udp6_usrreq.c revision 1.146 1 /* $NetBSD: udp6_usrreq.c,v 1.146 2019/01/28 12:53:01 martin Exp $ */
2 /* $KAME: udp6_usrreq.c,v 1.86 2001/05/27 17:33:00 itojun Exp $ */
3 /* $KAME: udp6_output.c,v 1.43 2001/10/15 09:19:52 itojun Exp $ */
4
5 /*
6 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
7 * All rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of the project nor the names of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written permission.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
22 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
25 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31 * SUCH DAMAGE.
32 */
33
34 /*
35 * Copyright (c) 1982, 1986, 1989, 1993
36 * The Regents of the University of California. All rights reserved.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)udp_var.h 8.1 (Berkeley) 6/10/93
63 */
64
65 #include <sys/cdefs.h>
66 __KERNEL_RCSID(0, "$NetBSD: udp6_usrreq.c,v 1.146 2019/01/28 12:53:01 martin Exp $");
67
68 #ifdef _KERNEL_OPT
69 #include "opt_inet.h"
70 #include "opt_inet_csum.h"
71 #include "opt_ipsec.h"
72 #include "opt_net_mpsafe.h"
73 #endif
74
75 #include <sys/param.h>
76 #include <sys/mbuf.h>
77 #include <sys/protosw.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/systm.h>
81 #include <sys/proc.h>
82 #include <sys/syslog.h>
83 #include <sys/domain.h>
84 #include <sys/sysctl.h>
85
86 #include <net/if.h>
87 #include <net/if_types.h>
88
89 #include <netinet/in.h>
90 #include <netinet/in_var.h>
91 #include <netinet/in_systm.h>
92 #include <netinet/in_offload.h>
93 #include <netinet/ip.h>
94 #include <netinet/ip_var.h>
95 #include <netinet/in_pcb.h>
96 #include <netinet/udp.h>
97 #include <netinet/udp_var.h>
98 #include <netinet/udp_private.h>
99
100 #include <netinet/ip6.h>
101 #include <netinet/icmp6.h>
102 #include <netinet6/ip6_var.h>
103 #include <netinet6/ip6_private.h>
104 #include <netinet6/in6_pcb.h>
105 #include <netinet6/udp6_var.h>
106 #include <netinet6/udp6_private.h>
107 #include <netinet6/ip6protosw.h>
108 #include <netinet6/scope6_var.h>
109
110 #ifdef IPSEC
111 #include <netipsec/ipsec.h>
112 #include <netipsec/esp.h>
113 #ifdef INET6
114 #include <netipsec/ipsec6.h>
115 #endif
116 #endif
117
118 #include "faith.h"
119 #if defined(NFAITH) && NFAITH > 0
120 #include <net/if_faith.h>
121 #endif
122
123 /*
124 * UDP protocol implementation.
125 * Per RFC 768, August, 1980.
126 */
127
128 extern struct inpcbtable udbtable;
129
130 percpu_t *udp6stat_percpu;
131
132 /* UDP on IP6 parameters */
133 static int udp6_sendspace = 9216; /* really max datagram size */
134 static int udp6_recvspace = 40 * (1024 + sizeof(struct sockaddr_in6));
135 /* 40 1K datagrams */
136
137 static void udp6_notify(struct in6pcb *, int);
138 static void sysctl_net_inet6_udp6_setup(struct sysctllog **);
139 #ifdef IPSEC
140 static int udp6_espinudp(struct mbuf **, int);
141 #endif
142
143 #ifdef UDP_CSUM_COUNTERS
144 #include <sys/device.h>
145 struct evcnt udp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
146 NULL, "udp6", "hwcsum bad");
147 struct evcnt udp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
148 NULL, "udp6", "hwcsum ok");
149 struct evcnt udp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
150 NULL, "udp6", "hwcsum data");
151 struct evcnt udp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
152 NULL, "udp6", "swcsum");
153
154 EVCNT_ATTACH_STATIC(udp6_hwcsum_bad);
155 EVCNT_ATTACH_STATIC(udp6_hwcsum_ok);
156 EVCNT_ATTACH_STATIC(udp6_hwcsum_data);
157 EVCNT_ATTACH_STATIC(udp6_swcsum);
158
159 #define UDP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
160 #else
161 #define UDP_CSUM_COUNTER_INCR(ev) /* nothing */
162 #endif
163
164 void
165 udp6_init(void)
166 {
167 sysctl_net_inet6_udp6_setup(NULL);
168 udp6stat_percpu = percpu_alloc(sizeof(uint64_t) * UDP6_NSTATS);
169
170 udp_init_common();
171 }
172
173 /*
174 * Notify a udp user of an asynchronous error;
175 * just wake up so that he can collect error status.
176 */
177 static void
178 udp6_notify(struct in6pcb *in6p, int errno)
179 {
180 in6p->in6p_socket->so_error = errno;
181 sorwakeup(in6p->in6p_socket);
182 sowwakeup(in6p->in6p_socket);
183 }
184
185 void *
186 udp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
187 {
188 struct udphdr uh;
189 struct ip6_hdr *ip6;
190 const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
191 struct mbuf *m;
192 int off;
193 void *cmdarg;
194 struct ip6ctlparam *ip6cp = NULL;
195 const struct sockaddr_in6 *sa6_src = NULL;
196 void (*notify)(struct in6pcb *, int) = udp6_notify;
197 struct udp_portonly {
198 u_int16_t uh_sport;
199 u_int16_t uh_dport;
200 } *uhp;
201
202 if (sa->sa_family != AF_INET6 ||
203 sa->sa_len != sizeof(struct sockaddr_in6))
204 return NULL;
205
206 if ((unsigned)cmd >= PRC_NCMDS)
207 return NULL;
208 if (PRC_IS_REDIRECT(cmd))
209 notify = in6_rtchange, d = NULL;
210 else if (cmd == PRC_HOSTDEAD)
211 d = NULL;
212 else if (cmd == PRC_MSGSIZE) {
213 /* special code is present, see below */
214 notify = in6_rtchange;
215 }
216 else if (inet6ctlerrmap[cmd] == 0)
217 return NULL;
218
219 /* if the parameter is from icmp6, decode it. */
220 if (d != NULL) {
221 ip6cp = (struct ip6ctlparam *)d;
222 m = ip6cp->ip6c_m;
223 ip6 = ip6cp->ip6c_ip6;
224 off = ip6cp->ip6c_off;
225 cmdarg = ip6cp->ip6c_cmdarg;
226 sa6_src = ip6cp->ip6c_src;
227 } else {
228 m = NULL;
229 ip6 = NULL;
230 cmdarg = NULL;
231 sa6_src = &sa6_any;
232 off = 0;
233 }
234
235 if (ip6) {
236 /* check if we can safely examine src and dst ports */
237 if (m->m_pkthdr.len < off + sizeof(*uhp)) {
238 if (cmd == PRC_MSGSIZE)
239 icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
240 return NULL;
241 }
242
243 memset(&uh, 0, sizeof(uh));
244 m_copydata(m, off, sizeof(*uhp), (void *)&uh);
245
246 if (cmd == PRC_MSGSIZE) {
247 int valid = 0;
248
249 /*
250 * Check to see if we have a valid UDP socket
251 * corresponding to the address in the ICMPv6 message
252 * payload.
