udp6_usrreq.c revision 1.137.2.5 1 /* $NetBSD: udp6_usrreq.c,v 1.137.2.5 2018/11/26 01:52:51 pgoyette Exp $ */
2 /* $KAME: udp6_usrreq.c,v 1.86 2001/05/27 17:33:00 itojun Exp $ */
3 /* $KAME: udp6_output.c,v 1.43 2001/10/15 09:19:52 itojun Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (c) 1982, 1986, 1989, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)udp_var.h 8.1 (Berkeley) 6/10/93
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: udp6_usrreq.c,v 1.137.2.5 2018/11/26 01:52:51 pgoyette Exp $");
67
68 #ifdef _KERNEL_OPT
69 #include "opt_inet.h"
70 #include "opt_inet_csum.h"
71 #include "opt_ipsec.h"
72 #include "opt_net_mpsafe.h"
73 #endif
74
75 #include <sys/param.h>
76 #include <sys/mbuf.h>
77 #include <sys/protosw.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/syslog.h>
83 #include <sys/domain.h>
84 #include <sys/sysctl.h>
85
86 #include <net/if.h>
87 #include <net/if_types.h>
88
89 #include <netinet/in.h>
90 #include <netinet/in_var.h>
91 #include <netinet/in_systm.h>
92 #include <netinet/in_offload.h>
93 #include <netinet/ip.h>
94 #include <netinet/ip_var.h>
95 #include <netinet/in_pcb.h>
96 #include <netinet/udp.h>
97 #include <netinet/udp_var.h>
98 #include <netinet/udp_private.h>
99
100 #include <netinet/ip6.h>
101 #include <netinet/icmp6.h>
102 #include <netinet6/ip6_var.h>
103 #include <netinet6/ip6_private.h>
104 #include <netinet6/in6_pcb.h>
105 #include <netinet6/udp6_var.h>
106 #include <netinet6/udp6_private.h>
107 #include <netinet6/ip6protosw.h>
108 #include <netinet6/scope6_var.h>
109
110 #ifdef IPSEC
111 #include <netipsec/ipsec.h>
112 #include <netipsec/esp.h>
113 #ifdef INET6
114 #include <netipsec/ipsec6.h>
115 #endif
116 #endif
117
118 #include "faith.h"
119 #if defined(NFAITH) && NFAITH > 0
120 #include <net/if_faith.h>
121 #endif
122
123 /*
124 * UDP protocol implementation.
125 * Per RFC 768, August, 1980.
126 */
127
128 extern struct inpcbtable udbtable;
129
130 percpu_t *udp6stat_percpu;
131
132 /* UDP on IP6 parameters */
133 static int udp6_sendspace = 9216; /* really max datagram size */
134 static int udp6_recvspace = 40 * (1024 + sizeof(struct sockaddr_in6));
135 /* 40 1K datagrams */
136
137 static void udp6_notify(struct in6pcb *, int);
138 static void sysctl_net_inet6_udp6_setup(struct sysctllog **);
139 #ifdef IPSEC
140 static int udp6_espinudp(struct mbuf **, int, struct sockaddr *,
141 struct socket *);
142 #endif
143
144 #ifdef UDP_CSUM_COUNTERS
145 #include <sys/device.h>
146 struct evcnt udp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
147 NULL, "udp6", "hwcsum bad");
148 struct evcnt udp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
149 NULL, "udp6", "hwcsum ok");
150 struct evcnt udp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
151 NULL, "udp6", "hwcsum data");
152 struct evcnt udp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
153 NULL, "udp6", "swcsum");
154
155 EVCNT_ATTACH_STATIC(udp6_hwcsum_bad);
156 EVCNT_ATTACH_STATIC(udp6_hwcsum_ok);
157 EVCNT_ATTACH_STATIC(udp6_hwcsum_data);
158 EVCNT_ATTACH_STATIC(udp6_swcsum);
159
160 #define UDP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
161 #else
162 #define UDP_CSUM_COUNTER_INCR(ev) /* nothing */
163 #endif
164
165 void
166 udp6_init(void)
167 {
168 sysctl_net_inet6_udp6_setup(NULL);
169 udp6stat_percpu = percpu_alloc(sizeof(uint64_t) * UDP6_NSTATS);
170
171 udp_init_common();
172 }
173
174 /*
175 * Notify a udp user of an asynchronous error;
176 * just wake up so that he can collect error status.
177 */
178 static void
179 udp6_notify(struct in6pcb *in6p, int errno)
180 {
181 in6p->in6p_socket->so_error = errno;
182 sorwakeup(in6p->in6p_socket);
183 sowwakeup(in6p->in6p_socket);
184 }
185
186 void *
187 udp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
188 {
189 struct udphdr uh;
190 struct ip6_hdr *ip6;
191 const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
192 struct mbuf *m;
193 int off;
194 void *cmdarg;
195 struct ip6ctlparam *ip6cp = NULL;
196 const struct sockaddr_in6 *sa6_src = NULL;
197 void (*notify)(struct in6pcb *, int) = udp6_notify;
198 struct udp_portonly {
199 u_int16_t uh_sport;
200 u_int16_t uh_dport;
201 } *uhp;
202
203 if (sa->sa_family != AF_INET6 ||
204 sa->sa_len != sizeof(struct sockaddr_in6))
205 return NULL;
206
207 if ((unsigned)cmd >= PRC_NCMDS)
208 return NULL;
209 if (PRC_IS_REDIRECT(cmd))
210 notify = in6_rtchange, d = NULL;
211 else if (cmd == PRC_HOSTDEAD)
212 d = NULL;
213 else if (cmd == PRC_MSGSIZE) {
214 /* special code is present, see below */
215 notify = in6_rtchange;
216 }
217 else if (inet6ctlerrmap[cmd] == 0)
218 return NULL;
219
220 /* if the parameter is from icmp6, decode it. */
221 if (d != NULL) {
222 ip6cp = (struct ip6ctlparam *)d;
223 m = ip6cp->ip6c_m;
224 ip6 = ip6cp->ip6c_ip6;
225 off = ip6cp->ip6c_off;
226 cmdarg = ip6cp->ip6c_cmdarg;
227 sa6_src = ip6cp->ip6c_src;
228 } else {
229 m = NULL;
230 ip6 = NULL;
231 cmdarg = NULL;
232 sa6_src = &sa6_any;
233 off = 0;
234 }
235
236 if (ip6) {
237 /* check if we can safely examine src and dst ports */
238 if (m->m_pkthdr.len < off + sizeof(*uhp)) {
239 if (cmd == PRC_MSGSIZE)
240 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
241 return NULL;
242 }
243
244 memset(&uh, 0, sizeof(uh));
245 m_copydata(m, off, sizeof(*uhp), (void *)&uh);
246
247 if (cmd == PRC_MSGSIZE) {
248 int valid = 0;
249
250 /*
251 * Check to see if we have a valid UDP socket
252 * corresponding to the address in the ICMPv6 message
253 * payload.
