udp6_usrreq.c revision 1.137.2.3 1 /* $NetBSD: udp6_usrreq.c,v 1.137.2.3 2018/04/22 07:20:28 pgoyette Exp $ */
2 /* $KAME: udp6_usrreq.c,v 1.86 2001/05/27 17:33:00 itojun Exp $ */
3 /* $KAME: udp6_output.c,v 1.43 2001/10/15 09:19:52 itojun Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (c) 1982, 1986, 1989, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)udp_var.h 8.1 (Berkeley) 6/10/93
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: udp6_usrreq.c,v 1.137.2.3 2018/04/22 07:20:28 pgoyette Exp $");
67
68 #ifdef _KERNEL_OPT
69 #include "opt_inet.h"
70 #include "opt_inet_csum.h"
71 #include "opt_ipsec.h"
72 #include "opt_net_mpsafe.h"
73 #endif
74
75 #include <sys/param.h>
76 #include <sys/mbuf.h>
77 #include <sys/protosw.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/syslog.h>
83 #include <sys/domain.h>
84 #include <sys/sysctl.h>
85
86 #include <net/if.h>
87 #include <net/if_types.h>
88
89 #include <netinet/in.h>
90 #include <netinet/in_var.h>
91 #include <netinet/in_systm.h>
92 #include <netinet/in_offload.h>
93 #include <netinet/ip.h>
94 #include <netinet/ip_var.h>
95 #include <netinet/in_pcb.h>
96 #include <netinet/udp.h>
97 #include <netinet/udp_var.h>
98 #include <netinet/udp_private.h>
99
100 #include <netinet/ip6.h>
101 #include <netinet/icmp6.h>
102 #include <netinet6/ip6_var.h>
103 #include <netinet6/ip6_private.h>
104 #include <netinet6/in6_pcb.h>
105 #include <netinet6/udp6_var.h>
106 #include <netinet6/udp6_private.h>
107 #include <netinet6/ip6protosw.h>
108 #include <netinet6/scope6_var.h>
109
110 #ifdef IPSEC
111 #include <netipsec/ipsec.h>
112 #include <netipsec/ipsec_var.h>
113 #ifdef INET6
114 #include <netipsec/ipsec6.h>
115 #endif
116 #endif
117
118 #include "faith.h"
119 #if defined(NFAITH) && NFAITH > 0
120 #include <net/if_faith.h>
121 #endif
122
123 /*
124 * UDP protocol implementation.
125 * Per RFC 768, August, 1980.
126 */
127
128 extern struct inpcbtable udbtable;
129
130 percpu_t *udp6stat_percpu;
131
132 /* UDP on IP6 parameters */
133 static int udp6_sendspace = 9216; /* really max datagram size */
134 static int udp6_recvspace = 40 * (1024 + sizeof(struct sockaddr_in6));
135 /* 40 1K datagrams */
136
137 static void udp6_notify(struct in6pcb *, int);
138 static void sysctl_net_inet6_udp6_setup(struct sysctllog **);
139
140 #ifdef UDP_CSUM_COUNTERS
141 #include <sys/device.h>
142 struct evcnt udp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
143 NULL, "udp6", "hwcsum bad");
144 struct evcnt udp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
145 NULL, "udp6", "hwcsum ok");
146 struct evcnt udp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
147 NULL, "udp6", "hwcsum data");
148 struct evcnt udp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
149 NULL, "udp6", "swcsum");
150
151 EVCNT_ATTACH_STATIC(udp6_hwcsum_bad);
152 EVCNT_ATTACH_STATIC(udp6_hwcsum_ok);
153 EVCNT_ATTACH_STATIC(udp6_hwcsum_data);
154 EVCNT_ATTACH_STATIC(udp6_swcsum);
155
156 #define UDP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
157 #else
158 #define UDP_CSUM_COUNTER_INCR(ev) /* nothing */
159 #endif
160
161 void
162 udp6_init(void)
163 {
164 sysctl_net_inet6_udp6_setup(NULL);
165 udp6stat_percpu = percpu_alloc(sizeof(uint64_t) * UDP6_NSTATS);
166
167 udp_init_common();
168 }
169
170 /*
171 * Notify a udp user of an asynchronous error;
172 * just wake up so that he can collect error status.
173 */
174 static void
175 udp6_notify(struct in6pcb *in6p, int errno)
176 {
177 in6p->in6p_socket->so_error = errno;
178 sorwakeup(in6p->in6p_socket);
179 sowwakeup(in6p->in6p_socket);
180 }
181
182 void *
183 udp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
184 {
185 struct udphdr uh;
186 struct ip6_hdr *ip6;
187 const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
188 struct mbuf *m;
189 int off;
190 void *cmdarg;
191 struct ip6ctlparam *ip6cp = NULL;
192 const struct sockaddr_in6 *sa6_src = NULL;
193 void (*notify)(struct in6pcb *, int) = udp6_notify;
194 struct udp_portonly {
195 u_int16_t uh_sport;
196 u_int16_t uh_dport;
197 } *uhp;
198
199 if (sa->sa_family != AF_INET6 ||
200 sa->sa_len != sizeof(struct sockaddr_in6))
201 return NULL;
202
203 if ((unsigned)cmd >= PRC_NCMDS)
204 return NULL;
205 if (PRC_IS_REDIRECT(cmd))
206 notify = in6_rtchange, d = NULL;
207 else if (cmd == PRC_HOSTDEAD)
208 d = NULL;
209 else if (cmd == PRC_MSGSIZE) {
210 /* special code is present, see below */
211 notify = in6_rtchange;
212 }
213 else if (inet6ctlerrmap[cmd] == 0)
214 return NULL;
215
216 /* if the parameter is from icmp6, decode it. */
217 if (d != NULL) {
218 ip6cp = (struct ip6ctlparam *)d;
219 m = ip6cp->ip6c_m;
220 ip6 = ip6cp->ip6c_ip6;
221 off = ip6cp->ip6c_off;
222 cmdarg = ip6cp->ip6c_cmdarg;
223 sa6_src = ip6cp->ip6c_src;
224 } else {
225 m = NULL;
226 ip6 = NULL;
227 cmdarg = NULL;
228 sa6_src = &sa6_any;
229 off = 0;
230 }
231
232 if (ip6) {
233 /* check if we can safely examine src and dst ports */
234 if (m->m_pkthdr.len < off + sizeof(*uhp)) {
235 if (cmd == PRC_MSGSIZE)
236 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
237 return NULL;
238 }
239
240 memset(&uh, 0, sizeof(uh));
241 m_copydata(m, off, sizeof(*uhp), (void *)&uh);
242
243 if (cmd == PRC_MSGSIZE) {
244 int valid = 0;
245
246 /*
247 * Check to see if we have a valid UDP socket
248 * corresponding to the address in the ICMPv6 message
249 * payload.
