udp6_usrreq.c revision 1.138 1 /* $NetBSD: udp6_usrreq.c,v 1.138 2018/03/19 16:26:25 roy Exp $ */
2 /* $KAME: udp6_usrreq.c,v 1.86 2001/05/27 17:33:00 itojun Exp $ */
3 /* $KAME: udp6_output.c,v 1.43 2001/10/15 09:19:52 itojun Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (c) 1982, 1986, 1989, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)udp_var.h 8.1 (Berkeley) 6/10/93
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: udp6_usrreq.c,v 1.138 2018/03/19 16:26:25 roy Exp $");
67
68 #ifdef _KERNEL_OPT
69 #include "opt_inet.h"
70 #include "opt_inet_csum.h"
71 #include "opt_ipsec.h"
72 #include "opt_net_mpsafe.h"
73 #endif
74
75 #include <sys/param.h>
76 #include <sys/mbuf.h>
77 #include <sys/protosw.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/syslog.h>
83 #include <sys/domain.h>
84 #include <sys/sysctl.h>
85
86 #include <net/if.h>
87 #include <net/if_types.h>
88
89 #include <netinet/in.h>
90 #include <netinet/in_var.h>
91 #include <netinet/in_systm.h>
92 #include <netinet/in_offload.h>
93 #include <netinet/ip.h>
94 #include <netinet/ip_var.h>
95 #include <netinet/in_pcb.h>
96 #include <netinet/udp.h>
97 #include <netinet/udp_var.h>
98 #include <netinet/udp_private.h>
99
100 #include <netinet/ip6.h>
101 #include <netinet/icmp6.h>
102 #include <netinet6/ip6_var.h>
103 #include <netinet6/ip6_private.h>
104 #include <netinet6/in6_pcb.h>
105 #include <netinet6/udp6_var.h>
106 #include <netinet6/udp6_private.h>
107 #include <netinet6/ip6protosw.h>
108 #include <netinet6/scope6_var.h>
109
110 #ifdef IPSEC
111 #include <netipsec/ipsec.h>
112 #include <netipsec/ipsec_var.h>
113 #ifdef INET6
114 #include <netipsec/ipsec6.h>
115 #endif
116 #endif
117
118 #include "faith.h"
119 #if defined(NFAITH) && NFAITH > 0
120 #include <net/if_faith.h>
121 #endif
122
123 /*
124 * UDP protocol implementation.
125 * Per RFC 768, August, 1980.
126 */
127
128 extern struct inpcbtable udbtable;
129
130 percpu_t *udp6stat_percpu;
131
132 /* UDP on IP6 parameters */
133 static int udp6_sendspace = 9216; /* really max datagram size */
134 static int udp6_recvspace = 40 * (1024 + sizeof(struct sockaddr_in6));
135 /* 40 1K datagrams */
136
137 static void udp6_notify(struct in6pcb *, int);
138 static void sysctl_net_inet6_udp6_setup(struct sysctllog **);
139
140 #ifdef UDP_CSUM_COUNTERS
141 #include <sys/device.h>
142 struct evcnt udp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
143 NULL, "udp6", "hwcsum bad");
144 struct evcnt udp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
145 NULL, "udp6", "hwcsum ok");
146 struct evcnt udp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
147 NULL, "udp6", "hwcsum data");
148 struct evcnt udp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
149 NULL, "udp6", "swcsum");
150
151 EVCNT_ATTACH_STATIC(udp6_hwcsum_bad);
152 EVCNT_ATTACH_STATIC(udp6_hwcsum_ok);
153 EVCNT_ATTACH_STATIC(udp6_hwcsum_data);
154 EVCNT_ATTACH_STATIC(udp6_swcsum);
155
156 #define UDP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
157 #else
158 #define UDP_CSUM_COUNTER_INCR(ev) /* nothing */
159 #endif
160
161 void
162 udp6_init(void)
163 {
164 sysctl_net_inet6_udp6_setup(NULL);
165 udp6stat_percpu = percpu_alloc(sizeof(uint64_t) * UDP6_NSTATS);
166
167 udp_init_common();
168 }
169
170 /*
171 * Notify a udp user of an asynchronous error;
172 * just wake up so that he can collect error status.
173 */
174 static void
175 udp6_notify(struct in6pcb *in6p, int errno)
176 {
177 in6p->in6p_socket->so_error = errno;
178 sorwakeup(in6p->in6p_socket);
179 sowwakeup(in6p->in6p_socket);
180 }
181
182 void *
183 udp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
184 {
185 struct udphdr uh;
186 struct ip6_hdr *ip6;
187 const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
188 struct mbuf *m;
189 int off;
190 void *cmdarg;
191 struct ip6ctlparam *ip6cp = NULL;
192 const struct sockaddr_in6 *sa6_src = NULL;
193 void (*notify)(struct in6pcb *, int) = udp6_notify;
194 struct udp_portonly {
195 u_int16_t uh_sport;
196 u_int16_t uh_dport;
197 } *uhp;
198
199 if (sa->sa_family != AF_INET6 ||
200 sa->sa_len != sizeof(struct sockaddr_in6))
201 return NULL;
202
203 if ((unsigned)cmd >= PRC_NCMDS)
204 return NULL;
205 if (PRC_IS_REDIRECT(cmd))
206 notify = in6_rtchange, d = NULL;
207 else if (cmd == PRC_HOSTDEAD)
208 d = NULL;
209 else if (cmd == PRC_MSGSIZE) {
210 /* special code is present, see below */
211 notify = in6_rtchange;
212 }
213 else if (inet6ctlerrmap[cmd] == 0)
214 return NULL;
215
216 /* if the parameter is from icmp6, decode it. */
217 if (d != NULL) {
218 ip6cp = (struct ip6ctlparam *)d;
219 m = ip6cp->ip6c_m;
220 ip6 = ip6cp->ip6c_ip6;
221 off = ip6cp->ip6c_off;
222 cmdarg = ip6cp->ip6c_cmdarg;
223 sa6_src = ip6cp->ip6c_src;
224 } else {
225 m = NULL;
226 ip6 = NULL;
227 cmdarg = NULL;
228 sa6_src = &sa6_any;
229 off = 0;
230 }
231
232 if (ip6) {
233 /*
234 * XXX: We assume that when IPV6 is non NULL,
235 * M and OFF are valid.