253 */
254 if (in6_pcblookup_connect(&udbtable, &sa6->sin6_addr,
255 uh.uh_dport, (const struct in6_addr *)&sa6_src->sin6_addr,
256 uh.uh_sport, 0, 0))
257 valid++;
258 #if 0
259 /*
260 * As the use of sendto(2) is fairly popular,
261 * we may want to allow non-connected pcb too.
262 * But it could be too weak against attacks...
263 * We should at least check if the local address (= s)
264 * is really ours.
265 */
266 else if (in6_pcblookup_bind(&udbtable, &sa6->sin6_addr,
267 uh.uh_dport, 0))
268 valid++;
269 #endif
270
271 /*
272 * Depending on the value of "valid" and routing table
273 * size (mtudisc_{hi,lo}wat), we will:
274 * - recalculate the new MTU and create the
275 * corresponding routing entry, or
276 * - ignore the MTU change notification.
277 */
278 icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
279
280 /*
281 * regardless of if we called
282 * icmp6_mtudisc_update(), we need to call
283 * in6_pcbnotify(), to notify path MTU change
284 * to the userland (RFC3542), because some
285 * unconnected sockets may share the same
286 * destination and want to know the path MTU.
287 */
288 }
289
290 (void)in6_pcbnotify(&udbtable, sa, uh.uh_dport,
291 sin6tocsa(sa6_src), uh.uh_sport, cmd, cmdarg,
292 notify);
293 } else {
294 (void)in6_pcbnotify(&udbtable, sa, 0,
295 sin6tocsa(sa6_src), 0, cmd, cmdarg, notify);
296 }
297 return NULL;
298 }
299
300 int
301 udp6_ctloutput(int op, struct socket *so, struct sockopt *sopt)
302 {
303 int s;
304 int error = 0;
305 struct in6pcb *in6p;
306 int family;
307 int optval;
308
309 family = so->so_proto->pr_domain->dom_family;
310
311 s = splsoftnet();
312 switch (family) {
313 #ifdef INET
314 case PF_INET:
315 if (sopt->sopt_level != IPPROTO_UDP) {
316 error = ip_ctloutput(op, so, sopt);
317 goto end;
318 }
319 break;
320 #endif
321 #ifdef INET6
322 case PF_INET6:
323 if (sopt->sopt_level != IPPROTO_UDP) {
324 error = ip6_ctloutput(op, so, sopt);
325 goto end;
326 }
327 break;
328 #endif
329 default:
330 error = EAFNOSUPPORT;
331 goto end;
332 }
333
334 switch (op) {
335 case PRCO_SETOPT:
336 in6p = sotoin6pcb(so);
337
338 switch (sopt->sopt_name) {
339 case UDP_ENCAP:
340 error = sockopt_getint(sopt, &optval);
341 if (error)
342 break;
343
344 switch(optval) {
345 case 0:
346 in6p->in6p_flags &= ~IN6P_ESPINUDP;
347 break;
348
349 case UDP_ENCAP_ESPINUDP:
350 in6p->in6p_flags |= IN6P_ESPINUDP;
351 break;
352
353 default:
354 error = EINVAL;
355 break;
356 }
357 break;
358
359 default:
360 error = ENOPROTOOPT;
361 break;
362 }
363 break;
364
365 default:
366 error = EINVAL;
367 break;
368 }
369
370 end:
371 splx(s);
372 return error;
373 }
374
375 static void
376 udp6_sendup(struct mbuf *m, int off /* offset of data portion */,
377 struct sockaddr *src, struct socket *so)
378 {
379 struct mbuf *opts = NULL;
380 struct mbuf *n;
381 struct in6pcb *in6p;
382
383 KASSERT(so != NULL);
384 KASSERT(so->so_proto->pr_domain->dom_family == AF_INET6);
385 in6p = sotoin6pcb(so);
386 KASSERT(in6p != NULL);
387
388 #if defined(IPSEC)
389 if (ipsec_used && ipsec_in_reject(m, in6p)) {
390 if ((n = m_copypacket(m, M_DONTWAIT)) != NULL)
391 icmp6_error(n, ICMP6_DST_UNREACH,
392 ICMP6_DST_UNREACH_ADMIN, 0);
393 return;
394 }
395 #endif
396
397 if ((n = m_copypacket(m, M_DONTWAIT)) != NULL) {
398 if (in6p->in6p_flags & IN6P_CONTROLOPTS ||
399 SOOPT_TIMESTAMP(in6p->in6p_socket->so_options)) {
400 struct ip6_hdr *ip6 = mtod(n, struct ip6_hdr *);
401 ip6_savecontrol(in6p, &opts, ip6, n);
402 }
403
404 m_adj(n, off);
405 if (sbappendaddr(&so->so_rcv, src, n, opts) == 0) {
406 m_freem(n);
407 if (opts)
408 m_freem(opts);
409 UDP6_STATINC(UDP6_STAT_FULLSOCK);
410 soroverflow(so);
411 } else
412 sorwakeup(so);
413 }
414 }
415
416 int
417 udp6_realinput(int af, struct sockaddr_in6 *src, struct sockaddr_in6 *dst,
418 struct mbuf **mp, int off)
419 {
420 u_int16_t sport, dport;
421 int rcvcnt;
422 struct in6_addr src6, *dst6;
423 const struct in_addr *dst4;
424 struct inpcb_hdr *inph;
425 struct in6pcb *in6p;
426 struct mbuf *m = *mp;
427
428 rcvcnt = 0;
429 off += sizeof(struct udphdr); /* now, offset of payload */
430
431 if (af != AF_INET && af != AF_INET6)
432 goto bad;
433 if (src->sin6_family != AF_INET6 || dst->sin6_family != AF_INET6)
434 goto bad;
435
436 src6 = src->sin6_addr;
437 if (sa6_recoverscope(src) != 0) {
438 /* XXX: should be impossible. */
439 goto bad;
440 }
441 sport = src->sin6_port;
442
443 dport = dst->sin6_port;
444 dst4 = (struct in_addr *)&dst->sin6_addr.s6_addr[12];
445 dst6 = &dst->sin6_addr;
446
447 if (IN6_IS_ADDR_MULTICAST(dst6) ||
448 (af == AF_INET && IN_MULTICAST(dst4->s_addr))) {
449 /*
450 * Deliver a multicast or broadcast datagram to *all* sockets
451 * for which the local and remote addresses and ports match
452 * those of the incoming datagram. This allows more than
453 * one process to receive multi/broadcasts on the same port.