250 */
251 if (in6_pcblookup_connect(&udbtable, &sa6->sin6_addr,
252 uh.uh_dport, (const struct in6_addr *)&sa6_src->sin6_addr,
253 uh.uh_sport, 0, 0))
254 valid++;
255 #if 0
256 /*
257 * As the use of sendto(2) is fairly popular,
258 * we may want to allow non-connected pcb too.
259 * But it could be too weak against attacks...
260 * We should at least check if the local address (= s)
261 * is really ours.
262 */
263 else if (in6_pcblookup_bind(&udbtable, &sa6->sin6_addr,
264 uh.uh_dport, 0))
265 valid++;
266 #endif
267
268 /*
269 * Depending on the value of "valid" and routing table
270 * size (mtudisc_{hi,lo}wat), we will:
271 * - recalculate the new MTU and create the
272 * corresponding routing entry, or
273 * - ignore the MTU change notification.
274 */
275 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
276
277 /*
278 * regardless of if we called
279 * icmp6_mtudisc_update(), we need to call
280 * in6_pcbnotify(), to notify path MTU change
281 * to the userland (RFC3542), because some
282 * unconnected sockets may share the same
283 * destination and want to know the path MTU.
284 */
285 }
286
287 (void)in6_pcbnotify(&udbtable, sa, uh.uh_dport,
288 sin6tocsa(sa6_src), uh.uh_sport, cmd, cmdarg,
289 notify);
290 } else {
291 (void)in6_pcbnotify(&udbtable, sa, 0,
292 sin6tocsa(sa6_src), 0, cmd, cmdarg, notify);
293 }
294 return NULL;
295 }
296
297 int
298 udp6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
299 {
300 int s;
301 int error = 0;
302 int family;
303
304 family = so->so_proto->pr_domain->dom_family;
305
306 s = splsoftnet();
307 switch (family) {
308 #ifdef INET
309 case PF_INET:
310 if (sopt->sopt_level != IPPROTO_UDP) {
311 error = ip_ctloutput(op, so, sopt);
312 goto end;
313 }
314 break;
315 #endif
316 #ifdef INET6
317 case PF_INET6:
318 if (sopt->sopt_level != IPPROTO_UDP) {
319 error = ip6_ctloutput(op, so, sopt);
320 goto end;
321 }
322 break;
323 #endif
324 default:
325 error = EAFNOSUPPORT;
326 goto end;
327 }
328 error = EINVAL;
329
330 end:
331 splx(s);
332 return error;
333 }
334
335 static void
336 udp6_sendup(struct mbuf *m, int off /* offset of data portion */,
337 struct sockaddr *src, struct socket *so)
338 {
339 struct mbuf *opts = NULL;
340 struct mbuf *n;
341 struct in6pcb *in6p;
342
343 KASSERT(so != NULL);
344 KASSERT(so->so_proto->pr_domain->dom_family == AF_INET6);
345 in6p = sotoin6pcb(so);
346 KASSERT(in6p != NULL);
347
348 #if defined(IPSEC)
349 if (ipsec_used && ipsec_in_reject(m, in6p)) {
350 if ((n = m_copypacket(m, M_DONTWAIT)) != NULL)
351 icmp6_error(n, ICMP6_DST_UNREACH,
352 ICMP6_DST_UNREACH_ADMIN, 0);
353 return;
354 }
355 #endif
356
357 if ((n = m_copypacket(m, M_DONTWAIT)) != NULL) {
358 if (in6p->in6p_flags & IN6P_CONTROLOPTS ||
359 SOOPT_TIMESTAMP(in6p->in6p_socket->so_options)) {
360 struct ip6_hdr *ip6 = mtod(n, struct ip6_hdr *);
361 ip6_savecontrol(in6p, &opts, ip6, n);
362 }
363
364 m_adj(n, off);
365 if (sbappendaddr(&so->so_rcv, src, n, opts) == 0) {
366 m_freem(n);
367 if (opts)
368 m_freem(opts);
369 UDP6_STATINC(UDP6_STAT_FULLSOCK);
370 soroverflow(so);
371 } else
372 sorwakeup(so);
373 }
374 }
375
376 int
377 udp6_realinput(int af, struct sockaddr_in6 *src, struct sockaddr_in6 *dst,
378 struct mbuf *m, int off)
379 {
380 u_int16_t sport, dport;
381 int rcvcnt;
382 struct in6_addr src6, *dst6;
383 const struct in_addr *dst4;
384 struct inpcb_hdr *inph;
385 struct in6pcb *in6p;
386
387 rcvcnt = 0;
388 off += sizeof(struct udphdr); /* now, offset of payload */
389
390 if (af != AF_INET && af != AF_INET6)
391 goto bad;
392 if (src->sin6_family != AF_INET6 || dst->sin6_family != AF_INET6)
393 goto bad;
394
395 src6 = src->sin6_addr;
396 if (sa6_recoverscope(src) != 0) {
397 /* XXX: should be impossible. */
398 goto bad;
399 }
400 sport = src->sin6_port;
401
402 dport = dst->sin6_port;
403 dst4 = (struct in_addr *)&dst->sin6_addr.s6_addr[12];
404 dst6 = &dst->sin6_addr;
405
406 if (IN6_IS_ADDR_MULTICAST(dst6) ||
407 (af == AF_INET && IN_MULTICAST(dst4->s_addr))) {
408 /*
409 * Deliver a multicast or broadcast datagram to *all* sockets
410 * for which the local and remote addresses and ports match
411 * those of the incoming datagram. This allows more than
412 * one process to receive multi/broadcasts on the same port.