254 */
255 if (in6_pcblookup_connect(&udbtable, &sa6->sin6_addr,
256 uh.uh_dport, (const struct in6_addr *)&sa6_src->sin6_addr,
257 uh.uh_sport, 0, 0))
258 valid++;
259 #if 0
260 /*
261 * As the use of sendto(2) is fairly popular,
262 * we may want to allow non-connected pcb too.
263 * But it could be too weak against attacks...
264 * We should at least check if the local address (= s)
265 * is really ours.
266 */
267 else if (in6_pcblookup_bind(&udbtable, &sa6->sin6_addr,
268 uh.uh_dport, 0))
269 valid++;
270 #endif
271
272 /*
273 * Depending on the value of "valid" and routing table
274 * size (mtudisc_{hi,lo}wat), we will:
275 * - recalculate the new MTU and create the
276 * corresponding routing entry, or
277 * - ignore the MTU change notification.
278 */
279 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
280
281 /*
282 * regardless of if we called
283 * icmp6_mtudisc_update(), we need to call
284 * in6_pcbnotify(), to notify path MTU change
285 * to the userland (RFC3542), because some
286 * unconnected sockets may share the same
287 * destination and want to know the path MTU.
288 */
289 }
290
291 (void)in6_pcbnotify(&udbtable, sa, uh.uh_dport,
292 sin6tocsa(sa6_src), uh.uh_sport, cmd, cmdarg,
293 notify);
294 } else {
295 (void)in6_pcbnotify(&udbtable, sa, 0,
296 sin6tocsa(sa6_src), 0, cmd, cmdarg, notify);
297 }
298 return NULL;
299 }
300
301 int
302 udp6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
303 {
304 int s;
305 int error = 0;
306 struct in6pcb *in6p;
307 int family;
308 int optval;
309
310 family = so->so_proto->pr_domain->dom_family;
311
312 s = splsoftnet();
313 switch (family) {
314 #ifdef INET
315 case PF_INET:
316 if (sopt->sopt_level != IPPROTO_UDP) {
317 error = ip_ctloutput(op, so, sopt);
318 goto end;
319 }
320 break;
321 #endif
322 #ifdef INET6
323 case PF_INET6:
324 if (sopt->sopt_level != IPPROTO_UDP) {
325 error = ip6_ctloutput(op, so, sopt);
326 goto end;
327 }
328 break;
329 #endif
330 default:
331 error = EAFNOSUPPORT;
332 goto end;
333 }
334
335 switch (op) {
336 case PRCO_SETOPT:
337 in6p = sotoin6pcb(so);
338
339 switch (sopt->sopt_name) {
340 case UDP_ENCAP:
341 error = sockopt_getint(sopt, &optval);
342 if (error)
343 break;
344
345 switch(optval) {
346 case 0:
347 in6p->in6p_flags &= ~IN6P_ESPINUDP;
348 break;
349
350 case UDP_ENCAP_ESPINUDP:
351 in6p->in6p_flags |= IN6P_ESPINUDP;
352 break;
353
354 default:
355 error = EINVAL;
356 break;
357 }
358 break;
359
360 default:
361 error = ENOPROTOOPT;
362 break;
363 }
364 break;
365
366 default:
367 error = EINVAL;
368 break;
369 }
370
371 end:
372 splx(s);
373 return error;
374 }
375
376 static void
377 udp6_sendup(struct mbuf *m, int off /* offset of data portion */,
378 struct sockaddr *src, struct socket *so)
379 {
380 struct mbuf *opts = NULL;
381 struct mbuf *n;
382 struct in6pcb *in6p;
383
384 KASSERT(so != NULL);
385 KASSERT(so->so_proto->pr_domain->dom_family == AF_INET6);
386 in6p = sotoin6pcb(so);
387 KASSERT(in6p != NULL);
388
389 #if defined(IPSEC)
390 if (ipsec_used && ipsec_in_reject(m, in6p)) {
391 if ((n = m_copypacket(m, M_DONTWAIT)) != NULL)
392 icmp6_error(n, ICMP6_DST_UNREACH,
393 ICMP6_DST_UNREACH_ADMIN, 0);
394 return;
395 }
396 #endif
397
398 if ((n = m_copypacket(m, M_DONTWAIT)) != NULL) {
399 if (in6p->in6p_flags & IN6P_CONTROLOPTS ||
400 SOOPT_TIMESTAMP(in6p->in6p_socket->so_options)) {
401 struct ip6_hdr *ip6 = mtod(n, struct ip6_hdr *);
402 ip6_savecontrol(in6p, &opts, ip6, n);
403 }
404
405 m_adj(n, off);
406 if (sbappendaddr(&so->so_rcv, src, n, opts) == 0) {
407 m_freem(n);
408 if (opts)
409 m_freem(opts);
410 UDP6_STATINC(UDP6_STAT_FULLSOCK);
411 soroverflow(so);
412 } else
413 sorwakeup(so);
414 }
415 }
416
417 int
418 udp6_realinput(int af, struct sockaddr_in6 *src, struct sockaddr_in6 *dst,
419 struct mbuf **mp, int off)
420 {
421 u_int16_t sport, dport;
422 int rcvcnt;
423 struct in6_addr src6, *dst6;
424 const struct in_addr *dst4;
425 struct inpcb_hdr *inph;
426 struct in6pcb *in6p;
427 struct mbuf *m = *mp;
428
429 rcvcnt = 0;
430 off += sizeof(struct udphdr); /* now, offset of payload */
431
432 if (af != AF_INET && af != AF_INET6)
433 goto bad;
434 if (src->sin6_family != AF_INET6 || dst->sin6_family != AF_INET6)
435 goto bad;
436
437 src6 = src->sin6_addr;
438 if (sa6_recoverscope(src) != 0) {
439 /* XXX: should be impossible. */
440 goto bad;
441 }
442 sport = src->sin6_port;
443
444 dport = dst->sin6_port;
445 dst4 = (struct in_addr *)&dst->sin6_addr.s6_addr[12];
446 dst6 = &dst->sin6_addr;
447
448 if (IN6_IS_ADDR_MULTICAST(dst6) ||
449 (af == AF_INET && IN_MULTICAST(dst4->s_addr))) {
450 /*
451 * Deliver a multicast or broadcast datagram to *all* sockets
452 * for which the local and remote addresses and ports match
453 * those of the incoming datagram. This allows more than
454 * one process to receive multi/broadcasts on the same port.