454 * (This really ought to be done for unicast datagrams as
455 * well, but that would cause problems with existing
456 * applications that open both address-specific sockets and
457 * a wildcard socket listening to the same port -- they would
458 * end up receiving duplicates of every unicast datagram.
459 * Those applications open the multiple sockets to overcome an
460 * inadequacy of the UDP socket interface, but for backwards
461 * compatibility we avoid the problem here rather than
462 * fixing the interface. Maybe 4.5BSD will remedy this?)
463 */
464
465 /*
466 * KAME note: traditionally we dropped udpiphdr from mbuf here.
467 * we need udpiphdr for IPsec processing so we do that later.
468 */
469 /*
470 * Locate pcb(s) for datagram.
471 */
472 TAILQ_FOREACH(inph, &udbtable.inpt_queue, inph_queue) {
473 in6p = (struct in6pcb *)inph;
474 if (in6p->in6p_af != AF_INET6)
475 continue;
476
477 if (in6p->in6p_lport != dport)
478 continue;
479 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
480 if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_laddr,
481 dst6))
482 continue;
483 } else {
484 if (IN6_IS_ADDR_V4MAPPED(dst6) &&
485 (in6p->in6p_flags & IN6P_IPV6_V6ONLY))
486 continue;
487 }
488 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) {
489 if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_faddr,
490 &src6) || in6p->in6p_fport != sport)
491 continue;
492 } else {
493 if (IN6_IS_ADDR_V4MAPPED(&src6) &&
494 (in6p->in6p_flags & IN6P_IPV6_V6ONLY))
495 continue;
496 }
497
498 udp6_sendup(m, off, sin6tosa(src), in6p->in6p_socket);
499 rcvcnt++;
500
501 /*
502 * Don't look for additional matches if this one does
503 * not have either the SO_REUSEPORT or SO_REUSEADDR
504 * socket options set. This heuristic avoids searching
505 * through all pcbs in the common case of a non-shared
506 * port. It assumes that an application will never
507 * clear these options after setting them.
508 */
509 if ((in6p->in6p_socket->so_options &
510 (SO_REUSEPORT|SO_REUSEADDR)) == 0)
511 break;
512 }
513 } else {
514 /*
515 * Locate pcb for datagram.
516 */
517 in6p = in6_pcblookup_connect(&udbtable, &src6, sport, dst6,
518 dport, 0, 0);
519 if (in6p == 0) {
520 UDP_STATINC(UDP_STAT_PCBHASHMISS);
521 in6p = in6_pcblookup_bind(&udbtable, dst6, dport, 0);
522 if (in6p == 0)
523 return rcvcnt;
524 }
525
526 #ifdef IPSEC
527 /* Handle ESP over UDP */
528 if (in6p->in6p_flags & IN6P_ESPINUDP) {
529 switch (udp6_espinudp(mp, off)) {
530 case -1: /* Error, m was freed */
531 rcvcnt = -1;
532 goto bad;
533
534 case 1: /* ESP over UDP */
535 rcvcnt++;
536 goto bad;
537
538 case 0: /* plain UDP */
539 default: /* Unexpected */
540 /*
541 * Normal UDP processing will take place,
542 * m may have changed.
543 */
544 m = *mp;
545 break;
546 }
547 }
548 #endif
549
550 udp6_sendup(m, off, sin6tosa(src), in6p->in6p_socket);
551 rcvcnt++;
552 }
553
554 bad:
555 return rcvcnt;
556 }
557
558 int
559 udp6_input_checksum(struct mbuf *m, const struct udphdr *uh, int off, int len)
560 {
561
562 /*
563 * XXX it's better to record and check if this mbuf is
564 * already checked.
565 */
566
567 if (__predict_false((m->m_flags & M_LOOP) && !udp_do_loopback_cksum)) {
568 goto good;
569 }
570 if (uh->uh_sum == 0) {
571 UDP6_STATINC(UDP6_STAT_NOSUM);
572 goto bad;
573 }
574
575 switch (m->m_pkthdr.csum_flags &
576 ((m_get_rcvif_NOMPSAFE(m)->if_csum_flags_rx & M_CSUM_UDPv6) |
577 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
578 case M_CSUM_UDPv6|M_CSUM_TCP_UDP_BAD:
579 UDP_CSUM_COUNTER_INCR(&udp6_hwcsum_bad);
580 UDP6_STATINC(UDP6_STAT_BADSUM);
581 goto bad;
582
583 #if 0 /* notyet */
584 case M_CSUM_UDPv6|M_CSUM_DATA:
585 #endif
586
587 case M_CSUM_UDPv6:
588 /* Checksum was okay. */
589 UDP_CSUM_COUNTER_INCR(&udp6_hwcsum_ok);
590 break;
591
592 default:
593 /*
594 * Need to compute it ourselves. Maybe skip checksum
595 * on loopback interfaces.
596 */
597 UDP_CSUM_COUNTER_INCR(&udp6_swcsum);
598 if (in6_cksum(m, IPPROTO_UDP, off, len) != 0) {
599 UDP6_STATINC(UDP6_STAT_BADSUM);
600 goto bad;
601 }
602 }
603
604 good:
605 return 0;
606 bad:
607 return -1;
608 }
609
610 int
611 udp6_input(struct mbuf **mp, int *offp, int proto)
612 {
613 struct mbuf *m = *mp;
614 int off = *offp;
615 struct sockaddr_in6 src, dst;
616 struct ip6_hdr *ip6;
617 struct udphdr *uh;
618 u_int32_t plen, ulen;
619
620 ip6 = mtod(m, struct ip6_hdr *);
621
622 #if defined(NFAITH) && 0 < NFAITH
623 if (faithprefix(&ip6->ip6_dst)) {
624 /* send icmp6 host unreach? */
625 m_freem(m);
626 return IPPROTO_DONE;
627 }
628 #endif
629
630 UDP6_STATINC(UDP6_STAT_IPACKETS);
631
632 /* Check for jumbogram is done in ip6_input. We can trust pkthdr.len. */
633 plen = m->m_pkthdr.len - off;
634 IP6_EXTHDR_GET(uh, struct udphdr *, m, off, sizeof(struct udphdr));
635 if (uh == NULL) {
636 IP6_STATINC(IP6_STAT_TOOSHORT);
637 return IPPROTO_DONE;
638 }
639
640 /*
641 * Enforce alignment requirements that are violated in
642 * some cases, see kern/50766 for details.