413 * (This really ought to be done for unicast datagrams as
414 * well, but that would cause problems with existing
415 * applications that open both address-specific sockets and
416 * a wildcard socket listening to the same port -- they would
417 * end up receiving duplicates of every unicast datagram.
418 * Those applications open the multiple sockets to overcome an
419 * inadequacy of the UDP socket interface, but for backwards
420 * compatibility we avoid the problem here rather than
421 * fixing the interface. Maybe 4.5BSD will remedy this?)
422 */
423
424 /*
425 * KAME note: traditionally we dropped udpiphdr from mbuf here.
426 * we need udpiphdr for IPsec processing so we do that later.
427 */
428 /*
429 * Locate pcb(s) for datagram.
430 */
431 TAILQ_FOREACH(inph, &udbtable.inpt_queue, inph_queue) {
432 in6p = (struct in6pcb *)inph;
433 if (in6p->in6p_af != AF_INET6)
434 continue;
435
436 if (in6p->in6p_lport != dport)
437 continue;
438 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
439 if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_laddr,
440 dst6))
441 continue;
442 } else {
443 if (IN6_IS_ADDR_V4MAPPED(dst6) &&
444 (in6p->in6p_flags & IN6P_IPV6_V6ONLY))
445 continue;
446 }
447 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) {
448 if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_faddr,
449 &src6) || in6p->in6p_fport != sport)
450 continue;
451 } else {
452 if (IN6_IS_ADDR_V4MAPPED(&src6) &&
453 (in6p->in6p_flags & IN6P_IPV6_V6ONLY))
454 continue;
455 }
456
457 udp6_sendup(m, off, sin6tosa(src), in6p->in6p_socket);
458 rcvcnt++;
459
460 /*
461 * Don't look for additional matches if this one does
462 * not have either the SO_REUSEPORT or SO_REUSEADDR
463 * socket options set. This heuristic avoids searching
464 * through all pcbs in the common case of a non-shared
465 * port. It assumes that an application will never
466 * clear these options after setting them.
467 */
468 if ((in6p->in6p_socket->so_options &
469 (SO_REUSEPORT|SO_REUSEADDR)) == 0)
470 break;
471 }
472 } else {
473 /*
474 * Locate pcb for datagram.
475 */
476 in6p = in6_pcblookup_connect(&udbtable, &src6, sport, dst6,
477 dport, 0, 0);
478 if (in6p == 0) {
479 UDP_STATINC(UDP_STAT_PCBHASHMISS);
480 in6p = in6_pcblookup_bind(&udbtable, dst6, dport, 0);
481 if (in6p == 0)
482 return rcvcnt;
483 }
484
485 udp6_sendup(m, off, sin6tosa(src), in6p->in6p_socket);
486 rcvcnt++;
487 }
488
489 bad:
490 return rcvcnt;
491 }
492
493 int
494 udp6_input_checksum(struct mbuf *m, const struct udphdr *uh, int off, int len)
495 {
496
497 /*
498 * XXX it's better to record and check if this mbuf is
499 * already checked.
500 */
501
502 if (__predict_false((m->m_flags & M_LOOP) && !udp_do_loopback_cksum)) {
503 goto good;
504 }
505 if (uh->uh_sum == 0) {
506 UDP6_STATINC(UDP6_STAT_NOSUM);
507 goto bad;
508 }
509
510 switch (m->m_pkthdr.csum_flags &
511 ((m_get_rcvif_NOMPSAFE(m)->if_csum_flags_rx & M_CSUM_UDPv6) |
512 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
513 case M_CSUM_UDPv6|M_CSUM_TCP_UDP_BAD:
514 UDP_CSUM_COUNTER_INCR(&udp6_hwcsum_bad);
515 UDP6_STATINC(UDP6_STAT_BADSUM);
516 goto bad;
517
518 #if 0 /* notyet */
519 case M_CSUM_UDPv6|M_CSUM_DATA:
520 #endif
521
522 case M_CSUM_UDPv6:
523 /* Checksum was okay. */
524 UDP_CSUM_COUNTER_INCR(&udp6_hwcsum_ok);
525 break;
526
527 default:
528 /*
529 * Need to compute it ourselves. Maybe skip checksum
530 * on loopback interfaces.
