*uhp), (void *)&uh);
248
249 if (cmd == PRC_MSGSIZE) {
250 int valid = 0;
251
252 /*
253 * Check to see if we have a valid UDP socket
254 * corresponding to the address in the ICMPv6 message
255 * payload.
256 */
257 if (in6_pcblookup_connect(&udbtable, &sa6->sin6_addr,
258 uh.uh_dport, (const struct in6_addr *)&sa6_src->sin6_addr,
259 uh.uh_sport, 0, 0))
260 valid++;
261 #if 0
262 /*
263 * As the use of sendto(2) is fairly popular,
264 * we may want to allow non-connected pcb too.
265 * But it could be too weak against attacks...
266 * We should at least check if the local address (= s)
267 * is really ours.
268 */
269 else if (in6_pcblookup_bind(&udbtable, &sa6->sin6_addr,
270 uh.uh_dport, 0))
271 valid++;
272 #endif
273
274 /*
275 * Depending on the value of "valid" and routing table
276 * size (mtudisc_{hi,lo}wat), we will:
277 * - recalculate the new MTU and create the
278 * corresponding routing entry, or
279 * - ignore the MTU change notification.
280 */
281 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
282
283 /*
284 * regardless of if we called
285 * icmp6_mtudisc_update(), we need to call
286 * in6_pcbnotify(), to notify path MTU change
287 * to the userland (RFC3542), because some
288 * unconnected sockets may share the same
289 * destination and want to know the path MTU.
290 */
291 }
292
293 (void)in6_pcbnotify(&udbtable, sa, uh.uh_dport,
294 sin6tocsa(sa6_src), uh.uh_sport, cmd, cmdarg,
295 notify);
296 } else {
297 (void)in6_pcbnotify(&udbtable, sa, 0,
298 sin6tocsa(sa6_src), 0, cmd, cmdarg, notify);
299 }
300 return NULL;
301 }
302
303 int
304 udp6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
305 {
306 int s;
307 int error = 0;
308 int family;
309
310 family = so->so_proto->pr_domain->dom_family;
311
312 s = splsoftnet();
313 switch (family) {
314 #ifdef INET
315 case PF_INET:
316 if (sopt->sopt_level != IPPROTO_UDP) {
317 error = ip_ctloutput(op, so, sopt);
318 goto end;
319 }
320 break;
321 #endif
322 #ifdef INET6
323 case PF_INET6:
324 if (sopt->sopt_level != IPPROTO_UDP) {
325 error = ip6_ctloutput(op, so, sopt);
326 goto end;
327 }
328 break;
329 #endif
330 default:
331 error = EAFNOSUPPORT;
332 goto end;
333 }
334 error = EINVAL;
335
336 end:
337 splx(s);
338 return error;
339 }
340
341 static void
342 udp6_sendup(struct mbuf *m, int off /* offset of data portion */,
343 struct sockaddr *src, struct socket *so)
344 {
345 struct mbuf *opts = NULL;
346 struct mbuf *n;
347 struct in6pcb *in6p;
348
349 KASSERT(so != NULL);
350 KASSERT(so->so_proto->pr_domain->dom_family == AF_INET6);
351 in6p = sotoin6pcb(so);
352 KASSERT(in6p != NULL);
353
354 #if defined(IPSEC)
355 /* check AH/ESP integrity. */
356 if (ipsec_used && ipsec_in_reject(m, in6p)) {
357 if ((n = m_copypacket(m, M_DONTWAIT)) != NULL)
358 icmp6_error(n, ICMP6_DST_UNREACH,
359 ICMP6_DST_UNREACH_ADMIN, 0);
360 return;
361 }
362 #endif
363
364 if ((n = m_copypacket(m, M_DONTWAIT)) != NULL) {
365 if (in6p->in6p_flags & IN6P_CONTROLOPTS ||
366 SOOPT_TIMESTAMP(in6p->in6p_socket->so_options)) {
367 struct ip6_hdr *ip6 = mtod(n, struct ip6_hdr *);
368 ip6_savecontrol(in6p, &opts, ip6, n);
369 }
370
371 m_adj(n, off);
372 if (sbappendaddr(&so->so_rcv, src, n, opts) == 0) {
373 m_freem(n);
374 if (opts)
375 m_freem(opts);
376 so->so_rcv.sb_overflowed++;
377 UDP6_STATINC(UDP6_STAT_FULLSOCK);
378 } else
379 sorwakeup(so);
380 }
381 }
382
383 int
384 udp6_realinput(int af, struct sockaddr_in6 *src, struct sockaddr_in6 *dst,
385 struct mbuf *m, int off)
386 {
387 u_int16_t sport, dport;
388 int rcvcnt;
389 struct in6_addr src6, *dst6;
390 const struct in_addr *dst4;
391 struct inpcb_hdr *inph;
392 struct in6pcb *in6p;
393
394 rcvcnt = 0;
395 off += sizeof(struct udphdr); /* now, offset of payload */
396
397 if (af != AF_INET && af != AF_INET6)
398 goto bad;
399 if (src->sin6_family != AF_INET6 || dst->sin6_family != AF_INET6)
400 goto bad;
401
402 src6 = src->sin6_addr;
403 if (sa6_recoverscope(src) != 0) {
404 /* XXX: should be impossible. */
405 goto bad;
406 }
407 sport = src->sin6_port;
408
409 dport = dst->sin6_port;
410 dst4 = (struct in_addr *)&dst->sin6_addr.s6_addr[12];
411 dst6 = &dst->sin6_addr;
412
413 if (IN6_IS_ADDR_MULTICAST(dst6) ||
414 (af == AF_INET && IN_MULTICAST(dst4->s_addr))) {
415 /*
416 * Deliver a multicast or broadcast datagram to *all* sockets
417 * for which the local and remote addresses and ports match
418 * those of the incoming datagram. This allows more than
419 * one process to receive multi/broadcasts on the same port.