236 */
237
238 /* check if we can safely examine src and dst ports */
239 if (m->m_pkthdr.len < off + sizeof(*uhp)) {
240 if (cmd == PRC_MSGSIZE)
241 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
242 return NULL;
243 }
244
245 memset(&uh, 0, sizeof(uh));
246 m_copydata(m, off, sizeof(*uhp), (void *)&uh);
247
248 if (cmd == PRC_MSGSIZE) {
249 int valid = 0;
250
251 /*
252 * Check to see if we have a valid UDP socket
253 * corresponding to the address in the ICMPv6 message
254 * payload.
255 */
256 if (in6_pcblookup_connect(&udbtable, &sa6->sin6_addr,
257 uh.uh_dport, (const struct in6_addr *)&sa6_src->sin6_addr,
258 uh.uh_sport, 0, 0))
259 valid++;
260 #if 0
261 /*
262 * As the use of sendto(2) is fairly popular,
263 * we may want to allow non-connected pcb too.
264 * But it could be too weak against attacks...
265 * We should at least check if the local address (= s)
266 * is really ours.
267 */
268 else if (in6_pcblookup_bind(&udbtable, &sa6->sin6_addr,
269 uh.uh_dport, 0))
270 valid++;
271 #endif
272
273 /*
274 * Depending on the value of "valid" and routing table
275 * size (mtudisc_{hi,lo}wat), we will:
276 * - recalculate the new MTU and create the
277 * corresponding routing entry, or
278 * - ignore the MTU change notification.
279 */
280 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
281
282 /*
283 * regardless of if we called
284 * icmp6_mtudisc_update(), we need to call
285 * in6_pcbnotify(), to notify path MTU change
286 * to the userland (RFC3542), because some
287 * unconnected sockets may share the same
288 * destination and want to know the path MTU.
289 */
290 }
291
292 (void)in6_pcbnotify(&udbtable, sa, uh.uh_dport,
293 sin6tocsa(sa6_src), uh.uh_sport, cmd, cmdarg,
294 notify);
295 } else {
296 (void)in6_pcbnotify(&udbtable, sa, 0,
297 sin6tocsa(sa6_src), 0, cmd, cmdarg, notify);
298 }
299 return NULL;
300 }
301
302 int
303 udp6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
304 {
305 int s;
306 int error = 0;
307 int family;
308
309 family = so->so_proto->pr_domain->dom_family;
310
311 s = splsoftnet();
312 switch (family) {
313 #ifdef INET
314 case PF_INET:
315 if (sopt->sopt_level != IPPROTO_UDP) {
316 error = ip_ctloutput(op, so, sopt);
317 goto end;
318 }
319 break;
320 #endif
321 #ifdef INET6
322 case PF_INET6:
323 if (sopt->sopt_level != IPPROTO_UDP) {
324 error = ip6_ctloutput(op, so, sopt);
325 goto end;
326 }
327 break;
328 #endif
329 default:
330 error = EAFNOSUPPORT;
331 goto end;
332 }
333 error = EINVAL;
334
335 end:
336 splx(s);
337 return error;
338 }
339
340 static void
341 udp6_sendup(struct mbuf *m, int off /* offset of data portion */,
342 struct sockaddr *src, struct socket *so)
343 {
344 struct mbuf *opts = NULL;
345 struct mbuf *n;
346 struct in6pcb *in6p;
347
348 KASSERT(so != NULL);
349 KASSERT(so->so_proto->pr_domain->dom_family == AF_INET6);
350 in6p = sotoin6pcb(so);
351 KASSERT(in6p != NULL);
352
353 #if defined(IPSEC)
354 /* check AH/ESP integrity. */
355 if (ipsec_used && ipsec_in_reject(m, in6p)) {
356 if ((n = m_copypacket(m, M_DONTWAIT)) != NULL)
357 icmp6_error(n, ICMP6_DST_UNREACH,
358 ICMP6_DST_UNREACH_ADMIN, 0);
359 return;
360 }
361 #endif
362
363 if ((n = m_copypacket(m, M_DONTWAIT)) != NULL) {
364 if (in6p->in6p_flags & IN6P_CONTROLOPTS ||
365 SOOPT_TIMESTAMP(in6p->in6p_socket->so_options)) {
366 struct ip6_hdr *ip6 = mtod(n, struct ip6_hdr *);
367 ip6_savecontrol(in6p, &opts, ip6, n);
368 }
369
370 m_adj(n, off);
371 if (sbappendaddr(&so->so_rcv, src, n, opts) == 0) {
372 m_freem(n);
373 if (opts)
374 m_freem(opts);
375 UDP6_STATINC(UDP6_STAT_FULLSOCK);
376 soroverflow(so);
377 } else
378 sorwakeup(so);
379 }
380 }
381
382 int
383 udp6_realinput(int af, struct sockaddr_in6 *src, struct sockaddr_in6 *dst,
384 struct mbuf *m, int off)
385 {
386 u_int16_t sport, dport;
387 int rcvcnt;
388 struct in6_addr src6, *dst6;
389 const struct in_addr *dst4;
390 struct inpcb_hdr *inph;
391 struct in6pcb *in6p;
392
393 rcvcnt = 0;
394 off += sizeof(struct udphdr); /* now, offset of payload */
395
396 if (af != AF_INET && af != AF_INET6)
397 goto bad;
398 if (src->sin6_family != AF_INET6 || dst->sin6_family != AF_INET6)
399 goto bad;
400
401 src6 = src->sin6_addr;
402 if (sa6_recoverscope(src) != 0) {
403 /* XXX: should be impossible. */
404 goto bad;
405 }
406 sport = src->sin6_port;
407
408 dport = dst->sin6_port;
409 dst4 = (struct in_addr *)&dst->sin6_addr.s6_addr[12];
410 dst6 = &dst->sin6_addr;
411
412 if (IN6_IS_ADDR_MULTICAST(dst6) ||
413 (af == AF_INET && IN_MULTICAST(dst4->s_addr))) {
414 /*
415 * Deliver a multicast or broadcast datagram to *all* sockets
416 * for which the local and remote addresses and ports match
417 * those of the incoming datagram. This allows more than
418 * one process to receive multi/broadcasts on the same port.