455 * (This really ought to be done for unicast datagrams as
456 * well, but that would cause problems with existing
457 * applications that open both address-specific sockets and
458 * a wildcard socket listening to the same port -- they would
459 * end up receiving duplicates of every unicast datagram.
460 * Those applications open the multiple sockets to overcome an
461 * inadequacy of the UDP socket interface, but for backwards
462 * compatibility we avoid the problem here rather than
463 * fixing the interface. Maybe 4.5BSD will remedy this?)
464 */
465
466 /*
467 * KAME note: traditionally we dropped udpiphdr from mbuf here.
468 * we need udpiphdr for IPsec processing so we do that later.
469 */
470 /*
471 * Locate pcb(s) for datagram.
472 */
473 TAILQ_FOREACH(inph, &udbtable.inpt_queue, inph_queue) {
474 in6p = (struct in6pcb *)inph;
475 if (in6p->in6p_af != AF_INET6)
476 continue;
477
478 if (in6p->in6p_lport != dport)
479 continue;
480 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
481 if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_laddr,
482 dst6))
483 continue;
484 } else {
485 if (IN6_IS_ADDR_V4MAPPED(dst6) &&
486 (in6p->in6p_flags & IN6P_IPV6_V6ONLY))
487 continue;
488 }
489 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) {
490 if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_faddr,
491 &src6) || in6p->in6p_fport != sport)
492 continue;
493 } else {
494 if (IN6_IS_ADDR_V4MAPPED(&src6) &&
495 (in6p->in6p_flags & IN6P_IPV6_V6ONLY))
496 continue;
497 }
498
499 udp6_sendup(m, off, sin6tosa(src), in6p->in6p_socket);
500 rcvcnt++;
501
502 /*
503 * Don't look for additional matches if this one does
504 * not have either the SO_REUSEPORT or SO_REUSEADDR
505 * socket options set. This heuristic avoids searching
506 * through all pcbs in the common case of a non-shared
507 * port. It assumes that an application will never
508 * clear these options after setting them.
509 */
510 if ((in6p->in6p_socket->so_options &
511 (SO_REUSEPORT|SO_REUSEADDR)) == 0)
512 break;
513 }
514 } else {
515 /*
516 * Locate pcb for datagram.
517 */
518 in6p = in6_pcblookup_connect(&udbtable, &src6, sport, dst6,
519 dport, 0, 0);
520 if (in6p == 0) {
521 UDP_STATINC(UDP_STAT_PCBHASHMISS);
522 in6p = in6_pcblookup_bind(&udbtable, dst6, dport, 0);
523 if (in6p == 0)
524 return rcvcnt;
525 }
526
527 #ifdef IPSEC
528 /* Handle ESP over UDP */
529 if (in6p->in6p_flags & IN6P_ESPINUDP) {
530 struct sockaddr *sa = (struct sockaddr *)src;
531
532 switch (udp6_espinudp(mp, off, sa, in6p->in6p_socket)) {
533 case -1: /* Error, m was freed */
534 rcvcnt = -1;
535 goto bad;
536
537 case 1: /* ESP over UDP */
538 rcvcnt++;
539 goto bad;
540
541 case 0: /* plain UDP */
542 default: /* Unexpected */
543 /*
544 * Normal UDP processing will take place,
545 * m may have changed.
546 */
547 m = *mp;
548 break;
549 }
550 }
551 #endif
552
553 udp6_sendup(m, off, sin6tosa(src), in6p->in6p_socket);
554 rcvcnt++;
555 }
556
557 bad:
558 return rcvcnt;
559 }
560
561 int
562 udp6_input_checksum(struct mbuf *m, const struct udphdr *uh, int off, int len)
563 {
564
565 /*
566 * XXX it's better to record and check if this mbuf is
567 * already checked.
568 */
569
570 if (__predict_false((m->m_flags & M_LOOP) && !udp_do_loopback_cksum)) {
571 goto good;
572 }
573 if (uh->uh_sum == 0) {
574 UDP6_STATINC(UDP6_STAT_NOSUM);
575 goto bad;
576 }
577
578 switch (m->m_pkthdr.csum_flags &
579 ((m_get_rcvif_NOMPSAFE(m)->if_csum_flags_rx & M_CSUM_UDPv6) |
580 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
581 case M_CSUM_UDPv6|M_CSUM_TCP_UDP_BAD:
582 UDP_CSUM_COUNTER_INCR(&udp6_hwcsum_bad);
583 UDP6_STATINC(UDP6_STAT_BADSUM);
584 goto bad;
585
586 #if 0 /* notyet */
587 case M_CSUM_UDPv6|M_CSUM_DATA:
588 #endif
589
590 case M_CSUM_UDPv6:
591 /* Checksum was okay. */
592 UDP_CSUM_COUNTER_INCR(&udp6_hwcsum_ok);
593 break;
594
595 default:
596 /*
597 * Need to compute it ourselves. Maybe skip checksum
598 * on loopback interfaces.
599 */
600 UDP_CSUM_COUNTER_INCR(&udp6_swcsum);
601 if (in6_cksum(m, IPPROTO_UDP, off, len) != 0) {
602 UDP6_STATINC(UDP6_STAT_BADSUM);
603 goto bad;
604 }
605 }
606
607 good:
608 return 0;
609 bad:
610 return -1;
611 }
612
613 int
614 udp6_input(struct mbuf **mp, int *offp, int proto)
615 {
616 struct mbuf *m = *mp;
617 int off = *offp;
618 struct sockaddr_in6 src, dst;
619 struct ip6_hdr *ip6;
620 struct udphdr *uh;
621 u_int32_t plen, ulen;
622
623 ip6 = mtod(m, struct ip6_hdr *);
624
625 #if defined(NFAITH) && 0 < NFAITH
626 if (faithprefix(&ip6->ip6_dst)) {
627 /* send icmp6 host unreach? */
628 m_freem(m);
629 return IPPROTO_DONE;
630 }
631 #endif
632
633 UDP6_STATINC(UDP6_STAT_IPACKETS);
634
635 /* Check for jumbogram is done in ip6_input. We can trust pkthdr.len. */
636 plen = m->m_pkthdr.len - off;
637 IP6_EXTHDR_GET(uh, struct udphdr *, m, off, sizeof(struct udphdr));
638 if (uh == NULL) {
639 IP6_STATINC(IP6_STAT_TOOSHORT);
640 return IPPROTO_DONE;
641 }
642
643 /*
644 * Enforce alignment requirements that are violated in
645 * some cases, see kern/50766 for details.