420 * (This really ought to be done for unicast datagrams as
421 * well, but that would cause problems with existing
422 * applications that open both address-specific sockets and
423 * a wildcard socket listening to the same port -- they would
424 * end up receiving duplicates of every unicast datagram.
425 * Those applications open the multiple sockets to overcome an
426 * inadequacy of the UDP socket interface, but for backwards
427 * compatibility we avoid the problem here rather than
428 * fixing the interface. Maybe 4.5BSD will remedy this?)
429 */
430
431 /*
432 * KAME note: traditionally we dropped udpiphdr from mbuf here.
433 * we need udpiphdr for IPsec processing so we do that later.
434 */
435 /*
436 * Locate pcb(s) for datagram.
437 */
438 TAILQ_FOREACH(inph, &udbtable.inpt_queue, inph_queue) {
439 in6p = (struct in6pcb *)inph;
440 if (in6p->in6p_af != AF_INET6)
441 continue;
442
443 if (in6p->in6p_lport != dport)
444 continue;
445 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
446 if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_laddr,
447 dst6))
448 continue;
449 } else {
450 if (IN6_IS_ADDR_V4MAPPED(dst6) &&
451 (in6p->in6p_flags & IN6P_IPV6_V6ONLY))
452 continue;
453 }
454 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) {
455 if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_faddr,
456 &src6) || in6p->in6p_fport != sport)
457 continue;
458 } else {
459 if (IN6_IS_ADDR_V4MAPPED(&src6) &&
460 (in6p->in6p_flags & IN6P_IPV6_V6ONLY))
461 continue;
462 }
463
464 udp6_sendup(m, off, sin6tosa(src), in6p->in6p_socket);
465 rcvcnt++;
466
467 /*
468 * Don't look for additional matches if this one does
469 * not have either the SO_REUSEPORT or SO_REUSEADDR
470 * socket options set. This heuristic avoids searching
471 * through all pcbs in the common case of a non-shared
472 * port. It assumes that an application will never
473 * clear these options after setting them.
474 */
475 if ((in6p->in6p_socket->so_options &
476 (SO_REUSEPORT|SO_REUSEADDR)) == 0)
477 break;
478 }
479 } else {
480 /*
481 * Locate pcb for datagram.
482 */
483 in6p = in6_pcblookup_connect(&udbtable, &src6, sport, dst6,
484 dport, 0, 0);
485 if (in6p == 0) {
486 UDP_STATINC(UDP_STAT_PCBHASHMISS);
487 in6p = in6_pcblookup_bind(&udbtable, dst6, dport, 0);
488 if (in6p == 0)
489 return rcvcnt;
490 }
491
492 udp6_sendup(m, off, sin6tosa(src), in6p->in6p_socket);
493 rcvcnt++;
494 }
495
496 bad:
497 return rcvcnt;
498 }
499
500 int
501 udp6_input_checksum(struct mbuf *m, const struct udphdr *uh, int off, int len)
502 {
503
504 /*
505 * XXX it's better to record and check if this mbuf is
506 * already checked.
507 */
508
509 if (__predict_false((m->m_flags & M_LOOP) && !udp_do_loopback_cksum)) {
510 goto good;
511 }
512 if (uh->uh_sum == 0) {
513 UDP6_STATINC(UDP6_STAT_NOSUM);
514 goto bad;
515 }
516
517 switch (m->m_pkthdr.csum_flags &
518 ((m_get_rcvif_NOMPSAFE(m)->if_csum_flags_rx & M_CSUM_UDPv6) |
519 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
520 case M_CSUM_UDPv6|M_CSUM_TCP_UDP_BAD:
521 UDP_CSUM_COUNTER_INCR(&udp6_hwcsum_bad);
522 UDP6_STATINC(UDP6_STAT_BADSUM);
523 goto bad;
524
525 #if 0 /* notyet */
526 case M_CSUM_UDPv6|M_CSUM_DATA:
527 #endif
528
529 case M_CSUM_UDPv6:
530 /* Checksum was okay. */
531 UDP_CSUM_COUNTER_INCR(&udp6_hwcsum_ok);
532 break;
533
534 default:
535 /*
536 * Need to compute it ourselves. Maybe skip checksum
537 * on loopback interfaces.