643 */
644 if (UDP_HDR_ALIGNED_P(uh) == 0) {
645 m = m_copyup(m, off + sizeof(struct udphdr), 0);
646 if (m == NULL) {
647 IP6_STATINC(IP6_STAT_TOOSHORT);
648 return IPPROTO_DONE;
649 }
650 ip6 = mtod(m, struct ip6_hdr *);
651 uh = (struct udphdr *)(mtod(m, char *) + off);
652 }
653 KASSERT(UDP_HDR_ALIGNED_P(uh));
654 ulen = ntohs((u_short)uh->uh_ulen);
655
656 /*
657 * RFC2675 section 4: jumbograms will have 0 in the UDP header field,
658 * iff payload length > 0xffff.
659 */
660 if (ulen == 0 && plen > 0xffff)
661 ulen = plen;
662
663 if (plen != ulen) {
664 UDP6_STATINC(UDP6_STAT_BADLEN);
665 goto bad;
666 }
667
668 /* destination port of 0 is illegal, based on RFC768. */
669 if (uh->uh_dport == 0)
670 goto bad;
671
672 /*
673 * Checksum extended UDP header and data. Maybe skip checksum
674 * on loopback interfaces.
675 */
676 if (udp6_input_checksum(m, uh, off, ulen))
677 goto bad;
678
679 /*
680 * Construct source and dst sockaddrs.
681 */
682 memset(&src, 0, sizeof(src));
683 src.sin6_family = AF_INET6;
684 src.sin6_len = sizeof(struct sockaddr_in6);
685 src.sin6_addr = ip6->ip6_src;
686 src.sin6_port = uh->uh_sport;
687 memset(&dst, 0, sizeof(dst));
688 dst.sin6_family = AF_INET6;
689 dst.sin6_len = sizeof(struct sockaddr_in6);
690 dst.sin6_addr = ip6->ip6_dst;
691 dst.sin6_port = uh->uh_dport;
692
693 if (udp6_realinput(AF_INET6, &src, &dst, &m, off) == 0) {
694 if (m->m_flags & M_MCAST) {
695 UDP6_STATINC(UDP6_STAT_NOPORTMCAST);
696 goto bad;
697 }
698 UDP6_STATINC(UDP6_STAT_NOPORT);
699 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_NOPORT, 0);
700 m = NULL;
701 }
702
703 bad:
704 if (m)
705 m_freem(m);
706 return IPPROTO_DONE;
707 }
708
709 int
710 udp6_output(struct in6pcb * const in6p, struct mbuf *m,
711 struct sockaddr_in6 * const addr6, struct mbuf * const control,
712 struct lwp * const l)
713 {
714 u_int32_t ulen = m->m_pkthdr.len;
715 u_int32_t plen = sizeof(struct udphdr) + ulen;
716 struct ip6_hdr *ip6;
717 struct udphdr *udp6;
718 struct in6_addr _laddr, *laddr, *faddr;
719 struct in6_addr laddr_mapped; /* XXX ugly */
720 struct sockaddr_in6 *sin6 = NULL;
721 struct ifnet *oifp = NULL;
722 int scope_ambiguous = 0;
723 u_int16_t fport;
724 int error = 0;
725 struct ip6_pktopts *optp = NULL;
726 struct ip6_pktopts opt;
727 int af = AF_INET6, hlen = sizeof(struct ip6_hdr);
728 #ifdef INET
729 struct ip *ip;
730 struct udpiphdr *ui;
731 int flags = 0;
732 #endif
733 struct sockaddr_in6 tmp;
734
735 if (addr6) {
736 sin6 = addr6;
737 if (sin6->sin6_len != sizeof(*sin6)) {
738 error = EINVAL;
739 goto release;
740 }
741 if (sin6->sin6_family != AF_INET6) {
742 error = EAFNOSUPPORT;
743 goto release;
744 }
745
746 /* protect *sin6 from overwrites */
747 tmp = *sin6;
748 sin6 = &tmp;
749
750 /*
751 * Application should provide a proper zone ID or the use of
752 * default zone IDs should be enabled. Unfortunately, some
753 * applications do not behave as it should, so we need a
754 * workaround. Even if an appropriate ID is not determined,
755 * we'll see if we can determine the outgoing interface. If we
756 * can, determine the zone ID based on the interface below.
757 */
758 if (sin6->sin6_scope_id == 0 && !ip6_use_defzone)
759 scope_ambiguous = 1;
760 if ((error = sa6_embedscope(sin6, ip6_use_defzone)) != 0)
761 goto release;
762 }
763
764 if (control) {
765 if (__predict_false(l == NULL)) {
766 panic("%s: control but no lwp", __func__);
767 }
768 if ((error = ip6_setpktopts(control, &opt,
769 in6p->in6p_outputopts, l->l_cred, IPPROTO_UDP)) != 0)
770 goto release;
771 optp = &opt;
772 } else
773 optp = in6p->in6p_outputopts;
774
775
776 if (sin6) {
777 /*
778 * Slightly different than v4 version in that we call
779 * in6_selectsrc and in6_pcbsetport to fill in the local
780 * address and port rather than in_pcbconnect. in_pcbconnect
781 * sets in6p_faddr which causes EISCONN below to be hit on
782 * subsequent sendto.
783 */
784 if (sin6->sin6_port == 0) {
785 error = EADDRNOTAVAIL;
786 goto release;
787 }
788
789 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) {
790 /* how about ::ffff:0.0.0.0 case? */
791 error = EISCONN;
792 goto release;
793 }
794
795 faddr = &sin6->sin6_addr;
796 fport = sin6->sin6_port; /* allow 0 port */
797
798 if (IN6_IS_ADDR_V4MAPPED(faddr)) {
799 if ((in6p->in6p_flags & IN6P_IPV6_V6ONLY)) {
800 /*
801 * I believe we should explicitly discard the
802 * packet when mapped addresses are disabled,
803 * rather than send the packet as an IPv6 one.