646 */
647 if (UDP_HDR_ALIGNED_P(uh) == 0) {
648 m = m_copyup(m, off + sizeof(struct udphdr), 0);
649 if (m == NULL) {
650 IP6_STATINC(IP6_STAT_TOOSHORT);
651 return IPPROTO_DONE;
652 }
653 ip6 = mtod(m, struct ip6_hdr *);
654 uh = (struct udphdr *)(mtod(m, char *) + off);
655 }
656 KASSERT(UDP_HDR_ALIGNED_P(uh));
657 ulen = ntohs((u_short)uh->uh_ulen);
658
659 /*
660 * RFC2675 section 4: jumbograms will have 0 in the UDP header field,
661 * iff payload length > 0xffff.
662 */
663 if (ulen == 0 && plen > 0xffff)
664 ulen = plen;
665
666 if (plen != ulen) {
667 UDP6_STATINC(UDP6_STAT_BADLEN);
668 goto bad;
669 }
670
671 /* destination port of 0 is illegal, based on RFC768. */
672 if (uh->uh_dport == 0)
673 goto bad;
674
675 /*
676 * Checksum extended UDP header and data. Maybe skip checksum
677 * on loopback interfaces.
678 */
679 if (udp6_input_checksum(m, uh, off, ulen))
680 goto bad;
681
682 /*
683 * Construct source and dst sockaddrs.
684 */
685 memset(&src, 0, sizeof(src));
686 src.sin6_family = AF_INET6;
687 src.sin6_len = sizeof(struct sockaddr_in6);
688 src.sin6_addr = ip6->ip6_src;
689 src.sin6_port = uh->uh_sport;
690 memset(&dst, 0, sizeof(dst));
691 dst.sin6_family = AF_INET6;
692 dst.sin6_len = sizeof(struct sockaddr_in6);
693 dst.sin6_addr = ip6->ip6_dst;
694 dst.sin6_port = uh->uh_dport;
695
696 if (udp6_realinput(AF_INET6, &src, &dst, &m, off) == 0) {
697 if (m->m_flags & M_MCAST) {
698 UDP6_STATINC(UDP6_STAT_NOPORTMCAST);
699 goto bad;
700 }
701 UDP6_STATINC(UDP6_STAT_NOPORT);
702 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_NOPORT, 0);
703 m = NULL;
704 }
705
706 bad:
707 if (m)
708 m_freem(m);
709 return IPPROTO_DONE;
710 }
711
712 int
713 udp6_output(struct in6pcb * const in6p, struct mbuf *m,
714 struct sockaddr_in6 * const addr6, struct mbuf * const control,
715 struct lwp * const l)
716 {
717 u_int32_t ulen = m->m_pkthdr.len;
718 u_int32_t plen = sizeof(struct udphdr) + ulen;
719 struct ip6_hdr *ip6;
720 struct udphdr *udp6;
721 struct in6_addr _laddr, *laddr, *faddr;
722 struct in6_addr laddr_mapped; /* XXX ugly */
723 struct sockaddr_in6 *sin6 = NULL;
724 struct ifnet *oifp = NULL;
725 int scope_ambiguous = 0;
726 u_int16_t fport;
727 int error = 0;
728 struct ip6_pktopts *optp = NULL;
729 struct ip6_pktopts opt;
730 int af = AF_INET6, hlen = sizeof(struct ip6_hdr);
731 #ifdef INET
732 struct ip *ip;
733 struct udpiphdr *ui;
734 int flags = 0;
735 #endif
736 struct sockaddr_in6 tmp;
737
738 if (addr6) {
739 sin6 = addr6;
740 if (sin6->sin6_len != sizeof(*sin6)) {
741 error = EINVAL;
742 goto release;
743 }
744 if (sin6->sin6_family != AF_INET6) {
745 error = EAFNOSUPPORT;
746 goto release;
747 }
748
749 /* protect *sin6 from overwrites */
750 tmp = *sin6;
751 sin6 = &tmp;
752
753 /*
754 * Application should provide a proper zone ID or the use of
755 * default zone IDs should be enabled. Unfortunately, some
756 * applications do not behave as it should, so we need a
757 * workaround. Even if an appropriate ID is not determined,
758 * we'll see if we can determine the outgoing interface. If we
759 * can, determine the zone ID based on the interface below.
760 */
761 if (sin6->sin6_scope_id == 0 && !ip6_use_defzone)
762 scope_ambiguous = 1;
763 if ((error = sa6_embedscope(sin6, ip6_use_defzone)) != 0)
764 goto release;
765 }
766
767 if (control) {
768 if (__predict_false(l == NULL)) {
769 panic("%s: control but no lwp", __func__);
770 }
771 if ((error = ip6_setpktopts(control, &opt,
772 in6p->in6p_outputopts, l->l_cred, IPPROTO_UDP)) != 0)
773 goto release;
774 optp = &opt;
775 } else
776 optp = in6p->in6p_outputopts;
777
778
779 if (sin6) {
780 /*
781 * Slightly different than v4 version in that we call
782 * in6_selectsrc and in6_pcbsetport to fill in the local
783 * address and port rather than in_pcbconnect. in_pcbconnect
784 * sets in6p_faddr which causes EISCONN below to be hit on
785 * subsequent sendto.
786 */
787 if (sin6->sin6_port == 0) {
788 error = EADDRNOTAVAIL;
789 goto release;
790 }
791
792 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) {
793 /* how about ::ffff:0.0.0.0 case? */
794 error = EISCONN;
795 goto release;
796 }
797
798 faddr = &sin6->sin6_addr;
799 fport = sin6->sin6_port; /* allow 0 port */
800
801 if (IN6_IS_ADDR_V4MAPPED(faddr)) {
802 if ((in6p->in6p_flags & IN6P_IPV6_V6ONLY)) {
803 /*
804 * I believe we should explicitly discard the
805 * packet when mapped addresses are disabled,
806 * rather than send the packet as an IPv6 one.