538 */
539 UDP_CSUM_COUNTER_INCR(&udp6_swcsum);
540 if (in6_cksum(m, IPPROTO_UDP, off, len) != 0) {
541 UDP6_STATINC(UDP6_STAT_BADSUM);
542 goto bad;
543 }
544 }
545
546 good:
547 return 0;
548 bad:
549 return -1;
550 }
551
552 int
553 udp6_input(struct mbuf **mp, int *offp, int proto)
554 {
555 struct mbuf *m = *mp;
556 int off = *offp;
557 struct sockaddr_in6 src, dst;
558 struct ip6_hdr *ip6;
559 struct udphdr *uh;
560 u_int32_t plen, ulen;
561
562 ip6 = mtod(m, struct ip6_hdr *);
563
564 #if defined(NFAITH) && 0 < NFAITH
565 if (faithprefix(&ip6->ip6_dst)) {
566 /* send icmp6 host unreach? */
567 m_freem(m);
568 return IPPROTO_DONE;
569 }
570 #endif
571
572 UDP6_STATINC(UDP6_STAT_IPACKETS);
573
574 /* Check for jumbogram is done in ip6_input. We can trust pkthdr.len. */
575 plen = m->m_pkthdr.len - off;
576 IP6_EXTHDR_GET(uh, struct udphdr *, m, off, sizeof(struct udphdr));
577 if (uh == NULL) {
578 IP6_STATINC(IP6_STAT_TOOSHORT);
579 return IPPROTO_DONE;
580 }
581
582 /*
583 * Enforce alignment requirements that are violated in
584 * some cases, see kern/50766 for details.
585 */
586 if (UDP_HDR_ALIGNED_P(uh) == 0) {
587 m = m_copyup(m, off + sizeof(struct udphdr), 0);
588 if (m == NULL) {
589 IP6_STATINC(IP6_STAT_TOOSHORT);
590 return IPPROTO_DONE;
591 }
592 ip6 = mtod(m, struct ip6_hdr *);
593 uh = (struct udphdr *)(mtod(m, char *) + off);
594 }
595 KASSERT(UDP_HDR_ALIGNED_P(uh));
596 ulen = ntohs((u_short)uh->uh_ulen);
597
598 /*
599 * RFC2675 section 4: jumbograms will have 0 in the UDP header field,
600 * iff payload length > 0xffff.
601 */
602 if (ulen == 0 && plen > 0xffff)
603 ulen = plen;
604
605 if (plen != ulen) {
606 UDP6_STATINC(UDP6_STAT_BADLEN);
607 goto bad;
608 }
609
610 /* destination port of 0 is illegal, based on RFC768. */
611 if (uh->uh_dport == 0)
612 goto bad;
613
614 /*
615 * Checksum extended UDP header and data. Maybe skip checksum
616 * on loopback interfaces.
617 */
618 if (udp6_input_checksum(m, uh, off, ulen))
619 goto bad;
620
621 /*
622 * Construct source and dst sockaddrs.
623 */
624 memset(&src, 0, sizeof(src));
625 src.sin6_family = AF_INET6;
626 src.sin6_len = sizeof(struct sockaddr_in6);
627 src.sin6_addr = ip6->ip6_src;
628 src.sin6_port = uh->uh_sport;
629 memset(&dst, 0, sizeof(dst));
630 dst.sin6_family = AF_INET6;
631 dst.sin6_len = sizeof(struct sockaddr_in6);
632 dst.sin6_addr = ip6->ip6_dst;
633 dst.sin6_port = uh->uh_dport;
634
635 if (udp6_realinput(AF_INET6, &src, &dst, m, off) == 0) {
636 if (m->m_flags & M_MCAST) {
637 UDP6_STATINC(UDP6_STAT_NOPORTMCAST);
638 goto bad;
639 }
640 UDP6_STATINC(UDP6_STAT_NOPORT);
641 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_NOPORT, 0);
642 m = NULL;
643 }
644
645 bad:
646 if (m)
647 m_freem(m);
648 return IPPROTO_DONE;
649 }
650
651 int
652 udp6_output(struct in6pcb * const in6p, struct mbuf *m,
653 struct sockaddr_in6 * const addr6, struct mbuf * const control,
654 struct lwp * const l)
655 {
656 u_int32_t ulen = m->m_pkthdr.len;
657 u_int32_t plen = sizeof(struct udphdr) + ulen;
658 struct ip6_hdr *ip6;
659 struct udphdr *udp6;
660 struct in6_addr _laddr, *laddr, *faddr;
661 struct in6_addr laddr_mapped; /* XXX ugly */
662 struct sockaddr_in6 *sin6 = NULL;
663 struct ifnet *oifp = NULL;
664 int scope_ambiguous = 0;
665 u_int16_t fport;
666 int error = 0;
667 struct ip6_pktopts *optp = NULL;
668 struct ip6_pktopts opt;
669 int af = AF_INET6, hlen = sizeof(struct ip6_hdr);
670 #ifdef INET
671 struct ip *ip;
672 struct udpiphdr *ui;
673 int flags = 0;
674 #endif
675 struct sockaddr_in6 tmp;
676
677 if (addr6) {
678 sin6 = addr6;
679 if (sin6->sin6_family != AF_INET6) {
680 error = EAFNOSUPPORT;
681 goto release;
682 }
683
684 /* protect *sin6 from overwrites */
685 tmp = *sin6;
686 sin6 = &tmp;
687
688 /*
689 * Application should provide a proper zone ID or the use of
690 * default zone IDs should be enabled. Unfortunately, some
691 * applications do not behave as it should, so we need a
692 * workaround. Even if an appropriate ID is not determined,
693 * we'll see if we can determine the outgoing interface. If we
694 * can, determine the zone ID based on the interface below.