531 */
532 UDP_CSUM_COUNTER_INCR(&udp6_swcsum);
533 if (in6_cksum(m, IPPROTO_UDP, off, len) != 0) {
534 UDP6_STATINC(UDP6_STAT_BADSUM);
535 goto bad;
536 }
537 }
538
539 good:
540 return 0;
541 bad:
542 return -1;
543 }
544
545 int
546 udp6_input(struct mbuf **mp, int *offp, int proto)
547 {
548 struct mbuf *m = *mp;
549 int off = *offp;
550 struct sockaddr_in6 src, dst;
551 struct ip6_hdr *ip6;
552 struct udphdr *uh;
553 u_int32_t plen, ulen;
554
555 ip6 = mtod(m, struct ip6_hdr *);
556
557 #if defined(NFAITH) && 0 < NFAITH
558 if (faithprefix(&ip6->ip6_dst)) {
559 /* send icmp6 host unreach? */
560 m_freem(m);
561 return IPPROTO_DONE;
562 }
563 #endif
564
565 UDP6_STATINC(UDP6_STAT_IPACKETS);
566
567 /* Check for jumbogram is done in ip6_input. We can trust pkthdr.len. */
568 plen = m->m_pkthdr.len - off;
569 IP6_EXTHDR_GET(uh, struct udphdr *, m, off, sizeof(struct udphdr));
570 if (uh == NULL) {
571 IP6_STATINC(IP6_STAT_TOOSHORT);
572 return IPPROTO_DONE;
573 }
574
575 /*
576 * Enforce alignment requirements that are violated in
577 * some cases, see kern/50766 for details.
578 */
579 if (UDP_HDR_ALIGNED_P(uh) == 0) {
580 m = m_copyup(m, off + sizeof(struct udphdr), 0);
581 if (m == NULL) {
582 IP6_STATINC(IP6_STAT_TOOSHORT);
583 return IPPROTO_DONE;
584 }
585 ip6 = mtod(m, struct ip6_hdr *);
586 uh = (struct udphdr *)(mtod(m, char *) + off);
587 }
588 KASSERT(UDP_HDR_ALIGNED_P(uh));
589 ulen = ntohs((u_short)uh->uh_ulen);
590
591 /*
592 * RFC2675 section 4: jumbograms will have 0 in the UDP header field,
593 * iff payload length > 0xffff.
594 */
595 if (ulen == 0 && plen > 0xffff)
596 ulen = plen;
597
598 if (plen != ulen) {
599 UDP6_STATINC(UDP6_STAT_BADLEN);
600 goto bad;
601 }
602
603 /* destination port of 0 is illegal, based on RFC768. */
604 if (uh->uh_dport == 0)
605 goto bad;
606
607 /*
608 * Checksum extended UDP header and data. Maybe skip checksum
609 * on loopback interfaces.
610 */
611 if (udp6_input_checksum(m, uh, off, ulen))
612 goto bad;
613
614 /*
615 * Construct source and dst sockaddrs.
616 */
617 memset(&src, 0, sizeof(src));
618 src.sin6_family = AF_INET6;
619 src.sin6_len = sizeof(struct sockaddr_in6);
620 src.sin6_addr = ip6->ip6_src;
621 src.sin6_port = uh->uh_sport;
622 memset(&dst, 0, sizeof(dst));
623 dst.sin6_family = AF_INET6;
624 dst.sin6_len = sizeof(struct sockaddr_in6);
625 dst.sin6_addr = ip6->ip6_dst;
626 dst.sin6_port = uh->uh_dport;
627
628 if (udp6_realinput(AF_INET6, &src, &dst, m, off) == 0) {
629 if (m->m_flags & M_MCAST) {
630 UDP6_STATINC(UDP6_STAT_NOPORTMCAST);
631 goto bad;
632 }
633 UDP6_STATINC(UDP6_STAT_NOPORT);
634 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_NOPORT, 0);
635 m = NULL;
636 }
637
638 bad:
639 if (m)
640 m_freem(m);
641 return IPPROTO_DONE;
642 }
643
644 int
645 udp6_output(struct in6pcb * const in6p, struct mbuf *m,
646 struct sockaddr_in6 * const addr6, struct mbuf * const control,
647 struct lwp * const l)
648 {
649 u_int32_t ulen = m->m_pkthdr.len;
650 u_int32_t plen = sizeof(struct udphdr) + ulen;
651 struct ip6_hdr *ip6;
652 struct udphdr *udp6;
653 struct in6_addr _laddr, *laddr, *faddr;
654 struct in6_addr laddr_mapped; /* XXX ugly */
655 struct sockaddr_in6 *sin6 = NULL;
656 struct ifnet *oifp = NULL;
657 int scope_ambiguous = 0;
658 u_int16_t fport;
659 int error = 0;
660 struct ip6_pktopts *optp = NULL;
661 struct ip6_pktopts opt;
662 int af = AF_INET6, hlen = sizeof(struct ip6_hdr);
663 #ifdef INET
664 struct ip *ip;
665 struct udpiphdr *ui;
666 int flags = 0;
667 #endif
668 struct sockaddr_in6 tmp;
669
670 if (addr6) {
671 sin6 = addr6;
672 if (sin6->sin6_family != AF_INET6) {
673 error = EAFNOSUPPORT;
674 goto release;
675 }
676
677 /* protect *sin6 from overwrites */
678 tmp = *sin6;
679 sin6 = &tmp;
680
681 /*
682 * Application should provide a proper zone ID or the use of
683 * default zone IDs should be enabled. Unfortunately, some
684 * applications do not behave as it should, so we need a
685 * workaround. Even if an appropriate ID is not determined,
686 * we'll see if we can determine the outgoing interface. If we
687 * can, determine the zone ID based on the interface below.