804 * If we chose the latter approach, the packet
805 * might be sent out on the wire based on the
806 * default route, the situation which we'd
807 * probably want to avoid.
808 * (20010421 jinmei (at) kame.net)
809 */
810 error = EINVAL;
811 goto release;
812 }
813 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr) &&
814 !IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)) {
815 /*
816 * when remote addr is an IPv4-mapped address,
817 * local addr should not be an IPv6 address,
818 * since you cannot determine how to map IPv6
819 * source address to IPv4.
820 */
821 error = EINVAL;
822 goto release;
823 }
824
825 af = AF_INET;
826 }
827
828 if (!IN6_IS_ADDR_V4MAPPED(faddr)) {
829 struct psref psref;
830 int bound = curlwp_bind();
831
832 error = in6_selectsrc(sin6, optp,
833 in6p->in6p_moptions,
834 &in6p->in6p_route,
835 &in6p->in6p_laddr, &oifp, &psref, &_laddr);
836 if (error)
837 laddr = NULL;
838 else
839 laddr = &_laddr;
840 if (oifp && scope_ambiguous &&
841 (error = in6_setscope(&sin6->sin6_addr,
842 oifp, NULL))) {
843 if_put(oifp, &psref);
844 curlwp_bindx(bound);
845 goto release;
846 }
847 if_put(oifp, &psref);
848 curlwp_bindx(bound);
849 } else {
850 /*
851 * XXX: freebsd[34] does not have in_selectsrc, but
852 * we can omit the whole part because freebsd4 calls
853 * udp_output() directly in this case, and thus we'll
854 * never see this path.
855 */
856 if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
857 struct sockaddr_in sin_dst;
858 struct in_addr ina;
859 struct in_ifaddr *ia4;
860 struct psref _psref;
861 int bound;
862
863 memcpy(&ina, &faddr->s6_addr[12], sizeof(ina));
864 sockaddr_in_init(&sin_dst, &ina, 0);
865 bound = curlwp_bind();
866 ia4 = in_selectsrc(&sin_dst, &in6p->in6p_route,
867 in6p->in6p_socket->so_options, NULL,
868 &error, &_psref);
869 if (ia4 == NULL) {
870 curlwp_bindx(bound);
871 if (error == 0)
872 error = EADDRNOTAVAIL;
873 goto release;
874 }
875 memset(&laddr_mapped, 0, sizeof(laddr_mapped));
876 laddr_mapped.s6_addr16[5] = 0xffff; /* ugly */
877 memcpy(&laddr_mapped.s6_addr[12],
878 &IA_SIN(ia4)->sin_addr,
879 sizeof(IA_SIN(ia4)->sin_addr));
880 ia4_release(ia4, &_psref);
881 curlwp_bindx(bound);
882 laddr = &laddr_mapped;
883 } else
884 {
885 laddr = &in6p->in6p_laddr; /* XXX */
886 }
887 }
888 if (laddr == NULL) {
889 if (error == 0)
890 error = EADDRNOTAVAIL;
891 goto release;
892 }
893 if (in6p->in6p_lport == 0) {
894 /*
895 * Craft a sockaddr_in6 for the local endpoint. Use the
896 * "any" as a base, set the address, and recover the
897 * scope.
898 */
899 struct sockaddr_in6 lsin6 =
900 *((const struct sockaddr_in6 *)in6p->in6p_socket->so_proto->pr_domain->dom_sa_any);
901 lsin6.sin6_addr = *laddr;
902 error = sa6_recoverscope(&lsin6);
903 if (error)
904 goto release;
905
906 error = in6_pcbsetport(&lsin6, in6p, l);
907
908 if (error) {
909 in6p->in6p_laddr = in6addr_any;
910 goto release;
911 }
912 }
913 } else {
914 if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) {
915 error = ENOTCONN;
916 goto release;
917 }
918 if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr)) {
919 if ((in6p->in6p_flags & IN6P_IPV6_V6ONLY))
920 {
921 /*
922 * XXX: this case would happen when the
923 * application sets the V6ONLY flag after
924 * connecting the foreign address.
925 * Such applications should be fixed,
926 * so we bark here.
927 */
928 log(LOG_INFO, "udp6_output: IPV6_V6ONLY "
929 "option was set for a connected socket\n");
930 error = EINVAL;
931 goto release;
932 } else
933 af = AF_INET;
934 }
935 laddr = &in6p->in6p_laddr;
936 faddr = &in6p->in6p_faddr;
937 fport = in6p->in6p_fport;
938 }
939
940 if (af == AF_INET)
941 hlen = sizeof(struct ip);
942
943 /*
944 * Calculate data length and get a mbuf
945 * for UDP and IP6 headers.
946 */
947 M_PREPEND(m, hlen + sizeof(struct udphdr), M_DONTWAIT);
948 if (m == NULL) {
949 error = ENOBUFS;
950 goto release;
951 }
952
953 /*
954 * Stuff checksum and output datagram.