695 */
696 if (sin6->sin6_scope_id == 0 && !ip6_use_defzone)
697 scope_ambiguous = 1;
698 if ((error = sa6_embedscope(sin6, ip6_use_defzone)) != 0)
699 goto release;
700 }
701
702 if (control) {
703 if (__predict_false(l == NULL)) {
704 panic("%s: control but no lwp", __func__);
705 }
706 if ((error = ip6_setpktopts(control, &opt,
707 in6p->in6p_outputopts, l->l_cred, IPPROTO_UDP)) != 0)
708 goto release;
709 optp = &opt;
710 } else
711 optp = in6p->in6p_outputopts;
712
713
714 if (sin6) {
715 /*
716 * Slightly different than v4 version in that we call
717 * in6_selectsrc and in6_pcbsetport to fill in the local
718 * address and port rather than in_pcbconnect. in_pcbconnect
719 * sets in6p_faddr which causes EISCONN below to be hit on
720 * subsequent sendto.
721 */
722 if (sin6->sin6_port == 0) {
723 error = EADDRNOTAVAIL;
724 goto release;
725 }
726
727 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) {
728 /* how about ::ffff:0.0.0.0 case? */
729 error = EISCONN;
730 goto release;
731 }
732
733 faddr = &sin6->sin6_addr;
734 fport = sin6->sin6_port; /* allow 0 port */
735
736 if (IN6_IS_ADDR_V4MAPPED(faddr)) {
737 if ((in6p->in6p_flags & IN6P_IPV6_V6ONLY)) {
738 /*
739 * I believe we should explicitly discard the
740 * packet when mapped addresses are disabled,
741 * rather than send the packet as an IPv6 one.
742 * If we chose the latter approach, the packet
743 * might be sent out on the wire based on the
744 * default route, the situation which we'd
745 * probably want to avoid.
746 * (20010421 jinmei (at) kame.net)
747 */
748 error = EINVAL;
749 goto release;
750 }
751 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr) &&
752 !IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)) {
753 /*
754 * when remote addr is an IPv4-mapped address,
755 * local addr should not be an IPv6 address,
756 * since you cannot determine how to map IPv6
757 * source address to IPv4.
758 */
759 error = EINVAL;
760 goto release;
761 }
762
763 af = AF_INET;
764 }
765
766 if (!IN6_IS_ADDR_V4MAPPED(faddr)) {
767 struct psref psref;
768 int bound = curlwp_bind();
769
770 error = in6_selectsrc(sin6, optp,
771 in6p->in6p_moptions,
772 &in6p->in6p_route,
773 &in6p->in6p_laddr, &oifp, &psref, &_laddr);
774 /* XXX need error check? */
775 if (oifp && scope_ambiguous &&
776 (error = in6_setscope(&sin6->sin6_addr,
777 oifp, NULL))) {
778 if_put(oifp, &psref);
779 curlwp_bindx(bound);
780 goto release;
781 }
782 if_put(oifp, &psref);
783 curlwp_bindx(bound);
784 laddr = &_laddr;
785 } else {
786 /*
787 * XXX: freebsd[34] does not have in_selectsrc, but
788 * we can omit the whole part because freebsd4 calls
789 * udp_output() directly in this case, and thus we'll
790 * never see this path.