807 * If we chose the latter approach, the packet
808 * might be sent out on the wire based on the
809 * default route, the situation which we'd
810 * probably want to avoid.
811 * (20010421 jinmei (at) kame.net)
812 */
813 error = EINVAL;
814 goto release;
815 }
816 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr) &&
817 !IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)) {
818 /*
819 * when remote addr is an IPv4-mapped address,
820 * local addr should not be an IPv6 address,
821 * since you cannot determine how to map IPv6
822 * source address to IPv4.
823 */
824 error = EINVAL;
825 goto release;
826 }
827
828 af = AF_INET;
829 }
830
831 if (!IN6_IS_ADDR_V4MAPPED(faddr)) {
832 struct psref psref;
833 int bound = curlwp_bind();
834
835 error = in6_selectsrc(sin6, optp,
836 in6p->in6p_moptions,
837 &in6p->in6p_route,
838 &in6p->in6p_laddr, &oifp, &psref, &_laddr);
839 if (error)
840 laddr = NULL;
841 else
842 laddr = &_laddr;
843 if (oifp && scope_ambiguous &&
844 (error = in6_setscope(&sin6->sin6_addr,
845 oifp, NULL))) {
846 if_put(oifp, &psref);
847 curlwp_bindx(bound);
848 goto release;
849 }
850 if_put(oifp, &psref);
851 curlwp_bindx(bound);
852 } else {
853 /*
854 * XXX: freebsd[34] does not have in_selectsrc, but
855 * we can omit the whole part because freebsd4 calls
856 * udp_output() directly in this case, and thus we'll
857 * never see this path.
858 */
859 if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
860 struct sockaddr_in sin_dst;
861 struct in_addr ina;
862 struct in_ifaddr *ia4;
863 struct psref _psref;
864 int bound;
865
866 memcpy(&ina, &faddr->s6_addr[12], sizeof(ina));
867 sockaddr_in_init(&sin_dst, &ina, 0);
868 bound = curlwp_bind();
869 ia4 = in_selectsrc(&sin_dst, &in6p->in6p_route,
870 in6p->in6p_socket->so_options, NULL,
871 &error, &_psref);
872 if (ia4 == NULL) {
873 curlwp_bindx(bound);
874 if (error == 0)
875 error = EADDRNOTAVAIL;
876 goto release;
877 }
878 memset(&laddr_mapped, 0, sizeof(laddr_mapped));
879 laddr_mapped.s6_addr16[5] = 0xffff; /* ugly */
880 memcpy(&laddr_mapped.s6_addr[12],
881 &IA_SIN(ia4)->sin_addr,
882 sizeof(IA_SIN(ia4)->sin_addr));
883 ia4_release(ia4, &_psref);
884 curlwp_bindx(bound);
885 laddr = &laddr_mapped;
886 } else
887 {
888 laddr = &in6p->in6p_laddr; /* XXX */
889 }
890 }
891 if (laddr == NULL) {
892 if (error == 0)
893 error = EADDRNOTAVAIL;
894 goto release;
895 }
896 if (in6p->in6p_lport == 0) {
897 /*
898 * Craft a sockaddr_in6 for the local endpoint. Use the
899 * "any" as a base, set the address, and recover the
900 * scope.
901 */
902 struct sockaddr_in6 lsin6 =
903 *((const struct sockaddr_in6 *)in6p->in6p_socket->so_proto->pr_domain->dom_sa_any);
904 lsin6.sin6_addr = *laddr;
905 error = sa6_recoverscope(&lsin6);
906 if (error)
907 goto release;
908
909 error = in6_pcbsetport(&lsin6, in6p, l);
910
911 if (error) {
912 in6p->in6p_laddr = in6addr_any;
913 goto release;
914 }
915 }
916 } else {
917 if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) {
918 error = ENOTCONN;
919 goto release;
920 }
921 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr)) {
922 if ((in6p->in6p_flags & IN6P_IPV6_V6ONLY))
923 {
924 /*
925 * XXX: this case would happen when the
926 * application sets the V6ONLY flag after
927 * connecting the foreign address.
928 * Such applications should be fixed,
929 * so we bark here.
930 */
931 log(LOG_INFO, "udp6_output: IPV6_V6ONLY "
932 "option was set for a connected socket\n");
933 error = EINVAL;
934 goto release;
935 } else
936 af = AF_INET;
937 }
938 laddr = &in6p->in6p_laddr;
939 faddr = &in6p->in6p_faddr;
940 fport = in6p->in6p_fport;
941 }
942
943 if (af == AF_INET)
944 hlen = sizeof(struct ip);
945
946 /*
947 * Calculate data length and get a mbuf
948 * for UDP and IP6 headers.
949 */
950 M_PREPEND(m, hlen + sizeof(struct udphdr), M_DONTWAIT);
951 if (m == NULL) {
952 error = ENOBUFS;
953 goto release;
954 }
955
956 /*
957 * Stuff checksum and output datagram.