688 */
689 if (sin6->sin6_scope_id == 0 && !ip6_use_defzone)
690 scope_ambiguous = 1;
691 if ((error = sa6_embedscope(sin6, ip6_use_defzone)) != 0)
692 goto release;
693 }
694
695 if (control) {
696 if (__predict_false(l == NULL)) {
697 panic("%s: control but no lwp", __func__);
698 }
699 if ((error = ip6_setpktopts(control, &opt,
700 in6p->in6p_outputopts, l->l_cred, IPPROTO_UDP)) != 0)
701 goto release;
702 optp = &opt;
703 } else
704 optp = in6p->in6p_outputopts;
705
706
707 if (sin6) {
708 /*
709 * Slightly different than v4 version in that we call
710 * in6_selectsrc and in6_pcbsetport to fill in the local
711 * address and port rather than in_pcbconnect. in_pcbconnect
712 * sets in6p_faddr which causes EISCONN below to be hit on
713 * subsequent sendto.
714 */
715 if (sin6->sin6_port == 0) {
716 error = EADDRNOTAVAIL;
717 goto release;
718 }
719
720 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) {
721 /* how about ::ffff:0.0.0.0 case? */
722 error = EISCONN;
723 goto release;
724 }
725
726 faddr = &sin6->sin6_addr;
727 fport = sin6->sin6_port; /* allow 0 port */
728
729 if (IN6_IS_ADDR_V4MAPPED(faddr)) {
730 if ((in6p->in6p_flags & IN6P_IPV6_V6ONLY)) {
731 /*
732 * I believe we should explicitly discard the
733 * packet when mapped addresses are disabled,
734 * rather than send the packet as an IPv6 one.
735 * If we chose the latter approach, the packet
736 * might be sent out on the wire based on the
737 * default route, the situation which we'd
738 * probably want to avoid.
739 * (20010421 jinmei (at) kame.net)
740 */
741 error = EINVAL;
742 goto release;
743 }
744 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr) &&
745 !IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)) {
746 /*
747 * when remote addr is an IPv4-mapped address,
748 * local addr should not be an IPv6 address,
749 * since you cannot determine how to map IPv6
750 * source address to IPv4.
751 */
752 error = EINVAL;
753 goto release;
754 }
755
756 af = AF_INET;
757 }
758
759 if (!IN6_IS_ADDR_V4MAPPED(faddr)) {
760 struct psref psref;
761 int bound = curlwp_bind();
762
763 error = in6_selectsrc(sin6, optp,
764 in6p->in6p_moptions,
765 &in6p->in6p_route,
766 &in6p->in6p_laddr, &oifp, &psref, &_laddr);
767 /* XXX need error check? */
768 if (oifp && scope_ambiguous &&
769 (error = in6_setscope(&sin6->sin6_addr,
770 oifp, NULL))) {
771 if_put(oifp, &psref);
772 curlwp_bindx(bound);
773 goto release;
774 }
775 if_put(oifp, &psref);
776 curlwp_bindx(bound);
777 laddr = &_laddr;
778 } else {
779 /*
780 * XXX: freebsd[34] does not have in_selectsrc, but
781 * we can omit the whole part because freebsd4 calls
782 * udp_output() directly in this case, and thus we'll
783 * never see this path.
784 */
785 if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
786 struct sockaddr_in sin_dst;
787 struct in_addr ina;
788 struct in_ifaddr *ia4;
789 struct psref _psref;
790 int bound;
791
792 memcpy(&ina, &faddr->s6_addr[12], sizeof(ina));
793 sockaddr_in_init(&sin_dst, &ina, 0);
794 bound = curlwp_bind();
795 ia4 = in_selectsrc(&sin_dst, &in6p->in6p_route,
796 in6p->in6p_socket->so_options, NULL,
797 &error, &_psref);
798 if (ia4 == NULL) {
799 curlwp_bindx(bound);
800 if (error == 0)
801 error = EADDRNOTAVAIL;
802 goto release;
803 }
804 memset(&laddr_mapped, 0, sizeof(laddr_mapped));
805 laddr_mapped.s6_addr16[5] = 0xffff; /* ugly */
806 memcpy(&laddr_mapped.s6_addr[12],
807 &IA_SIN(ia4)->sin_addr,
808 sizeof(IA_SIN(ia4)->sin_addr));
809 ia4_release(ia4, &_psref);
810 curlwp_bindx(bound);
811 laddr = &laddr_mapped;
812 } else
813 {
814 laddr = &in6p->in6p_laddr; /* XXX */
815 }
816 }
817 if (laddr == NULL) {
818 if (error == 0)
819 error = EADDRNOTAVAIL;
820 goto release;
821 }
822 if (in6p->in6p_lport == 0) {
823 /*
824 * Craft a sockaddr_in6 for the local endpoint. Use the
825 * "any" as a base, set the address, and recover the
826 * scope.
827 */
828 struct sockaddr_in6 lsin6 =
829 *((const struct sockaddr_in6 *)in6p->in6p_socket->so_proto->pr_domain->dom_sa_any);
830 lsin6.sin6_addr = *laddr;
831 error = sa6_recoverscope(&lsin6);
832 if (error)
833 goto release;
834
835 error = in6_pcbsetport(&lsin6, in6p, l);
836
837 if (error) {
838 in6p->in6p_laddr = in6addr_any;
839 goto release;
840 }
841 }
842 } else {
843 if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) {
844 error = ENOTCONN;
845 goto release;
846 }
847 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr)) {
848 if ((in6p->in6p_flags & IN6P_IPV6_V6ONLY))
849 {
850 /*
851 * XXX: this case would happen when the
852 * application sets the V6ONLY flag after
853 * connecting the foreign address.
854 * Such applications should be fixed,
855 * so we bark here.
856 */
857 log(LOG_INFO, "udp6_output: IPV6_V6ONLY "
858 "option was set for a connected socket\n");
859 error = EINVAL;
860 goto release;
861 } else
862 af = AF_INET;
863 }
864 laddr = &in6p->in6p_laddr;
865 faddr = &in6p->in6p_faddr;
866 fport = in6p->in6p_fport;
867 }
868
869 if (af == AF_INET)
870 hlen = sizeof(struct ip);
871
872 /*
873 * Calculate data length and get a mbuf
874 * for UDP and IP6 headers.