419 * (This really ought to be done for unicast datagrams as
420 * well, but that would cause problems with existing
421 * applications that open both address-specific sockets and
422 * a wildcard socket listening to the same port -- they would
423 * end up receiving duplicates of every unicast datagram.
424 * Those applications open the multiple sockets to overcome an
425 * inadequacy of the UDP socket interface, but for backwards
426 * compatibility we avoid the problem here rather than
427 * fixing the interface. Maybe 4.5BSD will remedy this?)
428 */
429
430 /*
431 * KAME note: traditionally we dropped udpiphdr from mbuf here.
432 * we need udpiphdr for IPsec processing so we do that later.
433 */
434 /*
435 * Locate pcb(s) for datagram.
436 */
437 TAILQ_FOREACH(inph, &udbtable.inpt_queue, inph_queue) {
438 in6p = (struct in6pcb *)inph;
439 if (in6p->in6p_af != AF_INET6)
440 continue;
441
442 if (in6p->in6p_lport != dport)
443 continue;
444 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
445 if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_laddr,
446 dst6))
447 continue;
448 } else {
449 if (IN6_IS_ADDR_V4MAPPED(dst6) &&
450 (in6p->in6p_flags & IN6P_IPV6_V6ONLY))
451 continue;
452 }
453 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) {
454 if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_faddr,
455 &src6) || in6p->in6p_fport != sport)
456 continue;
457 } else {
458 if (IN6_IS_ADDR_V4MAPPED(&src6) &&
459 (in6p->in6p_flags & IN6P_IPV6_V6ONLY))
460 continue;
461 }
462
463 udp6_sendup(m, off, sin6tosa(src), in6p->in6p_socket);
464 rcvcnt++;
465
466 /*
467 * Don't look for additional matches if this one does
468 * not have either the SO_REUSEPORT or SO_REUSEADDR
469 * socket options set. This heuristic avoids searching
470 * through all pcbs in the common case of a non-shared
471 * port. It assumes that an application will never
472 * clear these options after setting them.
473 */
474 if ((in6p->in6p_socket->so_options &
475 (SO_REUSEPORT|SO_REUSEADDR)) == 0)
476 break;
477 }
478 } else {
479 /*
480 * Locate pcb for datagram.
481 */
482 in6p = in6_pcblookup_connect(&udbtable, &src6, sport, dst6,
483 dport, 0, 0);
484 if (in6p == 0) {
485 UDP_STATINC(UDP_STAT_PCBHASHMISS);
486 in6p = in6_pcblookup_bind(&udbtable, dst6, dport, 0);
487 if (in6p == 0)
488 return rcvcnt;
489 }
490
491 udp6_sendup(m, off, sin6tosa(src), in6p->in6p_socket);
492 rcvcnt++;
493 }
494
495 bad:
496 return rcvcnt;
497 }
498
499 int
500 udp6_input_checksum(struct mbuf *m, const struct udphdr *uh, int off, int len)
501 {
502
503 /*
504 * XXX it's better to record and check if this mbuf is
505 * already checked.
506 */
507
508 if (__predict_false((m->m_flags & M_LOOP) && !udp_do_loopback_cksum)) {
509 goto good;
510 }
511 if (uh->uh_sum == 0) {
512 UDP6_STATINC(UDP6_STAT_NOSUM);
513 goto bad;
514 }
515
516 switch (m->m_pkthdr.csum_flags &
517 ((m_get_rcvif_NOMPSAFE(m)->if_csum_flags_rx & M_CSUM_UDPv6) |
518 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
519 case M_CSUM_UDPv6|M_CSUM_TCP_UDP_BAD:
520 UDP_CSUM_COUNTER_INCR(&udp6_hwcsum_bad);
521 UDP6_STATINC(UDP6_STAT_BADSUM);
522 goto bad;
523
524 #if 0 /* notyet */
525 case M_CSUM_UDPv6|M_CSUM_DATA:
526 #endif
527
528 case M_CSUM_UDPv6:
529 /* Checksum was okay. */
530 UDP_CSUM_COUNTER_INCR(&udp6_hwcsum_ok);
531 break;
532
533 default:
534 /*
535 * Need to compute it ourselves. Maybe skip checksum
536 * on loopback interfaces.