958 */
959 udp6 = (struct udphdr *)(mtod(m, char *) + hlen);
960 udp6->uh_sport = in6p->in6p_lport; /* lport is always set in the PCB */
961 udp6->uh_dport = fport;
962 if (plen <= 0xffff)
963 udp6->uh_ulen = htons((u_int16_t)plen);
964 else
965 udp6->uh_ulen = 0;
966 udp6->uh_sum = 0;
967
968 switch (af) {
969 case AF_INET6:
970 ip6 = mtod(m, struct ip6_hdr *);
971 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
972 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
973 ip6->ip6_vfc |= IPV6_VERSION;
974 #if 0 /* ip6_plen will be filled in ip6_output. */
975 ip6->ip6_plen = htons((u_int16_t)plen);
976 #endif
977 ip6->ip6_nxt = IPPROTO_UDP;
978 ip6->ip6_hlim = in6_selecthlim_rt(in6p);
979 ip6->ip6_src = *laddr;
980 ip6->ip6_dst = *faddr;
981
982 udp6->uh_sum = in6_cksum_phdr(laddr, faddr,
983 htonl(plen), htonl(IPPROTO_UDP));
984 m->m_pkthdr.csum_flags = M_CSUM_UDPv6;
985 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
986
987 UDP6_STATINC(UDP6_STAT_OPACKETS);
988 error = ip6_output(m, optp, &in6p->in6p_route, 0,
989 in6p->in6p_moptions, in6p, NULL);
990 break;
991 case AF_INET:
992 #ifdef INET
993 /* can't transmit jumbogram over IPv4 */
994 if (plen > 0xffff) {
995 error = EMSGSIZE;
996 goto release;
997 }
998
999 ip = mtod(m, struct ip *);
1000 ui = (struct udpiphdr *)ip;
1001 memset(ui->ui_x1, 0, sizeof(ui->ui_x1));
1002 ui->ui_pr = IPPROTO_UDP;
1003 ui->ui_len = htons(plen);
1004 memcpy(&ui->ui_src, &laddr->s6_addr[12], sizeof(ui->ui_src));
1005 ui->ui_ulen = ui->ui_len;
1006
1007 flags = (in6p->in6p_socket->so_options &
1008 (SO_DONTROUTE | SO_BROADCAST));
1009 memcpy(&ui->ui_dst, &faddr->s6_addr[12], sizeof(ui->ui_dst));
1010
1011 udp6->uh_sum = in_cksum(m, hlen + plen);
1012 if (udp6->uh_sum == 0)
1013 udp6->uh_sum = 0xffff;
1014
1015 ip->ip_len = htons(hlen + plen);
1016 ip->ip_ttl = in6_selecthlim(in6p, NULL); /* XXX */
1017 ip->ip_tos = 0; /* XXX */
1018
1019 UDP_STATINC(UDP_STAT_OPACKETS);
1020 error = ip_output(m, NULL, &in6p->in6p_route, flags /* XXX */,
1021 in6p->in6p_v4moptions, NULL);
1022 break;
1023 #else
1024 error = EAFNOSUPPORT;
1025 goto release;
1026 #endif
1027 }
1028 goto releaseopt;
1029
1030 release:
1031 m_freem(m);
1032
1033 releaseopt:
1034 if (control) {
1035 if (optp == &opt)
1036 ip6_clearpktopts(&opt, -1);
1037 m_freem(control);
1038 }
1039 return (error);
1040 }
1041
1042 static int
1043 udp6_attach(struct socket *so, int proto)
1044 {
1045 struct in6pcb *in6p;
1046 int s, error;
1047
1048 KASSERT(sotoin6pcb(so) == NULL);
1049 sosetlock(so);
1050
1051 /*
1052 * MAPPED_ADDR implementation spec:
1053 * Always attach for IPv6, and only when necessary for IPv4.
1054 */
1055 s = splsoftnet();
1056 error = in6_pcballoc(so, &udbtable);
1057 splx(s);
1058 if (error) {
1059 return error;
1060 }
1061 error = soreserve(so, udp6_sendspace, udp6_recvspace);
1062 if (error) {
1063 return error;
1064 }
1065 in6p = sotoin6pcb(so);
1066 in6p->in6p_cksum = -1; /* just to be sure */
1067
1068 KASSERT(solocked(so));
1069 return 0;
1070 }
1071
1072 static void
1073 udp6_detach(struct socket *so)
1074 {
1075 struct in6pcb *in6p = sotoin6pcb(so);
1076 int s;
1077
1078 KASSERT(solocked(so));
1079 KASSERT(in6p != NULL);
1080
1081 s = splsoftnet();
1082 in6_pcbdetach(in6p);
1083 splx(s);
1084 }
1085
1086 static int
1087 udp6_accept(struct socket *so, struct sockaddr *nam)
1088 {
1089 KASSERT(solocked(so));
1090
1091 return EOPNOTSUPP;
1092 }
1093
1094 static int
1095 udp6_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
1096 {
1097 struct in6pcb *in6p = sotoin6pcb(so);
1098 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)nam;
1099 int error = 0;
1100 int s;
1101
1102 KASSERT(solocked(so));
1103 KASSERT(in6p != NULL);
1104
1105 s = splsoftnet();
1106 error = in6_pcbbind(in6p, sin6, l);
1107 splx(s);
1108 return error;
1109 }
1110
1111 static int
1112 udp6_listen(struct socket *so, struct lwp *l)
1113 {
1114 KASSERT(solocked(so));
1115
1116 return EOPNOTSUPP;
1117 }
1118
1119 static int
1120 udp6_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
1121 {
1122 struct in6pcb *in6p = sotoin6pcb(so);
1123 int error = 0;
1124 int s;
1125
1126 KASSERT(solocked(so));
1127 KASSERT(in6p != NULL);
1128
1129 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr))
1130 return EISCONN;
1131 s = splsoftnet();
1132 error = in6_pcbconnect(in6p, (struct sockaddr_in6 *)nam, l);
1133 splx(s);
1134 if (error == 0)
1135 soisconnected(so);
1136
1137 return error;
1138 }
1139
1140 static int
1141 udp6_connect2(struct socket *so, struct socket *so2)
1142 {
1143 KASSERT(solocked(so));
1144
1145 return EOPNOTSUPP;
1146 }
1147
1148 static int
1149 udp6_disconnect(struct socket *so)
1150 {
1151 struct in6pcb *in6p = sotoin6pcb(so);
1152 int s;
1153
1154 KASSERT(solocked(so));
1155 KASSERT(in6p != NULL);
1156
1157 if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr))
1158 return ENOTCONN;
1159
1160 s = splsoftnet();
1161 in6_pcbdisconnect(in6p);
1162 memset((void *)&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
1163 splx(s);
1164
1165 so->so_state &= ~SS_ISCONNECTED; /* XXX */
1166 in6_pcbstate(in6p, IN6P_BOUND); /* XXX */
1167 return 0;
1168 }
1169
1170 static int
1171 udp6_shutdown(struct socket *so)
1172 {
1173 int s;
1174
1175 s = splsoftnet();
1176 socantsendmore(so);
1177 splx(s);
1178
1179 return 0;
1180 }
1181
1182 static int
1183 udp6_abort(struct socket *so)
1184 {
1185 int s;
1186
1187 KASSERT(solocked(so));
1188 KASSERT(sotoin6pcb(so) != NULL);
1189
1190 s = splsoftnet();
1191 soisdisconnected(so);
1192 in6_pcbdetach(sotoin6pcb(so));
1193 splx(s);
1194
1195 return 0;
1196 }
1197
1198 static int
1199 udp6_ioctl(struct socket *so, u_long cmd, void *addr6, struct ifnet *ifp)
1200 {
1201 /*
1202 * MAPPED_ADDR implementation info:
1203 * Mapped addr support for PRU_CONTROL is not necessary.