955 */
956 udp6 = (struct udphdr *)(mtod(m, char *) + hlen);
957 udp6->uh_sport = in6p->in6p_lport; /* lport is always set in the PCB */
958 udp6->uh_dport = fport;
959 if (plen <= 0xffff)
960 udp6->uh_ulen = htons((u_int16_t)plen);
961 else
962 udp6->uh_ulen = 0;
963 udp6->uh_sum = 0;
964
965 switch (af) {
966 case AF_INET6:
967 ip6 = mtod(m, struct ip6_hdr *);
968 ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
969 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
970 ip6->ip6_vfc |= IPV6_VERSION;
971 #if 0 /* ip6_plen will be filled in ip6_output. */
972 ip6->ip6_plen = htons((u_int16_t)plen);
973 #endif
974 ip6->ip6_nxt = IPPROTO_UDP;
975 ip6->ip6_hlim = in6_selecthlim_rt(in6p);
976 ip6->ip6_src = *laddr;
977 ip6->ip6_dst = *faddr;
978
979 udp6->uh_sum = in6_cksum_phdr(laddr, faddr,
980 htonl(plen), htonl(IPPROTO_UDP));
981 m->m_pkthdr.csum_flags = M_CSUM_UDPv6;
982 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
983
984 UDP6_STATINC(UDP6_STAT_OPACKETS);
985 error = ip6_output(m, optp, &in6p->in6p_route, 0,
986 in6p->in6p_moptions, in6p, NULL);
987 break;
988 case AF_INET:
989 #ifdef INET
990 /* can't transmit jumbogram over IPv4 */
991 if (plen > 0xffff) {
992 error = EMSGSIZE;
993 goto release;
994 }
995
996 ip = mtod(m, struct ip *);
997 ui = (struct udpiphdr *)ip;
998 memset(ui->ui_x1, 0, sizeof(ui->ui_x1));
999 ui->ui_pr = IPPROTO_UDP;
1000 ui->ui_len = htons(plen);
1001 memcpy(&ui->ui_src, &laddr->s6_addr[12], sizeof(ui->ui_src));
1002 ui->ui_ulen = ui->ui_len;
1003
1004 flags = (in6p->in6p_socket->so_options &
1005 (SO_DONTROUTE | SO_BROADCAST));
1006 memcpy(&ui->ui_dst, &faddr->s6_addr[12], sizeof(ui->ui_dst));
1007
1008 udp6->uh_sum = in_cksum(m, hlen + plen);
1009 if (udp6->uh_sum == 0)
1010 udp6->uh_sum = 0xffff;
1011
1012 ip->ip_len = htons(hlen + plen);
1013 ip->ip_ttl = in6_selecthlim(in6p, NULL); /* XXX */
1014 ip->ip_tos = 0; /* XXX */
1015
1016 UDP_STATINC(UDP_STAT_OPACKETS);
1017 error = ip_output(m, NULL, &in6p->in6p_route, flags /* XXX */,
1018 in6p->in6p_v4moptions, NULL);
1019 break;
1020 #else
1021 error = EAFNOSUPPORT;
1022 goto release;
1023 #endif
1024 }
1025 goto releaseopt;
1026
1027 release:
1028 m_freem(m);
1029
1030 releaseopt:
1031 if (control) {
1032 if (optp == &opt)
1033 ip6_clearpktopts(&opt, -1);
1034 m_freem(control);
1035 }
1036 return (error);
1037 }
1038
1039 static int
1040 udp6_attach(struct socket *so, int proto)
1041 {
1042 struct in6pcb *in6p;
1043 int s, error;
1044
1045 KASSERT(sotoin6pcb(so) == NULL);
1046 sosetlock(so);
1047
1048 /*
1049 * MAPPED_ADDR implementation spec:
1050 * Always attach for IPv6, and only when necessary for IPv4.
1051 */
1052 s = splsoftnet();
1053 error = in6_pcballoc(so, &udbtable);
1054 splx(s);
1055 if (error) {
1056 return error;
1057 }
1058 error = soreserve(so, udp6_sendspace, udp6_recvspace);
1059 if (error) {
1060 return error;
1061 }
1062 in6p = sotoin6pcb(so);
1063 in6p->in6p_cksum = -1; /* just to be sure */
1064
1065 KASSERT(solocked(so));
1066 return 0;
1067 }
1068
1069 static void
1070 udp6_detach(struct socket *so)
1071 {
1072 struct in6pcb *in6p = sotoin6pcb(so);
1073 int s;
1074
1075 KASSERT(solocked(so));
1076 KASSERT(in6p != NULL);
1077
1078 s = splsoftnet();
1079 in6_pcbdetach(in6p);
1080 splx(s);
1081 }
1082
1083 static int
1084 udp6_accept(struct socket *so, struct sockaddr *nam)
1085 {
1086 KASSERT(solocked(so));
1087
1088 return EOPNOTSUPP;
1089 }
1090
1091 static int
1092 udp6_bind(struct socket *so, struct sockaddr *nam, struct lwp *l)
1093 {
1094 struct in6pcb *in6p = sotoin6pcb(so);
1095 struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)nam;
1096 int error = 0;
1097 int s;
1098
1099 KASSERT(solocked(so));
1100 KASSERT(in6p != NULL);
1101
1102 s = splsoftnet();
1103 error = in6_pcbbind(in6p, sin6, l);
1104 splx(s);
1105 return error;
1106 }
1107
1108 static int
1109 udp6_listen(struct socket *so, struct lwp *l)
1110 {
1111 KASSERT(solocked(so));
1112
1113 return EOPNOTSUPP;
1114 }
1115
1116 static int
1117 udp6_connect(struct socket *so, struct sockaddr *nam, struct lwp *l)
1118 {
1119 struct in6pcb *in6p = sotoin6pcb(so);
1120 int error = 0;
1121 int s;
1122
1123 KASSERT(solocked(so));
1124 KASSERT(in6p != NULL);
1125
1126 if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr))
1127 return EISCONN;
1128 s = splsoftnet();
1129 error = in6_pcbconnect(in6p, (struct sockaddr_in6 *)nam, l);
1130 splx(s);
1131 if (error == 0)
1132 soisconnected(so);
1133
1134 return error;
1135 }
1136
1137 static int
1138 udp6_connect2(struct socket *so, struct socket *so2)
1139 {
1140 KASSERT(solocked(so));
1141
1142 return EOPNOTSUPP;
1143 }
1144
1145 static int
1146 udp6_disconnect(struct socket *so)
1147 {
1148 struct in6pcb *in6p = sotoin6pcb(so);
1149 int s;
1150
1151 KASSERT(solocked(so));
1152 KASSERT(in6p != NULL);
1153
1154 if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr))
1155 return ENOTCONN;
1156
1157 s = splsoftnet();
1158 in6_pcbdisconnect(in6p);
1159 memset((void *)&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
1160 splx(s);
1161
1162 so->so_state &= ~SS_ISCONNECTED; /* XXX */
1163 in6_pcbstate(in6p, IN6P_BOUND); /* XXX */
1164 return 0;
1165 }
1166
1167 static int
1168 udp6_shutdown(struct socket *so)
1169 {
1170 int s;
1171
1172 s = splsoftnet();
1173 socantsendmore(so);
1174 splx(s);
1175
1176 return 0;
1177 }
1178
1179 static int
1180 udp6_abort(struct socket *so)
1181 {
1182 int s;
1183
1184 KASSERT(solocked(so));
1185 KASSERT(sotoin6pcb(so) != NULL);
1186
1187 s = splsoftnet();
1188 soisdisconnected(so);
1189 in6_pcbdetach(sotoin6pcb(so));
1190 splx(s);
1191
1192 return 0;
1193 }
1194
1195 static int
1196 udp6_ioctl(struct socket *so, u_long cmd, void *addr6, struct ifnet *ifp)
1197 {
1198 /*
1199 * MAPPED_ADDR implementation info:
1200 * Mapped addr support for PRU_CONTROL is not necessary.