537 */
538 UDP_CSUM_COUNTER_INCR(&udp6_swcsum);
539 if (in6_cksum(m, IPPROTO_UDP, off, len) != 0) {
540 UDP6_STATINC(UDP6_STAT_BADSUM);
541 goto bad;
542 }
543 }
544
545 good:
546 return 0;
547 bad:
548 return -1;
549 }
550
551 int
552 udp6_input(struct mbuf **mp, int *offp, int proto)
553 {
554 struct mbuf *m = *mp;
555 int off = *offp;
556 struct sockaddr_in6 src, dst;
557 struct ip6_hdr *ip6;
558 struct udphdr *uh;
559 u_int32_t plen, ulen;
560
561 ip6 = mtod(m, struct ip6_hdr *);
562
563 #if defined(NFAITH) && 0 < NFAITH
564 if (faithprefix(&ip6->ip6_dst)) {
565 /* send icmp6 host unreach? */
566 m_freem(m);
567 return IPPROTO_DONE;
568 }
569 #endif
570
571 UDP6_STATINC(UDP6_STAT_IPACKETS);
572
573 /* Check for jumbogram is done in ip6_input. We can trust pkthdr.len. */
574 plen = m->m_pkthdr.len - off;
575 IP6_EXTHDR_GET(uh, struct udphdr *, m, off, sizeof(struct udphdr));
576 if (uh == NULL) {
577 IP6_STATINC(IP6_STAT_TOOSHORT);
578 return IPPROTO_DONE;
579 }
580
581 /*
582 * Enforce alignment requirements that are violated in
583 * some cases, see kern/50766 for details.
584 */
585 if (UDP_HDR_ALIGNED_P(uh) == 0) {
586 m = m_copyup(m, off + sizeof(struct udphdr), 0);
587 if (m == NULL) {
588 IP6_STATINC(IP6_STAT_TOOSHORT);
589 return IPPROTO_DONE;
590 }
591 ip6 = mtod(m, struct ip6_hdr *);
592 uh = (struct udphdr *)(mtod(m, char *) + off);
593 }
594 KASSERT(UDP_HDR_ALIGNED_P(uh));
595 ulen = ntohs((u_short)uh->uh_ulen);
596
597 /*
598 * RFC2675 section 4: jumbograms will have 0 in the UDP header field,
599 * iff payload length > 0xffff.
600 */
601 if (ulen == 0 && plen > 0xffff)
602 ulen = plen;
603
604 if (plen != ulen) {
605 UDP6_STATINC(UDP6_STAT_BADLEN);
606 goto bad;
607 }
608
609 /* destination port of 0 is illegal, based on RFC768. */
610 if (uh->uh_dport == 0)
611 goto bad;
612
613 /*
614 * Checksum extended UDP header and data. Maybe skip checksum
615 * on loopback interfaces.
616 */
617 if (udp6_input_checksum(m, uh, off, ulen))
618 goto bad;
619
620 /*
621 * Construct source and dst sockaddrs.
622 */
623 memset(&src, 0, sizeof(src));
624 src.sin6_family = AF_INET6;
625 src.sin6_len = sizeof(struct sockaddr_in6);
626 src.sin6_addr = ip6->ip6_src;
627 src.sin6_port = uh->uh_sport;
628 memset(&dst, 0, sizeof(dst));
629 dst.sin6_family = AF_INET6;
630 dst.sin6_len = sizeof(struct sockaddr_in6);
631 dst.sin6_addr = ip6->ip6_dst;
632 dst.sin6_port = uh->uh_dport;
633
634 if (udp6_realinput(AF_INET6, &src, &dst, m, off) == 0) {
635 if (m->m_flags & M_MCAST) {
636 UDP6_STATINC(UDP6_STAT_NOPORTMCAST);
637 goto bad;
638 }
639 UDP6_STATINC(UDP6_STAT_NOPORT);
640 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_NOPORT, 0);
641 m = NULL;
642 }
643
644 bad:
645 if (m)
646 m_freem(m);
647 return IPPROTO_DONE;
648 }
649
650 int
651 udp6_output(struct in6pcb * const in6p, struct mbuf *m,
652 struct sockaddr_in6 * const addr6, struct mbuf * const control,
653 struct lwp * const l)
654 {
655 u_int32_t ulen = m->m_pkthdr.len;
656 u_int32_t plen = sizeof(struct udphdr) + ulen;
657 struct ip6_hdr *ip6;
658 struct udphdr *udp6;
659 struct in6_addr _laddr, *laddr, *faddr;
660 struct in6_addr laddr_mapped; /* XXX ugly */
661 struct sockaddr_in6 *sin6 = NULL;
662 struct ifnet *oifp = NULL;
663 int scope_ambiguous = 0;
664 u_int16_t fport;
665 int error = 0;
666 struct ip6_pktopts *optp = NULL;
667 struct ip6_pktopts opt;
668 int af = AF_INET6, hlen = sizeof(struct ip6_hdr);
669 #ifdef INET
670 struct ip *ip;
671 struct udpiphdr *ui;
672 int flags = 0;
673 #endif
674 struct sockaddr_in6 tmp;
675
676 if (addr6) {
677 sin6 = addr6;
678 if (sin6->sin6_family != AF_INET6) {
679 error = EAFNOSUPPORT;
680 goto release;
681 }
682
683 /* protect *sin6 from overwrites */
684 tmp = *sin6;
685 sin6 = &tmp;
686
687 /*
688 * Application should provide a proper zone ID or the use of
689 * default zone IDs should be enabled. Unfortunately, some
690 * applications do not behave as it should, so we need a
691 * workaround. Even if an appropriate ID is not determined,
692 * we'll see if we can determine the outgoing interface. If we
693 * can, determine the zone ID based on the interface below.