1204 * Because typical user of PRU_CONTROL is such as ifconfig,
1205 * and they don't associate any addr to their socket. Then
1206 * socket family is only hint about the PRU_CONTROL'ed address
1207 * family, especially when getting addrs from kernel.
1208 * So AF_INET socket need to be used to control AF_INET addrs,
1209 * and AF_INET6 socket for AF_INET6 addrs.
1210 */
1211 return in6_control(so, cmd, addr6, ifp);
1212 }
1213
1214 static int
1215 udp6_stat(struct socket *so, struct stat *ub)
1216 {
1217 KASSERT(solocked(so));
1218
1219 /* stat: don't bother with a blocksize */
1220 return 0;
1221 }
1222
1223 static int
1224 udp6_peeraddr(struct socket *so, struct sockaddr *nam)
1225 {
1226 KASSERT(solocked(so));
1227 KASSERT(sotoin6pcb(so) != NULL);
1228 KASSERT(nam != NULL);
1229
1230 in6_setpeeraddr(sotoin6pcb(so), (struct sockaddr_in6 *)nam);
1231 return 0;
1232 }
1233
1234 static int
1235 udp6_sockaddr(struct socket *so, struct sockaddr *nam)
1236 {
1237 KASSERT(solocked(so));
1238 KASSERT(sotoin6pcb(so) != NULL);
1239 KASSERT(nam != NULL);
1240
1241 in6_setsockaddr(sotoin6pcb(so), (struct sockaddr_in6 *)nam);
1242 return 0;
1243 }
1244
1245 static int
1246 udp6_rcvd(struct socket *so, int flags, struct lwp *l)
1247 {
1248 KASSERT(solocked(so));
1249
1250 return EOPNOTSUPP;
1251 }
1252
1253 static int
1254 udp6_recvoob(struct socket *so, struct mbuf *m, int flags)
1255 {
1256 KASSERT(solocked(so));
1257
1258 return EOPNOTSUPP;
1259 }
1260
1261 static int
1262 udp6_send(struct socket *so, struct mbuf *m, struct sockaddr *nam,
1263 struct mbuf *control, struct lwp *l)
1264 {
1265 struct in6pcb *in6p = sotoin6pcb(so);
1266 int error = 0;
1267 int s;
1268
1269 KASSERT(solocked(so));
1270 KASSERT(in6p != NULL);
1271 KASSERT(m != NULL);
1272
1273 s = splsoftnet();
1274 error = udp6_output(in6p, m, (struct sockaddr_in6 *)nam, control, l);
1275 splx(s);
1276
1277 return error;
1278 }
1279
1280 static int
1281 udp6_sendoob(struct socket *so, struct mbuf *m, struct mbuf *control)
1282 {
1283 KASSERT(solocked(so));
1284
1285 if (m)
1286 m_freem(m);
1287 if (control)
1288 m_freem(control);
1289
1290 return EOPNOTSUPP;
1291 }
1292
1293 static int
1294 udp6_purgeif(struct socket *so, struct ifnet *ifp)
1295 {
1296
1297 mutex_enter(softnet_lock);
1298 in6_pcbpurgeif0(&udbtable, ifp);
1299 #ifdef NET_MPSAFE
1300 mutex_exit(softnet_lock);
1301 #endif
1302 in6_purgeif(ifp);
1303 #ifdef NET_MPSAFE
1304 mutex_enter(softnet_lock);
1305 #endif
1306 in6_pcbpurgeif(&udbtable, ifp);
1307 mutex_exit(softnet_lock);
1308
1309 return 0;
1310 }
1311
1312 static int
1313 sysctl_net_inet6_udp6_stats(SYSCTLFN_ARGS)
1314 {
1315
1316 return (NETSTAT_SYSCTL(udp6stat_percpu, UDP6_NSTATS));
1317 }
1318
1319 static void
1320 sysctl_net_inet6_udp6_setup(struct sysctllog **clog)
1321 {
1322
1323 sysctl_createv(clog, 0, NULL, NULL,
1324 CTLFLAG_PERMANENT,
1325 CTLTYPE_NODE, "inet6", NULL,
1326 NULL, 0, NULL, 0,
1327 CTL_NET, PF_INET6, CTL_EOL);
1328 sysctl_createv(clog, 0, NULL, NULL,
1329 CTLFLAG_PERMANENT,
1330 CTLTYPE_NODE, "udp6",
1331 SYSCTL_DESCR("UDPv6 related settings"),
1332 NULL, 0, NULL, 0,
1333 CTL_NET, PF_INET6, IPPROTO_UDP, CTL_EOL);
1334
1335 sysctl_createv(clog, 0, NULL, NULL,
1336 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1337 CTLTYPE_INT, "sendspace",
1338 SYSCTL_DESCR("Default UDP send buffer size"),
1339 NULL, 0, &udp6_sendspace, 0,
1340 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_SENDSPACE,
1341 CTL_EOL);
1342 sysctl_createv(clog, 0, NULL, NULL,
1343 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1344 CTLTYPE_INT, "recvspace",
1345 SYSCTL_DESCR("Default UDP receive buffer size"),
1346 NULL, 0, &udp6_recvspace, 0,
1347 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_RECVSPACE,
1348 CTL_EOL);
1349 sysctl_createv(clog, 0, NULL, NULL,
1350 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1351 CTLTYPE_INT, "do_loopback_cksum",
1352 SYSCTL_DESCR("Perform UDP checksum on loopback"),
1353 NULL, 0, &udp_do_loopback_cksum, 0,
1354 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_LOOPBACKCKSUM,
1355 CTL_EOL);
1356 sysctl_createv(clog, 0, NULL, NULL,
1357 CTLFLAG_PERMANENT,
1358 CTLTYPE_STRUCT, "pcblist",
1359 SYSCTL_DESCR("UDP protocol control block list"),
1360 sysctl_inpcblist, 0, &udbtable, 0,
1361 CTL_NET, PF_INET6, IPPROTO_UDP, CTL_CREATE,
1362 CTL_EOL);
1363 sysctl_createv(clog, 0, NULL, NULL,
1364 CTLFLAG_PERMANENT,
1365 CTLTYPE_STRUCT, "stats",
1366 SYSCTL_DESCR("UDPv6 statistics"),
1367 sysctl_net_inet6_udp6_stats, 0, NULL, 0,
1368 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_STATS,
1369 CTL_EOL);
1370 }
1371
1372 void
1373 udp6_statinc(u_int stat)
1374 {
1375
1376 KASSERT(stat < UDP6_NSTATS);
1377 UDP6_STATINC(stat);