1201 * Because typical user of PRU_CONTROL is such as ifconfig,
1202 * and they don't associate any addr to their socket. Then
1203 * socket family is only hint about the PRU_CONTROL'ed address
1204 * family, especially when getting addrs from kernel.
1205 * So AF_INET socket need to be used to control AF_INET addrs,
1206 * and AF_INET6 socket for AF_INET6 addrs.
1207 */
1208 return in6_control(so, cmd, addr6, ifp);
1209 }
1210
1211 static int
1212 udp6_stat(struct socket *so, struct stat *ub)
1213 {
1214 KASSERT(solocked(so));
1215
1216 /* stat: don't bother with a blocksize */
1217 return 0;
1218 }
1219
1220 static int
1221 udp6_peeraddr(struct socket *so, struct sockaddr *nam)
1222 {
1223 KASSERT(solocked(so));
1224 KASSERT(sotoin6pcb(so) != NULL);
1225 KASSERT(nam != NULL);
1226
1227 in6_setpeeraddr(sotoin6pcb(so), (struct sockaddr_in6 *)nam);
1228 return 0;
1229 }
1230
1231 static int
1232 udp6_sockaddr(struct socket *so, struct sockaddr *nam)
1233 {
1234 KASSERT(solocked(so));
1235 KASSERT(sotoin6pcb(so) != NULL);
1236 KASSERT(nam != NULL);
1237
1238 in6_setsockaddr(sotoin6pcb(so), (struct sockaddr_in6 *)nam);
1239 return 0;
1240 }
1241
1242 static int
1243 udp6_rcvd(struct socket *so, int flags, struct lwp *l)
1244 {
1245 KASSERT(solocked(so));
1246
1247 return EOPNOTSUPP;
1248 }
1249
1250 static int
1251 udp6_recvoob(struct socket *so, struct mbuf *m, int flags)
1252 {
1253 KASSERT(solocked(so));
1254
1255 return EOPNOTSUPP;
1256 }
1257
1258 static int
1259 udp6_send(struct socket *so, struct mbuf *m, struct sockaddr *nam,
1260 struct mbuf *control, struct lwp *l)
1261 {
1262 struct in6pcb *in6p = sotoin6pcb(so);
1263 int error = 0;
1264 int s;
1265
1266 KASSERT(solocked(so));
1267 KASSERT(in6p != NULL);
1268 KASSERT(m != NULL);
1269
1270 s = splsoftnet();
1271 error = udp6_output(in6p, m, (struct sockaddr_in6 *)nam, control, l);
1272 splx(s);
1273
1274 return error;
1275 }
1276
1277 static int
1278 udp6_sendoob(struct socket *so, struct mbuf *m, struct mbuf *control)
1279 {
1280 KASSERT(solocked(so));
1281
1282 m_freem(m);
1283 m_freem(control);
1284
1285 return EOPNOTSUPP;
1286 }
1287
1288 static int
1289 udp6_purgeif(struct socket *so, struct ifnet *ifp)
1290 {
1291
1292 mutex_enter(softnet_lock);
1293 in6_pcbpurgeif0(&udbtable, ifp);
1294 #ifdef NET_MPSAFE
1295 mutex_exit(softnet_lock);
1296 #endif
1297 in6_purgeif(ifp);
1298 #ifdef NET_MPSAFE
1299 mutex_enter(softnet_lock);
1300 #endif
1301 in6_pcbpurgeif(&udbtable, ifp);
1302 mutex_exit(softnet_lock);
1303
1304 return 0;
1305 }
1306
1307 static int
1308 sysctl_net_inet6_udp6_stats(SYSCTLFN_ARGS)
1309 {
1310
1311 return (NETSTAT_SYSCTL(udp6stat_percpu, UDP6_NSTATS));
1312 }
1313
1314 static void
1315 sysctl_net_inet6_udp6_setup(struct sysctllog **clog)
1316 {
1317
1318 sysctl_createv(clog, 0, NULL, NULL,
1319 CTLFLAG_PERMANENT,
1320 CTLTYPE_NODE, "inet6", NULL,
1321 NULL, 0, NULL, 0,
1322 CTL_NET, PF_INET6, CTL_EOL);
1323 sysctl_createv(clog, 0, NULL, NULL,
1324 CTLFLAG_PERMANENT,
1325 CTLTYPE_NODE, "udp6",
1326 SYSCTL_DESCR("UDPv6 related settings"),
1327 NULL, 0, NULL, 0,
1328 CTL_NET, PF_INET6, IPPROTO_UDP, CTL_EOL);
1329
1330 sysctl_createv(clog, 0, NULL, NULL,
1331 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1332 CTLTYPE_INT, "sendspace",
1333 SYSCTL_DESCR("Default UDP send buffer size"),
1334 NULL, 0, &udp6_sendspace, 0,
1335 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_SENDSPACE,
1336 CTL_EOL);
1337 sysctl_createv(clog, 0, NULL, NULL,
1338 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1339 CTLTYPE_INT, "recvspace",
1340 SYSCTL_DESCR("Default UDP receive buffer size"),
1341 NULL, 0, &udp6_recvspace, 0,
1342 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_RECVSPACE,
1343 CTL_EOL);
1344 sysctl_createv(clog, 0, NULL, NULL,
1345 CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
1346 CTLTYPE_INT, "do_loopback_cksum",
1347 SYSCTL_DESCR("Perform UDP checksum on loopback"),
1348 NULL, 0, &udp_do_loopback_cksum, 0,
1349 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_LOOPBACKCKSUM,
1350 CTL_EOL);
1351 sysctl_createv(clog, 0, NULL, NULL,
1352 CTLFLAG_PERMANENT,
1353 CTLTYPE_STRUCT, "pcblist",
1354 SYSCTL_DESCR("UDP protocol control block list"),
1355 sysctl_inpcblist, 0, &udbtable, 0,
1356 CTL_NET, PF_INET6, IPPROTO_UDP, CTL_CREATE,
1357 CTL_EOL);
1358 sysctl_createv(clog, 0, NULL, NULL,
1359 CTLFLAG_PERMANENT,
1360 CTLTYPE_STRUCT, "stats",
1361 SYSCTL_DESCR("UDPv6 statistics"),
1362 sysctl_net_inet6_udp6_stats, 0, NULL, 0,
1363 CTL_NET, PF_INET6, IPPROTO_UDP, UDP6CTL_STATS,
1364 CTL_EOL);
1365 }
1366
1367 void
1368 udp6_statinc(u_int stat)
1369 {
1370
1371 KASSERT(stat < UDP6_NSTATS);
1372 UDP6_STATINC(stat);