791 */
792 if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
793 struct sockaddr_in sin_dst;
794 struct in_addr ina;
795 struct in_ifaddr *ia4;
796 struct psref _psref;
797 int bound;
798
799 memcpy(&ina, &faddr->s6_addr[12], sizeof(ina));
800 sockaddr_in_init(&sin_dst, &ina, 0);
801 bound = curlwp_bind();
802 ia4 = in_selectsrc(&sin_dst, &in6p->in6p_route,
803 in6p->in6p_socket->so_options, NULL,
804 &error, &_psref);
805 if (ia4 == NULL) {
806 curlwp_bindx(bound);
807 if (error == 0)
808 error = EADDRNOTAVAIL;
809 goto release;
810 }
811 memset(&laddr_mapped, 0, sizeof(laddr_mapped));
812 laddr_mapped.s6_addr16[5] = 0xffff; /* ugly */
813 memcpy(&laddr_mapped.s6_addr[12],
814 &IA_SIN(ia4)->sin_addr,
815 sizeof(IA_SIN(ia4)->sin_addr));
816 ia4_release(ia4, &_psref);
817 curlwp_bindx(bound);
818 laddr = &laddr_mapped;
819 } else
820 {
821 laddr = &in6p->in6p_laddr; /* XXX */
822 }
823 }
824 if (laddr == NULL) {
825 if (error == 0)
826 error = EADDRNOTAVAIL;
827 goto release;
828 }
829 if (in6p->in6p_lport == 0) {
830 /*
831 * Craft a sockaddr_in6 for the local endpoint. Use the
832 * "any" as a base, set the address, and recover the
833 * scope.
834 */
835 struct sockaddr_in6 lsin6 =
836 *((const struct sockaddr_in6 *)in6p->in6p_socket->so_proto->pr_domain->dom_sa_any);
837 lsin6.sin6_addr = *laddr;
838 error = sa6_recoverscope(&lsin6);
839 if (error)
840 goto release;
841
842 error = in6_pcbsetport(&lsin6, in6p, l);
843
844 if (error) {
845 in6p->in6p_laddr = in6addr_any;
846 goto release;
847 }
848 }
849 } else {
850 if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) {
851 error = ENOTCONN;
852 goto release;
853 }
854 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr)) {
855 if ((in6p->in6p_flags & IN6P_IPV6_V6ONLY))
856 {
857 /*
858 * XXX: this case would happen when the
859 * application sets the V6ONLY flag after
860 * connecting the foreign address.
861 * Such applications should be fixed,
862 * so we bark here.
863 */
864 log(LOG_INFO, "udp6_output: IPV6_V6ONLY "
865 "option was set for a connected socket\n");
866 error = EINVAL;
867 goto release;
868 } else
869 af = AF_INET;
870 }
871 laddr = &in6p->in6p_laddr;
872 faddr = &in6p->in6p_faddr;
873 fport = in6p->in6p_fport;
874 }
875
876 if (af == AF_INET)
877 hlen = sizeof(struct ip);
878
879 /*
880 * Calculate data length and get a mbuf
881 * for UDP and IP6 headers.
882 */
883 M_PREPEND(m, hlen + sizeof(struct udphdr), M_DONTWAIT);
884 if (m == NULL) {
885 error = ENOBUFS;
886 goto release;
887 }
888
889 /*
890 * Stuff checksum and output datagram.
891 */
892 udp6 = (struct udphdr *)(mtod(m, char *) + hlen);
893 udp6->uh_sport = in6p->in6p_lport; /* lport is always set in the PCB */
894 udp6->uh_dport = fport;
895 if (plen <= 0xffff)
896 udp6->uh_ulen = htons((u_int16_t)plen);
897 else
898 udp6->uh_ulen = 0;
899 udp6->uh_sum = 0;
900
901 switch (af) {
902 case AF_INET6:
903 ip6 = mtod(m, struct ip6_hdr *);
904 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
905 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
906 ip6->ip6_vfc |= IPV6_VERSION;
907 #if 0 /* ip6_plen will be filled in ip6_output. */
908 ip6->ip6_plen = htons((u_int16_t)plen);
909 #endif
910 ip6->ip6_nxt = IPPROTO_UDP;
911 ip6->ip6_hlim = in6_selecthlim_rt(in6p);
912 ip6->ip6_src = *laddr;
913 ip6->ip6_dst = *faddr;
914
915 udp6->uh_sum = in6_cksum_phdr(laddr, faddr,
916 htonl(plen), htonl(IPPROTO_UDP));
917 m->m_pkthdr.csum_flags = M_CSUM_UDPv6;
918 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
919
920 UDP6_STATINC(UDP6_STAT_OPACKETS);
921 error = ip6_output(m, optp, &in6p->in6p_route, 0,
922 in6p->in6p_moptions, in6p, NULL);
923 break;
924 case AF_INET:
925 #ifdef INET
926 /* can't transmit jumbogram over IPv4 */
927 if (plen > 0xffff) {
928 error = EMSGSIZE;
929 goto release;
930 }
931
932 ip = mtod(m, struct ip *);
933 ui = (struct udpiphdr *)ip;
934 memset(ui->ui_x1, 0, sizeof(ui->ui_x1));
935 ui->ui_pr = IPPROTO_UDP;
936 ui->ui_len = htons(plen);
937 memcpy(&ui->ui_src, &laddr->s6_addr[12], sizeof(ui->ui_src));
938 ui->ui_ulen = ui->ui_len;
939
940 flags = (in6p->in6p_socket->so_options &
941 (SO_DONTROUTE | SO_BROADCAST));