694 */
695 if (sin6->sin6_scope_id == 0 && !ip6_use_defzone)
696 scope_ambiguous = 1;
697 if ((error = sa6_embedscope(sin6, ip6_use_defzone)) != 0)
698 goto release;
699 }
700
701 if (control) {
702 if (__predict_false(l == NULL)) {
703 panic("%s: control but no lwp", __func__);
704 }
705 if ((error = ip6_setpktopts(control, &opt,
706 in6p->in6p_outputopts, l->l_cred, IPPROTO_UDP)) != 0)
707 goto release;
708 optp = &opt;
709 } else
710 optp = in6p->in6p_outputopts;
711
712
713 if (sin6) {
714 /*
715 * Slightly different than v4 version in that we call
716 * in6_selectsrc and in6_pcbsetport to fill in the local
717 * address and port rather than in_pcbconnect. in_pcbconnect
718 * sets in6p_faddr which causes EISCONN below to be hit on
719 * subsequent sendto.
720 */
721 if (sin6->sin6_port == 0) {
722 error = EADDRNOTAVAIL;
723 goto release;
724 }
725
726 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) {
727 /* how about ::ffff:0.0.0.0 case? */
728 error = EISCONN;
729 goto release;
730 }
731
732 faddr = &sin6->sin6_addr;
733 fport = sin6->sin6_port; /* allow 0 port */
734
735 if (IN6_IS_ADDR_V4MAPPED(faddr)) {
736 if ((in6p->in6p_flags & IN6P_IPV6_V6ONLY)) {
737 /*
738 * I believe we should explicitly discard the
739 * packet when mapped addresses are disabled,
740 * rather than send the packet as an IPv6 one.
741 * If we chose the latter approach, the packet
742 * might be sent out on the wire based on the
743 * default route, the situation which we'd
744 * probably want to avoid.
745 * (20010421 jinmei (at) kame.net)
746 */
747 error = EINVAL;
748 goto release;
749 }
750 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr) &&
751 !IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)) {
752 /*
753 * when remote addr is an IPv4-mapped address,
754 * local addr should not be an IPv6 address,
755 * since you cannot determine how to map IPv6
756 * source address to IPv4.
757 */
758 error = EINVAL;
759 goto release;
760 }
761
762 af = AF_INET;
763 }
764
765 if (!IN6_IS_ADDR_V4MAPPED(faddr)) {
766 struct psref psref;
767 int bound = curlwp_bind();
768
769 error = in6_selectsrc(sin6, optp,
770 in6p->in6p_moptions,
771 &in6p->in6p_route,
772 &in6p->in6p_laddr, &oifp, &psref, &_laddr);
773 /* XXX need error check? */
774 if (oifp && scope_ambiguous &&
775 (error = in6_setscope(&sin6->sin6_addr,
776 oifp, NULL))) {
777 if_put(oifp, &psref);
778 curlwp_bindx(bound);
779 goto release;
780 }
781 if_put(oifp, &psref);
782 curlwp_bindx(bound);
783 laddr = &_laddr;
784 } else {
785 /*
786 * XXX: freebsd[34] does not have in_selectsrc, but
787 * we can omit the whole part because freebsd4 calls
788 * udp_output() directly in this case, and thus we'll
789 * never see this path.
790 */
791 if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
792 struct sockaddr_in sin_dst;
793 struct in_addr ina;
794 struct in_ifaddr *ia4;
795 struct psref _psref;
796 int bound;
797
798 memcpy(&ina, &faddr->s6_addr[12], sizeof(ina));
799 sockaddr_in_init(&sin_dst, &ina, 0);
800 bound = curlwp_bind();
801 ia4 = in_selectsrc(&sin_dst, &in6p->in6p_route,
802 in6p->in6p_socket->so_options, NULL,
803 &error, &_psref);
804 if (ia4 == NULL) {
805 curlwp_bindx(bound);
806 if (error == 0)
807 error = EADDRNOTAVAIL;
808 goto release;
809 }
810 memset(&laddr_mapped, 0, sizeof(laddr_mapped));
811 laddr_mapped.s6_addr16[5] = 0xffff; /* ugly */
812 memcpy(&laddr_mapped.s6_addr[12],
813 &IA_SIN(ia4)->sin_addr,
814 sizeof(IA_SIN(ia4)->sin_addr));
815 ia4_release(ia4, &_psref);
816 curlwp_bindx(bound);
817 laddr = &laddr_mapped;
818 } else
819 {
820 laddr = &in6p->in6p_laddr; /* XXX */
821 }
822 }
823 if (laddr == NULL) {
824 if (error == 0)
825 error = EADDRNOTAVAIL;
826 goto release;
827 }
828 if (in6p->in6p_lport == 0) {
829 /*
830 * Craft a sockaddr_in6 for the local endpoint. Use the
831 * "any" as a base, set the address, and recover the
832 * scope.
833 */
834 struct sockaddr_in6 lsin6 =
835 *((const struct sockaddr_in6 *)in6p->in6p_socket->so_proto->pr_domain->dom_sa_any);
836 lsin6.sin6_addr = *laddr;
837 error = sa6_recoverscope(&lsin6);
838 if (error)
839 goto release;
840
841 error = in6_pcbsetport(&lsin6, in6p, l);
842
843 if (error) {
844 in6p->in6p_laddr = in6addr_any;
845 goto release;
846 }
847 }
848 } else {
849 if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) {
850 error = ENOTCONN;
851 goto release;
852 }
853 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr)) {
854 if ((in6p->in6p_flags & IN6P_IPV6_V6ONLY))
855 {
856 /*
857 * XXX: this case would happen when the
858 * application sets the V6ONLY flag after
859 * connecting the foreign address.
860 * Such applications should be fixed,
861 * so we bark here.
862 */
863 log(LOG_INFO, "udp6_output: IPV6_V6ONLY "
864 "option was set for a connected socket\n");
865 error = EINVAL;
866 goto release;
867 } else
868 af = AF_INET;
869 }
870 laddr = &in6p->in6p_laddr;
871 faddr = &in6p->in6p_faddr;
872 fport = in6p->in6p_fport;
873 }
874
875 if (af == AF_INET)
876 hlen = sizeof(struct ip);
877
878 /*
879 * Calculate data length and get a mbuf
880 * for UDP and IP6 headers.