1373 }
1374
1375 #ifdef IPSEC
1376 /*
1377 * Returns:
1378 * 1 if the packet was processed
1379 * 0 if normal UDP processing should take place
1380 * -1 if an error occurred and m was freed
1381 */
1382 static int
1383 udp6_espinudp(struct mbuf **mp, int off)
1384 {
1385 const size_t skip = sizeof(struct udphdr);
1386 size_t len;
1387 void *data;
1388 size_t minlen;
1389 int ip6hdrlen;
1390 struct ip6_hdr *ip6;
1391 struct m_tag *tag;
1392 struct udphdr *udphdr;
1393 u_int16_t sport, dport;
1394 struct mbuf *m = *mp;
1395 uint32_t *marker;
1396
1397 /*
1398 * Collapse the mbuf chain if the first mbuf is too short
1399 * The longest case is: UDP + non ESP marker + ESP
1400 */
1401 minlen = off + sizeof(u_int64_t) + sizeof(struct esp);
1402 if (minlen > m->m_pkthdr.len)
1403 minlen = m->m_pkthdr.len;
1404
1405 if (m->m_len < minlen) {
1406 if ((*mp = m_pullup(m, minlen)) == NULL) {
1407 return -1;
1408 }
1409 m = *mp;
1410 }
1411
1412 len = m->m_len - off;
1413 data = mtod(m, char *) + off;
1414
1415 /* Ignore keepalive packets */
1416 if ((len == 1) && (*(unsigned char *)data == 0xff)) {
1417 m_freem(m);
1418 *mp = NULL; /* avoid any further processing by caller ... */
1419 return 1;
1420 }
1421
1422 /* Handle Non-ESP marker (32bit). If zero, then IKE. */
1423 marker = (uint32_t *)data;
1424 if (len <= sizeof(uint32_t))
1425 return 0;
1426 if (marker[0] == 0)
1427 return 0;
1428
1429 /*
1430 * Get the UDP ports. They are handled in network
1431 * order everywhere in IPSEC_NAT_T code.
1432 */
1433 udphdr = (struct udphdr *)((char *)data - skip);
1434 sport = udphdr->uh_sport;
1435 dport = udphdr->uh_dport;
1436
1437 /*
1438 * Remove the UDP header (and possibly the non ESP marker)
1439 * IPv6 header length is ip6hdrlen
1440 * Before:
1441 * <---- off --->
1442 * +-----+------+-----+
1443 * | IP6 | UDP | ESP |
1444 * +-----+------+-----+
1445 * <-skip->
1446 * After:
1447 * +-----+-----+
1448 * | IP6 | ESP |
1449 * +-----+-----+
1450 * <-skip->
1451 */
1452 ip6hdrlen = off - sizeof(struct udphdr);
1453 memmove(mtod(m, char *) + skip, mtod(m, void *), ip6hdrlen);
1454 m_adj(m, skip);
1455
1456 ip6 = mtod(m, struct ip6_hdr *);
1457 ip6->ip6_plen = htons(ntohs(ip6->ip6_plen) - skip);
1458 ip6->ip6_nxt = IPPROTO_ESP;
1459
1460 /*
1461 * We have modified the packet - it is now ESP, so we should not
1462 * return to UDP processing ...
1463 *
1464 * Add a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember
1465 * the source UDP port. This is required if we want
1466 * to select the right SPD for multiple hosts behind
1467 * same NAT
1468 */
1469 if ((tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS,
1470 sizeof(sport) + sizeof(dport), M_DONTWAIT)) == NULL) {
1471 m_freem(m);
1472 return -1;
1473 }
1474 ((u_int16_t *)(tag + 1))[0] = sport;
1475 ((u_int16_t *)(tag + 1))[1] = dport;
1476 m_tag_prepend(m, tag);
1477
1478 if (ipsec_used)
1479 ipsec6_common_input(&m, &ip6hdrlen, IPPROTO_ESP);
1480 else
1481 m_freem(m);
1482
1483 /* We handled it, it shouldn't be handled by UDP */
1484 *mp = NULL; /* avoid free by caller ... */
1485 return 1;
1486 }
1487 #endif /* IPSEC */
1488
1489 PR_WRAP_USRREQS(udp6)
1490 #define udp6_attach udp6_attach_wrapper
1491 #define udp6_detach udp6_detach_wrapper
1492 #define udp6_accept udp6_accept_wrapper
1493 #define udp6_bind udp6_bind_wrapper
1494 #define udp6_listen udp6_listen_wrapper
1495 #define udp6_connect udp6_connect_wrapper
1496 #define udp6_connect2 udp6_connect2_wrapper
1497 #define udp6_disconnect udp6_disconnect_wrapper
1498 #define udp6_shutdown udp6_shutdown_wrapper
1499 #define udp6_abort udp6_abort_wrapper
1500 #define udp6_ioctl udp6_ioctl_wrapper
1501 #define udp6_stat udp6_stat_wrapper
1502 #define udp6_peeraddr udp6_peeraddr_wrapper
1503 #define udp6_sockaddr udp6_sockaddr_wrapper
1504 #define udp6_rcvd udp6_rcvd_wrapper
1505 #define udp6_recvoob udp6_recvoob_wrapper
1506 #define udp6_send udp6_send_wrapper
1507 #define udp6_sendoob udp6_sendoob_wrapper
1508 #define udp6_purgeif udp6_purgeif_wrapper
1509
1510 const struct pr_usrreqs udp6_usrreqs = {
1511 .pr_attach = udp6_attach,
1512 .pr_detach = udp6_detach,
1513 .pr_accept = udp6_accept,
1514 .pr_bind = udp6_bind,
1515 .pr_listen = udp6_listen,
1516 .pr_connect = udp6_connect,
1517 .pr_connect2 = udp6_connect2,
1518 .pr_disconnect = udp6_disconnect,
1519 .pr_shutdown = udp6_shutdown,
1520 .pr_abort = udp6_abort,
1521 .pr_ioctl = udp6_ioctl,
1522 .pr_stat = udp6_stat,
1523 .pr_peeraddr = udp6_peeraddr,
1524 .pr_sockaddr = udp6_sockaddr,
1525 .pr_rcvd = udp6_rcvd,
1526 .pr_recvoob = udp6_recvoob,
1527 .pr_send = udp6_send,
1528 .pr_sendoob = udp6_sendoob,
1529 .pr_purgeif = udp6_purgeif,
1530 };
1531