875 */
876 M_PREPEND(m, hlen + sizeof(struct udphdr), M_DONTWAIT);
877 if (m == NULL) {
878 error = ENOBUFS;
879 goto release;
880 }
881
882 /*
883 * Stuff checksum and output datagram.
884 */
885 udp6 = (struct udphdr *)(mtod(m, char *) + hlen);
886 udp6->uh_sport = in6p->in6p_lport; /* lport is always set in the PCB */
887 udp6->uh_dport = fport;
888 if (plen <= 0xffff)
889 udp6->uh_ulen = htons((u_int16_t)plen);
890 else
891 udp6->uh_ulen = 0;
892 udp6->uh_sum = 0;
893
894 switch (af) {
895 case AF_INET6:
896 ip6 = mtod(m, struct ip6_hdr *);
897 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
898 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
899 ip6->ip6_vfc |= IPV6_VERSION;
900 #if 0 /* ip6_plen will be filled in ip6_output. */
901 ip6->ip6_plen = htons((u_int16_t)plen);
902 #endif
903 ip6->ip6_nxt = IPPROTO_UDP;
904 ip6->ip6_hlim = in6_selecthlim_rt(in6p);
905 ip6->ip6_src = *laddr;
906 ip6->ip6_dst = *faddr;
907
908 udp6->uh_sum = in6_cksum_phdr(laddr, faddr,
909 htonl(plen), htonl(IPPROTO_UDP));
910 m->m_pkthdr.csum_flags = M_CSUM_UDPv6;
911 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
912
913 UDP6_STATINC(UDP6_STAT_OPACKETS);
914 error = ip6_output(m, optp, &in6p->in6p_route, 0,
915 in6p->in6p_moptions, in6p, NULL);
916 break;
917 case AF_INET:
918 #ifdef INET
919 /* can't transmit jumbogram over IPv4 */
920 if (plen > 0xffff) {
921 error = EMSGSIZE;
922 goto release;
923 }
924
925 ip = mtod(m, struct ip *);
926 ui = (struct udpiphdr *)ip;
927 memset(ui->ui_x1, 0, sizeof(ui->ui_x1));
928 ui->ui_pr = IPPROTO_UDP;
929 ui->ui_len = htons(plen);
930 memcpy(&ui->ui_src, &laddr->s6_addr[12], sizeof(ui->ui_src));
931 ui->ui_ulen = ui->ui_len;
932
933 flags = (in6p->in6p_socket->so_options &
934 (SO_DONTROUTE | SO_BROADCAST));
935 memcpy(&ui->ui_dst, &faddr->s6_addr[12], sizeof(ui->ui_dst));
936
937 udp6->uh_sum = in_cksum(m, hlen + plen);
938 if (udp6->uh_sum == 0)
939 udp6->uh_sum = 0xffff;
940
941 ip->ip_len = htons(hlen + plen);
942 ip->ip_ttl = in6_selecthlim(in6p, NULL); /* XXX */
943 ip->ip_tos = 0; /* XXX */
944
945 UDP_STATINC(UDP_STAT_OPACKETS);
946 error = ip_output(m, NULL, &in6p->in6p_route, flags /* XXX */,
947 in6p->in6p_v4moptions, NULL);
948 break;
949 #else
950 error = EAFNOSUPPORT;
951 goto release;
952 #endif
953 }
954 goto releaseopt;
955
956 release:
957 m_freem(m);
958
959 releaseopt:
960 if (control) {
961 if (optp == &opt)
962 ip6_clearpktopts(&opt, -1);
963 m_freem(control);
964 }
965 return (error);
966 }
967
968 static int
969 udp6_attach(struct socket *so, int proto)
970 {
971 struct in6pcb *in6p;
972 int s, error;
973
974 KASSERT(sotoin6pcb(so) == NULL);
975 sosetlock(so);
976
977 /*
978 * MAPPED_ADDR implementation spec:
979 * Always attach for IPv6, and only when necessary for IPv4.