1378 }
1379
1380 #ifdef IPSEC
1381 /*
1382 * Returns:
1383 * 1 if the packet was processed
1384 * 0 if normal UDP processing should take place
1385 * -1 if an error occurred and m was freed
1386 */
1387 static int
1388 udp6_espinudp(struct mbuf **mp, int off, struct sockaddr *src,
1389 struct socket *so)
1390 {
1391 const size_t skip = sizeof(struct udphdr);
1392 size_t len;
1393 void *data;
1394 size_t minlen;
1395 int ip6hdrlen;
1396 struct ip6_hdr *ip6;
1397 struct m_tag *tag;
1398 struct udphdr *udphdr;
1399 u_int16_t sport, dport;
1400 struct mbuf *m = *mp;
1401 uint32_t *marker;
1402
1403 /*
1404 * Collapse the mbuf chain if the first mbuf is too short
1405 * The longest case is: UDP + non ESP marker + ESP
1406 */
1407 minlen = off + sizeof(u_int64_t) + sizeof(struct esp);
1408 if (minlen > m->m_pkthdr.len)
1409 minlen = m->m_pkthdr.len;
1410
1411 if (m->m_len < minlen) {
1412 if ((*mp = m_pullup(m, minlen)) == NULL) {
1413 return -1;
1414 }
1415 m = *mp;
1416 }
1417
1418 len = m->m_len - off;
1419 data = mtod(m, char *) + off;
1420
1421 /* Ignore keepalive packets */
1422 if ((len == 1) && (*(unsigned char *)data == 0xff)) {
1423 m_freem(m);
1424 *mp = NULL; /* avoid any further processing by caller ... */
1425 return 1;
1426 }
1427
1428 /* Handle Non-ESP marker (32bit). If zero, then IKE. */
1429 marker = (uint32_t *)data;
1430 if (len <= sizeof(uint32_t))
1431 return 0;
1432 if (marker[0] == 0)
1433 return 0;
1434
1435 /*
1436 * Get the UDP ports. They are handled in network
1437 * order everywhere in IPSEC_NAT_T code.
1438 */
1439 udphdr = (struct udphdr *)((char *)data - skip);
1440 sport = udphdr->uh_sport;
1441 dport = udphdr->uh_dport;
1442
1443 /*
1444 * Remove the UDP header (and possibly the non ESP marker)
1445 * IPv6 header length is ip6hdrlen
1446 * Before:
1447 * <---- off --->
1448 * +-----+------+-----+
1449 * | IP6 | UDP | ESP |
1450 * +-----+------+-----+
1451 * <-skip->
1452 * After:
1453 * +-----+-----+
1454 * | IP6 | ESP |
1455 * +-----+-----+
1456 * <-skip->
1457 */
1458 ip6hdrlen = off - sizeof(struct udphdr);
1459 memmove(mtod(m, char *) + skip, mtod(m, void *), ip6hdrlen);
1460 m_adj(m, skip);
1461
1462 ip6 = mtod(m, struct ip6_hdr *);
1463 ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) - skip);
1464 ip6->ip6_nxt = IPPROTO_ESP;
1465
1466 /*
1467 * We have modified the packet - it is now ESP, so we should not
1468 * return to UDP processing ...
1469 *
1470 * Add a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember
1471 * the source UDP port. This is required if we want
1472 * to select the right SPD for multiple hosts behind
1473 * same NAT
1474 */
1475 if ((tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS,
1476 sizeof(sport) + sizeof(dport), M_DONTWAIT)) == NULL) {
1477 m_freem(m);
1478 return -1;
1479 }
1480 ((u_int16_t *)(tag + 1))[0] = sport;
1481 ((u_int16_t *)(tag + 1))[1] = dport;
1482 m_tag_prepend(m, tag);
1483
1484 if (ipsec_used)
1485 ipsec6_common_input(&m, &ip6hdrlen, IPPROTO_ESP);
1486 else
1487 m_freem(m);
1488
1489 /* We handled it, it shouldn't be handled by UDP */
1490 *mp = NULL; /* avoid free by caller ... */
1491 return 1;
1492 }
1493 #endif /* IPSEC */
1494
1495 PR_WRAP_USRREQS(udp6)
1496 #define udp6_attach udp6_attach_wrapper
1497 #define udp6_detach udp6_detach_wrapper
1498 #define udp6_accept udp6_accept_wrapper
1499 #define udp6_bind udp6_bind_wrapper
1500 #define udp6_listen udp6_listen_wrapper
1501 #define udp6_connect udp6_connect_wrapper
1502 #define udp6_connect2 udp6_connect2_wrapper
1503 #define udp6_disconnect udp6_disconnect_wrapper
1504 #define udp6_shutdown udp6_shutdown_wrapper
1505 #define udp6_abort udp6_abort_wrapper
1506 #define udp6_ioctl udp6_ioctl_wrapper
1507 #define udp6_stat udp6_stat_wrapper
1508 #define udp6_peeraddr udp6_peeraddr_wrapper
1509 #define udp6_sockaddr udp6_sockaddr_wrapper
1510 #define udp6_rcvd udp6_rcvd_wrapper
1511 #define udp6_recvoob udp6_recvoob_wrapper
1512 #define udp6_send udp6_send_wrapper
1513 #define udp6_sendoob udp6_sendoob_wrapper
1514 #define udp6_purgeif udp6_purgeif_wrapper
1515
1516 const struct pr_usrreqs udp6_usrreqs = {
1517 .pr_attach = udp6_attach,
1518 .pr_detach = udp6_detach,
1519 .pr_accept = udp6_accept,
1520 .pr_bind = udp6_bind,
1521 .pr_listen = udp6_listen,
1522 .pr_connect = udp6_connect,
1523 .pr_connect2 = udp6_connect2,
1524 .pr_disconnect = udp6_disconnect,
1525 .pr_shutdown = udp6_shutdown,
1526 .pr_abort = udp6_abort,
1527 .pr_ioctl = udp6_ioctl,
1528 .pr_stat = udp6_stat,
1529 .pr_peeraddr = udp6_peeraddr,
1530 .pr_sockaddr = udp6_sockaddr,
1531 .pr_rcvd = udp6_rcvd,
1532 .pr_recvoob = udp6_recvoob,
1533 .pr_send = udp6_send,
1534 .pr_sendoob = udp6_sendoob,
1535 .pr_purgeif = udp6_purgeif,
1536 };
1537