881 */
882 M_PREPEND(m, hlen + sizeof(struct udphdr), M_DONTWAIT);
883 if (m == NULL) {
884 error = ENOBUFS;
885 goto release;
886 }
887
888 /*
889 * Stuff checksum and output datagram.
890 */
891 udp6 = (struct udphdr *)(mtod(m, char *) + hlen);
892 udp6->uh_sport = in6p->in6p_lport; /* lport is always set in the PCB */
893 udp6->uh_dport = fport;
894 if (plen <= 0xffff)
895 udp6->uh_ulen = htons((u_int16_t)plen);
896 else
897 udp6->uh_ulen = 0;
898 udp6->uh_sum = 0;
899
900 switch (af) {
901 case AF_INET6:
902 ip6 = mtod(m, struct ip6_hdr *);
903 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
904 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
905 ip6->ip6_vfc |= IPV6_VERSION;
906 #if 0 /* ip6_plen will be filled in ip6_output. */
907 ip6->ip6_plen = htons((u_int16_t)plen);
908 #endif
909 ip6->ip6_nxt = IPPROTO_UDP;
910 ip6->ip6_hlim = in6_selecthlim_rt(in6p);
911 ip6->ip6_src = *laddr;
912 ip6->ip6_dst = *faddr;
913
914 udp6->uh_sum = in6_cksum_phdr(laddr, faddr,
915 htonl(plen), htonl(IPPROTO_UDP));
916 m->m_pkthdr.csum_flags = M_CSUM_UDPv6;
917 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
918
919 UDP6_STATINC(UDP6_STAT_OPACKETS);
920 error = ip6_output(m, optp, &in6p->in6p_route, 0,
921 in6p->in6p_moptions, in6p, NULL);
922 break;
923 case AF_INET:
924 #ifdef INET
925 /* can't transmit jumbogram over IPv4 */
926 if (plen > 0xffff) {
927 error = EMSGSIZE;
928 goto release;
929 }
930
931 ip = mtod(m, struct ip *);
932 ui = (struct udpiphdr *)ip;
933 memset(ui->ui_x1, 0, sizeof(ui->ui_x1));
934 ui->ui_pr = IPPROTO_UDP;
935 ui->ui_len = htons(plen);
936 memcpy(&ui->ui_src, &laddr->s6_addr[12], sizeof(ui->ui_src));
937 ui->ui_ulen = ui->ui_len;
938
939 flags = (in6p->in6p_socket->so_options &
940 (SO_DONTROUTE | SO_BROADCAST));
941 memcpy(&ui->ui_dst, &faddr->s6_addr[12], sizeof(ui->ui_dst));
942
943 udp6->uh_sum = in_cksum(m, hlen + plen);
944 if (udp6->uh_sum == 0)
945 udp6->uh_sum = 0xffff;
946
947 ip->ip_len = htons(hlen + plen);
948 ip->ip_ttl = in6_selecthlim(in6p, NULL); /* XXX */
949 ip->ip_tos = 0; /* XXX */
950
951 UDP_STATINC(UDP_STAT_OPACKETS);
952 error = ip_output(m, NULL, &in6p->in6p_route, flags /* XXX */,
953 in6p->in6p_v4moptions, NULL);
954 break;
955 #else
956 error = EAFNOSUPPORT;
957 goto release;
958 #endif
959 }
960 goto releaseopt;
961
962 release:
963 m_freem(m);
964
965 releaseopt:
966 if (control) {
967 if (optp == &opt)
968 ip6_clearpktopts(&opt, -1);
969 m_freem(control);
970 }
971 return (error);
972 }
973
974 static int
975 udp6_attach(struct socket *so, int proto)
976 {
977 struct in6pcb *in6p;
978 int s, error;
979
980 KASSERT(sotoin6pcb(so) == NULL);
981 sosetlock(so);
982
983 /*
984 * MAPPED_ADDR implementation spec:
985 * Always attach for IPv6, and only when necessary for IPv4.