942 memcpy(&ui->ui_dst, &faddr->s6_addr[12], sizeof(ui->ui_dst));
943
944 udp6->uh_sum = in_cksum(m, hlen + plen);
945 if (udp6->uh_sum == 0)
946 udp6->uh_sum = 0xffff;
947
948 ip->ip_len = htons(hlen + plen);
949 ip->ip_ttl = in6_selecthlim(in6p, NULL); /* XXX */
950 ip->ip_tos = 0; /* XXX */
951
952 UDP_STATINC(UDP_STAT_OPACKETS);
953 error = ip_output(m, NULL, &in6p->in6p_route, flags /* XXX */,
954 in6p->in6p_v4moptions, NULL);
955 break;
956 #else
957 error = EAFNOSUPPORT;
958 goto release;
959 #endif
960 }
961 goto releaseopt;
962
963 release:
964 m_freem(m);
965
966 releaseopt:
967 if (control) {
968 if (optp == &opt)
969 ip6_clearpktopts(&opt, -1);
970 m_freem(control);
971 }
972 return (error);
973 }
974
975 static int
976 udp6_attach(struct socket *so, int proto)
977 {
978 struct in6pcb *in6p;
979 int s, error;
980
981 KASSERT(sotoin6pcb(so) == NULL);
982 sosetlock(so);
983
984 /*
985 * MAPPED_ADDR implementation spec:
986 * Always attach for IPv6, and only when necessary for IPv4.
987 */
988 s = splsoftnet();
989 error = in6_pcballoc(so, &udbtable);
990 splx(s);
991 if (error) {
992 return error;
993 }
994 error = soreserve(so, udp6_sendspace, udp6_recvspace);
995 if (error) {
996 return error;
997 }
998 in6p = sotoin6pcb(so);
999 in6p->in6p_cksum = -1; /* just to be sure */
1000
1001 KASSERT(solocked(so));
1002 return 0;
1003 }
1004
1005 static void
1006 udp6_detach(struct socket *so)
1007 {
1008 struct in6pcb *in6p = sotoin6pcb(so);
1009 int s;
1010
1011 KASSERT(solocked(so));
1012 KASSERT(in6p != NULL);
1013
1014 s = splsoftnet();
1015 in6_pcbdetach(in6p);
1016 splx(s);
1017 }
1018
1019 static int
1020 udp6_accept(struct socket *so, struct sockaddr *nam)
1021 {
1022 KASSERT(solocked(so));
1023
1024 return EOPNOTSUPP;
1025 }
1026
1027 static int
1028 udp6_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
1029 {
1030 struct in6pcb *in6p = sotoin6pcb(so);
1031 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)nam;
1032 int error = 0;
1033 int s;
1034
1035 KASSERT(solocked(so));
1036 KASSERT(in6p != NULL);
1037
1038 s = splsoftnet();
1039 error = in6_pcbbind(in6p, sin6, l);
1040 splx(s);
1041 return error;
1042 }
1043
1044 static int
1045 udp6_listen(struct socket *so, struct lwp *l)
1046 {
1047 KASSERT(solocked(so));
1048
1049 return EOPNOTSUPP;
1050 }
1051
1052 static int
1053 udp6_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
1054 {
1055 struct in6pcb *in6p = sotoin6pcb(so);
1056 int error = 0;
1057 int s;
1058
1059 KASSERT(solocked(so));
1060 KASSERT(in6p != NULL);
1061
1062 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr))
1063 return EISCONN;
1064 s = splsoftnet();
1065 error = in6_pcbconnect(in6p, (struct sockaddr_in6 *)nam, l);
1066 splx(s);
1067 if (error == 0)
1068 soisconnected(so);
1069
1070 return error;
1071 }
1072
1073 static int
1074 udp6_connect2(struct socket *so, struct socket *so2)
1075 {
1076 KASSERT(solocked(so));
1077
1078 return EOPNOTSUPP;
1079 }
1080
1081 static int
1082 udp6_disconnect(struct socket *so)
1083 {
1084 struct in6pcb *in6p = sotoin6pcb(so);
1085 int s;
1086
1087 KASSERT(solocked(so));
1088 KASSERT(in6p != NULL);
1089
1090 if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr))
1091 return ENOTCONN;
1092
1093 s = splsoftnet();
1094 in6_pcbdisconnect(in6p);
1095 memset((void *)&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
1096 splx(s);
1097
1098 so->so_state &= ~SS_ISCONNECTED; /* XXX */
1099 in6_pcbstate(in6p, IN6P_BOUND); /* XXX */
1100 return 0;
1101 }
1102
1103 static int
1104 udp6_shutdown(struct socket *so)
1105 {
1106 int s;
1107
1108 s = splsoftnet();
1109 socantsendmore(so);
1110 splx(s);
1111
1112 return 0;
1113 }
1114
1115 static int
1116 udp6_abort(struct socket *so)
1117 {
1118 int s;
1119
1120 KASSERT(solocked(so));
1121 KASSERT(sotoin6pcb(so) != NULL);
1122
1123 s = splsoftnet();
1124 soisdisconnected(so);
1125 in6_pcbdetach(sotoin6pcb(so));
1126 splx(s);
1127
1128 return 0;
1129 }
1130
1131 static int
1132 udp6_ioctl(struct socket *so, u_long cmd, void *addr6, struct ifnet *ifp)
1133 {
1134 /*
1135 * MAPPED_ADDR implementation info:
1136 * Mapped addr support for PRU_CONTROL is not necessary.