980 */
981 s = splsoftnet();
982 error = in6_pcballoc(so, &udbtable);
983 splx(s);
984 if (error) {
985 return error;
986 }
987 error = soreserve(so, udp6_sendspace, udp6_recvspace);
988 if (error) {
989 return error;
990 }
991 in6p = sotoin6pcb(so);
992 in6p->in6p_cksum = -1; /* just to be sure */
993
994 KASSERT(solocked(so));
995 return 0;
996 }
997
998 static void
999 udp6_detach(struct socket *so)
1000 {
1001 struct in6pcb *in6p = sotoin6pcb(so);
1002 int s;
1003
1004 KASSERT(solocked(so));
1005 KASSERT(in6p != NULL);
1006
1007 s = splsoftnet();
1008 in6_pcbdetach(in6p);
1009 splx(s);
1010 }
1011
1012 static int
1013 udp6_accept(struct socket *so, struct sockaddr *nam)
1014 {
1015 KASSERT(solocked(so));
1016
1017 return EOPNOTSUPP;
1018 }
1019
1020 static int
1021 udp6_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
1022 {
1023 struct in6pcb *in6p = sotoin6pcb(so);
1024 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)nam;
1025 int error = 0;
1026 int s;
1027
1028 KASSERT(solocked(so));
1029 KASSERT(in6p != NULL);
1030
1031 s = splsoftnet();
1032 error = in6_pcbbind(in6p, sin6, l);
1033 splx(s);
1034 return error;
1035 }
1036
1037 static int
1038 udp6_listen(struct socket *so, struct lwp *l)
1039 {
1040 KASSERT(solocked(so));
1041
1042 return EOPNOTSUPP;
1043 }
1044
1045 static int
1046 udp6_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
1047 {
1048 struct in6pcb *in6p = sotoin6pcb(so);
1049 int error = 0;
1050 int s;
1051
1052 KASSERT(solocked(so));
1053 KASSERT(in6p != NULL);
1054
1055 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr))
1056 return EISCONN;
1057 s = splsoftnet();
1058 error = in6_pcbconnect(in6p, (struct sockaddr_in6 *)nam, l);
1059 splx(s);
1060 if (error == 0)
1061 soisconnected(so);
1062
1063 return error;
1064 }
1065
1066 static int
1067 udp6_connect2(struct socket *so, struct socket *so2)
1068 {
1069 KASSERT(solocked(so));
1070
1071 return EOPNOTSUPP;
1072 }
1073
1074 static int
1075 udp6_disconnect(struct socket *so)
1076 {
1077 struct in6pcb *in6p = sotoin6pcb(so);
1078 int s;
1079
1080 KASSERT(solocked(so));
1081 KASSERT(in6p != NULL);
1082
1083 if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr))
1084 return ENOTCONN;
1085
1086 s = splsoftnet();
1087 in6_pcbdisconnect(in6p);
1088 memset((void *)&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
1089 splx(s);
1090
1091 so->so_state &= ~SS_ISCONNECTED; /* XXX */
1092 in6_pcbstate(in6p, IN6P_BOUND); /* XXX */
1093 return 0;
1094 }
1095
1096 static int
1097 udp6_shutdown(struct socket *so)
1098 {
1099 int s;
1100
1101 s = splsoftnet();
1102 socantsendmore(so);
1103 splx(s);
1104
1105 return 0;
1106 }
1107
1108 static int
1109 udp6_abort(struct socket *so)
1110 {
1111 int s;
1112
1113 KASSERT(solocked(so));
1114 KASSERT(sotoin6pcb(so) != NULL);
1115
1116 s = splsoftnet();
1117 soisdisconnected(so);
1118 in6_pcbdetach(sotoin6pcb(so));
1119 splx(s);
1120
1121 return 0;
1122 }
1123
1124 static int
1125 udp6_ioctl(struct socket *so, u_long cmd, void *addr6, struct ifnet *ifp)
1126 {
1127 /*
1128 * MAPPED_ADDR implementation info:
1129 * Mapped addr support for PRU_CONTROL is not necessary.
1130 * Because typical user of PRU_CONTROL is such as ifconfig,
1131 * and they don't associate any addr to their socket. Then
1132 * socket family is only hint about the PRU_CONTROL'ed address
1133 * family, especially when getting addrs from kernel.
1134 * So AF_INET socket need to be used to control AF_INET addrs,
1135 * and AF_INET6 socket for AF_INET6 addrs.
1136 */
1137 return in6_control(so, cmd, addr6, ifp);
1138 }
1139
1140 static int
1141 udp6_stat(struct socket *so, struct stat *ub)
1142 {
1143 KASSERT(solocked(so));
1144
1145 /* stat: don't bother with a blocksize */
1146 return 0;
1147 }
1148
1149 static int
1150 udp6_peeraddr(struct socket *so, struct sockaddr *nam)
1151 {
1152 KASSERT(solocked(so));
1153 KASSERT(sotoin6pcb(so) != NULL);
1154 KASSERT(nam != NULL);
1155
1156 in6_setpeeraddr(sotoin6pcb(so), (struct sockaddr_in6 *)nam);
1157 return 0;
1158 }
1159
1160 static int
1161 udp6_sockaddr(struct socket *so, struct sockaddr *nam)
1162 {
1163 KASSERT(solocked(so));
1164 KASSERT(sotoin6pcb(so) != NULL);
1165 KASSERT(nam != NULL);
1166
1167 in6_setsockaddr(sotoin6pcb(so), (struct sockaddr_in6 *)nam);
1168 return 0;
1169 }
1170
1171 static int
1172 udp6_rcvd(struct socket *so, int flags, struct lwp *l)
1173 {
1174 KASSERT(solocked(so));
1175
1176 return EOPNOTSUPP;
1177 }
1178
1179 static int
1180 udp6_recvoob(struct socket *so, struct mbuf *m, int flags)
1181 {
1182 KASSERT(solocked(so));
1183
1184 return EOPNOTSUPP;
1185 }
1186
1187 static int
1188 udp6_send(struct socket *so, struct mbuf *m, struct sockaddr *nam,
1189 struct mbuf *control, struct lwp *l)