986 */
987 s = splsoftnet();
988 error = in6_pcballoc(so, &udbtable);
989 splx(s);
990 if (error) {
991 return error;
992 }
993 error = soreserve(so, udp6_sendspace, udp6_recvspace);
994 if (error) {
995 return error;
996 }
997 in6p = sotoin6pcb(so);
998 in6p->in6p_cksum = -1; /* just to be sure */
999
1000 KASSERT(solocked(so));
1001 return 0;
1002 }
1003
1004 static void
1005 udp6_detach(struct socket *so)
1006 {
1007 struct in6pcb *in6p = sotoin6pcb(so);
1008 int s;
1009
1010 KASSERT(solocked(so));
1011 KASSERT(in6p != NULL);
1012
1013 s = splsoftnet();
1014 in6_pcbdetach(in6p);
1015 splx(s);
1016 }
1017
1018 static int
1019 udp6_accept(struct socket *so, struct sockaddr *nam)
1020 {
1021 KASSERT(solocked(so));
1022
1023 return EOPNOTSUPP;
1024 }
1025
1026 static int
1027 udp6_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
1028 {
1029 struct in6pcb *in6p = sotoin6pcb(so);
1030 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)nam;
1031 int error = 0;
1032 int s;
1033
1034 KASSERT(solocked(so));
1035 KASSERT(in6p != NULL);
1036
1037 s = splsoftnet();
1038 error = in6_pcbbind(in6p, sin6, l);
1039 splx(s);
1040 return error;
1041 }
1042
1043 static int
1044 udp6_listen(struct socket *so, struct lwp *l)
1045 {
1046 KASSERT(solocked(so));
1047
1048 return EOPNOTSUPP;
1049 }
1050
1051 static int
1052 udp6_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
1053 {
1054 struct in6pcb *in6p = sotoin6pcb(so);
1055 int error = 0;
1056 int s;
1057
1058 KASSERT(solocked(so));
1059 KASSERT(in6p != NULL);
1060
1061 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr))
1062 return EISCONN;
1063 s = splsoftnet();
1064 error = in6_pcbconnect(in6p, (struct sockaddr_in6 *)nam, l);
1065 splx(s);
1066 if (error == 0)
1067 soisconnected(so);
1068
1069 return error;
1070 }
1071
1072 static int
1073 udp6_connect2(struct socket *so, struct socket *so2)
1074 {
1075 KASSERT(solocked(so));
1076
1077 return EOPNOTSUPP;
1078 }
1079
1080 static int
1081 udp6_disconnect(struct socket *so)
1082 {
1083 struct in6pcb *in6p = sotoin6pcb(so);
1084 int s;
1085
1086 KASSERT(solocked(so));
1087 KASSERT(in6p != NULL);
1088
1089 if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr))
1090 return ENOTCONN;
1091
1092 s = splsoftnet();
1093 in6_pcbdisconnect(in6p);
1094 memset((void *)&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
1095 splx(s);
1096
1097 so->so_state &= ~SS_ISCONNECTED; /* XXX */
1098 in6_pcbstate(in6p, IN6P_BOUND); /* XXX */
1099 return 0;
1100 }
1101
1102 static int
1103 udp6_shutdown(struct socket *so)
1104 {
1105 int s;
1106
1107 s = splsoftnet();
1108 socantsendmore(so);
1109 splx(s);
1110
1111 return 0;
1112 }
1113
1114 static int
1115 udp6_abort(struct socket *so)
1116 {
1117 int s;
1118
1119 KASSERT(solocked(so));
1120 KASSERT(sotoin6pcb(so) != NULL);
1121
1122 s = splsoftnet();
1123 soisdisconnected(so);
1124 in6_pcbdetach(sotoin6pcb(so));
1125 splx(s);
1126
1127 return 0;
1128 }
1129
1130 static int
1131 udp6_ioctl(struct socket *so, u_long cmd, void *addr6, struct ifnet *ifp)
1132 {
1133 /*
1134 * MAPPED_ADDR implementation info:
1135 * Mapped addr support for PRU_CONTROL is not necessary.
1136 * Because typical user of PRU_CONTROL is such as ifconfig,
1137 * and they don't associate any addr to their socket. Then
1138 * socket family is only hint about the PRU_CONTROL'ed address
1139 * family, especially when getting addrs from kernel.
1140 * So AF_INET socket need to be used to control AF_INET addrs,
1141 * and AF_INET6 socket for AF_INET6 addrs.
1142 */
1143 return in6_control(so, cmd, addr6, ifp);
1144 }
1145
1146 static int
1147 udp6_stat(struct socket *so, struct stat *ub)
1148 {
1149 KASSERT(solocked(so));
1150
1151 /* stat: don't bother with a blocksize */
1152 return 0;
1153 }
1154
1155 static int
1156 udp6_peeraddr(struct socket *so, struct sockaddr *nam)
1157 {
1158 KASSERT(solocked(so));
1159 KASSERT(sotoin6pcb(so) != NULL);
1160 KASSERT(nam != NULL);
1161
1162 in6_setpeeraddr(sotoin6pcb(so), (struct sockaddr_in6 *)nam);
1163 return 0;
1164 }
1165
1166 static int
1167 udp6_sockaddr(struct socket *so, struct sockaddr *nam)
1168 {
1169 KASSERT(solocked(so));
1170 KASSERT(sotoin6pcb(so) != NULL);
1171 KASSERT(nam != NULL);
1172
1173 in6_setsockaddr(sotoin6pcb(so), (struct sockaddr_in6 *)nam);
1174 return 0;
1175 }
1176
1177 static int
1178 udp6_rcvd(struct socket *so, int flags, struct lwp *l)
1179 {
1180 KASSERT(solocked(so));
1181
1182 return EOPNOTSUPP;
1183 }
1184
1185 static int
1186 udp6_recvoob(struct socket *so, struct mbuf *m, int flags)
1187 {
1188 KASSERT(solocked(so));
1189
1190 return EOPNOTSUPP;
1191 }
1192
1193 static int
1194 udp6_send(struct socket *so, struct mbuf *m, struct sockaddr *nam,