1137 * Because typical user of PRU_CONTROL is such as ifconfig,
1138 * and they don't associate any addr to their socket. Then
1139 * socket family is only hint about the PRU_CONTROL'ed address
1140 * family, especially when getting addrs from kernel.
1141 * So AF_INET socket need to be used to control AF_INET addrs,
1142 * and AF_INET6 socket for AF_INET6 addrs.
1143 */
1144 return in6_control(so, cmd, addr6, ifp);
1145 }
1146
1147 static int
1148 udp6_stat(struct socket *so, struct stat *ub)
1149 {
1150 KASSERT(solocked(so));
1151
1152 /* stat: don't bother with a blocksize */
1153 return 0;
1154 }
1155
1156 static int
1157 udp6_peeraddr(struct socket *so, struct sockaddr *nam)
1158 {
1159 KASSERT(solocked(so));
1160 KASSERT(sotoin6pcb(so) != NULL);
1161 KASSERT(nam != NULL);
1162
1163 in6_setpeeraddr(sotoin6pcb(so), (struct sockaddr_in6 *)nam);
1164 return 0;
1165 }
1166
1167 static int
1168 udp6_sockaddr(struct socket *so, struct sockaddr *nam)
1169 {
1170 KASSERT(solocked(so));
1171 KASSERT(sotoin6pcb(so) != NULL);
1172 KASSERT(nam != NULL);
1173
1174 in6_setsockaddr(sotoin6pcb(so), (struct sockaddr_in6 *)nam);
1175 return 0;
1176 }
1177
1178 static int
1179 udp6_rcvd(struct socket *so, int flags, struct lwp *l)
1180 {
1181 KASSERT(solocked(so));
1182
1183 return EOPNOTSUPP;
1184 }
1185
1186 static int
1187 udp6_recvoob(struct socket *so, struct mbuf *m, int flags)
1188 {
1189 KASSERT(solocked(so));
1190
1191 return EOPNOTSUPP;
1192 }
1193
1194 static int
1195 udp6_send(struct socket *so, struct mbuf *m, struct sockaddr *nam,
1196 struct mbuf *control, struct lwp *l)
1197 {
1198 struct in6pcb *in6p = sotoin6pcb(so);
1199 int error = 0;
1200 int s;
1201
1202 KASSERT(solocked(so));
1203 KASSERT(in6p != NULL);
1204 KASSERT(m != NULL);
1205
1206 s = splsoftnet();
1207 error = udp6_output(in6p, m, (struct sockaddr_in6 *)nam, control, l);
1208 splx(s);
1209
1210 return error;
1211 }
1212
1213 static int
1214 udp6_sendoob(struct socket *so, struct mbuf *m, struct mbuf *control)
1215 {
1216 KASSERT(solocked(so));
1217
1218 if (m)
1219 m_freem(m);
1220 if (control)
1221 m_freem(control);
1222
1223 return EOPNOTSUPP;
1224 }
1225
1226 static int
1227 udp6_purgeif(struct socket *so, struct ifnet *ifp)
1228 {
1229
1230 mutex_enter(softnet_lock);
1231 in6_pcbpurgeif0(&udbtable, ifp);
1232 #ifdef NET_MPSAFE
1233 mutex_exit(softnet_lock);
1234 #endif
1235 in6_purgeif(ifp);
1236 #ifdef NET_MPSAFE
1237 mutex_enter(softnet_lock);
1238 #endif
1239 in6_pcbpurgeif(&udbtable, ifp);
1240 mutex_exit(softnet_lock);
1241
1242 return 0;
1243 }
1244
1245 static int
1246 sysctl_net_inet6_udp6_stats(SYSCTLFN_ARGS)
1247 {
1248
1249 return (NETSTAT_SYSCTL(udp6stat_percpu, UDP6_NSTATS));
1250 }
1251
1252 static void
1253 sysctl_net_inet6_udp6_setup(struct sysctllog **clog)
1254 {
1255
1256 sysctl_createv(clog, 0, NULL, NULL,
1257 CTLFLAG_PERMANENT,
1258 CTLTYPE_NODE, "inet6", NULL,
1259 NULL, 0, NULL, 0,
1260 CTL_NET, PF_INET6, CTL_EOL);
1261 sysctl_createv(clog, 0, NULL, NULL,
1262 CTLFLAG_PERMANENT,
1263 CTLTYPE_NODE, "udp6",
1264 SYSCTL_DESCR("UDPv6 related settings"),
1265 NULL, 0, NULL, 0,
1266 CTL_NET, PF_INET6, IPPROTO_UDP, CTL_EOL);