1190 {
1191 struct in6pcb *in6p = sotoin6pcb(so);
1192 int error = 0;
1193 int s;
1194
1195 KASSERT(solocked(so));
1196 KASSERT(in6p != NULL);
1197 KASSERT(m != NULL);
1198
1199 s = splsoftnet();
1200 error = udp6_output(in6p, m, (struct sockaddr_in6 *)nam, control, l);
1201 splx(s);
1202
1203 return error;
1204 }
1205
1206 static int
1207 udp6_sendoob(struct socket *so, struct mbuf *m, struct mbuf *control)
1208 {
1209 KASSERT(solocked(so));
1210
1211 if (m)
1212 m_freem(m);
1213 if (control)
1214 m_freem(control);
1215
1216 return EOPNOTSUPP;
1217 }
1218
1219 static int
1220 udp6_purgeif(struct socket *so, struct ifnet *ifp)
1221 {
1222
1223 mutex_enter(softnet_lock);
1224 in6_pcbpurgeif0(&udbtable, ifp);
1225 #ifdef NET_MPSAFE
1226 mutex_exit(softnet_lock);
1227 #endif
1228 in6_purgeif(ifp);
1229 #ifdef NET_MPSAFE
1230 mutex_enter(softnet_lock);
1231 #endif
1232 in6_pcbpurgeif(&udbtable, ifp);
1233 mutex_exit(softnet_lock);
1234
1235 return 0;
1236 }
1237
1238 static int
1239 sysctl_net_inet6_udp6_stats(SYSCTLFN_ARGS)
1240 {
1241
1242 return (NETSTAT_SYSCTL(udp6stat_percpu, UDP6_NSTATS));
1243 }
1244
1245 static void
1246 sysctl_net_inet6_udp6_setup(struct sysctllog **clog)
1247 {
1248
1249 sysctl_createv(clog, 0, NULL, NULL,
1250 CTLFLAG_PERMANENT,
1251 CTLTYPE_NODE, "inet6", NULL,
1252 NULL, 0, NULL, 0,
1253 CTL_NET, PF_INET6, CTL_EOL);
1254 sysctl_createv(clog, 0, NULL, NULL,
1255 CTLFLAG_PERMANENT,
1256 CTLTYPE_NODE, "udp6",
1257 SYSCTL_DESCR("UDPv6 related settings"),
1258 NULL, 0, NULL, 0,
1259 CTL_NET, PF_INET6, IPPROTO_UDP, CTL_EOL);
1260
1261 sysctl_createv(clog, 0, NULL, NULL,
1262 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1263 CTLTYPE_INT, "sendspace",
1264 SYSCTL_DESCR("Default UDP send buffer size"),
1265 NULL, 0, &udp6_sendspace, 0,
1266 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_SENDSPACE,
1267 CTL_EOL);
1268 sysctl_createv(clog, 0, NULL, NULL,
1269 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1270 CTLTYPE_INT, "recvspace",
1271 SYSCTL_DESCR("Default UDP receive buffer size"),
1272 NULL, 0, &udp6_recvspace, 0,
1273 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_RECVSPACE,
1274 CTL_EOL);
1275 sysctl_createv(clog, 0, NULL, NULL,
1276 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1277 CTLTYPE_INT, "do_loopback_cksum",
1278 SYSCTL_DESCR("Perform UDP checksum on loopback"),
1279 NULL, 0, &udp_do_loopback_cksum, 0,
1280 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_LOOPBACKCKSUM,
1281 CTL_EOL);
1282 sysctl_createv(clog, 0, NULL, NULL,
1283 CTLFLAG_PERMANENT,
1284 CTLTYPE_STRUCT, "pcblist",
1285 SYSCTL_DESCR("UDP protocol control block list"),
1286 sysctl_inpcblist, 0, &udbtable, 0,
1287 CTL_NET, PF_INET6, IPPROTO_UDP, CTL_CREATE,
1288 CTL_EOL);
1289 sysctl_createv(clog, 0, NULL, NULL,
1290 CTLFLAG_PERMANENT,
1291 CTLTYPE_STRUCT, "stats",
1292 SYSCTL_DESCR("UDPv6 statistics"),
1293 sysctl_net_inet6_udp6_stats, 0, NULL, 0,
1294 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_STATS,
1295 CTL_EOL);
1296 }
1297
1298 void
1299 udp6_statinc(u_int stat)
1300 {
1301
1302 KASSERT(stat < UDP6_NSTATS);
1303 UDP6_STATINC(stat);
1304 }
1305
1306 PR_WRAP_USRREQS(udp6)
1307 #define udp6_attach udp6_attach_wrapper
1308 #define udp6_detach udp6_detach_wrapper
1309 #define udp6_accept udp6_accept_wrapper
1310 #define udp6_bind udp6_bind_wrapper
1311 #define udp6_listen udp6_listen_wrapper
1312 #define udp6_connect udp6_connect_wrapper
1313 #define udp6_connect2 udp6_connect2_wrapper
1314 #define udp6_disconnect udp6_disconnect_wrapper
1315 #define udp6_shutdown udp6_shutdown_wrapper
1316 #define udp6_abort udp6_abort_wrapper
1317 #define udp6_ioctl udp6_ioctl_wrapper
1318 #define udp6_stat udp6_stat_wrapper
1319 #define udp6_peeraddr udp6_peeraddr_wrapper
1320 #define udp6_sockaddr udp6_sockaddr_wrapper
1321 #define udp6_rcvd udp6_rcvd_wrapper
1322 #define udp6_recvoob udp6_recvoob_wrapper
1323 #define udp6_send udp6_send_wrapper
1324 #define udp6_sendoob udp6_sendoob_wrapper
1325 #define udp6_purgeif udp6_purgeif_wrapper
1326
1327 const struct pr_usrreqs udp6_usrreqs = {
1328 .pr_attach = udp6_attach,
1329 .pr_detach = udp6_detach,
1330 .pr_accept = udp6_accept,
1331 .pr_bind = udp6_bind,
1332 .pr_listen = udp6_listen,
1333 .pr_connect = udp6_connect,
1334 .pr_connect2 = udp6_connect2,
1335 .pr_disconnect = udp6_disconnect,
1336 .pr_shutdown = udp6_shutdown,
1337 .pr_abort = udp6_abort,
1338 .pr_ioctl = udp6_ioctl,
1339 .pr_stat = udp6_stat,
1340 .pr_peeraddr = udp6_peeraddr,
1341 .pr_sockaddr = udp6_sockaddr,
1342 .pr_rcvd = udp6_rcvd,
1343 .pr_recvoob = udp6_recvoob,
1344 .pr_send = udp6_send,
1345 .pr_sendoob = udp6_sendoob,
1346 .pr_purgeif = udp6_purgeif,
1347 };
1348