1195 struct mbuf *control, struct lwp *l)
1196 {
1197 struct in6pcb *in6p = sotoin6pcb(so);
1198 int error = 0;
1199 int s;
1200
1201 KASSERT(solocked(so));
1202 KASSERT(in6p != NULL);
1203 KASSERT(m != NULL);
1204
1205 s = splsoftnet();
1206 error = udp6_output(in6p, m, (struct sockaddr_in6 *)nam, control, l);
1207 splx(s);
1208
1209 return error;
1210 }
1211
1212 static int
1213 udp6_sendoob(struct socket *so, struct mbuf *m, struct mbuf *control)
1214 {
1215 KASSERT(solocked(so));
1216
1217 if (m)
1218 m_freem(m);
1219 if (control)
1220 m_freem(control);
1221
1222 return EOPNOTSUPP;
1223 }
1224
1225 static int
1226 udp6_purgeif(struct socket *so, struct ifnet *ifp)
1227 {
1228
1229 mutex_enter(softnet_lock);
1230 in6_pcbpurgeif0(&udbtable, ifp);
1231 #ifdef NET_MPSAFE
1232 mutex_exit(softnet_lock);
1233 #endif
1234 in6_purgeif(ifp);
1235 #ifdef NET_MPSAFE
1236 mutex_enter(softnet_lock);
1237 #endif
1238 in6_pcbpurgeif(&udbtable, ifp);
1239 mutex_exit(softnet_lock);
1240
1241 return 0;
1242 }
1243
1244 static int
1245 sysctl_net_inet6_udp6_stats(SYSCTLFN_ARGS)
1246 {
1247
1248 return (NETSTAT_SYSCTL(udp6stat_percpu, UDP6_NSTATS));
1249 }
1250
1251 static void
1252 sysctl_net_inet6_udp6_setup(struct sysctllog **clog)
1253 {
1254
1255 sysctl_createv(clog, 0, NULL, NULL,
1256 CTLFLAG_PERMANENT,
1257 CTLTYPE_NODE, "inet6", NULL,
1258 NULL, 0, NULL, 0,
1259 CTL_NET, PF_INET6, CTL_EOL);
1260 sysctl_createv(clog, 0, NULL, NULL,
1261 CTLFLAG_PERMANENT,
1262 CTLTYPE_NODE, "udp6",
1263 SYSCTL_DESCR("UDPv6 related settings"),
1264 NULL, 0, NULL, 0,
1265 CTL_NET, PF_INET6, IPPROTO_UDP, CTL_EOL);
1266
1267 sysctl_createv(clog, 0, NULL, NULL,
1268 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1269 CTLTYPE_INT, "sendspace",
1270 SYSCTL_DESCR("Default UDP send buffer size"),
1271 NULL, 0, &udp6_sendspace, 0,
1272 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_SENDSPACE,
1273 CTL_EOL);
1274 sysctl_createv(clog, 0, NULL, NULL,
1275 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1276 CTLTYPE_INT, "recvspace",
1277 SYSCTL_DESCR("Default UDP receive buffer size"),
1278 NULL, 0, &udp6_recvspace, 0,
1279 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_RECVSPACE,
1280 CTL_EOL);
1281 sysctl_createv(clog, 0, NULL, NULL,
1282 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1283 CTLTYPE_INT, "do_loopback_cksum",
1284 SYSCTL_DESCR("Perform UDP checksum on loopback"),
1285 NULL, 0, &udp_do_loopback_cksum, 0,
1286 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_LOOPBACKCKSUM,
1287 CTL_EOL);
1288 sysctl_createv(clog, 0, NULL, NULL,
1289 CTLFLAG_PERMANENT,
1290 CTLTYPE_STRUCT, "pcblist",
1291 SYSCTL_DESCR("UDP protocol control block list"),
1292 sysctl_inpcblist, 0, &udbtable, 0,
1293 CTL_NET, PF_INET6, IPPROTO_UDP, CTL_CREATE,
1294 CTL_EOL);
1295 sysctl_createv(clog, 0, NULL, NULL,
1296 CTLFLAG_PERMANENT,
1297 CTLTYPE_STRUCT, "stats",
1298 SYSCTL_DESCR("UDPv6 statistics"),
1299 sysctl_net_inet6_udp6_stats, 0, NULL, 0,
1300 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_STATS,
1301 CTL_EOL);
1302 }
1303
1304 void
1305 udp6_statinc(u_int stat)
1306 {
1307
1308 KASSERT(stat < UDP6_NSTATS);
1309 UDP6_STATINC(stat);
1310 }
1311
1312 PR_WRAP_USRREQS(udp6)
1313 #define udp6_attach udp6_attach_wrapper
1314 #define udp6_detach udp6_detach_wrapper
1315 #define udp6_accept udp6_accept_wrapper
1316 #define udp6_bind udp6_bind_wrapper
1317 #define udp6_listen udp6_listen_wrapper
1318 #define udp6_connect udp6_connect_wrapper
1319 #define udp6_connect2 udp6_connect2_wrapper
1320 #define udp6_disconnect udp6_disconnect_wrapper
1321 #define udp6_shutdown udp6_shutdown_wrapper
1322 #define udp6_abort udp6_abort_wrapper
1323 #define udp6_ioctl udp6_ioctl_wrapper
1324 #define udp6_stat udp6_stat_wrapper
1325 #define udp6_peeraddr udp6_peeraddr_wrapper
1326 #define udp6_sockaddr udp6_sockaddr_wrapper
1327 #define udp6_rcvd udp6_rcvd_wrapper
1328 #define udp6_recvoob udp6_recvoob_wrapper
1329 #define udp6_send udp6_send_wrapper
1330 #define udp6_sendoob udp6_sendoob_wrapper
1331 #define udp6_purgeif udp6_purgeif_wrapper
1332
1333 const struct pr_usrreqs udp6_usrreqs = {
1334 .pr_attach = udp6_attach,
1335 .pr_detach = udp6_detach,
1336 .pr_accept = udp6_accept,
1337 .pr_bind = udp6_bind,
1338 .pr_listen = udp6_listen,
1339 .pr_connect = udp6_connect,
1340 .pr_connect2 = udp6_connect2,
1341 .pr_disconnect = udp6_disconnect,
1342 .pr_shutdown = udp6_shutdown,
1343 .pr_abort = udp6_abort,
1344 .pr_ioctl = udp6_ioctl,
1345 .pr_stat = udp6_stat,
1346 .pr_peeraddr = udp6_peeraddr,
1347 .pr_sockaddr = udp6_sockaddr,
1348 .pr_rcvd = udp6_rcvd,
1349 .pr_recvoob = udp6_recvoob,
1350 .pr_send = udp6_send,
1351 .pr_sendoob = udp6_sendoob,
1352 .pr_purgeif = udp6_purgeif,
1353 };
1354