1267
1268 sysctl_createv(clog, 0, NULL, NULL,
1269 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1270 CTLTYPE_INT, "sendspace",
1271 SYSCTL_DESCR("Default UDP send buffer size"),
1272 NULL, 0, &udp6_sendspace, 0,
1273 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_SENDSPACE,
1274 CTL_EOL);
1275 sysctl_createv(clog, 0, NULL, NULL,
1276 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1277 CTLTYPE_INT, "recvspace",
1278 SYSCTL_DESCR("Default UDP receive buffer size"),
1279 NULL, 0, &udp6_recvspace, 0,
1280 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_RECVSPACE,
1281 CTL_EOL);
1282 sysctl_createv(clog, 0, NULL, NULL,
1283 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1284 CTLTYPE_INT, "do_loopback_cksum",
1285 SYSCTL_DESCR("Perform UDP checksum on loopback"),
1286 NULL, 0, &udp_do_loopback_cksum, 0,
1287 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_LOOPBACKCKSUM,
1288 CTL_EOL);
1289 sysctl_createv(clog, 0, NULL, NULL,
1290 CTLFLAG_PERMANENT,
1291 CTLTYPE_STRUCT, "pcblist",
1292 SYSCTL_DESCR("UDP protocol control block list"),
1293 sysctl_inpcblist, 0, &udbtable, 0,
1294 CTL_NET, PF_INET6, IPPROTO_UDP, CTL_CREATE,
1295 CTL_EOL);
1296 sysctl_createv(clog, 0, NULL, NULL,
1297 CTLFLAG_PERMANENT,
1298 CTLTYPE_STRUCT, "stats",
1299 SYSCTL_DESCR("UDPv6 statistics"),
1300 sysctl_net_inet6_udp6_stats, 0, NULL, 0,
1301 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_STATS,
1302 CTL_EOL);
1303 }
1304
1305 void
1306 udp6_statinc(u_int stat)
1307 {
1308
1309 KASSERT(stat < UDP6_NSTATS);
1310 UDP6_STATINC(stat);
1311 }
1312
1313 PR_WRAP_USRREQS(udp6)
1314 #define udp6_attach udp6_attach_wrapper
1315 #define udp6_detach udp6_detach_wrapper
1316 #define udp6_accept udp6_accept_wrapper
1317 #define udp6_bind udp6_bind_wrapper
1318 #define udp6_listen udp6_listen_wrapper
1319 #define udp6_connect udp6_connect_wrapper
1320 #define udp6_connect2 udp6_connect2_wrapper
1321 #define udp6_disconnect udp6_disconnect_wrapper
1322 #define udp6_shutdown udp6_shutdown_wrapper
1323 #define udp6_abort udp6_abort_wrapper
1324 #define udp6_ioctl udp6_ioctl_wrapper
1325 #define udp6_stat udp6_stat_wrapper
1326 #define udp6_peeraddr udp6_peeraddr_wrapper
1327 #define udp6_sockaddr udp6_sockaddr_wrapper
1328 #define udp6_rcvd udp6_rcvd_wrapper
1329 #define udp6_recvoob udp6_recvoob_wrapper
1330 #define udp6_send udp6_send_wrapper
1331 #define udp6_sendoob udp6_sendoob_wrapper
1332 #define udp6_purgeif udp6_purgeif_wrapper
1333
1334 const struct pr_usrreqs udp6_usrreqs = {
1335 .pr_attach = udp6_attach,
1336 .pr_detach = udp6_detach,
1337 .pr_accept = udp6_accept,
1338 .pr_bind = udp6_bind,
1339 .pr_listen = udp6_listen,
1340 .pr_connect = udp6_connect,
1341 .pr_connect2 = udp6_connect2,
1342 .pr_disconnect = udp6_disconnect,
1343 .pr_shutdown = udp6_shutdown,
1344 .pr_abort = udp6_abort,
1345 .pr_ioctl = udp6_ioctl,
1346 .pr_stat = udp6_stat,
1347 .pr_peeraddr = udp6_peeraddr,
1348 .pr_sockaddr = udp6_sockaddr,
1349 .pr_rcvd = udp6_rcvd,
1350 .pr_recvoob = udp6_recvoob,
1351 .pr_send = udp6_send,
1352 .pr_sendoob = udp6_sendoob,
1353 .pr_purgeif = udp6_purgeif,
1354 };
1355